
Structural Patterns for the Transformation of Business Process Models∗

∗ This research has partly been funded by the Austrian Federal Ministry for Education, Science, and Culture,
and the European Social Fund (ESF) under grant 31.963/46-VII/9/2002.

Marion Murzek
Women's Postgraduate

College for Internet
Technologies (WIT),
Institute for Software

Technology and Interactive
Systems, Vienna University

of Technology, Austria
murzek@wit.tuwien.ac.at

Gerhard Kramler
Business Informatics

Group (BIG),
Institute for Software

Technology and Interactive
Systems, Vienna University

of Technology, Austria
kramler@big.tuwien.ac.at

Elke Michlmayr
Women's Postgraduate

College for Internet
Technologies (WIT),

Institute for Software
Technology and Interactive
Systems, Vienna University

of Technology, Austria
michlmayr@wit.tuwien.ac.at

Abstract

Due to company mergers and business to business
interoperability, there is a need for model
transformations in the area of business process
modeling to facilitate scenarios like model integration
and model synchronization. General model
transformation approaches do not consider the special
properties of business process models and horizontal
transformation scenarios. Therefore, we propose a
model transformation approach based on domain-
specific patterns which are applied for analyzing
business process models in a precise way. This
approach facilitates the definition of business process
model transformations, which can be easily adapted to
different business process modeling languages and
specific transformation problems. At the same time it
supports the intuitive understanding of the domain-
experts in business process modeling.

1. Introduction

As companies discovered the benefits of Business
Process Modeling (BPM), the use of Business Process
(BP) models moved from a "luxury article" to an
"everyday necessity" in the last years. Meanwhile
many companies own thousands of models which
describe their business. Since business changes over
the years, e.g., business to business interoperability
came up with new inventions in communication and

companies merge with others, there arises a need to
keep existing business models up-to-date and to
synchronize or translate them into a contemporary
BPM language. To facilitate these scenarios, a model
transformation technique for BP models is needed.

(a) Model Integration (b) Model Translation (c) Model Synchronisation

User

(a) Model Integration (b) Model Translation (c) Model Synchronisation

User

Figure 1. Different Model Transformation
Scenarios

According to these scenarios, model transformation
in the area of BPM can be classified into three
different kinds as illustrated in Fig. 1: model
integration, model translation and model
synchronisation. In the case of (a) Model Integration,
two or more models which conform to different BPM
languages are merged into one new model conforming
to another BPMlanguage. In case of (b) Model
Translation, all models conforming to one BPM
language are translated into models conforming to
another BPM language once. In case of (c) Model
Synchronisation, the aim is to keep pairs of models
after user changes up-to-date. A suitable model
transformation approach for BP models should support
all of these three scenarios.

Inspired by the vision of the model driven
architecture (MDA) [1], model transformations are
currently a hot research topic. The main research
interest lies on vertical transformations, i.e.,
transformations between models of different levels of
abstraction such as platform independent models
(PIMs), platform specific models (PSMs) and code.
Another important aspect are horizontal trans-
formations, where models are translated into other
models on the same level of abstraction, e.g. on the
PIM level. For models in the area of BPM, this aspect
is vital for integrating, synchronizing or transforming
models of different BPM languages.

Current techniques or specifications used for
defining model transformations, such as ATL [2] or
QVT [3], operate at the level of metamodel elements.
Therefore, transformation definitions can become quite
difficult when direct 1:1 mappings between metamodel
elements are not sufficient for specifying a trans-
formation.

For instance, consider transforming the source
business process model depicted in Fig. 2 into the
target business process model in Fig. 3. In the BPM
language of the source model, there is no explicit
model element to denote the join of alternative threads,
whereas in the target modeling language there is.
Moreover, the semantics of multiple arcs depends on
the context, i.e., on the origin of these arcs. In the
given example, the arcs belong to two different
threads, originating in a Split element. However, if
they had been originating from a Decision element,
their semantics and hence the desired target model
would be different.

