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Abstract

The performance analysis of DFE equalizers, either
fractional or symbol-spaced, is commonly based on the
Wiener solution. This solution can only be computed
once characteristic values of the channel and noise vari-
ance are known. In the "real” world, the solution needs
to be estimated. In low-bit rate systems, complexity
of algorithms is usually not an issue and Least-squares

" solutions‘approximating the Wiener solution with high
accuracy are possible. For higher bit rate systems how-
ever, a gradient-type procedure like the LMS algorithm
seems unavoidable. Given a training sequence of lim-
ited length, the learning behavior of LMS can consid-
erably worsen the performance of the DFE. This paper
shows some insight of undesired effects.

1 Introduction

Performance analyses of equalizers [1]-[3] compare
the equalizer behavior based on their optimal Wiener
solution. In receiver applications this solution is, how-
ever only achieved by an estimation. Experiments with
higher digital modulation schemes show that the higher
the symbol alphabet, the more precise the DFE solu-
tion needs to be.

The following paper deals with a fixed wireless loop
scenario. The channel is assumed to be Ricean with an
exponential power profile. Data rates are about 4MSPS
for digital modulation schemes varying from QPSK to
64QAM. With a time dispersion of r = 125ns assumed,
a T/2-fractionally spaced decision-feedback equalizer
with four feed-forward and three feedback taps shows
promising results when looked at the Wiener solu-
tion. A relatively short training sequence of 13 sym-
bols with data reuse of a few retraining periods showed
almost Wiener solution properties at QPSK in the
operating range of low Signal-to-Noise-Ratios (SNR).
For higher modulation schemes, however, a constant
Bit Error Rate (BER) shows up in their operating
SNR ranges. Figure 1 displays this behavior for var-
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ious modulation schemes. The continues lines are
64QAM,16QAM,8PSK and QPSK in the order from
the upper to the lower lines. The corresponding dotted
lines are the results when using the Wiener solution.
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Figure 1: BER Performance for various modulation
schemes on 8dB Ricean channels and 13 symbol train-
ing sequence.

2 Channel Model

The following channel model was inspired by [4].
The performance of such simulations is dependent on
the chosen channel models. A Ricean channel model
with exponential profile

c(t) =e /" (1)
the time dispersion being 7 = 125ns is used throughout
this paper. The specular component K is 8dB (3dB if
mentioned). The simulations are run oversampled in
T/4; the channels are normalized to gain one so that

the SNR can be selected by choosing a specific noise
variance. The channel remains constant for each run.



The Ricean channel is generated with a random gen-
erator and a threshold variable t,. The latter defines
how many rays N, exist:

-
N, =[—].
o]

h

A power profile is then normalized to one:

e i =0.N, -1
Pi= N1 o tEUNe
Z\':O ! e‘/r
and the channel impulse response generated by
e = VK -+ /pov(i) (2)

ci = (i), i=1.N. -1 (3)
using the random complex valued Gaussian numbers
v(i) with unit variance. In a final step, all coefficients
are normalized by 1+ VK.

3 DFE and LMS

For such high data rates only a simple algorithm
that can be implemented in fixed-point can be utilized.
Since a Least-Squares realization in fixed-point does
not seem possible without larger hardware complexity,
it was therefore decided to realize an LMS algorithm
with data reuse (UNDR-LMS in [5]) on the training
sequence. It was favorable to decrease the step-size by
a constant factor A after each run through the set of
training sequence. Theory claims that for infinite runs
on new data the impact of noise can be removed by
applying a step-size sequence that decreases by 1/k.
Experiments showed however, that in these cases of
limited updates with data reuse the exponential decay-
ing step-size is better suited and easier to implement.

The question whether a symbol-spaced or fraction-
ally spaced equalizer is to choose was decided many
years ago in favor for the fractionally spaced type since
it is very robust against timing estimation errors. The
following section will however show that this structure
does not come with an extra price attached. Also the
selection of one of the two structures has an impact on
the whole receiver. See (8] for more details.

4 Some Theory on Learning

From LMS theory [6] it is well known that the ini-
tial learning behavior is given in form of a linear sys-
tem whose eigenvalues describe the speed of conver-
gence. Each eigenvalue corresponds to a possible mode.
Naturally, the largest eigenvalue describes the slowest
learning rate, however, if only small amounts of the cor-
responding eigenvector exist in the final solution, this
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eigenvalue might show its slow rate at a much later
point in time while other eigenvalues dominate the be-
havior first.

