A 64-Point FFT Design Example Using A|RT-Designer

Markus Rupp
Bell-Labs, Lucent Technologies, Wireless Research Lab.
791 Holmdel-Keyport Rd., Holmdel, NJ 07733-0400, USA
Fax: (732) 888 7074, Tel: (732) 888 7104
e-mail:rupp@lucent.com

Abstract

A new EDA tool called A|RT-Designer has been ex-
plored allowing to create VHDL code out of a C-code
description. On the example of a 64-point FFT with
rather hard requirements for an OFDM radio, a solu-
tion was found that is close to hand-optimized code
available from the vendors. The experience in hard-
ware exploration on a C-level obtained by the tool is
reported in this paper.

1 Introduction

After the A|RT-Library and A|RT-Builder, two very
useful tools for designing hardware structures using
ANSI-C constructs, Frontier Design now offers with
their new product A|RT-Designer[1] a tool that allows
architectural exploration on a C-level. Again, the de-
scription is C-based using the same notation as before
for A|RT-Library and A|RT-Builder, A|RT-Designer
allows to define single hardware modules for specific
tasks and build a complete Finite State Machine (FSM)
around the specified C program. A|RT-Designer maps
the procedure defined in C into a certain hardware
structure that can largely be defined by the hardware
designer. Starting with a basic structure: RAM, ROM,
micro-controller, ALU, ACU, Multiplier, etc, the de-
signer is free to instantiate as many of these units as
required and at the same time define its own new hard-
ware blocks to enlarge the tool’s flexibility. New hard-
ware blocks can be defined in C as well allowing also for
defining specific timing constraints, like pipelining and
multicycle properties.The tool thus allows to explore
the architecture in terms of resources and required cy-
cle time at a very early state. By adding PRAGMA
comments into the C file or external PRAGMA files,
the hardware architecture and mapping properties are
defined.

For a recent wireless LAN product development in

0-7803-6514-3/00/$10.00©2000 IEEE ' 389

the context of IEEE 802.11 HIPERLAN-II[2], it is re-
quired to perform a 64 point complex-valued FFT. The
internal word length is set to 12bit accuracy through-
out the designs. Due to already given signals, the final
architecture has to run on either 20MHz, 40MHz or
60MHz. A complete transformation is expected ev-
ery 2us, allowing to re-use the FFT for transmitter
and receiver. Possible settings are given in the table 1.
The data are expected to enter and leave the functional
block serial, i.e., one complex value (24 bits) for each
clock cycle. The final design is supposed to run on a
XILINX 800 chip.

Clk in MHz | Cycle time in ns { # of cycles
20 50 40
40 25 80
60 16.6 120

Table 1: Possible clocks and cycle counts for the design.

2 Design Considerations

A favorable structure is taking advantage of the low
complexity a radix-4 FFT can be build of. Utilizing
a 4-point FFT, only 36+45=81 complex multiply op-
erations are required. When implementing them with
a very efficient CORDIC[3] structure, the signals be-
come stretched by a fixed value. Such a stretching is
not further harming the design but the ”multiply by
one” operations also need to be implemented now re-
quiring 128 complex multiply operations. It is therefore
an open question which designs are eventually better
suited for implementation, those with more CORDIC
operations or those with less complex multiplier oper-
ations.

First designs for a 16-point FFT using A|RT-Builder
show promising results but require a larger design part
on the FSM while the actual operations are fairly
straightforward in their designs. It is thus be of in-
terest to learn how an automatic design tool like the
A|RT-Designer can ease the design of such an FSM and
how the'tool helps for architectural exploration of such
a design. It is furthermore of interest for future devel-
opments if the tools allows a simple way of extending
a 16FFT to 64FFT to 256FFT, etc.

Applying a radix-4 FFT throughout the design, one
recognizes that there are three columns with 16 FFT4
blocks each, and each column is maximally connected
by 64 rotations. The 64-point FFT can therefore be

. split in three, almost identical parts consisting of 16
radix-4 FFTs and 64 rotations each. The rotations
of the last row are not required, leaving 128 rotations
all together. Only the addressing and the selection of
the rotation constants (angles) are different. A possi-
ble solution with the AJRT-Designer is thus to solve the
FFT for one column and concatenate three of such pro-
grams. The overhead of the controller circuitry might
be relatively large though.

