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Abstract

We consider the problem of equalization of linear
(finite-impulse-response - FIR) channels with the use
of desicion feedback equalizers (DFE’s). In recent con-
tributions [2], [8], it was shown that an arbitrary FIR
channel can be perfectly equalized in the absence of
noise with the use of an FIR-DFE receiver (whether
it is fractionally-spaced (FS) or not). In such cases,
by properly choosing the filter lengths, as well as re-
covery delay parameters, it is possible to null perfectly
the residual intersymbol interference (ISI) at the de-
cision device (DD) output, without compromising the
performance. The simplicity and practical importance
of this case call for a performance analysis of these
so-called unbiased DFE receivers. In the absence of
residual ISI, the key issue that determines bit error
rate (BER) performance is error propagation. We de-
rive both epprozimative and ezact closed-form expres-
sions for the BER of unbiased DFE receivers. These
expressions allow for a simple calculation of the equal-
izer output BER at steady-state, as well as for a quan-
titative description of issues such as instability and er-
ratic behavior. In support to our findings, we provide
computer simulation results that verify the validity of
our results.

1 Introduction

Since their introduction by Austin [1] more than
thirty years ago, decision feedback equalizers have
been founding an increasing number of applications,
that range from high-speed wireline to satellite and
cellular channel modems. Combining a performance
that is superior to linear equalizers and a complexity
far smaller than that of the Viterbi algorithm (VA), as
well as close-to-optimal performance when used with
suitable coding schemes, it is foreseeable that DFE’s
will continue to play an important role in modem de-
sign for both fixed and wireless communication sys-
tems, as well as in non-communication (such as mag-
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netic storage) applications for years to come.

As evidenced by the large number of recent the-
oretical contributions on the performance analysis of
DFE’s, there are still a number of issues that remain
open in the understanding of DFE receiver perfor-
mance. In particular, there is an increased interest in
the theoretical BER evaluation of DFE’s for specific
channels, especially at low BER regions where simula-
tion is either inefficient or excessively time-consuming.
Such evaluations may allow for a rapid assessment of
the performance which could lead to important choices
of receiver parameters and design criteria that affect
cost, complexity, and performance in a particular ap-
plication.

Some recent results on BER performance analysis
of DFE’s include [4] and [5]. In [4], DFE performance
is analyzed in the case of non-zero residual ISI at the
DD output. (this case is called “biased” DFE, in the
sense that in the absence of noise the error does not
vanish). In the case of error propagation, an approx-
imative Markov model is used in conjunction with a
Fourier-series expansion of the noise distribution in
order to derive approximative BER expressions for
BPSK and QPSK sources. In [5], a closed-form expres-
sion is given for PAM sources in the case of unbiased
DFE’s for a single-post-echo channel. An iterative
method for the BER calculation in the more general
case of arbitrary FIR channels is also proposed in [5].
An older but important contribution is contained in
[6]: assuming negligible pre-cursor ISI (hence perfect
ISI cancellation by the FBF is possible), and white
noise at the DD input (which requires an infinite-
length FFF), closed-form expressions for the BER of
BPSK and QPSK sources are derived. These expres-
sions require, in the general case, the performance of
a matrix eigen-decomposition.

In the above-mentioned contributions, residual ISI
at the DD input is assumed either (1) present due
to pre-cursor ISI and / or the short length of the



FBF, or (2) negligible due to the use of a long (ideally
infinite-length) FFF. However, in [2], [3], it was shown
that if the FIR filter lengths and delay parameters are
properly chosen, residual ISI can be completely elim-
inated (for both symbol-spaced and FS FFF’s). This
amounts essentially to rendering all ISI post-cursor. In
this case, the determination of the BER performance is
facilitated, as the key factor will be only error propaga-
tion. This revives our interest in the work in [6], which
treats essentially a special case of unbiased DFE per-
formance. In this contribution, we will attempt to an-
alyze the BER performance of unbiased DFE’s, aiming
at the derivation of simple mathematical expressions.
It will be seen that such simple expressions approxi-
mate well (within deviations typically in the order of
about 1 dB in SNR) the actual equalizer performance.
Moreover, they allow for a number of interpretations
and interesting insights on DFE performance.

