Efficient implementation of parallel decision
feedback decoders for broadband applications

H. Lou, M. Rupp, R.L. Urbanke, H. Viswanathan and R. Krishnamoorthy

Bell Labs, Lucent Technologies
600 Mountain Ave
Murray Hill, NJ 07974

ABSTRACT

Parallel Decision-Feedback Decoders (PDFD) use a
joint equalization and channel decoding scheme that
performs decision-feedback equalization based on each
survivor path in the channel decoder. In this paper,
we propose novel efficient computation methods to im-
plement the PDFD. We show that, contrary to the
belief that PDFD is too complex to implement, stan-
dard Viterbi decoders can be modified to implement
the PDFD and achieve very high bit-rates.

I. INTRODUCTION

Decision Feedback Equalizers (DFE) are typi-
cally used to combat inter-symbol interference of the
transmitted symbols. It is well known that the per-
formance of a system using separate DFE and channel
decoding is significantly degraded by error propagation
in the DFE [1]. Several joint equalization and decoding
schemes have been proposed in the literature to im-
prove the performance of coded modulation schemes
when a DFE is used. This paper is on using a joint
DFE and Trellis Coded Modulation (TCM) de-
coding scheme that performs decision-feedback equal-
ization based on each survivor in the TCM decoder.
This technique, called Parallel Decision-Feedback
Decoding (PDFD), was first proposed in [1]-[3] to
reduce the complexity of an optimum joint maximum-
likelihood equalization and decoding scheme. Even
though PDFD is suboptimal in performance compared
to an optimum joint MLSE scheme, depending on the
channel conditions, it can still achieve significant per-
formance gains [4]. For broadband applications, PDFD
is still considered very complex to implement. In this
paper, we present novel efficient methods to implement
the PDFD and show that standard channel decoders,
using the Viterbi algorithm [5], can be modified to im-
plement PDFD and achieve very high bit-rates.

The following section first describes the PDFD scheme.
After that, efficient methods to implement the PDFD
applicable to most TCM schemes of practical interest
are presented in Section III.

II. TuE PDFD ALGORITHM

A Viterbi decoder generally has a latency of L decod-
ing stages, where L is the decoding depth [5]. Thus,
the DFE cannot wait for the decoder to obtain the
global most-likely decoded symbols and then feed these
symbols into the feedback section of the DFE. There-
fore, a conventional DFE makes a tentative decision
before the Viterbi decoder and feeds back this value

0-7803-5682-9/99/$10.00©1999 |EEE.

to the feedback path of the DFE. On the other hand,
PDFD is a technique in which no tentative decisions
before decoding are made for the feedback part of the
DFE. Instead, the feedback section of the DFE is com-
puted separately for each survivor path of each state in
the trellis in order to determine the soft output of the
equalizer for each state. This is done at each decoding
stage of the Viterbi decoder. That is, PDFD main-
tains a DFE for each survivor path corresponding to
each state in the given TCM trellis (and thus the name
parallel decision feedback decoder). The feedback part
of each DFE uses the last NV}, decoded symbols in the
survivor path of that state. N, is the number of taps
in the feedback part of the DFE and is a design pa-
rameter.

The PDFD scheme can be described mathematically
as follows: Denote the survivor path at state s at de-
coding stage t by z,(s) = (z:(s,4),1 < 1 < t) where
z4(s,1) is the decoded symbol on the branch between
decoding stage ¢ — 1 and decoding stage i. If the
feed-forward and feedback taps of the DFE are w =
(w1, -+, wn,) and b = (b, -+, bn,), respectively, then
the survivor path at state s would be extended based
on the branch metric calculated using the soft input:

Ny—1 N
v(e) = 3 wirlt+9) -3 bals,t-1), (1)
i=0 j=1 .

where r(t) is the output of the feed-forward filter at
time t, and Ny and Ny are the number of feedback and
feed-forwards taps, respectively.

Thus, the branch metric calculation has to be re-
peated for each state. This is in contrast to the con-
ventional Viterbi decoder that obtains the same output
value from the DFE. Therefore, the PDFD not only has
to update the feedback section of the DFE, given the
current Viterbi decoder survivor path for each state, it
also has to compute the branch metrics using a differ-
ent input value y;(s) for each state.

