EFFICIENT CHIP DESIGN FOR PULSE SHAPING

Markus Rupp’

Jaiganesh Balakrishnan?

!Lucent Technologies, Holmdel, NJ, USA
2Cornell University, Ithaca, NY, USA

ABSTRACT

Pulse shaping is a crucial operation for every modem
transceiver. It usually requires a large portion of the mo-
dem’s computational power and, therefore, an efficient im-
plementation can be very beneficial to the overall modem
design. In particular, in the transmitter part where well
defined signals are to be computed, the typical pulse shap-
ing operation can be greatly simplified. While a standard
filter design requires many mult/add operations, the trans-
mitter pulse shaping filter could also be designed by a pure
look-up table. However, for higher constellations and large
pulse shaping filter lengths the look-up table can become
too large to implement. This paper presents a new idea for
implementing the pulse shaping filter for a modem trans-
mitter. It will be shown that for QPSK and other higher
order modulations, like 16/32/64 QAM, no multiplication
is required at all. Further, the number of multiplications
for 8PSK (and 16/32PSK) can be reduced to a very small
number that is independent of the number of coefficients
necessary for implementing the filter function.

1. INTRODUCTION

Pulse shaping and the spectral forming operations involved
with it are important functions for every transmitter and
receiver (see, for example, [1, 2, 3]). The pulse shaping filter
has to perform the following function:

M-1

pilk) = stk —m)c(Lm+1)

m=0

with s(k) the QPSK symbols to be transmitted, c(k) the
filter coefficients and L the oversampling factor. The in-
dex [on the outcome defines the phase to be transmitted.
There are L phases with M coefficients each, thus LM is
the complete number of coefficients. Let us assume that the
(real-valued) coefficients are organized in a two-dimensional
array of the form:

m} 0 1 2 3
1=0]co cu Cg Ci2
llct ¢ ¢ ci3
21cz cs cuo Cia
3jca cr o1 cis

Implementing a filter of this form requires 2M L real mul-
tiplications and additions. Depending on the hardware de-

0-7803-5599-7/99/$10.00©1999 IEEE

304

sign this would require a considerable number of multipliers
and adders. In the following sections we describe how this
operation can be implemented with only adders, saving a
large number of gates in a VLSI implementation.

2. QPSK

For QPSK it is not important for the symbols to be
(1 +5),(1 =), (=1 —3), (=1 +3)}. They could also be
rotated and in our case it is assumed that they are of the set
{1,7,-1,—3}. Thus, multiplying with a coefficient of the
filter does not really require a multiplication, but rather a
selection of whether the real or imaginary part is addressed
and whether addition or subtraction is required. Assume
that each QPSK symbol is represented by two bits {b1bo}.
The mapping could be as shown in Tablel. Other map-

b, bo | S
0 0 |1
1 0 |j
0 1 |-
101 4

Table 1. QPSK symbol mapping.

pings, for example Gray encoding, are possible by adding
another look-up table at the input. If the mapping in Table
1 is used, then the bit b, selects whether real or imaginary
part is used and bg selects whether addition or subtraction
of the coefficient is required. Thus, the real and imaginary
parts of the filter output can be written as:

Real{pi(k)} =
M-1
Z e(Lm + {1 = 2bo(k —m)}H1 = bi(k —m)} (1)
m=0
Imag{p:(k)} =
M~1
> e(Lm+ {1 = 2bo(k — m)}b: (k — m). ()

m=0

A chip structure that is capable of performing this oper-
ation is depicted in Figure 1. Note that, with this basic
operation, an arbitrary number of filter coefficients can be
assigned to compute the pulse shape. This operation can
be concatenated for various filter lengths. Further, the fil-
ter output for the various phases can be computed, either

serially with just one of these operations, or in parallel with
L such streams.

b 5
Y 1 1]
o) [+)
~~ - -
o) ADD o)
SUB
. o

A
1=0,1,2,3

Figure 1. Basic Operation for QPSK

Alternately, we can use a single QPSK structure to per-
form all the multiplications corresponding to the different
filter taps. The result of the earlier mult/adds needs to
be fedback to the input of this structure. We need a latch
to store the outputs of the previous computations. Fur-
ther, the bits b1bo and the coefficients corresponding to the
different symbols need to be selected for the appropriate
multiplications. This implementation is shown in Figure 2.

