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On the Convergence of Blind Adaptive Equalizers
for Constant Modulus Signals
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Abstract—This paper studies the behavior of the error sequence the gradient noise that is introduced by such approximations?
CCJf Jzozpéandégg \t/a’riarllts Qtfhtwonadalir)]tive t;lri]n?feqtualizer% fzjamew This issue is more complex and deserves a closer examination.
-zZan ato s algorithm. Itis snown that ror transmittea sig- : : : . .
nals with constant mogulusv, the equalizer output can be madgto In this paper, we study. two blind adapFlve aI_gonthms, VIZ.,
lie within the circle of radius ~/z infinitely often, for some value CMA2-2 and Sato’s algorithm, for transmitted signals that sat-
of ¢ that is only slightly larger than one. isfy a constant modulus property. We show, under some condi-
Index Terms—Adaptive equalization, constant modulus algo- tions_onthe step-sizes, that certain stop-and-go variar_1ts of these
rithm, feedback, ,-stability, positive-real function, small gain algorithms can be made to guarantee that the equalizer output
theorem. will lie infinitely often within a bounded domain whose radius
is only slightly larger than the assumed constant modulus (see
Theorems 1 and 2). The analysis is based on a feedback frame-
work developed in [20]-[23], and it allows us to employ some
HANNEL equalization is a relevant step in the design afimple tools from system theory fés-stability analysis.
reliable data communication systems. For slowly varying Notation: We use small boldface letters to denote vectors.
channels, aninitial training phase is often tolerable for equalizehe symbol 7" denotes transposition" denotes Hermitian
tion purposes and such scenarios arise, for example, in equalz@mjugation, and the notatidjx|| denotes the Euclidean norm
implementations of digital cellular handsets. When the commaf a vector. All vectors are column vectors except for the input
nications environment is highly nonstationary, however, it majata vector denoted by;, which is taken to be a row vector.
become impractical to use training sequences [1, p. 139]. Sidbreover, since the signals we deal with are often complex, we
situations can be handled by the use of blind equalization atienote by: the real part of a complex numbe=nd by:y its
they arise, for example, in the operation of cordless phones.imaginary part. We also use the shift operajot, defined by
Over the years many ingenious analyzes and modificatiogis®[s(i)] = s(i — 1), to denote the unit time delay and write
have been proposed in the literature with the intent of both(¢—!) to denote a transfer function yr*.
understanding and improving the performance of blind and
nonblind adaptive equalizers. Considerable progress has been
made in several respects, and we may mention here, among
others, the works [2]-[19]. In several of these works, the ana- Il. PROBLEM FORMULATION
lyzes are concerned with the multimodality of the associated

cost functions. For example, [15] establishes the fact thatrig. 1 shows an input signat) that is transmitted through
for fractionally spaced equalizers (FSE's), and under certaiy ynknown channel(g~!) to anith-order finite-impulse re-
rank and length conditions, the associated cost function f%onse (FIR) receiveR(¢1). The input of the receiver is de-
equalizers. While this is a reassuring conclusion, it can ony gne that guaranteegi) = e/®s(i — D), for some positive
guarantee that a well-designed steepest descent method iRfEyer D and for some phasg € [0,2n). In the sequel, we
achieve a global minimum of the cost function. _ assume that such a receiver exists (vfith= 0, for simplicity
But what about adaptive equalizers that are derived frog notation). That is, we assume that afth-order equalizer
steepest descent methods by resorting to instantaneous-gradigit-1) exists such that when used in Fig. 1 it leads to an output
approximations? Will they perform reliably in the presence of ;) — s(;— D). As mentioned in the introduction, this assump-
tion is valid for FSE’s under certain rank and length conditions
(see, e.g., [15] and [16]). In Section V, we comment on the case
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(i) o~ u(i) Rig) 2(3) = s(i - D) E'Letl(la?jtigg (i.e.s(i¢) = £~). The error signal is now com-
e(é) = ysign[2(4)] — 2(4) (6)

Fig. 1. Block diagram representation of zero-forcing equalization.
and the weight vector is updated according to the recur-

