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Abstract - In state-of-the-art digital communication systems,
channel estimation and/or equalization is an indispensable
part of the system. Due to limited resources, only relatively
simple algorithms with low complexity can be applied for
channel estimation and equalization in high data-rate sys-
tems. In fact, the complexity of these algorithms can become
prohibitive for very high bit-rate applications, for example,
several 100 Msymbols-per-second.

In this paper, we explore the signal constellation struc-
ture of practical digital communication systems and describe
an efficient computation technique that not only eliminates
multiplications but also minimizes the number of addition
operations required to implement channel estimation algo-
rithms such as the Least-Mean-Squares (LMS) estimation
and equalization algorithms such as the Maximum-Likelihood
(ML) sequence detection using the Viterbi algorithm. This
new technique preserves the numerical precision of the algo-
rithms while it reduces their complexity dramatically.

I. INTRODUCTION

In this paper a new low-complexity technique is proposed
that can be applied to many algorithms in digital transmit-
ters and receivers. Our method requires only selection oper-
ations, i.e., no adders or multipliers, to implement the multi-
plication of a complex-valued filter tap coefficient with that
of a Quadrature Phase Shift Keying (QPSK) constellation

point and only add/sub structures for higher modulation schemes

like 16- or 64-Quadrature Amplitude Modulation (QAM).

Channel estimation based on the LMS method and equal-
ization using the Viterbi algorithm is by now a standard tech-
nique. The effort to transmit higher data rates, however, is
hampered by the technology that can be employed for the im-
plementation of such algorithms. In their original form, they
require many complex multiplications: 2 for the LMS and
PM for a full search Viterbi, where M is the order of the
channel estimator, and P is the size of the symbol alphabet.

Early digital implementations[1]-[3] of LMS tried to re-
duce multiplications by using either signed approximations
of the regression vector and/or the error signal. These non-
linear methods, however, alter the training behavior. In gen-
eral, the training speed is considerably reduced. Thus, only
in situations where long training sequences are available (like
broadcasting) these methods can be applied.

The idea proposed in this paper is of a different nature.

The algorithms will remain numerically exact in their imple-
mentation. Thus, their learning behavior remains unchanged.
The essential improvement is as a result of exploiting the
structures of most commonly used modulation schemes such
as the QPSK and QAM constellations. It will be shown that
for thcseft%lpical modulation schemes all operations on the
symbols of this alphabets can be implemented numerically
exact with a few add and shift operations only. The proposed
designs in this paper are extensions of the method designed
for real values given in [4].

II. BASIC CONCEPT

The basic idea of our design will be explained as an ex-
ample using a QPSK modulation. Rather than using the con-
ventional constellation, shown in Figure 1, with the constel-
lation points, u; € {1/v/2(%1, £4)}, a rotated constellation
with points u; € {1, j,—1, —j} is used instead. Rotating the
constellation points does not change the behavior of the dig-
ital modulation scheme nor its transmission since the hard-
ware dependent implementation as well as the transmission
channel will add arbitrary rotations anyway.

Figure 1: Conventional (left) and alternative (right) constel-
lations for QPSK modulation.

In [5] it is already mentioned that using u; € (£1 % j)
rather than u; € 1v/2(%1 = j) saves complexity since multi-
plications can be performed as add/sub operations. However,
the rotated constellation as proposed here simplifies this op-
eration even further. To illustrate this, let us implement an
inner vector product, commonly used in LMS and Viterbi
algorithms. The elements of the channel estimate, for ex-
ample, are combined in a row vector w = [wy, Wy, ..., W],
while the transmitted modulated symbols are represented by
a row vector u = [uy, ua, ..., ups]. The inner vector product
to compute is thus given by

M
uwT = E u;w; ,
i=1
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with T' denoting the transpose operation. In other words a
complex multiplication is required to multiply each transmit-
ted symbol u;, where i = 1..M, with one of the channel
estimate weights w;, where i = 1. M. A complex multi-
plication usually requires four real multiplications and two
add/sub operations. That is,
uyw; = Real(u;)Real(w;) — Imag(u;)Imag(w;)

+ j{Real(u;)Imag(w;) + Imag(u;)Real(w;)}
If, however, taking the structure of the QPSK alphabet, u; €

{1,4,—1,—3}, into account, the multiplications completely
disappear, and only the following four cases remain:

u;=1: ww; = Real(w;)+ jImag(w;) ¢))
u;=j: u;wi = -—Imag(w;)+ jReal(w;) (2)
u; = —1: wyw; = —Real(w;)— jImag(w;) (3)
ui = —j: ww; = Imag(w;)— jReal(w;). (4)

In other words, the multiplication becomes a selection op-
eration. Even the add/sub operations is not necessary. We
denote the two bits that define a QPSK constellation point,
bit b; and bit by. A possible mapping scheme to map these
two bits into a QPSK constellation point is shown in Table 1.
Arbitrary mappings, such as using Gray coding, can be used
by applying a conversion mapping first.

bl bo u
0 0 |1
0 I |j

1 0 |-1
J R U

Table 1: Mapping two bits into a QPSK constellation point.