Example:

Assuming a 1lns delay for the add/sub structure and ne-
glecting the multiplexer delays, a filter spanning six sym-
bol durations (M = 6) with eight phases (L = 8) can be
implemented serially in M x L x 1ns=48ns with only one
add/sub hardware or in parallel in 6ns with eight times the
hardware effort. This limits the transmitted data rate to
40Mbit/s in the serial case and 318Mbit/s in the parallel
case. A complete ROM solution allows faster implementa-
tion, but is only possible if the length of the filter is not too
large. For the above example, an address space of 12 bits is
required for each of the eight register banks corresponding
to the eight phases. For an eight bit mantissa length of co-
efficients 2 x 2'% x 8 x 8bit=512Kbit ROM is required. This
ROM solution could give the result in 1ns allowing 2Gbit/s
maximal transmission rate. Finally, a solution with adders
and multipliers would require considerably more gates and
not allow more than 53Mbit/s, assuming 6us for a mult/add
operation and six of them concatenated. Note that, our
scheme offers many more possibilities for implementation
allowing a wide range of timing and area constraints.

3. 16 QAM

Computing the same pulse shape for 16QAM is not very
different. Note that the 16QAM can be dissected into four
QPSKs. Figure 3 depicts how this can be done. The upper
part of the figure shows the original 16 QAM and a version
that is rotated by 90 degrees. From this rotated version four
subsets are taken, all a QPSK on their own, but shifted from
the origin by one of four values {2, 27, —2, —2j}. Note that
these values correspond to the symbols of a QPSK constel-

305

Latch :
Real - Q PSK Real
Add/Sub
Imag | Block Imag

m=0123

Figure 2. Feedback Implementation Structure for QPSK

lation multiplied by a factor of two. Since, all four subsets
are just laterally shifted versions of each other, the basic op-
eration for the QPSK can remain the same for each subset
and only a correction needs to be made corresponding to the
shift. It is assumed that the 16QAM symbol is represented
by a four bit word bszbabibo. The two lower bits can be in-
terpreted as before, while the two upper bits now define one
of the four subclasses. This can be implemented, as shown
in Figure 4, by cascading two of the basic QPSK structures.
The first of them has bibg as the two input bits. The sec-
ond structure has bgbs as the inputs and the coefficients
for this have to be multiplied by two. This is achieved by
shifting the coefficients to the left by one bit. As in QPSK,
this block can be concatenated serially to achieve any de-
sired filter length. An alternate implementation is shown
in Figure 5. The block labeled L-Shift performs a left shift
operation by one bit.

R
T

Figure 3. Splitting a 16QAM into four QPSKs.

Another interesting alternative is the implementation
shown in Figure 6 (For the sake of convenience M = 2
is assumed for this figure). Here, the first step operations
corresponding to bibo are combined in one cascade for the
various filter taps, while the second steps are combined in
a separate cascade. Although this method requires two ad-
ditional adders, the complexity can be lower since the two
streams can work with the same (lower) precision until they

S

Real QPSK Real QPSK Real
Add/Sub Add/Sub
Imag | Block Imag | Block [Imag
A A
[efe]ea]ed 1 Reitr
1=0123

Figure 4. Basic Operation for 16QAM.

v Vv

1 L Shif Real
Hoel QPSK ||| QPSK [
Add/Sub Add/Sub
I L Shift I
dmag 1 Block Block | Imag

!EZE?:f i

1=0123
Figure 5. Alternate Implementation for 16QAM.

are combined at the very end. Thus, only the last adder ex-
plicitly requires one bit more on precision. Another advan-
tage of this structure is that the overall computation time
is now Mtc + toq4, while for the previous two realizations a
computational time of 2Mt. is required (t. being the time
through a cascade element).

4. 64/32 QAM

We can, similarly, implement pulse shaping for a 64QAM
modulation scheme. The 64QAM constellation can be split
into four 16QAM constellations, each of which is, centered
around {4, 4j, —4, —4j}. The pulse shaping operation is re-
alised by cascading one more basic QPSK structure to the
16QAM structure, as shown in Figure 7. Bits bsbs are the
inputs to the third block and the coefficients for this have
to be multiplied by four. This operation is performed using
a shift register. As in 16 QAM, an alternate implementa-
tion using left shift registers, as shown in Figure 5, and the
multicascade solution of Figure 6 are possible.

Since the 32QAM constellation points are a subset of the
64QAM constellation, it is sufficient to map the five 32QAM
bits to six bits, corresponding to the 64QAM constellatxon,
and use the 64QAM structure.

306

vy

—»| real »=| real —»-{ real » real —»
0 QPSK QPSK LSHFT ADD
—®1 imag 1 imag *| imag > imag ™
f ? [N)
[-
Conrarz [0 Carstorr
0 -
—» real - real
0 QPSK QPSK
— " imag ™ imag

Tbo sz ?bo sz

Figure 6. Multicascade Implementation for 16QAM.

lbl lbo lb3 lbz lb, lb,
Real QPSK Real QPSK Real = QPSK Real

Add/Sub Add/Sub Add/Sub
dmag ! Block [Imag,! Block {Imag| Block |Imag_

L Shift L Shift
DORERE 5 B, B

1=0123

Figure 7. Basic Operation for 64QAM.