/ sion

O o] W, , 2O w; = wios + p(uf [ysign[2(0)] - 2. (7)
i B. Assumptions
Error function We shall assume that the successive regression velaipfs
e(i) are nonzero and also uniformly bounded from above and from
below, say

Fig. 2. Structure of the blind adaptive equalizer.
0<b<|wl|<B<oo (8)

dependent oi(z). [In nonblind adaptation, a certain referenc

For some constant&h, B} and for alli.
signal is used in conjunction witk(¢) to producez().] &, B} '

Moreover, the two algorithms mentioned above are special

A. The Algorithms cases of the general recursion

Let u; be a row vector that denotes the state of the adaptive w; = w1 + p(i)ule(i), i>0 9

FIR filter at the receiver of Fig. 2 at time viz., for different definitions ofe() in terms of2(). It is then clear

wo=[u@) w(i-1) - uli—M+1). 1 that the weight vector will not be updated, i.e;; = w;_1,
whenevek(:) = 0. We shall exclude these cases from our anal-
Then, the output of the equalizer is given by the inner productsis and focus only omctive update steps, namely those for
which e() # 0. To emphasize this fact, we shall use an alter-
2(1) = wyw;_q. (2) native time index: to refer to the active update steps. In other

words, in this paper, we shall study algorithms of the form
Assume also that the transmitted sigsg@l) arises from a con-
stant modulus constellation, say Wi = W1 + p(k)uje(k), e(k)#0; k=0,1,2,- ( ) |
10
[s(?)] = (3) In particular, we shall study the behavior @f:) as time pro-
gresses to infinitfk — o0).
for all « and for somey > 0.
In this paper, we study the convergence performance of the . CMA2-2 ALGORITHM

following two blind adaptive schemes. We start our analysis with CMA2-2, for whicH{%) is given
1) CMA2-2: The letters CMA stand for constant modulu%%, [cf. (4)]

algorithm and the numbers 2-2 refer to the specific cos

function that gave rise to it (see [4] and [10]). The al- e(k) = 2(k)[v* — |2(k))?].

gorithm is widely used in the context of adaptive blind

equalization, and it offers superior performance proper- Thus, letw denote the weight vector of the optimal receiver
ties in several respects when compared to other blidd¢ ") of Fig. 1 and letz(k) = w,w. Recall that we are as-
adaptive schemes (see, e.g., [24] and [25]). In this ca§&ming a zero-forcing receiver that guarante@s = s(k—D),

the error signal is computed as for someD [so that|z(k)| = v by (3)].
Define further thea priori anda posterioriestimation errors
3) = 5(q 2 5(4 2 4
e(i) = 2(3) [v* = 12()|?] (4) ealk) = 2() — 3(F)
and the weight vector is updated according to the recur- =uEWi_1 (1D
sion
W Dt a2 — 15042
Wi = Wit (w00 — 0] ) wherew;_; = w — wi_1. Introduce also the complex-valued
for some initial weight vectow_;, and whereu(i) is a functions
positive step-size (allowed to be time-dependent for gen- F(z) = 2|22

erality).
2) Sato’s Algorithm: For this algorithm, all signals are as-and, forz; # 2

sumed to be real-valued arf) arises from a 2-PSK con-
Bt 2] 2 f(2) = f(za)  zilz1]? = zal2)? (13)
1The analysis can be extended to other similar algorithms. HAL, #2] = 21 — 29 - 21 — 29 ’
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-1l nonblind) adaptive schemes (see, e.g., [25]-[27]). Here, we shall
! show how the feedback structure of Fig. 3 leads to useful in-
sights regarding the behavior of the error sequepgé)} as
time progresses to infinity.
W1 Wi ) ]
A. Small Gain Analysis
Vi(k) ep(k) I7ill = 1 Vi(k) es(k) Define the quantities
_ _ (k) S 2
AN) = max (1= ZaSl0, 28] %) (18)
and
(x )=
7 p(k)

R(N) = (29)

ogken (k)

1- 58 (lz(k), (k)] - 72

Fig.3. Atime-variantlossless mapping with gain feedback for blind operatio!{] partlculqr,A(N) is the maximum norm Of the (complex-
valued) gain of the feedback loop over an interval of length