The rest of the paper is organized as follows. In
Section 2 we present our basic model and assump-
tions. Section 3 contains our main contribution which
is the derivation of analytical expressions for the BER
of minimally configured unbiased DFE’s. In Section
4 we provide a discussion and some interpretations
based on the results of section 3. Section 5 contains
some computer simulation results in support of our
theoretical findings. Finally, Section 6 contains our
conclusions.

2 Notation and assumptions

We consider a finite-length DFE receiver, as shown
in Figure 1, which depicts the baseband representation
of the cascade of an FIR channel (whose output is
sampled at symbol rate) and a symbol-rate decision
feedback equalizer.

According to the figure, we define the following
quantities: a(k) is the transmitted input symbol, z(k)
the channel output, ys(k) the FFF output, y;(k) the
FBF output, y(k) the decision device input, a(k) the
decision device output, all at time instant k. H(z)
is the z— transform of the channel impulse response
{h(n)}, and Fy(z), Fy(z) are the z— transforms of
the feed-forward (FFF) and feedback (FBF) filters,
respectively. In the above description, all samples are
assumed to be taken at the symbol rate. Assuming an
FIR symbol-rate channel, our signal model is

N-1
a(k) = ) h(i) a(k—i)+n(k) = HA(k)+n(k) (1)

=0

where the symbol-rate sampled channel response
{hi, i = 0,...,N—1} is assumed to have N non-
zero coefficients, H = [ho --- hn-1] and A(k) =
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Figure 1: Schematic diagram of a symbol-rate DFE

[a(k) --- a(k—N+1)]T, n(k) is the additive noise sam-
ple at the channel output, and T denotes matrix trans-
pose. In the sequel we will assume for simplicity that
all h; are real. We also define the FFF and FBF vec-
tors as
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where we have assumed that they contain Ly and Ly
non-zero coefficients, respectively. The input to the
decision device (DD) y(k) can then be written as:

u(k) = ys (k) +us (k) = X" (0)Fr (R)+ AT (R)F(K) )
= XT(k)F(k)

where the regressors X (k), g(k) and X (k) are defined
as

XT(H) = [o(k) ~-alk— Ly +1)]
AT(k) = [ak~5)---ak—j-Ly+1)] (@)
X(k) = [XT(k) AT(R)"
j is a positive integer and F'(k) is defined as:
F(k) = [Ff (k) F (k)" (5)
The DD output a(k) is defined as
a(k —j) = dec(y(k)) (6)

where dec(y(k)) denotes the closest constellation
symbol to y(k), and is assumed to be an estimate of
the transmitted symbol a(k—3). Notice that, accord-
ing to (6), the DD output is delayed with respect to
the channel input. This delay j is positive since the re-
ceiver is a causal system. Moreover, the choice of this
delay is important for the performance of the receiver.
In [2], [3] it was shown that the following theorem
holds for symbol-rate finite-length DFE receivers:

Theorem I: Perfect zero-forcing FIR decision feedback



equalizers exist in the absence of noise if Ly+Ly>M,
where Ly, Ly are the FFF and FBF lengths, respec-
tively, and M=max (L¢+N—1,j+Lp—1).

A similar theorem was shown in [3] for fractionally-
spaced DFE’s. Assuming that we choose indeed the
lengths of the FFF and FBF filters to satisfy the con-
dition of Theorem I, we will now analyze the perfor-
mance of the equalizer in terms of BER.

3 Performance analysis

In a first stage, we will consider the minimal con-
figuration that guarantees, according to Theorem I,
the complete elimination of residual ISI, i.e. Ly =1,
Ly = N—1. It can then be shown that, for j =1 (and
assuming that both {z(k)} and {@(k—j)} are further
delayed by 1 symbol period before entering the FFF
and FBF, respectively), the DD input will be given
by:

y(k) = a(k—1)+7}0-

N-1
(ZAa(k—i—lHn(k—l)) (7)
=1
where Aa(k—1) = a(k—l) — a(k—I). Notice that the
expression (7) is almost identical in form to the ex-
pression for the DD input considered in [6] (where the
normalization hg = 1 was used). In the sequel we will
study the BER performance of the process y(k) de-
scribed in (7), assuming the input a(k) to be BPSK,
and {n(k)} to be zero-mean AWGN of variance o2.
3.1 No error propagation