ITI. EFFICIENT IMPLEMENTATION OF PDFD

From the previous section, we see that conventional
separate DFE and channel decoding scheme has to up-
date only one feedback path in the DFE while PDFD
has to update up to 2” feedback paths in the DFE,
corresponding to the 2" states (or survivors) in the
Viterbi decoder. (v is the constraint length of the chan-
nel code.) Furthermore, since a different input value
y¢(s) is computed for each survivor path coming into
each state, the branch metrics for paths coming into

1475

each state have to be computed. This is in contrast
to standard Viterbi decoders where the branch met-
rics computed can be shared among all states. Thus,
this section focuses on efficient computation methods
to update the feedback paths of the DFE and to com-
pute the branch metrics. Implementation of the rest
of the Viterbi decoder, as well as the finite precision
requirement, in a PDFD is similar to that of a stan-
dard Viterbi decoder. Since there is abundant liter-
ature written on standard Viterbi decoder design (an
extensive reference list is given in [6]), other implemen-
tation issues regarding the Viterbi decoders are not
addressed here.

A. Efficient decision-feedback path updates

As described in the Section II, the DFE output for
each state, s, at decoding stage ¢, y:(s), has to be up-
dated using Equation 1. Since each z(s,t — j) is a
constellation point in a PSK or QAM constellation,
the multiplication of a tap coefficient, b;, with a known
constant, z; can be implemented by shifters and adders,
as is done in the current state-of-the-art systems [7].
We propose that rather than using the conventional
constellation, shown in Figure 1, with the constellation
points, z; € {1/v/2(%1,£4)}, a rotated constellation
with points z; € {1,7,—1,—j} is used instead. Rotat-
ing the constellation points does not change the be-
havior of the digital modulation scheme nor its trans-
mission since the hardware dependent implementation
will add arbitrary rotations anyway.

Fig. 1. Conventional and proposed QPSK constellations.

For the conventional QPSK constellations, z; € {+1,%j}.

No multiplication is required but two adders are re-
quired to compute z;b;. By using the rotated QPSK
constellation with z; € {1,7,—1,—j}, the multiplica-
tion becomes a selection operation. No adders are re-
quired.

z;=1: x;b; = Real(b;) + jImag(b;) (2)
z;=j: z;b;= ~Imag(h;) +jReal(b;) (3)
z;=—1: x;b; = —Real(h;) — jlmag(b;) (4)
z;=~j: a;b; = TImag(b;) — jReal(b;). (8)

Figure 2 depicts the basic selector structure that im-
plements b;z;, the multiplication of a complex-valued
filter coefficient with a constellation point. We de-
note the two bits that define a QPSK constellation
point, bit ¢; and bit ¢g. A possible mapping scheme to
map these two bits into a QPSK constellation point is:
(c1,c0) = (0,0) for z; = 1, (e1,c0) = (0,1) for z; = j,
(c1,¢0) = (1,0) for z; = —1 and (c1,¢0) = (1,1) for
z; = —j. In the figure, the inverters are assumed to be
active high. The switches are assumed to be connected
to the upper position when the control signal is “1”.

1476

%
b
i

[£]
«’é
Ig]: "? N o Im

° .'IZ,,'b.i

coDa
Fig. 2. Basic selector operation to implement a complex multiplica-
tion of a filter tap b; with a point in a QPSK constellation.

Co co @y
l | Befsr_1}
Re
be . |—3ADD|__,| Re | _
I l—b o SUB Sk
b = | Jappl fim |
> o

L—» SUB ?k

| Im{sg_1}H
clk

cr
Fig. 3. Recursive structure to implement the the feedback filter tap
updates. .

Since there are N, filter tap.coefficients (Equation 1),
addition operations are required. Assume that the par-
tial sum is computed up to position k — 1 where

E—1
Sp—1 = Zzibi , (6)
i=1

the next step is to compute s where
Sk = Sgp—1 + Zrbr, k=2..N;.

Thus, apart from some logic and selectors, only two
add/sub units are required if the sum is to be com-
puted recursively. The add/sub units are assumed to
perform the addition operation when the control sig-
nal is high. Figure 3 is an example to implement the
recursive operation described in Equation 6. Paral-
lel structures can also be introduced depending on the
throughput required. As we can see, using our method,
2(N,—1) additions are required to update one feedback
path. Thus, if N, = 3 and a fully parallelized struc-
ture is used, the throughput that can be achieved by
implementing the the complete feedback path update
is limited by the amount of time required to process
two stages of adders.