N + 1). The following result now follows immediately from
17) (see, e.g., [20]-{22]).
Lemma 1 [CMA2-2]: If

e(k) = (hlz(k), 2(k)] = ¥*)ea(k)- A(N) < 1 (20)

By subtractingw from both sides of (10), we obtain the fol-
lowing recursion for the weight-error vector:

Then, it is straightforward to verify that the error signal%
{e(k), e, (k)} can be related as followss:

then the following bound on the weighted energy ofah@iori
estimation errors holds:

Wi = Wit — (k) ug[(h —77)eq (k)] (14) N 1/2
y . KYHN)

where we are dropping the argumefiék), 2(k)) of h for com- Z uk)lea(R)I* < 1—A(N) w1l (1)
pactness of notation. k=0

Let z(%k) denote the reciprocal of the input energy at iteration &
k, (k) = 1/||ux]/?. If we multiply (14) byu,, fromthe left, we  The usefulness of this lemma will be highlighted in the se-
conclude that, (k) ande, (k) are related via quel.

ep(k) = <1 _ %[h _ ,YQ]) ea(k) (15) B. Selective (Stop-and-Go) Updating

Condition (20) can be met for any by attempting to select
which in turn shows that we can rewrite (14) in the equivaletite step-size sequenpék) so as to guarantee for all

form (k)
1— 22 (hlz(k), 2(R)] =) <a< 1 (22)

Wi = Wi—1 — fi(k)ugfeq(k) — ep(k)]. (16) w(k)
If we square both sides of (16) and compare the resulting et @ll possible combinations of(k) and z(k), and for some
gies, the following equality always holds: positive scalar. This motivates us to introduce the following

’ stop-and-go variant of the CMA2-2 algorithm G).et
[Wkl[* + AR)lea(R)*  _
[Wa—1[? + A(k)lep (k)2
This relation establishes the existence of a lossless map (#%-some small positive number Now, at each time instarit
noted by7,) from the variables{w;._1, \/ii(k)ep(k)} to the g the following.

variables{wy, \/fi(k)e,(k)}. Correspondingly, using (15), this F 15600 > then we updatev: -+ to w. via
analysis shows that the update (5) induces an overall feedback 0l 2 /e, P LW

(17) c2e+ % (23)

structure of the form shown in Fig. 3. The feedback configura- w; = w1+ p(i)uf 2y — |2()]7]
tion consists of a lossless feedforward map and a memoryless ] ] ]
(yet time-variant) feedback map. where (i) is chosen as explained below in Theorem 1.

This feedback structure, along with the energy relation (17), ~ This corresponds to aactiveupdate step since the corre-
was derived in [20]-[22] in the context of robustness analysis ~ SPonding e”‘?ﬁ(l) is necessarily nonzero by virtue of the
of adaptive filters. They have been also applied to the study of ~conditions|z(¢)| = ~ and./c > 1. _
the steady-state and tracking performances of general (blind and® f [2(9)] < v/, thenw; = w, . Thatis, we do not

update the weight vector.

2The denominator ok[=(k), 2(k)] is nonzero since (k) # 2(k). This can
be seen as follows. If(k) = =z(k), then|2(k)| = =~ (in view of the fact 3We first describe the modified algorithm in terms of the time indased

that|z(k)] = 7). It would then follow thate(k) = 0, which contradicts the for the original recursion (5). Then, we extract the active update steps and use
assumption of active updates for whietk) # 0. the indexk for these, as in (24).
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In other words, the corresponding active update steps [efhere hp and h; denote the real and imaginary parts /of
(10)] of this algorithm have the form Hence, according to Lemma 1, we must have

{ Wi = Wi—1 + p(k)uje(k),
(k) = 2(0) — |(R) ).

Assume we run the above stop-and-go CMA2-2 algorithie want to show thak’ < co. Assume to the contrary thaf

infinitely often (i.e.,i — oc), and letK denote the maximum s infinite. Then, the above inequality would imply that
number of active updates that occurred in the process. We now

prove that, by properly designing the step-size sequédkiaan
be maddinite, which in turn means that the conditid#(i)| <
~+/c will hold infinitely often.