5. 8 PSK

The 8PSK consteliation can be split into two QPSK constel-
lations. The two sets being {1,7,—1,j} and {1, 7, ~1,—j}
exp(jn/4). Since the two subsets are just rotated versions
of each other, the basic operation for QPSK can remain the
same for each subset (however, with two real and two imag-
inary streams as indicated in Figure 8) and a correction
needs to be made before the two sub-results are added. It
is assumed that the 8PSK symbol is represented by a three
bit word b2bibo. The two lower bits can be interpreted as
before, while the upper bit now defines one of the two sub-
classes. Thus, the previous structure can remain the same
with an additional two-way multiplexer at the beginning to
select one of the two streams and a final procedure at the
end that combines the two streams. Similar to (1) and (2),
the streams for the two subsets are now given by:

Real{pri(k)} = Mz—f e(Lm + 1){1 — 2bo(k — m)}
{1 bk = m) Yool = m) (3)
Imag{psi(k)} = Ail c(Lm + 1){1 - 2bo(k — m)}
bk - (k= m) (4)

M-1

Real{ps14(k)} =) c(Lm +1){1 - 2bo(k — m)}

m=0
x{l=bi(k—m)}1—bo(k—m)) (5)
M-1
Imag{prr(k)} = Y e(Lm +1){1 — 2bo(k — m)}
m=0
xbi(k — m){1 = ba(k ~ m)}. (6)

Finally, the two streams need to be added:

Real{p:(k)} = Real{ps,(k)}

+ 0.707 [Real{pss,1(k)} — Imag{psr.(k)}] (7)
Imag{p:(k)} = Imag{ps i (k)}

+0.707 [Real{ps7,1(k)} + Imag{p:s,(%)}] (8)

Figure 9 shows the combiner. Note that, this combiner
requires one complex multiplication and one complex addi-
tion. This operation is required for each phase. Depending
on the required accuracy this multiplication might be real-
ized in shift/adder form. One simple, but relatively accu-
rate, operation is to approximate 1/v/2 by 5/7. In this case,
the upper stream is multiplied by seven (can be done by
scaling the coefficients differently), while the lower stream
is multiplied by five (also by scaling the coefficients). Now
the rotation for the lower scheme is simply done by multi-
plying with (1 + j), which is a subtraction and an addition
operation for the real and imaginary parts, respectively.

0

€

‘;»,iji]
- S
o
Bl
K

Q ADD Q
2
o SUB o

I

€

L2l

EERE—

A

1=0,1,2,3

Figure 8. Basic Operation for 8PSK.

Note that, for 16/32PSK a similar scheme applies. As
demonstrated for 8PSK in Figure 8, the number of par-
allel streams needs to be increased, while the number of
add/sub operations remains the same. Thus, the slight in-
crease in complexity is only due to a greater number of reg-
isters and multiplexers and the cost remains essentially that
of a QPSK with some overhead for combining the streams.

6. IMPLEMENTATION

The proposed schemes for 4/8PSK and for 16/32/64QAM
have been implemented in VHDL. A Synopsys FPGA com-
piler was used to optimize the code for Altera FPGAs.

307

ADD——»

Y Y

eI™4
I —e(X)—

Figure 9. Combining the two streams.

A T/4 sampling rate was used with a pulse shape that
stretches out over *3 symbols, thus requiring 24 coeffi-
cients. Table 2 shows some of the results obtained by the
FPGA compiler (Synopsys and Altera). 16QAM, 32QAM,
and 64QAM were implemented using the realization in Fig-
ure 6. This accounts for the identical delay in all the re-
alizations. The 32QAM and 64QAM have identical per-
formance, since, 32QAM is different from 64QAM only in
the sense that a different subset of symbols are used. Note
that, the maximum delay and the number of Look-Up Ta-
bles (#LUTs) is a result of the Synopsys FPGA analyzer,
while number of Logic Cells (#LCs) is an outcome of the
MAXPLUS2 from Altera. A comparable FIR-filter, imple-
mented with multipliers and adders, requires 3064LCs.

Modulation | Maximum Delay # LUTs # LCs
QPSK 36ns 879 309
8PSK 36ns 1906 665
16QAM 36ns 1746 602
32QAM 36ns 2599 906
64QAM 36ns 2599 906

Table 2. Performance results based on Altera FPGAs.

REFERENCES

[1] J.G. Proakis, “Digital Communications,” McGraw Hill,
1989.

[2] T.S. Rappaport, “Wireless Communications,” Prentice
Hall, 1996.

[3] H. Meyr, et. al., “Digital Communication Receivers,”
John Wiley & Sons, 1998.