The computation of an FFT column requires not
only that 64 complex values are present, but also that
the resulting 64 complex values need to be stored. This
is conceptionally different compared to the previous
problem. The solution here is that a separate input-
and output RAM of size 64 is assumed.

The algorithm has access to all RAM locations and
only needs to figure the scheduling of the various parts.
The rotations will be implemented as CORDIC algo-
rithms. CORDICs are quite efficient in hardware re-
alization but relatively slow in computation. Thus,
a pipelined structure may be necessary. One recog-
nizes in Figures 1 and 2 every FFT4 block requiring
four CORDIC operations. It is therefore of interest if
only two or even only one instantiation of the CORDIC
hardware also can result in low cycle counts.

3 The First Column

Since there are three architectural identical schemes
required for the full 64-point FFT, only the first column
is condidered for the moment. Following are two basic
routines that will be reused several times: a CORDIC
routine and a radix-4 FFT. A complex data structure
(labeled compl) containing two 12-bit values for real
and imaginary part is applied throughout the design.

390

void cordic(const compl in, const Int<12> co
compl & out_p)

{

#pragma OUT out_p

Int<12> temp=(Int<12>) (co<<((Uint<1i>)1));
t12 t_r=in.re;

t12 t_i=in.im;

t12 tin_r=in.re;

t12 tin_i=in.im;

loopr: for (Uint<4> i=1; i<12; i++)

{
ifr: if (temp[11]==1)

{
addi: t_r+=tin_1i;
add2: t_i-=tin_r;

}

else

{
add3: t_r~=tin_i;
add4: t_i+=tin_r;

}
shi: temp<<=(Uint<i>)1;

tin_r=(t12) (t_xr>>i);
tin_i=(t12) (t_i>>i);
}
if (((Uint<1>)col11])==((Uint<1>)0))
{
out_p.re=t_r;
out_p.im=t_i;
}
else
{
out_p.re=-t_r;
out_p.im=-t_i;
}
}

struct comp4 {
compl val_a;
compl val_b;
compl val_c;
compl val_d;
};

void fft4(const comp4 x, compd & y)
{ .
#pragma OUT y

t12 tempO_r,templ_r,temp2_r,temp3_r;
t12 tempO_i,templ_i,temp2_i,temp3_i;

tempO_r=x.val_a.re+x.val_c.re;
tempO_i=x.val_a.im+x.val_c.im;
templ_r=x.val_a.re-x.val_c.re;
templ_i=x.val_a.im-x.val_c.im;
temp2_r=x.val_b.re+x.val_d.re;
temp2_i=x.val_b.im+x.val_d.im;
temp3_r=x.val_b.re-x.val_d.re;
temp3_i=x.val_b.im-x.val_d.im;
.val_a.re=tempO_r+temp2_r;
.val_a.im=tempO_i+temp2_i;
.val_c.re=tempO_r-temp2_r,;
.val_c.im=tempO_i-temp2_i;
.val_b.re=templ_r+temp3_i;
.val_b.im=templ_i-temp3_r;
.val_d.re=templ_r-temp3_i;
.val_d.im=templ_i+temp3_r;

wad S DS

Both routines use the fixed-point C-data types pro-
vided by A|RT-Library. By defining a new data struc-
ture comp4, the program becomes easier to read when
the set of four complex valued variables is handled.
The following program is required just to support the

. AJRT-Designer philosophy. Its implication will be ex-
plained later.

void dummy(const comp4 ini, compl & outa,
compl & outb, compl & outc, compl & outd)
{

#pragma OUT outa outb outc outd
outa=inli.val_a;

outb=inl.val_b;

outc=ini.val_c;

outd=inl.val_d;

}

Finally the main routine to handle the first column
of the 64-point FFT.

void fft64(const t12 reali[64],
const t12 imagl[64], t12 real2(s64],
t12 imag2[64])
{
comp4 ini;
static comp4 outl;
Uint<8> base_add0,base_addl;
Uint<8> base_add2,base_add3;
Uint<8> base_addw0O,base_addwl;
Uint<8> base_addw2,base_addw3;
compl out2,outa,outb,outc,outd;

Uint<4> temp0_i=0;
Uint<4> templ_i=1;
Uint<4> temp2_i=2;

391

Uint<4> temp3_i=3;

Uint<8> comp_addl=4;
Uint<8> comp_add2=8;
Uint<8> comp_add3=12;

loopl: for (Uint<6> i=0; i<16; i++)