Theorem 1 [Stop-and-Go CMA2-2JAssumez(k) stays uni-  from which we conclude thay/ 1.(k)e, (k) — 0, or equivalently

NV >ty = R

p(k)lea(k)* < o0

[M]¢

o~
Il

0

formly bounded from above for all, say eq(k) — 0, sincen(k) is bounded from below and from above.
We thus conclude that(k) — z(k), which means that there
YWe < |2(k)| < Py < o exists a finiteL large enough, such that for any positive number

¢ and forallk > L
for someP > /c > 1.4 Choose a positive numbé¥ in the

interval |2(k)| < |2(k)|+€ =~v+ €.
64P* — 2 <1 We are free to choosé so lete’ be any positive number that
gapir e <7 < satisfies
and compute an® via e <~(ve—1).
1_ g P2 It then follows that
= 81— 8)—

2(R)] < vv/e.

This contradicts the fact that the updates occurred &(#)
such that|2(k)| > ~+/c. We thus conclude that only a finite
1 4 _ (k) < o’ 1 number of updates could have occurred, i€.< oc. &
||ug|]? 3evy? s g ||? 3P22 Remark 1: Although the interval that defines the choice of
w(k) in the statement of Theorem 1 can generally be small,
(A constant step-size can also be chosen as in (54) for d'ﬁerﬂﬁ’é theorem nevertheless shows that there exists a selection of
values of{a”, 3}.) Itthen holds thak < co. Thatis,|2(i)| < step-sizes for whichz(k)| < vv/c occurs infinitely often. (In
~vv/c holds infinitely often. _ other words, we could interpret this result as essentially saying
Proof: The corresponding functiom[z(k), 2(k)] only that, for suitably chosen step-sizes, the stop-and-go CMA2-2
needs to be defined for the casek)| = v and|2(k)| algorithm produces a sequence of estimatgésthat lies inside
NIo/INZ  arIN Al N2 the circle of radiusy,/c with probability one.)
h2(k), (k)] = 2(k)|2(R)]" — 2(k) (k)7 (25)  Remark 2: The analysis can be extended to a general recur-

Choose further the step-size sequep¢k) for the active up-
dates from within the interval

(1-p)

)
27

’ 2(k) — 2(k) sion of the form
In this case we know from the analysis in Appendix A [expres- Wi, = Wi_1 + p(k)ulz(k)[y? — |2(k)]]
sion (42)] that
forq=3,4,5,---.

Real{h[z(k), 2(kE)]} > v*(1 4+ 0.75¢).
IV. SATO’'S ALGORITHM

We also know from Appendix B [expression (43)] that . .
PP [exp “3) We now extend the results to Sato’s algorithm (7). In this case,

h[=(k), 3(k)]| < 3P%42. we introduce the functions
We use these two bounds ¢ andReal[] in Appendix C to f(z) = sienlZ]
show that the choice fgu(k) in the statement of the theoremand, forz, £ 2,

above guarantees (22) for &l viz., ] ]
A f(z1) = f(z2) _ signfz] — signfzs] 26)

(k) 22 (k) hler, 22 P -2

7 L T R2 21— 2

= B (k) = )| + Bk k) <a? <1 o | |
(k) p* (k) Then, it is straightforward to verify that the error signals

“4The lower bound is automatically satisfied by the stop-and-go nature of &(k), ca(k)} are now related via

algorithm. The upper bound is expressed conveniently in termsarfiy upper
bound can be expressed in this form for sofhe e(k) = (1 — vh[z(k), 2(k)])eq (k).
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Moreover, it further holds that Theorem 2 [Stop-and-Go SatoAssume (k) stays uni-
formly bounded from above for all, say
eothy = (1= 2000 = ) ealt )
p(k) We < 2(k)] < Py < o0
so that the same feedback structure of Fig. 1 will still hold witfyr someP > /¢ > 1. Choose also the step-size sequende
the gain in the feedback path replaced by for the active updates from within the interval
p(k) ) 1—a 1+a
1——=[1—-~h]]). < k) < ——.
(1= s Y N W E

The same conclusion of Theorem 1 will also hold witiN) (A constant step-size can also be chosen by using the bounds
now defined as the maximum of the above feedback gain o\8) on||uy||.) It then holds thaf{ < oco. That is,|2(4)| < v/

an interval of length(v + 1) holds infinitely often.