To apply the same idea to a larger constellation, we
use a 16-QAM constellation as an example. Similar to
the QPSK case, the set of 16 constellation points, z;
€ {£1+j,+1+3j,£3+ j,+3 £ 3j} is rotated by 45°
as shown in Figure 5. The figure also shows how the
constellation can be separated into four subsections.
Each subsection is a translated QPSK constellation.
Thus, in order to implement the multiplication of a
filter coefficient with a symbol from a 16-QAM con-
stellation, the corresponding filter coefficient is to be
selected as described in (2)-(5) followed by a shift op-
eration if necessary. After that, this value is added to
another selected value as displayed in Figure 6. In the
figure, the block labeled “SEL” is given in Figure 2 and
the one labeled “REC” is given in Figure 4. “L-SH”

denotes the left shift operation as mentioned above.
As an example, the constellation point (1 + 35) in the
conventional 16-QAM constellation is now (due to ro-
tation and stretching) mapped into (2+ 7). (Note that
the definition of one unit in actual implementation is
arbitrary.) In the first step, the operation “mult by
2” is performed using a selection operation followed
by a shift operation. After that, the filter coefficient
is multiplied by j, which is another selection opera-
tion. Finally, the two values obtained from the two
steps are added together. This complex multiplica-
tion thus requires two real add operations. We note
further that due to symmetry in the 16-QAM constel-
lation, the multiplications of one filter tap coefficient
with different constellation points may be shared [8].

o Re{sp_1}co® 1

- }
- ADD|__,
e - ;\ SUB[—| %
b e .lappl_ [
> o

SUB Tl Sk
Im(ah_J} T

T

Fig. 4. Structure to compute sy = Sg—1 + Tibk.

B. Efficient branch metric computation

As discussed earlier, the main complexity increase
in the Viterbi decoder due to PDFD is in the branch
metric computation. Since each state in the Viterbi de-
coder has a different feedback path for the PDFD, the
input value for each state is different. Thus, a branch
metric for each transition in the TCM trellis has to be
computed. Therefore, the branch metric computation
in a PDFD can become the bottleneck in the decoder,
especially for high bit-rate applications.

We find that during the search for the survivor path,
commonly known as the add-compare-select process in
standard Viterbi decoders [6], linear distances can be
used to represent the branch metrics. Even though
squared distances may have to be added to the path
metric of the survivor path for each state, 2 squared
distances have to be computed rather than 2(***), Fur-
thermore, the computation of the squared distances
can be done in parallel to the add-compare-select units.
Thus, they are no longer in the critical path and can
no longer be the bottleneck.

In this section, we denote

Fig. 5. Splitting a 16-QAM in four subsets.

wy
, |
SEL L-SH > REC |—
So 8) =
il T
o a by b3

Fig. 6. Two-step chain for multiplication in a 16 QAM set.

¢ Ynm = the m*"-dimensional received noisy symbol
at decoding stage n. When m =1, yn,m = yn.

¢ C; ; = the output symbol associated with the tran-
sition from state i to state j. This symbol is a
codeword for convolutional codes and a coset num-
ber for trellis codes.

® p; jm = the nearest codeword in coset C; ; of trel-
lis codes to the mt?-dimensional received symbol,
Yn,m-

e B;jnm = mth-dimensional branch metric for the
transition from state 7 to state j at decoding stage
n. When m = 1, Bi,j,n,m = Bi,]‘,n.

e M;, = the path metric for state j at decoding
stage n

e {i} = the set of states that have transitions to
state j

At each decoding stage, the VA computes the path that
has the minimum path metric coming into each state
[5]. For example, to find the survivor path coming into
state j at decoding stage n, the VA computes

Mjn = Y?i)Il[l‘li,n—l + Bi,jn]- (7
z

To determine the survivor path, comparison of the
path metrics of the path from state i to state j and
that of state k to state j has to be made. That is,

aMm M;n-1+Bijn=(Myn_1+Bgjn)

(M o1 = My 1)+ Z:=1 Bijm,m = ZZ=, Bi,jyn,m
(M.Nz-l = Mp 1)+
Z"‘:l(yn,m ~Pijm)® = (Wn,m = Py jm)?
(MinAl - My)+

ey ~2nm(Piim ~ Ph,jm) P
= Mn_y - M, g+
z:=1(p’“'fv"‘ = Pi,j,m) [(Vn,m = Pijm}+ (¥n.m - Pk.j,m)]

. . (8)

oo

[}

- p2
dm T Phjm

The comparison rule is

am{ 20 i1t Band 2 (Menot t Prin)
We apply the properties derived in Equation 8 to

convolutional codes, trellis codes [9] of depth 2 (C-level

partitioning) and 3 (D-level partitioning) that are of

practical interest. The results are summarized below.

Detailed derivation can be found in [10].

