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On the Convergence of Blind Adaptive Equalizers
for Constant Modulus Signals

Markus Rupp and Ali H. Sayed, Senior Member, IEEE

Abstract—This paper studies the behavior of the error sequence
of stop-and-go variants of two adaptive blind equalizers, namely
CMA2-2 and Sato’s algorithm. It is shown that for transmitted sig-
nals with constant modulus
, the equalizer output can be made to
lie within the circle of radius 


p
c infinitely often, for some value

of c that is only slightly larger than one.

Index Terms—Adaptive equalization, constant modulus algo-
rithm, feedback, 2-stability, positive-real function, small gain
theorem.

I. INTRODUCTION

CHANNEL equalization is a relevant step in the design of
reliable data communication systems. For slowly varying

channels, an initial training phase is often tolerable for equaliza-
tion purposes and such scenarios arise, for example, in equalizer
implementations of digital cellular handsets. When the commu-
nications environment is highly nonstationary, however, it may
become impractical to use training sequences [1, p. 139]. Such
situations can be handled by the use of blind equalization and
they arise, for example, in the operation of cordless phones.

Over the years many ingenious analyzes and modifications
have been proposed in the literature with the intent of both
understanding and improving the performance of blind and
nonblind adaptive equalizers. Considerable progress has been
made in several respects, and we may mention here, among
others, the works [2]–[19]. In several of these works, the ana-
lyzes are concerned with the multimodality of the associated
cost functions. For example, [15] establishes the fact that
for fractionally spaced equalizers (FSE’s), and under certain
rank and length conditions, the associated cost function for
blind (Godard) equalization has global minima at zero-forcing
equalizers. While this is a reassuring conclusion, it can only
guarantee that a well-designed steepest descent method can
achieve a global minimum of the cost function.

But what about adaptive equalizers that are derived from
steepest descent methods by resorting to instantaneous-gradient
approximations? Will they perform reliably in the presence of
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the gradient noise that is introduced by such approximations?
This issue is more complex and deserves a closer examination.

In this paper, we study two blind adaptive algorithms, viz.,
CMA2-2 and Sato’s algorithm, for transmitted signals that sat-
isfy a constant modulus property. We show, under some condi-
tions on the step-sizes, that certain stop-and-go variants of these
algorithms can be made to guarantee that the equalizer output
will lie infinitely often within a bounded domain whose radius
is only slightly larger than the assumed constant modulus (see
Theorems 1 and 2). The analysis is based on a feedback frame-
work developed in [20]–[23], and it allows us to employ some
simple tools from system theory for-stability analysis.

Notation: We use small boldface letters to denote vectors.
The symbol “ ” denotes transposition, “” denotes Hermitian
conjugation, and the notation denotes the Euclidean norm
of a vector. All vectors are column vectors except for the input
data vector denoted by , which is taken to be a row vector.
Moreover, since the signals we deal with are often complex, we
denote by the real part of a complex numberand by its
imaginary part. We also use the shift operator , defined by

, to denote the unit time delay and write
to denote a transfer function in .

II. PROBLEM FORMULATION

Fig. 1 shows an input signal that is transmitted through
an unknown channel to an th-order finite-impulse re-
sponse (FIR) receiver . The input of the receiver is de-
noted by and its output by . A zero-forcing receiver
is one that guarantees , for some positive
integer and for some phase . In the sequel, we
assume that such a receiver exists (with , for simplicity
of notation). That is, we assume that anth-order equalizer

exists such that when used in Fig. 1 it leads to an output
. As mentioned in the introduction, this assump-

tion is valid for FSE’s under certain rank and length conditions
(see, e.g., [15] and [16]). In Section V, we comment on the case
of channel and equalization imperfections.

The objective of adaptive equalization is to provide estimates
that approximate reasonably well the performance of

, especially when the channel itself is unknown or even
time variant. This is depicted in Fig. 2, where the weight vector
of at time is denoted by . After one adap-
tation step, an error signal is generated and the weight
estimate is updated to . In blind adaptation, is solely
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Fig. 1. Block diagram representation of zero-forcing equalization.

Fig. 2. Structure of the blind adaptive equalizer.

dependent on . [In nonblind adaptation, a certain reference
signal is used in conjunction with to produce .]