Proof: The corresponding (real-valued) function

A(N) = max |1— _’f(k) (1-— ’yh[z(k),;?(k)])‘ . (@7) hlz(k), 2(k)] only need; to be defined for the cdsék)| = ~
o<k<N | Ji(k) and|2(k)| > y+/c. In this case, we have that
2 . L
A. Selective (Stop-and-Go) Updating hl=®), 50)] = { ECIEECR sign[z(k)] # sign[2(K)]
We thus see that we now need to select the step-size sequence 0, otherwise
#(k) so as to guarantee Then, it holds that
p(k) : ‘ ; 2
1— =21 —~hlz(k),2(k)D| <a<1 (28) 0 < hlz(k),2(k)] < —————
‘ u(k)( [2(k), 2(K)]) < hlz(k), 2(k)] a5 v
for all £ and for some positive scalar so that
This again motivates us to consider a stop-and-go variant of
Sato’s algorithn®. Select a positive real numbaer satisfying A<Il—=7yh <1 (1)
a < 1, and a positive real numbersuch that In order to meet (28), we need to choose the step-size according
—_ to
1= <1 (29)
1+4+a l1—a 14+a
. g < k)1 —yh) < 57—
Then, define ||l u || [lu |
Al which in view of the bounds ofil —~4) in (31) can be achieved
C=1 ) by selectingu(k) according to
Now at each time instarit do the following. l=a _ (k) < I+a
I 2 L tow, vi AP =5 P
If |2(3)| > v/c, then we updatev; ; to w; via

We still need to guarantee that the lower bound in the above
inequality is smaller than the upper bound. This requiresthat

wherey(i) is chosen as explained below. This correspondé such that
to anactiveupdate step since the corresponding egfoy l—a
is necessarily nonzero in view of the conditieii)| = ~. I l+a
 If |2(¢)| < vv/c, thenw; = w; ;. That is, we do not
update the weight vector.
In other words, the corresponding active update steps [cf.
(10)] of this algorithm have the form

K
(B)|ea(R)* < =" s -
{wk =wiy +pbpufeh), BBz e g kzzou (1 - A(K))

ofk) = ysign[Z(k)] = 2(h). We want to show thak’ < oo. Assume to the contrary thaf
Assume we run the stop-and-go Sato’s algorithm infinitelg infinite. Then,2(k) — z(k), which means that there exists a
often (i.e.,i — oc), and letK denote the maximum number offinite L large enough, such that for any positive numeand
active updates that occurred in the process. We can also estatiistall £ > L
that, by properly designing the step-size sequektaan be R , ,
madefinite, which in turn means that the conditipi{i)| < v/c R <lz(k)[ +€ =7 +¢.
will hold infinitely often.

wi = Wiy + p(i)u [y sign[(0)] - £()]

or, equivalently, as in (29).
Hence, according to Lemma 1, we must have

RUEO(W_11?

We are free to choos€ so lete’ be any positive number that

50nce more, we describe the modified algorithm in terms of the time indexSatisfies
used for the original recursion (7). Then, we extract the active update steps and
use the indeX: for these, as in (30). v+ e < ’y\/E.
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q
Wk_1 Wk
Rkys (k) o o VEE) k) | 1Tl =1 VlE) ea(k)
_ulk
alk
®4

1- 58 (hlz(k), 2(k)] - 7?)

Fig. 4. A feedback structure for the case of channel imperfections.