The initial values of the equalizer have a similar ef-
fect. By choosing different initial values, the impact of
a particular eigenvector can be increased or decreased.
Since the channel and with this the Wiener solution is
not known a-priori, it does not seem possible to find
an optimum initial value. Given a certain power pro-
file, especially with a large specular component K, one
might expect that there exists an average Wiener so-
lution which is a good initial estimate. This is true if
the transmitter and receiver maintain a constant phase
relation, i.e., in a coherent receiver environment. Since
such a setup is not expected, the initial estimates were
set to zero in all simulations presented here.

Many parameters define the set of eigenvalues,
among them the step-size. For a given channel C and
noise variance, it can be shown that there exists one
optimal step-size u leading to fastest learning rate. In
general two eigenvalue spreads are distinguished:

i

f(M,J,C) )
g(SNR, x,) (8)

Xo
x(SNR)

with M and J being the number of feed-forward and
feed-back coefficients, respectively. The first value xo
is the eigenvalue spread at the input of the receiver
assuming zero noise. It is influenced by the structure
of the receiver, in particular the choice of the param-
eters M and J and the channel C. The second value
X(SNR) is the eigenvalue spread when noise is present.
The noise adds on the feed-forward part of the receiver,
however, not on the feedback part. In the Wiener so-
lution this can be seen as additional noise terms on the
autocorrelation matrix of the feed-forward part. Let
us assume for reasons of simplification a diagonal au-
tocorrelation matrix, with the eigenvalues ordered from
smallest to largest (Amin--Amax). The eigenvalue spread
Xo is thus given by Amax/Amin. After adding the noise,
it changes into

Amax + 1/SNR

XENR) = Sia ¥ /SRR

(6)
Given Yo, or more precisely the original largest and
smallest eigenvalue, the eigenvalue spread x(SNR) can
be computed. Since the spread is large, good approxi-
mations are Amax = M + J, dmin = (M + J)/X0.

Figures 2 and 3 display values x(SNR) for fixed feed-
back parameter J = 3 and forward parameter M = 4,



respectively. The results are obtained for 10 Ricean
channels with 8dB K-factor. Both figures show the
typical behavior that the eigenvalue spread increases
with SNR to dramatically high values. In particular for
varying the feed-forward order M, very distinct curved
were obtained. Several conclusions can be drawn from
these experiments:

1. For a fractionally spaced equalizer, the eigenvalue
spreads x, and x do not depend much on the ac-
tual channel but more on the number of param-
eters in the feed-forward path and the SNR. See
also eqn. (13)-(16) for a more detailed discussion.

2. The relation of eigenvalue spread x(SNR) over the
signal-to-noise ratio SNR is well described by (6),
i.e., with increasing SNR the eigenvalue spread in-
creases as well.

3. The results do not depend much on the actual
channel. For smaller K-factors of the Ricean chan-
_nels, the variations around the AWGN curves be-
come larger, but do not increase in average or
chanhge the behavior described by (6).
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Figure 2: Eigenvalue spread of the input process for
fractional T/2 DFE (M/2,3) with values M = 4,6,8.

How does the learning rate relate to the eigenvalue
spread? Bounds exist in the literature [7] that can
be used for gaining insight. The maximum eigenvalue
Af,ﬁ)x of a specific matrix defines the slowest learning
behavior. It lies between:
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Figure 3: Eigenvalue spread of the input process for

fractional T/2 DFE (4/2,J) with values. ] = 3,5,7.

with a = pMo2, the normalized step-size. To simplify
matters, the average of the two bounds is taken and

aM(1+x)

AB) ~1-
max M+ J-1+xj(1+[M+ J-1]x) ()
obtained which can further be approximated by
AB) &1 - A (9)

for large enough eigenvalue spread ¥ 3> M + J in the
range of SNR from 10dB to 40dB, i.e. only valid for
the ramp-part of the curve in Figures 2 and 3. An ex-
ample shows the relations. Assume for M = 4,J =
3,u = 1/7. After 60 learning iterations and an SNR
of 10dB an improvement (relative system mismatch) of
0.066 is obtained while for 30dB it is only 0.77, about
12 times worth. Figures 2 and 3 clearly show that for
high SNR, it cannot be expected that the Wiener solu-
tion is obtained. Even after long training periods this
would not be the case and in particular for high SNR
the learning result is expected to be poor.

4.1 Non-Fractionally Spaced Equalizer
Learning
Can a non-fractionally T'—spaced equalizer have bet-
ter learning performance?