{

add10: base_addO=add1[i]l;

addii: base_addl=base_addO+comp_addl;
addi12: base_add2=base_addO+comp_add2;
addi3: base_add3=base_addO+comp_add3;

inl.val_a.re=reall(base_add0];
inl.val_a.im=imagl(base_addo0];
inl.val_b.re=reali[base_addi];
inl.val_b.im=imagl[base_addl];
inl.val_c.re=reall[base_add2];
inl.val_c.im=imagl [base_add2];
inl.val_d.re=reali(base_add3];
inl.val_d.im=imagl [base_add3];
fft4(ini,outl); .

dummy (out1,outa,outb,outc,outd);

addw10: base_addwO=add1(il;

addwiil: base_addwl=base_addwO+comp_addl;
addw1l2: base_addw2=base_addwO+comp_add2;
addw13: base_addw3=base_addwO+comp_add3;

cord0: cordic(outa,cord_const[add2{temp0_il]

,out?2);
real2[base_addwO]=out2.re;
imag2[base_addw0]l=out2.im;

cordl: cordic(outb,cord_const{add2{templ_il]

,out2);
real2[base_addwl]=out2.re;
imag2[base_addwi]=out2.im;

cord2: cordic(outc,cord_const[add2[temp2_il]

,out2);
real2[base_addw2]=out2.re;
imag2[base_addw2}=out2.im;

cord3: cordic(outd,cord_const[add2[temp3_1i]]

,out?2);
real2[base_addw3]=out2.re;
imag2[base_addw3]l=out2.im;

add15a: tempO_i+=4;

addi5b: templ_i+=4;

addi15c: temp2_i+=4;

add15d: temp3_i+=4;
}

}

While looking at the main routine fft64, one recognizes
that several parts may look awkward for a C-program.
They will be pointed out in the following.

¢ Many labels are used, a style that is very uncom-
mon for programming. The labes are to identify
operations and instantiate specific hardware for

them. For example, the cordic operation will be -

handled by a separate CORDIC block. Since sev-
eral of these blocks can be used to operate the
four CORDICs in parallel one can also decide to
run all four operations sequentially with only one
hardware realization. Such a mapping is declared
in a separate architecture mapping file.

o The address pointers for the two sets of four RAMs
used to read and write the results have been in-
stantiated twice. They are actually the same
pointers and a good C-programmer would save
some complexity by reusing them. Here, the situ-
ation is different. A|RT-Designer tries to fold the
loop as much as possible. If the variables for the
addresses exist from beginning to the end of the
loop, loop-folding cannot be performed efficiently
since now the new value cannot be computed be-
fore the last write operation has been performed.
It is thus better to redo the computation of the
four addresses. Note that the labels already in-
dicate our intention to instantiate separate ACUs
just for the index calculations. In the synthesis
it turns .out that ACUs that.are used simply for
adding are mapped very efficiently, i.e., with low
Logic Cell (LC) count. Thus savmg ACUs here is
not a good strategy.

e The procedure dummy is still to explain. - After
the call of fit4, the outcome outl is a set of four
complex -values. These values are written into
the four CORDICs simultaneously. This method
only works if there are four CORDICs instanti-
ated. Otherwise, the A|RT-Designer will try to
overwrite the values and it ends in a bus conflict.
The separation in the routine helps here, however
with introducing one further delay cycle but lit-
tle or no additional LCs later on the synthesizing
part.

The routines fft4 and cordic were declared at the lo-

cal library, allowing to explore pipelining. The pipelin-
ing of the CORDIC routine then has been altered from
0 to 5 stages (0 stages mean that it is a one cycle op-
eration, thus zero storage is required). The cycles,
achieved with the As-Soon-As-Possible (ASAP) and
As-Last-As-Possible (ALAP) scheduling selection, were
filled in the following table 2. The last parameter shows
how many cycles in the loop were obtained.

The whole architecture required only 7 ACUs and
no multiplier. The following list shows again how the

chosen clock frequencies and cycle times relate to the’

392

of stages | ASAP | ALAP | # in loop
0 78 77 4

1 92 91 5

.2 95 104 5/6

3 124 106 7/6

4 110 108 6

| 5 124 123 7

Table 2: ‘Achieved cycles for 16-point FFT.

number of cycles that are possible. . A CORDIC with
two pipeline stages can be realized in 16ns (see Table3).
Thus, the 95-cycle solution, utilizing CORDICs with
two-stage pipelines, achieved with the ASAP scheduler
is a possibility. However, four pipeline stages are also
a solution; thus even less constraints can be put on the
CORDIC realization.