A. The Algorithms

Let be a row vector that denotes the state of the adaptive
FIR filter at the receiver of Fig. 2 at time, viz.,

(1)

Then, the output of the equalizer is given by the inner product

(2)

Assume also that the transmitted signal arises from a con-
stant modulus constellation, say

(3)

for all and for some .
In this paper, we study the convergence performance of the

following two blind adaptive schemes.1

1) CMA2-2: The letters CMA stand for constant modulus
algorithm and the numbers 2-2 refer to the specific cost
function that gave rise to it (see [4] and [10]). The al-
gorithm is widely used in the context of adaptive blind
equalization, and it offers superior performance proper-
ties in several respects when compared to other blind
adaptive schemes (see, e.g., [24] and [25]). In this case,
the error signal is computed as

(4)

and the weight vector is updated according to the recur-
sion

(5)

for some initial weight vector , and where is a
positive step-size (allowed to be time-dependent for gen-
erality).

2) Sato’s Algorithm: For this algorithm, all signals are as-
sumed to be real-valued and arises from a 2-PSK con-

1The analysis can be extended to other similar algorithms.

stellation (i.e., ). The error signal is now com-
puted as

(6)

and the weight vector is updated according to the recur-
sion

(7)

B. Assumptions

We shall assume that the successive regression vectors
are nonzero and also uniformly bounded from above and from
below, say

(8)

for some constants and for all .
Moreover, the two algorithms mentioned above are special

cases of the general recursion

(9)

for different definitions of in terms of . It is then clear
that the weight vector will not be updated, i.e., ,
whenever . We shall exclude these cases from our anal-
ysis and focus only onactive update steps, namely those for
which . To emphasize this fact, we shall use an alter-
native time index to refer to the active update steps. In other
words, in this paper, we shall study algorithms of the form

(10)
In particular, we shall study the behavior of as time pro-
gresses to infinity .

III. CMA2-2 A LGORITHM

We start our analysis with CMA2-2, for which is given
by [cf. (4)]

Thus, let denote the weight vector of the optimal receiver
of Fig. 1 and let . Recall that we are as-

suming a zero-forcing receiver that guarantees ,
for some [so that by (3)].

Define further thea priori anda posterioriestimation errors

(11)

(12)

where . Introduce also the complex-valued
functions

and, for

(13)
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Fig. 3. A time-variant lossless mapping with gain feedback for blind operation.

Then, it is straightforward to verify that the error signals
can be related as follows:2

By subtracting from both sides of (10), we obtain the fol-
lowing recursion for the weight-error vector:

(14)

where we are dropping the arguments of for com-
pactness of notation.

Let denote the reciprocal of the input energy at iteration
. If we multiply (14) by from the left, we

conclude that and are related via

(15)

which in turn shows that we can rewrite (14) in the equivalent
form

(16)

If we square both sides of (16) and compare the resulting ener-
gies, the following equality always holds:

(17)

This relation establishes the existence of a lossless map (de-
noted by ) from the variables to the
variables . Correspondingly, using (15), this
analysis shows that the update (5) induces an overall feedback
structure of the form shown in Fig. 3. The feedback configura-
tion consists of a lossless feedforward map and a memoryless
(yet time-variant) feedback map.

This feedback structure, along with the energy relation (17),
was derived in [20]–[22] in the context of robustness analysis
of adaptive filters. They have been also applied to the study of
the steady-state and tracking performances of general (blind and

2The denominator ofh[z(k); ẑ(k)] is nonzero sincez(k) 6= ẑ(k). This can
be seen as follows. If̂z(k) = z(k), then jẑ(k)j = 
 (in view of the fact
that jz(k)j = 
). It would then follow thate(k) = 0, which contradicts the
assumption of active updates for whiche(k) 6= 0.

nonblind) adaptive schemes (see, e.g., [25]–[27]). Here, we shall
show how the feedback structure of Fig. 3 leads to useful in-
sights regarding the behavior of the error sequence as
time progresses to infinity.

A. Small Gain Analysis

Define the quantities

(18)

and

(19)

In particular, is the maximum norm of the (complex-
valued) gain of the feedback loop over an interval of length

. The following result now follows immediately from
(17) (see, e.g., [20]–[22]).

Lemma 1 [CMA2-2]: If

(20)

then the following bound on the weighted energy of thea priori
estimation errors holds:

(21)

The usefulness of this lemma will be highlighted in the se-
quel.

B. Selective (Stop-and-Go) Updating

Condition (20) can be met for any by attempting to select
the step-size sequence so as to guarantee for all

(22)

for all possible combinations of and , and for some
positive scalar . This motivates us to introduce the following
stop-and-go variant of the CMA2-2 algorithm (5).3 Let

(23)

for some small positive number. Now, at each time instant,
do the following.