To compute the inner vector product of length M, how-
ever, addition operations cannot be eliminated. Assume that
the partial sum is computed unto position (k — 1):

Rl

-1
uiw; . (5)
1

Sk-1=

i

I

Then the next step to compute s, is
S = Sk—1 +urwr, k=2..M. 6)

Finally, Figure 2 displays a fully recursive structure that
can perform the complete FIR operation in (5) without re-
quiring additional hardware.

A. QAM Constellations

How does the proposed technique work for larger signal
constellations? As an example 16-QAM is shown to illus-
trate the basic principle. Similar to the QPSK case, the set of

16 constellation points, u; € {1+, £1+35, £3+7, 3+
34} is rotated by 45° as shown in Figure 3. The figure also
shows how the constellation can be separated into four sub-
sections. Each subsection is a translated QPSK constella-
tion. Note that the center point of each subsection is a QPSK
constellation. Thus, the selection of the center point of the
subsection is the same as selecting a point in the QPSK con-
stellation as described in the previous section. In the second
step, the actual signal is selected. This is another selection
process, similar to the one before. Note, however, that in the
first step the value corresponding to the center point of each
subsection is twice as large as the correction signal that is to
be added. Thus, before the second step a shift operation is
required. In other words, in order to implement a multipli-
cation with a symbol from a 16-QAM constellation, the cor-
responding channel weight is now required to be selected as
described in (1)-(4), followed by a shift operation and finally
added by another selected value. Note that the definition of
one unit in actual implementation is arbitrary.

B. Minimal Operations

The methods as explained so far allow not only consid-
erable reductions in complexity but are also well suited for
pipelined implementations. In some situations, it is of impor-
tance to compute the whole set of possible outcomes when
multiplying a symbol from a limited alphabet size with a
complex value w;. In this case the complexity can be reduced
further since many intermediate results can be re-used.

Take the first quadrant for a 16-QAM constellation as an ex-
ample (Figure 3), the four possible coefficients are

A+jB = wgr+jwr, )
C+jD = 3wg+3jur, (8
E+jF = 2wgp-—wr+j2wr+ wg), &)
G+jH = 2wgp+wr+j2wr—wg). (10)

The operation in the first line is free, the second line costs
two adds and so does the third and fourth. Since all other val-
ues can be derived from multiplying several times by j, the
values are obtained by flipping the real and imaginary values
and inverting them. Since only eight different values (A-H)
are involved, additional eight inverters are required. Thus,
the complete cost is 6 adders and 8 inverters, or equivalently,
14 add/sub operations. Similarly, if this method is applied to
64-QAM, 36 add/subs plus 32 inverters is required.

I11. IMPLEMENTATION EXAMPLES

This section applies the new techniques and designs in-
troduced in the previous section to implementing the FIR fil-
ters, LMS algorithms and the MLSE using the Viterbi algo-
rithm.
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Figure 2: Recursive add/sub operation for complete vector product computation.

Figure 3: Rotating a 16-QAM constellation and splitting it into four subsets.

A. FIR Filter

An example to implement the multiplications in an FIR
filter has already been described in the previous section. How-
ever, a comparison on complexity has not been given. This
will be delivered here. A conventional FIR filter with M
complex valued coefficients requires 4 M real multiplications
and (4M — 2) real additions. Table 2 shows the number
of real add/sub operations required when applying the new
technique, given in the previous section. Even for large con-
stellations such as 1024-QAM, the new technique can offer
considerably lower complexity. An alternative (as proposed
in [4]) is to combine all first stages of the multiplication oper-
ations first, then the second and finally the third stages. This
approach can save mantissa length and thus chip area. Typi-
cal values of M are around three to 64 while 1024-QAM or
smaller constellations are typically used.

Note however that the concept of implementing FIR fil-
ters of high order requires a long chain of adders. Many ap-
plications can apply pipelining to this structure in order to
increase throughput at the expense of increased latency and
increased chip area due to additional registers. Also note that
the new selector technique requires only a few bit of infor-
mation to be stored for each symbol (for example two for
QPSK) so that a pipelining technique with its additional reg-
isters does not require much more area.

