From Basic Concept to Real-Time Implementation: Prototyping WCDMA
Downlink Receiver Algorithms — A Case Study

M. Guillaud, A. Burg, L. Mailaender, B. Haller, M. Rupp, and E. Beck
Lucent Technologies, Wireless Research Laboratory
791 Holmdel-Keyport Road, Holmdel, NJ 07733-0400, USA
{maxime,burg,Im bhallerl,rupp,ericbeck } @lucent.com

Abstract

In this paper we present an approach to rapid prototyping
of advanced signal processing techniques for future wire-
less applications currently being adopted within Bell Labs
Research. The aim of the “Bell Labs Algorithm Develop-
" ment and Evaluation” (BLADE) initiative is to devise a de-
sign framework specifically targeting the needs (and capa-
bilities) of high-level algorithm designers (viz. communica-
tion engineers), which enables them to-quickly- “translate”
a research idea into a working real-time system for practi-
cal experimentation purposes. The mixed DSP/FPGA im-
Plementation of a WCDMA testbed is used as an example
to describe our initial experience with the proposed design
methodology, which is based on a set of commercially avail-
able software tools and a platform consisting of off the shelf
hardware modules.

1. Introduction

Future wireless systems aim to provide higher data rates,
improved spectral efficiency and greater capacity. This can
be achieved at the cost of increased signal processing com-
plexity. The required algorithms are usually derived ana-
lytically from mathematical models based on many simpli-
fying assumptions [1). Following this, the original, “opti-
mal” procedures nearly always need to be modified (i.e., re-
engineered) in order to reduce their computational complex-
ity. The performance of the resulting schemes is then typ-
ically obtained from computer simulations. Unfortunately,

_ the employed simulation models rarely represent the actual
system in sufficient detail, so that the designers are ofien left
with a high degree of uncertainty regarding the real-world
behavior of the developed solution. This is especially true
when studying multiple antenna systems (such as BLAST
[21) which rely heavily on specific properties of the prop-
agation environment. Therefore, researchers in wireless
communications are now increasingly confronted with the
problem of validating their ideas under realistic conditions
and challenged with providing a proof of concept (i.e., they

0-7803-6514-3/00/$10.0002000 [EEE

are required to demonstrate that a proposed novel scheme
is practically feasible). Consequently, rapid prototyping is
becoming essential to evaluate the true performance and ac-
curately assess the implementation cost of new signal pro-
cessing techniques for wireless applications prior to actual
product development in order to minimize the risk of failure
3], (4}, [5}.

Traditionally, the people involved in generating these

_ new algorithms are communication engineers, who have lit-

tle knowledge of real-time system design, i.e., they typically
possess limited experience in DSP programming and in

" writing VHDL code for an FPGA implementation. Our goal

was to identify a set of tools and a design flow that would al-
low researchers with this type of background to implement
their ideas on a flexible real-time prototyping platform. In
this paper we present the proposed “Bell Labs Algorithm
Development and Evaluation™ (BLADE) methodology and
describe how it was applied to building a WCDMA testbed,
which was selected as an initial test case.

. 2. The BLADE Approach to Prototyping

84

Most algorithm designers start out by using interactive
mathematical software packages such as Matlab, Maple,
Mathematica or MathCAD to investigate a novel idea, be-
cause these tools provide a wealth of built-in data process-
ing and analysis functions as well as extensive graphics
capabilities. The next step typically consists of writing a
floating-point C program—mainly to speed up the simula-
tion runs. In principle, this C code could then be cross-
compiled onto a digital signal processor (DSP), but often
a single floating-point DSP is unable to meet the stringent
real-time constraints imposed by the application. Therefore,
it is common practice to employ multiple DSPs and/or map
those parts of the system requiring very high speed process-
ing onto hardware such as field-programmable gate arrays
(FPGAs). These reconfigurable devices are especially well
suited for prototyping since they allow to do multiple de-
sign iterations quickly. A hardware platform suitable for
rapid prototyping of radio systems will therefore consist of

Dd 1S0H
VDdid

avasnav

Figure 1. Basic BLADE hardware setup.

a mixture of DSPs and FPGAs, along with a C-based set
of software tools which permit a smooth transition from a
hardware independent, behavioral-leve! simulation code to
a DSP and FPGA specific structural (i.e., register transfer
level) code. Both the hardware and software components of
the BLADE prototyping environment will be described in
detail in the following two subsections.