• If , then we update to via

where is chosen as explained below in Theorem 1.
This corresponds to anactiveupdate step since the corre-
sponding error is necessarily nonzero by virtue of the
conditions and .

• If , then . That is, we do not
update the weight vector.

3We first describe the modified algorithm in terms of the time indexi used
for the original recursion (5). Then, we extract the active update steps and use
the indexk for these, as in (24).
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In other words, the corresponding active update steps [cf.
(10)] of this algorithm have the form

(24)

Assume we run the above stop-and-go CMA2-2 algorithm
infinitely often (i.e., ), and let denote the maximum
number of active updates that occurred in the process. We now
prove that, by properly designing the step-size sequence,can
be madefinite, which in turn means that the condition

will hold infinitely often.
Theorem 1 [Stop-and-Go CMA2-2]:Assume stays uni-

formly bounded from above for all, say

for some .4 Choose a positive number in the
interval

and compute an via

Choose further the step-size sequence for the active up-
dates from within the interval

(A constant step-size can also be chosen as in (54) for different
values of .) It then holds that . That is,

holds infinitely often.
Proof: The corresponding function only

needs to be defined for the case and

(25)

In this case we know from the analysis in Appendix A [expres-
sion (42)] that

We also know from Appendix B [expression (43)] that

We use these two bounds on and in Appendix C to
show that the choice for in the statement of the theorem
above guarantees (22) for all, viz.,

4The lower bound is automatically satisfied by the stop-and-go nature of the
algorithm. The upper bound is expressed conveniently in terms of
; any upper
bound can be expressed in this form for someP .

where and denote the real and imaginary parts of.
Hence, according to Lemma 1, we must have

We want to show that . Assume to the contrary that
is infinite. Then, the above inequality would imply that

from which we conclude that , or equivalently
, since is bounded from below and from above.

We thus conclude that , which means that there
exists a finite large enough, such that for any positive number

and for all

We are free to choose so let be any positive number that
satisfies

It then follows that

This contradicts the fact that the updates occurred with
such that . We thus conclude that only a finite
number of updates could have occurred, i.e., .

Remark 1: Although the interval that defines the choice of
in the statement of Theorem 1 can generally be small,

the theorem nevertheless shows that there exists a selection of
step-sizes for which occurs infinitely often. (In
other words, we could interpret this result as essentially saying
that, for suitably chosen step-sizes, the stop-and-go CMA2-2
algorithm produces a sequence of estimatesthat lies inside
the circle of radius with probability one.)

Remark 2: The analysis can be extended to a general recur-
sion of the form

for

IV. SATO’S ALGORITHM

We now extend the results to Sato’s algorithm (7). In this case,
we introduce the functions

and, for

(26)

Then, it is straightforward to verify that the error signals
are now related via
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Moreover, it further holds that

so that the same feedback structure of Fig. 1 will still hold with
the gain in the feedback path replaced by

The same conclusion of Theorem 1 will also hold with
now defined as the maximum of the above feedback gain over
an interval of length

(27)

A. Selective (Stop-and-Go) Updating

We thus see that we now need to select the step-size sequence
so as to guarantee

(28)

for all and for some positive scalar.
This again motivates us to consider a stop-and-go variant of

Sato’s algorithm.5 Select a positive real numbersatisfying
, and a positive real numbersuch that

(29)

Then, define

Now at each time instant, do the following.

• If , then we update to via

where is chosen as explained below. This corresponds
to anactiveupdate step since the corresponding error
is necessarily nonzero in view of the condition .

• If , then . That is, we do not
update the weight vector.

In other words, the corresponding active update steps [cf.
(10)] of this algorithm have the form

(30)

Assume we run the stop-and-go Sato’s algorithm infinitely
often (i.e., ), and let denote the maximum number of
active updates that occurred in the process. We can also establish
that, by properly designing the step-size sequence,can be
madefinite, which in turn means that the condition
will hold infinitely often.

5Once more, we describe the modified algorithm in terms of the time indexi

used for the original recursion (7). Then, we extract the active update steps and
use the indexk for these, as in (30).

Theorem 2 [Stop-and-Go Sato]:Assume stays uni-
formly bounded from above for all, say

for some . Choose also the step-size sequence
for the active updates from within the interval

(A constant step-size can also be chosen by using the bounds
(8) on .) It then holds that . That is,
holds infinitely often.