Clk | Cycle | # of cyc. | # p. stage | # stages
80MHz 12.5 160ns 3 3
60MHz 16.6 120ns 4 2
40MHz 25 80ns 6 1
20MHz 50 40ns 6 1

Table 3: Piplining and timing for CORDICS.

A|RT-Designer allows also exploring how many
CORDIC instantiations are required. By instantiat-
ing two or even only one, it is possible to measure the
required cycles again and find solutions with less com-
plexity. In this case, for a pipeline of two stages, a
solution with 104 cycles was found for two and for one
CORDIC instantiation.

4 Complete Design

The previous section described only the first row of
four 16-point FFTs. In order to achieve the full 64-
point FFT, one can tripple the effort and concatenate
the blocks, or squeeze all operations in one big loop
construct. Since the first solution would lead to a large
overhead in the micro- controller, the second solution
was followed. Table 4 displays the results. Table 5
lists the LC count for the various blocks using Altera
Flex10K and Virtex 800. The micro-controller is re-
markably small. The RAM size can be moved out into
Embedded Array Blocks (EAB).
Table 6 finally compares the achieved timing and

in loop

#stages | ASAP | ALAP | ALAP gr. Remark

2 123 123 108 | 7/7/6 | ALAP greedy possible

3 112 138 123 | 6/8/7 ASAP possible

4 128 154 1371 7/9/8
Table 4: Final cycle counts for full 64-point FFT.

— _ data can be written somewhere after the processing
Block | Altera LC | Xilinx Slices stage. This kind of processing is not supported and a
FF"I“" 184 96 support would be of greatest help. Compared to the
CORDIC 1 stage pip. 502 173 TI optimizing C-compiler, the tool should also offer a
Micro ROM 471 deeper exploration of hardware blocks, i.e., it should
RAM-Size 16,524 not be necessary to dedicate operations to particular

Table 5: Comparison of Altera and Xilinz implemen-
tation.

LC count and compares them to comercially available
solutions. The results achieved with AJRT-Designer are
very comparable with hand-optimized code available
from Altera and Xilinx. Compared to the very fast
C62 from TI, an FPGA implementation is much more
efficient.

#LC | best possible time

A|RT-Designer | 1,388 1.8u
Xilinx | 1,161 1.9u
A|RT-Designer | 2,200 3u
Altera | 3,960 1.2u
A|RT-Builder | 6,200 24
‘TI-C62x,300MHz 2u

Table 6: Comparing results.

5 Conclusion

After a few weeks of getting to understand the little
hooks in harware design and the underlying philoso-
phy, A|RT-Designer becomes a tool to get used to. Af-
ter such a learning period, it becomes a tool with great
potential. In particular the exploration with various
pipelining stages and repetitive instantiations of hard-
ware blocks is extremely useful.

The particularities in hardware designs for wireless
baseband processing typically require block operations.
This includes that a block of data is available at a cer-
tain time to process, and somehow a block of output

393

hardware blocks. Instead, the tool should be able to
find the optimal setting itself and possibly give sug-
gestions what a good architecture setup for a certain
number of execution cycles is.

The particular example under consideration of
building a 64-point FFT, revealed many of the tool’s
shortcomings, the already mentioned lack of block-
processing being one of them. Although many complex |
rotations can be saved, the tool did not show any rea- -
sonable results when mapping such an inhomogeneous
problem. Only if a homogeneous problem-formulation
is available, loop folding becomes an efficient method
to decrease cycles.

A completely parameterized version of the C-
program that could handle FFTs of different sizes does
not seem practical. However, to modify the exist-
ing code for a 256-point FFT, for example, is a very
straight-forward example. Only the hardware mapping
and dedicate pragmas need to be added before compi-
lation.

References

{1] A|RT-Designer USER reference guide, Nov. 1999.

{2] R. Van Nee, R Prasad, “OFDM for Wireless Multi-
media Communications,” Artech House Publishers,
2000. :

{3] Behrooz and Parhami , “Computer Arithmetic,”
Oxford University Press, 2000. ’