The answer is yes, under certain conditions. Figures
4 and 5 display the corresponding eigenvalue spreads
when run on a K=8dB Ricean channel. They are much



smaller and not as distinguished in the parameters as
is the case for a fractionally spaced equalizer. How-
ever, these small eigenvalue spreads are only obtained
when the cursor position is close to an optimum po-
sition. Once this condition is violated, the eigenval-
ues can become as big as several thousand. Assum-
ing perfect cursor positioning, it is thus to expect that
T —spaced equalizers show better learning. Note, how-
ever, that better learning is not necessarily equiva-
lent with more accurate estimates, smaller MMSE or
lower SER(BER). It only means that an estimate to
the (Wiener-) solution is found in a more rapid way,
not necessarily more precise.
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Figure 4: FEigenvalue spread of the input process for
non-fractional T DFE (M,3) with values M = 2,4,6.
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Figure 5: Figenvalue spread of the input process for

non-fractional T DFE (2,J) with values J = 3,5,7.

An open question here is how the channel relates to
the eigenvalue spread of the equalizer. A simple model
can be assumed with two channel coefficients only: cp
and ¢; = r2. According to (2) ¢p = VK +r1€? includes
the specular component K of the Rice channel. In other
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words, the channel has the form:
C(z) = (VK +re?®) +rp27 1. (10)

Assuming a T-spaced transversal equalizer, the acf ma-
trix is of Toeplitz form with only two entries, hy and
h;. The eigenvalues are given by

Ai = hg + 2|hy] cos ('t ) ;i =1.M. (11)

T
M+1
For (10) ho = |VK + r1e/%|? + |r3|? and by = (VK +
r1e7%)r,. Finally, the eigenvalue spread is given by:
2lray|| VK 41 e7®
1+ | K:-rxeiol;-f-lrzlz COS(#)
. _2|r2 I\/F-&rlci‘ n ’
1 |VK+r ei¢|24|r)2 COS( M-H)
Given the distributions of r,, 72, and ¢ the average
eigenvalue spread can be computed over a whole set of
channels for a predefined value K. Assuming large M
the cosine can be replaced by one. Assuming Rayleigh
distribution for 7y and r» and uniform phase distribu-
tion, the values in Table 1 are obtained and displayed
in Figure 6.
Now the means to compute eigenvalue spreads for
T-spaced equalizers are available. But how does the
eigenvalue spread change for a decision feedback equal-

izer structure? To answer this question, the autocorre-
lation matrix needs to be written in the following form:

_{ Ryy Ry
R. = [ R?b R, ] (13)

Xo = (12)

were the four acf blocks corresponding to the correla-
tion in the feed-forward and the feedback section were
written explicitly. For a statistically white symbol se-
quence Ry = I, the identity matrix. The eigenvalue
problem can now be written as:

Ry Ry, (xl) (xl)

= . 14
[ R;ib Rbb X2 X2 ( )
The lower part can be solved and leads to the relation

1 oH
Xo = ﬁbexl (15)

and substituting X, in the upper part of the equation
finally leads to
1
[R}f + —-——/\ — IR;Ibeb] X1 = AX; . (16)

For very small eigenvalues the second term on the LHS
will smaller Ryy. For very large eigenvalues, A ~ M +J
and the term in 1/(A—1) is of little consequence. If the



cursor position is moved towards the last filter taps in
the feed-forward part, the cross-correlation matrix Ry,
will be small compared to Ry;. Thus, as a rough ap-
proximation, it is assumed that the eigenvalue spread is
basically given by the feed-forward section. Note that
this condition can easily be violated and the assump-
tion serves only to simplify matters.

Simulations on a DFE (4,3) structure and a set of
500 channels for K=8dB showed x, = 3.3 thus, not
too far away from the 11 obtained by using all these
approximations. Note that this technique cannot be
applied to the fractionally spaced equalizer since the
feed-forward section is not of Toeplitz form and thus
the derivation does not hold.

KindB | x, small M | x, large M
3 15.8 1320

5 14.7 1192

8 11.0 718

10 8.4 396

30 1.17 1.2

scaling the eigenvalue spread. Also the set of eigenval-
ues corresponding to x; will change according to (15).
Having some knowledge about the channel and noise
it may be possible to find the optimal scaling for the
design by prior optimizations.

5 Conclusion

This paper gives some insight in the tremendous per-
formance differences that can occur when adaptive fil-
ters are used with oversampled input data compared
to symbol-spaced sampling. Due to the strong correla-
tion of the input process, simple gradient algorithms,
like LMS, will not perform very well any longer. Decor-
relation techniques might be useful to consider here. In
particular, fractionally spaced equalizers tend to learn
slower when the SNR increases while symbols spaced
equalizers improve their learning with increasing SNR.
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