Proof: The corresponding (real-valued) function
only needs to be defined for the case

and . In this case, we have that

otherwise

Then, it holds that

so that

(31)

In order to meet (28), we need to choose the step-size according
to

which in view of the bounds on in (31) can be achieved
by selecting according to

We still need to guarantee that the lower bound in the above
inequality is smaller than the upper bound. This requires that
be such that

or, equivalently, as in (29).
Hence, according to Lemma 1, we must have

We want to show that . Assume to the contrary that
is infinite. Then, , which means that there exists a
finite large enough, such that for any positive numberand
for all

We are free to choose so let be any positive number that
satisfies
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Fig. 4. A feedback structure for the case of channel imperfections.

It then follows that , which contradicts the fact that
the active updates occurred with such that .
We thus conclude that only a finite number of updates could
have occurred, i.e., .

V. CHANNEL IMPERFECTIONS

So far in the paper we have assumed that there were no noise
distortions or that the channel could be perfectly equalized.
Under channel and equalization imperfections, the output
of the optimal equalizer in Fig. 1 will not be constant modulus
anymore. However, assuming that these imperfections lead to
disturbances that are small enough compared to the amplitude

, we may assume that in the CMA2-2 case is such that

(32)

for some additive noise component that explains the mis-
match between and in the nonideal case.
Then, it is easy to verify that the error signal

is now related to via

(33)

where

Moreover, relation (15) between thea priori error and the
a posteriorierror becomes

(34)

while equality (17) still holds. This means that the feedback
structure of Fig. 3 should now be replaced by the one shown
in Fig. 4.

The following result now follows from the same arguments
that led to Lemma 1 (see, e.g., [20]–[22]).

Lemma 2 [CMA2-2 with Channel Imperfections]:With the
same definitions of and prior to Lemma 1, if

(35)

then the following bound on the weighted energy of thea priori
estimation errors holds:

(36)

In a similar vein to what was done in the earlier sections, the
result of the above lemma could be used to establish conclu-
sions of the following form for . If is uniformly
bounded, is bounded, is uniformly bounded by
one, say

for all (37)

for some , and if the distortion has weighted finite energy,

(38)

then it would follow that

This in turn implies that is a Cauchy sequence
and that it tends to zero. In particular, if the step-size were con-
stant or even for step-sizes that are bounded from below, this
fact would lead to the conclusion that .
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VI. CONCLUDING REMARKS

The paper studied the behavior of the error sequence of
stop-and-go variants of two blind adaptive schemes, viz.,
CMA2-2 and Sato’s algorithm. For both algorithms, the main
conclusion was that for transmitted signals with constant
modulus , the equalizer output can be made to lie within the
circle of radius infinitely often, for some value of that
is only slightly larger than one. The analysis can be extended
to other classes of algorithms, e.g., CMA1-1 and with greater
detail to cases with channel imperfections. These extensions
will be pursued elsewhere.

APPENDIX A

We prove that the real part of the function defined by
(25) is positive and bounded from below (we are omitting the
indices for simplicity of notation). Recall that and

.
We start by writing for some and for some

. Then, expression (25) leads to

(39)

Since , it is enough for our purposes to verify whether
the real part of

(40)

is positive. The term in (40) is positive since
. Hence, we need to focus on the values that can be as-

sumed by the term . For any fixed value of ,
if we allow the angle to vary from zero to , then the term

describes a circle in the complex plane whose
most negative value is , obtained for , and
whose most positive value is , obtained for .
This shows that for , the real part of the function

lies in the interval

The lower and upper bounds can be equivalently rewritten as

(41)

Using the lower bound , we get that

It can be easily verified that the rational function
has a unique minimum in the interval : it occurs at

and the minimum value is so that

Using the definition of from (23), we conclude that

(42)

APPENDIX B

We know from Appendix A that the function as-
sumes values that lie inside a circle in the right-half plane; its
center is on the real axis and its right-most intersection with the
real axis is at

Hence, using , we get

Now, since

we obtain

(43)

APPENDIX C

In this appendix, we establish the bounds on in Theorem
1. Thus, let and denote the real and imaginary parts of.
Let also and be any two positive numbers satisfying

(44)

(We shall be more specific about further ahead.) If we
can find a that satisfies

(45)

and

(46)

then will also satisfy (22) for all , as desired.
Now, we showed in Appendix B that

and we can use this same bound for both and so that
we also have

We can then satisfy (45) by selecting such that

(47)

Likewise, we showed in Appendix A that



802 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 5, MAY 2000

Therefore, by using

we see that we can satisfy (46) by selecting such that

Since we also want to satisfy (47), and since , we
select a that satisfies

(48)