2.1. Hardware Platform

A hardware platform appropriate for prototyping pur-
poses must be able to accommodate a broad class of domain
specific applications. Hence, the setup must be scalable,
i.e., it has to be flexible, modular and extensible. We have
chosen to use commercially available off the shelf (COTS)
hardware components. The basis of our system is a devel-
opment platform from SUNDANCE that consists of carrier
boards with a PCI bus interface, each capable of hosting up
to four TIM! modules. A variety of such hardware modules
exist, including TI *C6x series DSPs and XILINX Virtex
series FPGAs. Each module is equipped with four asyn-
chronous bidirectional 20 Mbyte/s links (= comm-ports),
and some of them have additional 16-bit parallel interfaces
(= SDB, Sundance Digital Bus) for synchronous transmis-
sion at speeds up to 200 Mbyte/s. Evaluation boards from
ANALOG DEVICES are used to perform A/D and D/A con-
version. Figure 1 shows a typical setup for implementing
a wideband radio communication system. The FPGAs con-
tain the fixed, high sample rate front end processing, i.e.,
the regular data path (e.g., filters), which is both very com-
putationally intensive and requires high I/O bandwidths [6},
whereas the DSPs handle the symbol-level, data dependent
processing. Functions such as the medium access controller
(MAC), which operate on data packets are assigned to the
Pentium processor in the host PC.

"Module standard originally specified by T1 for multiprocessor systems
based on their TMS320C4x DSP.

85

2.2. Software Tools and Design Flow

The main goal of the BLADE methodology is to pro-
vide the algorithm designer with a “painless” path to mi-
grate from a high-level mathematical model to a bit-true,
cycle-accurate description which can be compiled to run
in real-time on a combination of DSPs and FPGAs. Ide-
ally, a fully integrated design environment should support
atop down development process, which allows incremental
refinement of individual blocks. To achieve this, the sug-
gested BLADE design methodology relies on the use of C
as the primary description language, which is commensu-
rate with the EDA industry’s current general trend towards
using C as a system-level design language [7]. This ap-
proach relieves the algorithm designer (i.e., the communi-
cation engineer) from the tedious tasks of having to write
assembler code for the DSPs and/or use hardware descrip-
tion languages (HDLs), such as VHDL or Verilog, to im-
plement those portions of the system which will be mapped
onto FPGAs.

To support the C-based design paradigm, assist team-
oriented development efforts as well as promote the concept
of code reuse, THE MATHWORKS” Simulink was chosen
as the system-level modeling and simulation tool. We have
found that Simulink appeals far more to algorithm design-
ers who currently use Matlab than other system-level design
tools such a COSSAP or SPW. Furthermore, the latter tools
are far more expensive and therefore often less accessible.
In Simulink a design is represented as a (hierarchical) block
diagram, with a piece of C or Matlab code associated with
each block. Simulink comes with a large library of pre-
defined blocks, which can be extended by users who write
their own so-called S-functions. Since Simulink defines the
block/S-function interfacing mechanism, code can easily be
encapsulated and shared. Our method of system design in
this environment is done as follows. Initially the system
is modeled at the behavioral-level with all the signal pro-
cessing being performed using floating-point arithmetic and
predefined Simulink blocks (if available). Subsequently,
those blocks that will be implemented on the hardware plat-
form need to be gradually refined. The first refinement step
consists of replacing all the floating-point data types and
operations with finite-precision processing employing lim-
ited wordlengths (i.e., these Simulink blocks have to be re-
placed with custom S-functions). The fixed-point C++ class
library provided by A|RT Library from FRONTIER DESIGN
is used to model the bit-true system. In a second step, both
the hardware structure as well as the scheduling of oper-
ations are introduced into the description of those blocks
that will be mapped into FPGAs, resulting in a bit-true and
cycle-accurate RTL-level model. To achieve this a special
RTL-type C coding style (= RTL-C) is employed which can
be automatically translated into synthesizable VHDL by
the A|RT Builder from FRONTIER DESIGN. A|RT Builder