Assuming correct decisions, Aa(k) = 0, V k, and
(7) reduces to

WB) = alk—i) + nk=)  @®)

which corresponds to an additive noise channel: the
noise in the model (8) is only scaled. Notice that,
as opposed to [6], the noise is perfectly white in our
model, whereas in [6], it is assumed white as an ap-
proximation (which would require an infinite-length
FFF). The BER in this trivial case is straightfor-
ward to compute: assuming binary antipodal signal-
ing (a(k) = £1 equally likely), the uncoded bit error
probability is given by:

1 [ 1hol?
Zerf Lol
e < 202
It is expected, of course, that, as the assumption of
correct decisions will not be valid in practice, the ex-
pression in (9) will be optimistic. It can hence be

considered only as a performance bound for this case,
which should be approached only for high SNR’s.

B

(9)
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3.2 Error propagation
According to Eq. (7), the vector Aa(k)

[Aa(k—2) --- Aa(k—N)] is a first-order Markov pro-
cess. Assuming {a(k)} to be BPSK, Aa(k) has 2V !
states, stemming from the correctness or not of each
of the N—1 corresponding symbols (more rigorously,
each component of Aa(k) can be either Aa(k—i—1) =
0, or Aa(k—i—1) = 2a(k—i—1) = £2). Each of the
2N-1 gtates will occur with different probability. As-
suming that all Aa(k) arei.i.d, then these probabilities
are given in the following table:

Probability Non-zero elements in Aa(k)
(1—P,)N 1 0
Pe(l - Pe)N—2 1
pN-1 N-1

In other words, the probability of Aa(k) containing
j errors is P#(1-P.)¥-179 (j € [0, N-1]). The error
probability can now be expressed as:

P. = Pry(k) > 0la(k—-1) =—1]
(1—=P)N-1pr [hion(k~1) > 1]

N-1
_ 2h; . n{k—1)
P.(1-p)N-2 2 allk—i—
+P.(1-P.) ;Pr[hoa(kz 1)+ e >1]
ot
N-1
2
+PN-tpyr —-Zhak z—l)+n(k 1)>1
0

(1-P)N- 1Po—l—P (1-P)N=2pP +---+PN-1Py_,
(10)
In (10), each P; comprises of ( N-1 ) probability
terms. An exact solution of the polynomial equation
(10) would require the solution of an equivalent eigen-
value problem (see [6]). Here instead, we will use an
approximation of (10) by keeping terms only up to
second order in P., and neglecting higher order terms.
Especially in high SNR regions (which are of most im-
portance since they require many simulation runs to
determine P, ), this approximation is expected to yield

minimal penalty. Eq. (10) then is approximated by:

P2 [Py(N=1)(N—=2)/2 — PL(N=2) + Py] +

P, [P,—(N—1)Py=1]+ P, =0 (11)

The error probability can thus be approximated (for
N > 2) by the solution to the quadratic equation (11):

~ 1/ (2UN—1)(N—2)Po/2—(N—2) P, +Ps]) x
[(=Pi+(N-1)Po+1) +

/[Pi—(N—1)Po—12—4Po[(N-1)(N—2)/2Po—(N—2) P+ P2]
(12)




with the constraint 0 < P, < 1. Interestingly, only

three probabilities are involved in (12), namely, P,,
P;, and P,. Py is given in (9), whereas P; and P are
given below:

h; h;
N—- — — —_—
4~ /202 /|ho|2 /202 |hol?
(13)
N-1
1 . . . .
Py=g > PG )+Pr—(5, )+ P_ (5,1)+ P-_(5,1)
i<t
(14)
where
. 1-2 (ih.;lﬂ: h[)
Pis(j,l) = cerfc | ———0 7 15
:I::E(J ) 2 \/20'—2/|h—o|2_ ( )

Note that the expression in (12), while expected to be
accurate due to the inclusion of second order terms,
remains computationally very simple. It involves no
Fourier-series expansion or eigenvalue decomposition,
and only requires the computation of three error prob-
ability terms. It is thus much simpler than previously
reported methods for DFE performance evaluation.