We of course need to guarantee that the upper bound in the above
expression is larger than the lower bound. This can be achieved
by choosing properly so that

which is equivalent to requiring

(49)

We now show that (44) and (49) can be satisfied simultaneously
for some . Indeed let, for example, be such that

(50)

Then, satisfy (49). Substituting into (44), we see that
must be such that

which reduces to the following quadratic inequality in:

If we can find a that satisfies this inequality, then a pair
satisfying (44) and (49) exists. So consider the

quadratic function

It has a negative minimum and it crosses the real axis at the
positive roots

This means that there exist many values of(between the roots)
at which the quadratic function inevaluates to negative values.
Hence, can be chosen as any value in the interval

(51)

The bounds on in Theorem 1 are thus justified.

In the constant step-size case, we can show that there exists a
that satisfies for all

Indeed, since for all , we should choose a
that satisfies

By following the above arguments, it is easy to verify that
the same construction for an will hold if we replace
throughout by and by , i.e., we choose as
follows:

(52)

and

(53)

so that can be selected from the interval

(54)

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and
the Associate Editor, R. A. Kennedy, for their feedback, which
has considerably improved the quality of this manuscript.

REFERENCES

[1] S. Haykin,Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.

[2] R. W. Lucky, “Automatic equalization for digital communication,”Bell
Syst. Tech. J., vol. 44, pp. 547–588, Apr. 1965.

[3] Y. Sato, “A method of self-recovering equalization for multi level ampli-
tude modulation,”IEEE Trans. Commun., vol. COM-23, pp. 679–682,
June 1975.

[4] D. N. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,”IEEE Trans. Commun., vol.
COM-28, pp. 1867–1875, Nov. 1980.

[5] J. E. Mazo, “Analysis of decision-directed equalizer convergence,”Bell
Syst. Tech. J., vol. 59, no. 10, pp. 1857–1877, Dec. 1980.

[6] M. G. Larimore and J. R. Treichler, “Convergence behavior of the
constant modulus algorithm,”Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing, pp. 13–16, 1983.

[7] O. Macchi and E. Eweda, “Convergence analysis of self-adaptive equal-
izers,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 161–176, 1984.

[8] A. Benveniste and M. Goursat, “Blind equalizers,”IEEE Trans.
Commun., vol. COM-32, pp. 871–883, Aug. 1984.

[9] G. J. Foschini, “Equalization without altering or detect data,”AT&T
Tech. J., pp. 1885–1991, Oct. 1985.

[10] J. R. Treichler and B. G. Agee, “A new approach to multipath correc-
tion of constant modulus signals,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, pp. 459–471, Apr. 1985.

[11] C. R. Johnson, S. Dasgupta, and W. A. Sethares, “Averaging analysis
of local stability of a real constant modulus algorithm adaptive filter,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 900–910,
June 1988.

[12] O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of
nonminimum phase systems channels,”IEEE Trans. Inform. Theory,
vol. 39, pp. 292–297, Jan. 1990.

[13] Z. Ding, R. A. Kennedy, B. D. O. Anderson, and C. R. Johnson, “Ill-con-
vergence of Godard blind equalizers in data communication systems,”
IEEE Trans. Commun., vol. 39, pp. 1313–1327, Sept. 1991.



RUPP AND SAYED: BLIND ADAPTIVE EQUALIZERS FOR CONSTANT MODULUS SIGNALS 803

[14] , “Convergence of Sato blind algorithm and generalizations under
practical constraints,”IEEE Trans. Inform. Theory, vol. 39, pp. 129–144,
Jan. 1993.

[15] Y. Li and Z. Ding, “Global convergence of fractionally spaced Godard
(CMA) adaptive equalizers,”IEEE Trans. Signal Processing, vol. 44,
pp. 818–826, Apr. 1996.

[16] C. R. Johnsonet al., “Blind equalization using the constant modulus
criterion: A review,” inProc. IEEE, Oct. 1998, pp. 1927–1950.

[17] L. B. White, “Blind equalization of constant modulus signals using
the adaptive observer approach,”IEEE Trans. Commun., vol. 44, pp.
134–136, Feb. 1996.

[18] J. R. Treichler, I. Fijalkow, and C. R. Johnson, “Fractionally spaced
equalizers: How long should they really be?,”IEEE Signal Processing
Mag., vol. 13, pp. 65–81, May 1996.