Impiementation ' Simulation|
RTL
c
}‘en_lp Lﬂmgy_;
-1 | D

I-1-- -——T=-

UNI‘(I Simulink |

' L FPGA Tusmj

Figure 2. BLADE design flow.

does not perform any kind of behavioral synthesis, hence
the development of an appropriate hardware architecture
is left to the designer. It should be noted that the RTL-
C code is ANSI C compliant and can hence still be used
in the Simulink system simulation. Regarding blocks that
are to be mapped into a DSP, the C code from the sim-
- ulation can be compiled to run on either a floating-point
DSP °C67 or (with some modifications) on its fixed-point
counterpart the *C62. The 3L Diamond real-time operating
system (RTOS) is employed to handle inter-processor com-
munication, whereby each block runs as a separate task and
comm-ports are utilized as links between devices. The user
writes a configuration file to tell the RTOS how to assign
the tasks to multiple DSPs and to specify the links between
these processors.

The proposed BLADE design flow is outlined in Fig-
ure 2. The right side of the figure shows the simulation
flow and the left side depicts the steps that lead to the im-
plementation. A wrapper is automatically generated by a
Perl script to create an S-function required to be able to sim-
ulate a block of floating/fixed-point or RTL-level C within
Simulink. Non-block oriented functions that execute asyn-
chronously with respect to the rest of the system can be co-
simulated, running as separate tasks in a multitasking envi-
ronment, in parallel to the.cycle oriented Simulink engine.
Interface functions and memories or other macros can be
included from a template library.

3. WCDMA Downlink Design Example

In order to gain experience with the proposed design
methodology, the implementation of a WCDMA downlink
was chosen for a case study. The system complies with the
3GPP/UMTS physical layer specifications [8] in terms of
the employed chip rate, spreading codes and scrambling
sequences. The base station transmitter generates a pri-
mary synchronization signal, a fixed-rate pilot and a number
of user signals with selectable rate and power level. The

motivation behind putting this system onto the hardware
platform was to evaluate the performance gain and assess
the cost of employing a chip-level equalizer followed by a
combined descrambler/despreader instead of a conventional
rake receiver in a WCDMA mobile terminal. Since the
multiple access interference (MAI) in a synchronous DS-
CDMA downlink using orthogonal spreading codes is es-
sentially due to the multipath, the in-cell MAI can be sup-~
pressed by channel equalization [9]. The intersymbol in-
terference (ISI) caused by the delay spread especially be-
comes the limiting factor for high data rate users who are
employing a short spreading factor (i.e., 4 or 8). The poten-
tial benefits of using an equalizer are an increase in capac-
ity on the one hand as well as an improvement in through-
put and greater coverage for high data rate services on the
other. Since this system contains many of the basic build-
ing blocks found in typical broadband radio systems, this
project also allowed us to develop a reusable library of fre-
quently employed modules.

3.1. Transmitter

The transmitter hardware comprises a XCV400 400k
gate Virtex FPGA and a *C67 floating-point DSP. The DSP
runs an ACELP voice encoder whose output is mapped onto
the data stream of the user of interest. It also configures
the FPGA when the system is turned on and controls the
parameters of the transmitter which resides on the FPGA.
Apart from the desired user’s signal, up to 15 random data
users can be turned on to act as interferers. Furthermore, a
synchronization and a pilot signal are added on top of the
user signals before the resulting signal is applied to a 25-
tap RRC pulse shaping filter and subsequently digitally up-

.converted to an IF of 70 MHz, where it is bandlimited by a

86

SAW filter. For experimentation in the laboratory the ana-
log IF signal is sent through a programmable radio channel
emulator after which Gaussian noise is added to it. Alter-
natively, the setup can be connected to an RF front end in
order to perform “over the air” measurements.

3.2. Receiver

The receiver hardware consists of two *C67 floating-
point DSPs and a XCV1000 1000k gate Virtex FPGA. The
following functions have been implemented:

o IF to baseband down-conversion
o slot/symbol/chip synchronization
e carrier frequency offset compensation
o channel estimation
o rake finger assignment and tracking
e 4-finger rake
e (4x)8-tap polyphase equalizer + descrambler/de-
spreader
o data interface/buffer and BER measurement

ments
floating-point or high

Criterion Function
data path operations | IF down-conversion,
sampling/chip rate filters
FPGA | Processing correlators for sync.
A and channel estima-
tion
rake, equalizer
control flow Syncl)ronization and
complex and irregu- | tracking control
lar operations LS-based channel
complex data path | eStimation G.e.,
operations matrix-vector mult.)
DSP | jower rate processing | f2ke finger manage-
with low /O require- | Ment

equalizer coefficient
computation (i.e.,
matrix inversion)

precision fixed-point
operations :

Table 1. DSP/FPGA partitioning of the re-
ceiver functions.