Proposed Conventional
Modulation | No. Add/Subs { No. Add & Mult.
QPSK 2M ~2 (4M-2) & 4aM
16-QAM 3IM -2 (4M-2) & 4M
64-QAM 4M -2 (4M-2) & 4M
256-QAM SM ~ 2 (4M-2) & 4M
1024-QAM | 6M ~ 2 (4M-2) & 4M

Table 2: Number of add/sub operations required to imple-
ment an FIR filter with M complex-valued taps.

B. LMS Algorithm

The LMS algorithm is known to be of 2M complexity,
and 8M real multiplications for a complex input. Its com-
plexity is defined by two steps:

e(i) = d(i) ~ww] (11)
the error equation with
u; = [u(d),u(@—1),...,u(i— M + 1)], (12)
and the coefficient update equation:
Wip1 = w; + pe(i)uj , (13)



with
Wi = [U)i(O),wi(l), veey wi(M - 1)]) (14)

denoting w;(!) the tap weight at time instant ¢ with index {
ranging from 0 to M — 1. If the method as explained in the
previous section is applied, the multiplications for the error
e(i) computation can be substituted by select and add/sub
operations. To compute the coefficient update (13), if the
step-size p is a power of two (g = 2~1), the multiplication
pe(i) can be replaced by a simple shift operator. The remain-
ing multiplication with the symbols u; can also be achieved
with the new technique introduced. All that remains is to up-
date the coefficient which is a complex addition. A QPSK
constellation requires 2/ add/sub operations to evaluate the
error equation as well as updating the coefficient. For 16-
QAM, the error computation requires 4M add/sub opera-
tions, the multiplication e(¢)u;] requires 2M add/sub opera-
tions and finally, the coefficient update requires 2 add/sub
operations. That is, 8M add/sub operations are required alto-
_gether. In summary, 4M, 8 M and 12M add/sub operations
are required for QPSK, 16-QAM and 64-QAM constellations
respectively. Thus when the constellation size is increased
by four times, another 4M additional operations are required
(see Table 3).

Modulation | Complexity | Minimum latency
QPSK 4M 2+logy M
16-QAM 8M 4+ log, M
64-QAM 12M 6 + log, M

Table 3: Number of add/sub operations for LMS.

As mentioned in the FIR section before, faster realiza-
tions are sometimes required. For the LMS algorithm, the
update cannot be performed until the error signal is available.
Thus, a very rapid FIR filter chain is important. This can be
implemented with the hierarchical tree structure. The com-
putation of the error signal requires an additional subtraction:
e(i) = d(i) — u;wF. If the order of the filter is chosen to
be M = 2% — 1, d(i) can be treated as one filter tap-weight
element and does not require additional delay. As previously
mentioned, depending on the sign of the last signal (in this
case the error signal), a final two's complement inverter is re-
quired. This would cost an additional delay since two's com-
plement inverters cause carry-ripple effects. However, in the
LMS algorithm the last inverter can be incorporated into the
selection process of the coefficient update. If the negative
information is active, —ue(?) is applied rather than pe(i).
The modified selection is faster because it is realized by sim-
ple logical gates and does not require an adder-structure. For
QPSK, one complete update cycle requires T, log, M for the
FIR error-part, possibly one T, for the error to multiply by
the step-size p, and finally one add-operation for the updates
of the coefficients. Thus, the minimum update time is given

by (logy M + 2)T,. Table 3 lists the operations required to
implement the LMS for selected modulation schemes. If the
step-size y is a negative power of two, the multiplication by
the error is a simple scaling operation and can therefore be
realized without any additional time delay. Other values of
the step-size can be approximated with a sum of two such
values 4 = 2~" +2-12, 50 that one add/sub operation is suf-
ficient for the multiplication with the error. This operation
gives a wide range for possible step-size values.

To give an example, let us assume that the LMS algo-
rithm is applied to train a channel estimator of order M =
15, and the technology used implements an add/sub oper-
ation in Ins and a multiplication operation in 6ns. Thus,
the whole update for a BPSK/QPSK training sequence can
be performed in 6ns with add/sub operations while it takes
about 12ns when using multipliers. The required chip area
and power consumption, on the other hand, might become
ten times higher to implement the multipliers. Real-time pro-
cessing is thus possible for up to 1/6ns = 166 Msymbols-per-
second in this case.