[19] S. Haykin,Blind Deconvolution. Englewood Cliffs, NJ: Prentice-Hall,
1994.

[20] A. H. Sayed and M. Rupp, “A time-domain feedback analysis of adap-
tive gradient algorithms via the Small Gain Theorem,” inProc. SPIE
Conf. Advanced Signal Processing: Algorithms, Architectures, and Im-
plementations, vol. 2563, San Diego, CA, July 1995, pp. 458–469.

[21] M. Rupp and A. H. Sayed, “A time-domain feedback analysis of filtered-
error adaptive gradient algorithms,”IEEE Trans. Signal Processing, vol.
44, pp. 1428–1439, June 1996.

[22] A. H. Sayed and M. Rupp, “Robustness issues in adaptive filtering,” in
DSP Handbook: CRC Press, 1998, ch. 20.

[23] , “An l -stable feedback structure for nonlinear adaptive filtering
and identification,”Automatica, vol. 33, no. 1, pp. 13–30, Jan. 1997.

[24] I. Fijakow, C. E. Manlove, and C. R. Johnson, “Adaptive fractionally
spaced blind CMA equalization: Excess MSE,”IEEE Trans. Signal Pro-
cessing, vol. 46, pp. 227–231, Jan. 1998.

[25] J. Mai and A. H. Sayed, “A feedback approach to the steady-state per-
formance of fractionally-spaced blind adaptive equalizers,”IEEE Trans.
Signal Processing, vol. 48, pp. 80–91, Jan. 2000.

[26] N. R. Yousef and A. H. Sayed, “A unified approach to the steady-state
and tracking analyzes of adaptive filtering algorithms,” inProc. 4th
IEEE-EURASIP Int.l Workshop Nonlinear Signal and Image Processing
NSIP, vol. 2, Antalya, Turkey, June 1999, pp. 699–703.

[27] , “A feedback analysis of the tracking performance of blind
adaptive equalization algorithms,” inProc. Conf. Decision and Control,
Phoenix, AZ, Dec. 1999, pp. 174–179.

Markus Rupp received the Diploma in electrical
engineering from FHS Saarbruecken, Germany,
and Universitaet of Saarbruecken, in 1984 and
1988, respectively. During this time, he was also
a Lecturer in Digital Signal Processing and High
Frequency Techniques at the FHS. He finished the
Doctoral degree in 1993 (summa cum laude) at
the TH Darmstadt in the field of acoustical echo
compensation.

He was awarded a DAAD Postdoctoral Fellow-
ship and spent the time from November 1993 until

September 1995 in the Department of Electrical and Computer Engineering
of the University of California, Santa Barbara, working on a robustness theory
for adaptive filters. Since October 1995, he has been with Bell Laboratories,
Lucent Technologies (before AT&T), Wireless Research Lab in New Jersey,
working on wireless phones and implementation issues of wireless modems.
He is currently involved in rapid prototyping methods for wireless systems.
He has over 60 publications and patents in the fields of adaptive filters and
wireless systems.

Ali H. Sayed (S’90–M’92) received the Ph.D.
in electrical engineering in 1992 from Stanford
University. Stanford, CA.

He is Associate Professor of Electrical En-
gineering at the University of California at Los
Angeles (UCLA). He has over 130 journal and
conference publications. He is co-author of the
research monograhIndefinite Quadratic Estimation
and Control(Philadelphia, PA: SIAM, 1999) and of
the graduate-level textbookLinear Estimation(En-
glewood Cliffs, NJ: Prentice-Hall, 2000). He is also

co-editor of the volumeFast Reliable Algorithms for Matrices with Structure
(Philadelphia, PA: SIAM, 1999). He has contributed several articles to engi-
neering and mathematical encyclopedias and handbooks, and has served on the
program committees of several international meetings. His research interests
span several areas including adaptive and statistical signal processing, linear
and nonlinear filtering and estimation, interplays between signal processing
and control methodologies, and reliable and efficient algorithms for large scale
structured computations. To learn more about his work, visit the website of the
UCLA Adaptive Systems Laboratory at http://www.ee.ucla.edu/asl.

He is a member of the editorial boards of theSIAM Journal on Matrix Anal-
ysis and Its Applicationsand theInternational Journal of Adaptive Control and
Signal Processing, and has served as co-editor of special issues of the journal
Linear Algebra and Its Applications. He served as Associate Editor of the IEEE
TRANSACTIONS ON SIGNAL PROCESSING. He is a recipient of the 1996 IEEE
Donald G. Fink Award.