Itthen follows thalz(k)| < v+/c, which contradicts the factthat Lemma 2 [CMA2-2 with Channel ImperfectionsyVith the
the active updates occurred withk) such thafz(k)| > v+/c. same definitions ofA(N) and« (V) prior to Lemma 1, if

We thus conclude that only a finite number of updates could

have occurred, i.ef{ < co. & A(N) <1 (35)

V. CHANNEL IMPERFECTIONS then the following bound on the weighted energy ofafiori
estimation errors holds:

So far in the paper we have assumed that there were no noise
Wil + R 2(N) Zu )= (K ]

distortions or that the channel could be perfectly equalized. ~
Under channel and equalization imperfections, the outphit Z uk
of the optimal equalizer in Fig. 1 will not be constant modulus
anymore. However, assuming that these imperfections lead t

disturbances that are small enough compared to the amplitude KY2(N)
<

)ea(k

~, we may assume thatk) in the CMA2-2 case is such that = 1-AV)

2k 2()]? = 2(k)y* — va(k) (32) (36)
for some additive noise componeJ}t(k) that explains the mis- <
match betweenr(k)|z(k)|> andv2z(k) in the nonideal case. Ina similar vein to what was done in the earlier sections, the
Then, it is easy to verify that the error signék) = 2(k)[y2 — result of the above lemma could be used to establish conclu-
|2(k)|2] is now related ta:, (k) via sions of the following form forV. — occ. If k() is uniformly

bounded,|w_,|| is bounded A() is uniformly bounded by
e(k) = (hlz(k), 2(k)] = v*)eq (k) + v.(k) (33) One, say

where A(N)<a< 1, forall N (37)
2(B)|z(B) > = 2(0) |2(R) P X for somes, and if the distortion. (i) has weighted finite energy,
hl=®), 6] = { =m0 A
v ), ) = 209,

(B v (B)|? < oo (38)

NE

o~
Il

Moreover, relation (15) between taeriori errore, (k) and the 0

a posteriorierrore, (k) becomes

otk = (1= 200 =) o) = 200ty (38)

while equality (17) still holds. This means that the feedback

structure of Fig. 3 should now be replaced by the one showhis in turn implies thaf /1:.(k)e,(k)} is a Cauchy sequence

in Fig. 4. and that it tends to zero. In particular, if the step-size were con-
The following result now follows from the same argumentstant or even for step-sizes that are bounded from below, this

that led to Lemma 1 (see, e.g., [20]-[22]). fact would lead to the conclusion thaf(k) — 0.

then it would follow that

p(k)|ea(R)|* < oo

[M]¢

o
Il

0
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VI. CONCLUDING REMARKS Using the definition of: from (23), we conclude that

The paper studied the behavior of the error sequence of Real{h[z, 3]} > 7*(1 + 0.75¢). (42)
stop-and-go variants of two blind adaptive schemes, viz., ' ST
CMAZ2-2 and Sato’s algorithm. For both algorithms, the main
conclusion was that for transmitted signals with constant APPENDIX B

modulus~, the equalizer output can be made to lie within the We know from Appendix A that the functioz, 2]/|2|? as-

circle of radiusy,/c infinitely often, for some value o that sumes values that lie inside a circle in the right-half plane; its

is only slightly larger tha_n one. The analysis can b? extendgemer is on the real axis and its right-most intersection with the
to other classes of algorithms, e.g., CMA1-1 and with greater o

. : . : -real axis is at
detail to cases with channel imperfections. These extensions

will be pursued elsewhere. 1+(1— 7,2) T 1- 7’3'
1—7r 1—7r
APPENDIX A Hence, usingz| < P+, we get

We prove that the real part of the functibfx, z] defined by 1,3
(25) is positive and bounded from below (we are omitting the |hlz, 2]| < p2,y2__7_
indicesk for simplicity of notation). Recall thatz| = v and l1—r
12| > /e Now, since

We start by writingz/2 = re’? for somer < 1 and for some )
¢ € [0,2x). Then, expression (25) leads to 1—7? . Z <3

1—7r
B[z, 2] = |37 <1+ {1_ |Z|1 z ) i
oo 22] 2—= we obtain
rel®
=z <1 +[1-77] m) . (39) |hlz, 2]| < 3P%4°. (43)