Table 1 lists the criteria that were applied for partitioning
the receiver functions between the first DSP and the FPGA,
and shows to which device the main blocks of the system
have been allocated. All the blocks operating at the sam-
pling rate (= 4x chip rate) are mapped onto the FPGA, be-
cause of the tremendous amount of computations that have
to be performed in parallel. The relative size of the different
receiver functions implemented on the FPGA is given in Ta-
ble 2. The whole design consumes 87% of the XCV1000’s
logic resources (i.e., CLBs). In order to facilitate making
quick design changes, without having to redo the time con-
suming VHDL synthesis and FPGA place and route over

Digital down-converter 0.3%
Frequency offset estimation 1.8%
Rake-finger weighting & combining | 6.4%
Timing reference 1.1%
Frequency offset compensation 5.9%
Chip matched filter 10.5%
Peak detection 1.2%
Polyphase equalizer (8 chips long) | 29.1%
Correlators (4) 13.1%
Channel scope for LSE 1.3%
Channel estimation 26.9%
BER check 2.4%

Table 2. Relative size of different recelver
functions within the FPGA.

87

and over again (turnaround time approx. 6 hours!), almost
all of the control operations are initially best realized on a
DSP. Both the rake and the equalizer rely on channel im-
pulse response (CIR) estimation. Originally, the CIR esti-
mation procedure was implemented on one of the floating-
point DSPs. A least-squares (LS) algorithm was chosen to
determine the channel coefficients, which requires a large
matrix-vector multiplication (512x64). Unfortunately, this
computation is rather slow on the *C67 (update rate ap-
prox. 50Hz), so that the rake/equalizer is unable to track
the channel, which leads to long error bursts. Therefore, an
alternative solution based on a code matched filter was im-
plemented on the FPGA. This method is able to update the
coefficients 10 times as fast as before, and hence is capable
of tracking the channel quickly enough in most practical sit-
uations. For the rake, four fingers are assigned to the four
main peaks of the CIR. In the case of the equalizer, the tap
coefficients of the FIR filter are computed according to the
MMSE criterion based on the estimated CIR [9]. This com-
putation relies on matrix inversion, which is very tedious
to implement for high speed, real-time applications. The
algorithm in {10] exploits the Toeplitz structure of the auto-
correlation matrix to speed up the matrix inversion process.
Further complexity reduction is achieved by breaking the
output signal of the fourfold oversampled chip matched fil-
ter into four different phases, and implementing a separate
equalizer for each phase. This so-called polyphase structure
shows very good performance when compared to a straight-
forward equalizer realization. With this method, a 32-tap
(i.e., 4-phases, each 8 chips/taps long) complex equalizer
computation takes 1.18 ms on a *C67 clocked at 166 MHz.

An ACELP voice decoder is implemented on the sec-
ond floating-point DSP together with interface routines to
the CDMA receiver and to an external audio codec. The
decoder operates on a frame by frame basis and is embed-
ded into the system using 3L Diamond to handle the data
transfer. It was simulated independantly of the WCDMA
receiver in Simulink and subsequently mapped (almost 1:1)
onto the second DSP.

3.3. Simulation and Measurement Results

A performance evaluation of the two schemes was done
for a spreading factor of 32 using the outdoor-to-indoor
channel model B defined in [11]. The in-cell interference
level is gradually increased by turning on users (up to 15).
The Gaussian noise level is negligible. Figure 3 compares
the measured performance of the rake with initial floating-
point simulations. The gap of 1-1.5 dB between the two re-
sults is mainly due to the channel estimation latency, which
is not taken into account in the simulations, where multiple
fixed channels are used instead of a time-varying channel
(with 5Hz Doppler frequency). Figure 4 shows prelimi-
nary results for the equalizer-based version of the receiver.