Case I: QPSK constellations

For a QPSK constellation, we can represent [6)

1477

Branch metric per dimension for a QPSK sym-
bol:

1
-1
(10)

il

~Yn,1 for piju
Yn,1 for pi j1

i

Bijn1 = —Yn1Pij1 = {

To search for the survivor path, compute
Comparison of path metrics in the QPSK case:

AM = M;n-1+ 22 _, Bijn,m—

(Mk,n—l + Zm:l Bk,j,n,m)-

Since the input symbol y, for each state is different,
the factor y2 has to be included in the path metric of
the survivor path for each state. Thus, if the path from
state i to state j is the optimum path coming into state
j at decoding stage n, the updated path metric should
be, Path metric update for Case I:

(1)

Mjn=M;n1 +B;jn+yl. (12)

Case II: Trellis codes with infinite constellations
In this case, we assume that the signal constellation is
infinite in all dimensions. To determine the survivor
%ath, compute

omparison for Case II:

AM = (Miyn_1—Mgno1)t

Ei:l Iyn,m - pi,j,n,ml - EZ:I 'yn.m - Pk,j,n,m|-
(13)
That is, absolute distances can be used to represent
the branch metrics without loss of performance. Thus,
Branch metric representation for Case II during
comparison: N

Bijn = [Ynm — Pijnml (14)

m=1

To update the path metrics, if the path from state i to
state j is the optimum path coming into state j at de-
coding stage n, Path metric update for codes us-
ing C-level partitioning (infinite constellations):

Mjn = (Min-y+Bijn) +ya (15)
Path metric update for codes using D-level par-
titioning (infinite constellations):

Mj,n = Mi,n—l + (yn _pi,j,n)z- (16)

Even though a squared branch metric has to be com-
puted in this case, it needs to be computed only once
per state and it can be done in parallel to the add-
compare-select process to search for the survivor path
for each state. It is also removed from the critical path
to search for the survivor path for each state.

Case III: Trellis codes with finite constellations
Figure 7 is a one-dimensional example of a typical trel-
lis code with a finite number of constellation points.
In Equation 8, the order of subtraction of the term
(Pk,jm — Pij,m) determines the sign. Given a code,
such as the example shown in Figure 7, the constella-
tion points are defined. Thus, the sign of subtraction
can be derived [10]. In summary, referring to Figure 7,
if CO is associated with the transition from state i to
state j and C1 is associated with the transition from
state k to state j, and if s; = sign(yn — pi, j,n), then to

1478

c‘@-g

Cl Cl
3 &
a c

a®-9

Fig. 7. One-dimensional finite constellation used in Case I1I.

search for the survivor path
if ((s; @ sxg) = 1 and s; = 1) compute
AM =

= (Min-1— Mgpn-1) ~{(yn — Dij) + (Yn — Pr.j

else
AM =

Similar to other cases, to update the path metric, if
the path from state i to state j is the optimum path
coming into state j at decoding stage n, the updated
path metric should be,

Path metric update for codes using C- and D-
level partitioning (finite constellations):

Mj,n = Mi,n~1 + (yn “pi,j,n)z- (17)

REFERENCES

[1] M. Eyuboglu and S. Qureshi, “Reduced-state se-
quence estimation for coded modulation on in-
tersymbol interference channels,” IEEE Journal
on Selected Areas in Communications, vol. 7,
pp. 989-995, August 1989.

[2] K. Wesolowski, “Efficient digital receiver struc-
ture for trellis-coded signals transmitted through
channels with intersymbol interference,” Electron.
Letters, pp. 1265-1267, November 1987.

[3] A. Duel-Hallen and C. Heegard, “Delayed
decision-feedback sequence estimation,” IEEE
Trans. on Communications, vol. 37, pp. 428-436,
May 1989.

[4] H.Lou, H. Viswanathan, and R. Krishnamoorthy,
“Performance and VLSI architectures of Parallel
Decision-Feedback Decoders for high bit-rate ap-
plications,” Lucent Technologies Bell Labs Tech-
nical Memorandum, 1998.

[5] G.D. Forney, Jr., “The Viterbi algorithm,” IEEE
Proceedings, vol. 61, pp. 268-278, March 1973.

(6] H. Lou, “Implementing the Viterbi algorithm.
Fundamentals and real-time issues for proces-
sor designers,” IEEE Signal Processing Magazine,
vol. 12, pp. 42-52, September 1995.

[7] S. Aryavisitakul and G. Durant, “A broadband
wireless packet technique based on coding, di-
versity, and equalization,” IEEE Communications
Magazine, pp. 110-115, July 1998.

[8] M. Rupp and H. Lou, “On an efficient multiplier-
free implementation for channel estimation and
equalization,” Lucent Technologies Bell Labs
Technical Memorandum, 1999.

[9] G. Ungerboeck, “Trellis-coded modulation with
redundant signal sets: Parts I and II,” IEEE Com-
munications Magazine, vol. 25, February 1987.

[10] H. Lou and R. Urbanke, “Linear Euclidean dis-
tance as branch metrics for high bit-rate Viterbi
decoder implementation,” Lucent Technologies
Bell Labs Technical Memorandum, 1999.

(Misn—1 — My 1) + [(yn — pij) + (Un — Pr.j