4 Discussion
In the trivial case N=2, only linear terms are con-
tained in (10), and the BER is given by the simple
formula
P, = Po/ (1+Py—P1) (16)

which coincides with the result in [6]. Notice also
that for N=3, the formula (12) is exact, as only up
to quadratic terms exist in this case in (10). An even
simpler approximation would take into account only
the linear terms in (10), yielding:
Pe jond Po/ (1+(N—1)P0—P1) (17)
Even though less rigorous than (11), Eq. (17) allows
for some interesting observations regarding the perfor-
mance of the considered minimal DFE setup.
Consider first the case N = 3. If the arguments
of the two components of each of the terms in (13)
have opposite signs, then for vanishing noise, P, = 1
and (17) gives P, ~ 1/2. Hence, in this case, if both
h%/h% > 1/4 and h%/hZ > 1/4, the DFE will have an
erratic behavior and act as an oscillator! Therefore
it is important for the good operation of the equal-
izer to have h? and h% as small as possible, compared
to hg. This appears intuitively correct, as one ex-
pects that the minimal unbiased configuration Ny = 1,
Ny = N—1 which depends heavily on 1/hg, will be
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o Theoretical vs. simulated DFE performance {N=3)

= theory (with error prop., only linear terms)
—r— theory (with error prop., includes quad. terms)
------ Fsemes simulated (1E6 data samples)
~—%——  theory (without error prop.)
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Figure 2: A comparison of theoretical vs. simulated
performance ‘

suitable for a channel as causal as possible. Using
similar arguments for IV > 3, it is clear that, for the
configuration studied, the strong non-causality of the
channel may result in the instability of the DFE re-
ceiver. On the other hand, good behavior is expected,
if, for each 1 < ¢ < N-—1, the following holds

hZ/h5 < 1/4 (18)
By observing (17), it appears also that, at some SNR’s,
the denominator may be close to zero, thus leading
to “notches” in the BER expressions as a function of
SNR. This fact justifies the use of the quadratic ex-
pression (12), which tends to be more insensitive to
this problem.

5 Simulation results

Figure 2 shows the actual (simulated based on 108
data samples) and predicted (using (9)— no error prop-
agation, (12), or (17)) BER performance for a 3-tap
channel with impulse response H = {1 2 0.5]. No-
tice that (12) gives a prediction that is within 1 dB
of the actual performance (about 2/3 of a dB at the
10! BER level). This small, albeit finite mismatch is
probably due to the assumption that the components
of the error vector Aa(k) are assumed to be i.id.,
whereas this may not necessarily be the case in prac-
tice. Notice also that the linear approximation in (17)
is, as expected, very close to the quadratic solution in
(12) - in this case, as mentioned above, the quadratic
solution is exact —. On the other hand, the expression
in (9), as expected, underestimates the BER (espe-



Thoretical vs. simulated DFE performance (N=4)
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Figure 3: Linear approximation for N =4

cially at low-to-moderate SNR’s), as it does not take
into account error propagation.

A similar example can be seen in Figure 3, where we
evaluate only the linear BER approximation given by
(17) for the case N = 4. The considered channel im-
pulse response is H = [0.9501 0.2311 0.6068 0.4859).
Again we observe that, even the linear approximation,
is about only 1 dB away from the actually simulated
DFE performance. This reinforces the value of the
simple expression (17).

In order to demonstrate the “oscillation” effect
mentioned above, we consider a strong non-causal ex-
ample, by choosing H = [0.0112 —0.645 0.807]. Figure
4 shows the BER performance predicted through both
(12) and (17). The plot shows that, in full agreement
with our analysis is Section 4, the BER predicted by
(17) converges to 1/2 for high SNR values. This is
due to the strong non-causality of the channel. No-
tice also that, this behavior is not far from the behav-
ior of the exact solution (12), according to which, the
BER again remains very close to 1/2 (notice the very
small scale in Figure 4). However, contrarily to the
expression (17), the expression (12) captures properly
the fact that, with vanishing noise, the performance
should always improve.

6 Conclusions

We have studied theoretically the BER perfor-
mance of unbiased DFE receivers. The absence of
residual IST in this case has allowed us to derive com-
putationally simple formulas that approximate well
the actual DFE performance. Moreover, the de-
rived expressions have allowed to describe mathemat-
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h=[0.01124489638413 -0.64514581569117 0.80572879311238]
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Figure 4: The effect of a strongly non-causal channel

ically the problem of instability and erratic behav-
ior that sometimes may be observed in DFE’s. Fu-
ture work will be targeted to the performance analysis
of arbitrary-length (as opposed to minimal) unbiased
DFE’s.
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