10"E— - - —
10% / T
// // .
10%} S
4 7
& / /
T 0% s
/o
i
. ;
107} Measured
— - Simulated
----- Theo
10° : 4
0 5 10 15
Number of users

Figure 3. Performance of the 4-finger rake re-
~ ceiver. :

0

10
107 e T
o, — ’/ -
w10 o]
//
10°]
Measured
-— - Simulated
. Theo
10° y
0 10 15

5
Number of users

Figure 4. Performance of the equallzer-baséd
receiver. '

The slow equalizer update rate used in this initial setup is
primarily responsible for the substantial performance loss
of the current hardware implementation, which can be re-
duced by speeding up the coefficient computation for the
equalizer.

4. Summary and Conclusions

We presented the BLADE design methodology for rapid
prototyping of research ideas, which is tailored towards the
needs and capabilities of system-level engineers. It uses C
as the-primary description language and Simulink as the
simulation engine. This C-based approach is well suited
for hardware/software co-design, allowing the designer to
exploit the powerful capabilities of both DSPs and FPGAs,
without having to be familiar with the details of the DSP

architecture or the intricate structure of the FPGA, and ul-
timately avoiding the painstaking task of writing assem-
bler and VHDL code. Evidently, this does not claim to
be a design flow suitable for a production environment,
since its does not lend itself to achieving performance op-
timized designs. However, the future incorporation of op-
timized blocks from vendor specific libraties, such as pro-
vided through the XILINX Core Generator, into our flow
could improve performance substantially and further reduce
design time and effort. A recent step in this direction was
made through the introduction of the XILINX System Gen-

erator for Simulink [12]. A further limitation of the cur-

rent FPGA flow is that only a single clock can be em-
ployed, which excludes the use of architectures based on
time-sharing of hardware resources (e.g., bit-serial architec-
tures) [13], a design style that is especially well suited for

medium speed FPGA solutions.

References

88

[1] H. MEYR AND M. OERDER, “Systematic Derivation of Al-
gorithms for Digital Receivers,” in Proc. 2nd Int. Workshop
on DSP Techniques Applied to Space Comm., 1990.

2] G. D. GOLDEN, ET AL., “Detection Algorithm and Ini-
tial Laboratory Results Using V-BLAST Space-Time Com-
munication Architecture,” Electronics Letters, 35(1):14-16,
1999, .

{3] G. E. PRESCOTT AND S. TYLER, “Prototyping of Military
Radio Systems Using Field Programmable Gate Arrays and
DSP Microprocessors,” in Proc. ICSPAT 97, 1997.

{4] M. Rupp, ET AL., “Rapid Prototyping for High Data Rate
Wireless Local Loop,” in Proc. Asilomar Conf., 1999, Vol. 2,
pp. 993-997. .

[5] G. WRIGHT “The ‘BiggaScale’/Berkeley Emulation Engine
(BEE),” Project Presentation, 1999.

[6] R.BAINES,“The DSP Bottleneck,” IEEE Comm. Magazine,
33(5):46~54, 1995.

[7] G. PROPHET, “System-Level Design Languages: To C or
Not to C?” EDN, 44(21):135-146, 1999.

[8) 3GPP, Physical Layer — General Description (Release
1999), Technical Report 3G TS 25.201 V3.0.2, 2000.

{91 1. GHAURI AND D. T. M. SLOCK, “Linear Receivers for the
DS-CDMA Downlink Exploiting Orthogonality of Spread-
ing Sequences,” in Proc. Asilomar Conf, 1998, Vol. 1,
pp. 650-654. . .

[10] H. KRISHNA AND S. D. MORGERA, “The Levinson Re-
currence and Fast Algorithms for Solving Toeplitz Systems
of Linear Equations,” JEEE Trans. ASSP, 35(6):839—847,
1987.

[11] ETSI, Selection Procedures for the Choice of Radio Trans-
mission Technologies of the UMTS, Technical Report TR
101 112 V3.2.0, 1998. .

[12] R. D. TURNEY, ET AL., “Modeling and Implementation of
DSP FPGA Solutions,” White Paper, 2000.

[13] XILINX INC., FPGA Solutions for Next Generation Wireless
Technology, Workshop Notes,