C. Maximum-likelihood sequence detection

In a digital communication system that transmits infor-
mation over a channel causing Inter-Symbol-Interference (ISI),
the optimum detector is a maximum-likelihood symbol se-
quence detector [6, 7]. An efficient algorithm that imple-
ments the maximum-likelihood sequence detection (MLSD)
is the Viterbi algorithm, which was originally devised for
decoding convolutional codes [6]-[8]. In this case, the ISI
channel is modeled as a Finite-State Machine (FSM), called
a trellis, with PM~! states. Here P is the information sym-
bol alphabet size and M is the number of the complex-valued
channel FIR filter coefficients, w;. In the trellis, there are P
transitions diverging from each state, corresponding to the P
different values of the information symbol, u(k). The values
associated with the transitions between the states are w;u(k),
the possible received values, given the estimated channel co-
efficients wy.

Assume that the received sequence is r(k), the estimated
channel coefficients are w;, and the input information sym-
bols are u(k), the Viterbi algorithm finds the most-likely
transmitted symbol (k) by finding the path in the trellis
that is closest in Euclidean distance to the received noisy
sequence r(k) recursively. That is, it implements the ML
detector criterion by recursively minimizing w.r.t. @(k),

M 2
min (k) = Y wiu(k —1) (15)
i=1

(k)

At each recursion step, the Viterbi algorithm searches
over the PM possible transitions. If the channel model coef-
ficient changes from one recursion to the other, for every one
of the M estimated channel coefficients w;, P multiplica-



tions with the P symbols of the symbol alphabet are required.
Thus, a total of PM = O(P M) complex multiplications are
required to compute the various terms initially. In order to
compute the cost metrics of the PM transitions between the
states in the FSM, another (M — 1) x PM = O(M PM)
complex additions are required. If this is done using the tra-
ditional method, a complex multiplication is performed with
four to eight add/sub operations depending on the symbols.
The value (3 + 7j), for example, requires one addition for
the multiplication by three (3=1+2) and one subtraction for
seven (7=8-1). This needs to be performed on the real as
well as on the imaginary part of the coefficient, resulting in
O(PM) = 4P M. Finally, the real and imaginary part needs
to be added to (k) which costs another 2 add operations. For
all M coefficients and PM states thus O(M PM) = 2M PM
add operations.

Using our proposed technique given in Section IL.A, com-
plexity can be reduced considerably. For QPSK, multiplica-
tion of each coefficient w; with u(k) becomes a selection
process, and O(PM) = 0. Only the computation of the
transitions remains with O(M PM) = 2M PM to compute
(k) = r(k) = Xit, wiu(k — 1) in (Equation 15). For 16-
QAM, the first step is a selection process, the next is two
add/subs to compute each multiplication per symbol, thus
O(PM) = 2PM = 32M. For 64-QAM in each subset
of four symbols 10 add/subs are required for computing the
multiplication, thus O(PM) = 160M. The application of
this technique has the additional advantage that it can read-
ily be pipelined without adding too much chip area for the
additional registers.

At the expense of increasing pipelining complexity, us-
ing the minimal operations described in Section IL.B can re-
duce the computation complexity even further. For example,
for the 16-QAM modulation, O(PM) = 14M and for 64-

"QAM, O(PM) = 68M.

Initializing the treilis at the beginning of an equaliza-
tion process requires computing all possible multiplications
with all the elements in the symbol alphabet once. This as-
sumes that the channel remains constant over a frame of data.
If the channel is rapidly changing from symbol to symbol,
this initialization has to be performed at every recursion to
update the transition values of the trellis. The so obtained
values can be stored in a look-up table for computing the
Euclidean norm in the Viterbi algorithm. The complexity
for initialization (O(PM)) is listed in Table 4. In order
to obtain the complete complexity of the Viterbi algorithm
O(M PM) needs to be added if a full search through the trel-
lis is applied. This part can easily exceed the initial com-
plexity of O(P M ). Reduced complexity techniques, such as
using reduced-state sequence estimation techniques [9], that
limit the search through the trellis are often applied. In this
case, the initial complexity can become very significant. A
tree structure for implementing the add operations can fur-

ther reduce the complexity as described in Section IIL.A.

Mod. Conv. Sec. II.A | Minimum
QPSK 2x4=28 0 0
16-QAM | 4 x 16 =64 | 32 14
64-QAM | 4 x 64 = 256 | 160 68

Table 4: Number of add/sub operations per coefficient to ini-
tialize trellis of the Viterbi algorithm applying different meth-
ods.

IV. CONCLUSIONS

A novel efficient computation method has been proposed
allowing large reduction of complexity for implementation
of standard communication algorithms that requires multi-
plying a coefficient with a constellation point in a QPSK or
QAM constellation. Chip area as well as latency can be re-
duced due to the substitution of multiplications by simpler
functions. Note that applying this technique does not cause
any approximation or reduction on precision. The algorithms
remain bit-true exact.
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