Since|2|? > 0, it is enough for our purposes to verify whether APPENDIX C

the real part of
' In this appendix, we establish the boundsgh) in Theorem
<1 T rcm' ) (40) 1. Thus, lethg andhr denote the real and imaginary partshof
1—rei® Let alsoa and3 be any two positive numbers satisfying

is positive. The term(1 — +2) in (40) is positive since: € a4+ 4% <1 (44)
(0,1). Hence, we need to focus on the values that can be as- -~
sumed by the terme’# /(1 — re##). For any fixed value of, (We shall be more specific abofity, 5} further ahead.) If we
if we allow the angles to vary from zero tcr, then the term Can find au(k) that satisfies
re/? /(1 — rei?) describes a circle in the complex plane whose (k)
most negative value isr/(1 4 r), obtained forp = =, and ‘%hI[Z(k),ﬁ(k)]‘ <a (45)
whose most positive value is/1 — r, obtained for¢ = 0. K
This shows that for € (0,1), the real part of the function and
h[z,2]/|2|? lies in the interval
’ p(k) 5 2
1 — —=(hglz(k), 2(k)] —
1= 1 e, 2]~ )
L=r then (k) will also satisfy (22) for allk, as desired.
Now, we showed in Appendix B that

<p (46)

: hlz, 2
1-(1 —TQ)ﬁ < Real{ |[;|’27]} <1+(1-12)

The lower and upper bounds can be equivalently rewritten as

3 5 B |h[z(k), 2(k)]| < 3P%4*
1477 e { AL 12 (41)
1+ |2]2 1—7

and we can use this same bound for bidth| and|h ;| so that

Using the lower bountk| > ~+/c, we get that we also have

o [hale(h), 2] < 3P
Real{h[z, 2]} > ¢y* min < ) .
rc(O,) \ 147 We can then satisfy (45) by selectipgk) such that
It can be easily verified that the rational functigint-r2) /(1+7) i o 1 47
has a unique minimum in the interv@, 1): it occurs atr, = k) < |a||? 3P2y2" (“7)

1/2 and the minimum value i8/4 so that L _ )
Likewise, we showed in Appendix A that

Real{h[z, 2]} = %c*v?- Real{h[z(k), 2(k)]} > v*(1 + 0.75¢).
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Therefore, by using In the constant step-size case, we can show that there exists a
1+ that satisfies for alk
1-5 4 o 1
NS YT e R———
[[ug][? 3ev? [[ug][? 3242

S < hala(k), 2(E)] - 72 < (3P” ~ 1)

we see that we can satisfy (46) by selectir{g) such that

(1-p) 4 (1+5) 1 Indeed, sincé < ||lux|| < B for all k, we should choose a

Al O k) < . that satisfies
udlP 302 <" g @re -1y o
Since we also want to satisfy (47), and sirftet 3) > «, we (1-5) P32 SH S przprye
select gu(k) that satisfies . o .
(k) ISt By following the above arguments, it is easy to verify that
(1-p) 4 ) o 1 the same construction for afw, 3} will hold if we replace
[[uz]|? 3ey? n(k) < g2 3P242 (48) throughout: by 4*c and P by BP, i.e., we chooséa?, 3°} as
follows:
We of course need to guarantee that the upper bound in the above
. . . . BQPQ
expression is larger than the lower bound. This can be achieved o =8(1— %) (52)
by choosing{«, 5} properly so that b2e
@ 41— 5) e 4p4 _ 4.2
3P2y2 3evy2 64B*P* — b%¢ g0 < 1 53
. _ . 64B4P4+b462<[ < (53)
which is equivalent to requiring ,
so thaty can be selected from the interval
4(1-75) €
—_— < . (49) 1 4 o’ 1
2 1-738% = — 54
« P ( & )b23672<“<323p272 (54)
We now show that (44) and (49) can be satisfied simultaneously
f 3}. Indeed let, f €, 3° b h that
or some{«, 5}. Indeed let, for exampld,«®, 3°} be such tha ACKNOWLEDGMENT
1-3°= éoﬂ% (50) The authors would like to thank the anonymous reviewers and

the Associate Editor, R. A. Kennedy, for their feedback, which
Then,{a?, 3°} satisfy (49). Substituting into (44), we see thabas considerably improved the quality of this manuscript.
£° must be such that
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