Start

D

XOR

C

B

A End

Activity Start End

Decision Parallel JoinParallel Split

Figure 2. Source business process model in
ADONIS® notation [4]

Implementing such non-trivial transformations
requires defining complex queries upon the source
model, since the semantics and the required target
element cannot be decided by simply considering the
source element and its local properties (see Fig.2 and
Fig.3). This solution is not satisfying, because complex

queries are error-prone and difficult to maintain and re-
use.

Start

D

B

C

End

A

XORXOR

AND

AND

Basic Function Event AND-Split

XOR

AND

XOR-Split

XORAND

AND-Join XOR-Join

Figure 3. Target business process model in
EPC notation [5]

Another problem regarding BP model
transformations arises from the fact that model
transformation scenarios are stemming from the field
of Software Engineering. This means that the content
of the models and the transformation technique belong
to the same field, namely Software Development. In
case of transforming models in a different domain - in
our case BPM - the knowledge about the content of the
models belongs to another area (BPM) than the
technique (Software Development). Due to this
problem, the definition of model transformations for
BP models is a hard job. Misunderstandings and
exhausting discussions between the domain-experts
(BPM) and the technical experts complicate and
protract the process of model transformation
definitions.

To address these problems, we are currently
developing a framework for domain-specific model
transformations in the area of BPM [6]. It
comprehends a method to define a model
transformation definition in well structured steps based
on business aspects [7, 8]. Furthermore, the framework
will offer BP model patterns to facilitate the definition
of BP model transformation scenarios, on the one hand
to solve non-trivial transformation requirements, and
on the other hand to support the intuitive
understanding of the domain-experts (BPM).

In this work we concentrate on the definition and
detection of the BP model patterns. We focus on the
structural patterns that can be found within the control
flow of a BP model. Moreover, we show how the
defined patterns assist the transformation definition for
BP models. The contribution of this paper is twofold.
First, we thoroughly investigate the control flow aspect
of BP models as described by the workflow patterns
[9]. As we will show, workflow patterns are not
sufficient for certain model transformations. Therefore,
we define higher-level patterns based on the existing
workflow patterns in order to detect structural

transformation patterns in business process models.
Second, we present a case study that shows how the
patterns are used in the context of BP model
transformations. The case study illustrates the intuitive
use of the patterns and their advantages compared to
general model transformation approaches.

The remainder of the paper is structured as follows.
Section 2 gives an overview of different trans-
formation definitions, business aspects and workflow
patterns. In Section 3 the transformation patterns for
the control aspect are introduced. Section 4 provides a
case study which illustrates the use of the patterns for
the transformation of BP models. In Section 5 related
work is discussed. Finally Section 6 provides the
conclusion and gives an outlook on further research
directions.

2. Pattern-oriented Transformation of
Business Process Models

In this section we discuss the problems of
metamodel-oriented transformation definitions and
semantic abstraction to solve these problems.
Furthermore, the applicability of the workflow patterns
which are the basis of our work is discussed.

2.1. Problems of Metamodel-oriented
Transformation Definition in defining model
transformations for BP models

Established model transformation techniques, such
as QVT [3] or ATL [2] are metamodel-oriented. That
means, that the definition of model transformation
scenarios is based on the correspondences of the
elements in two or sometimes more different
metamodels. This concept covers the local
correspondences of each element which is used for
copying, splitting and merging elements.

Start

XOR

C

B

A

Element

Context

Figure 4. Local view and context view

For transformation correspondences which require
knowledge of the context in which an element is used,

e.g. deleting elements or integrating new elements,
these techniques offer additional imperative
programming concepts which, however, lead to
complex transformation definitions.

To reduce the complexity of defining context-
dependent correspondences imperatively, we introduce
structural patterns for the domain of BP models. These
patterns make it possible to relate the elements of two
BPM languages considering their context. So we can
make use of the ”bigger picture” as shown in Fig. 4.

2.2. Patterns to Simplify Transformation
Definition

As opposed to ad-hoc and metamodel-oriented

transformation definitions, we propose to use patterns
as basis for transformation definitions. Patterns
abstract from individual metamodel elements to
represent semantic concepts. The intention of using
these higher-level abstractions is to simplify
transformation definition and increase reusability.

Patterns allow for a divide and conquer approach to
model transformation. The transformation definition
can be divided into pattern matching, i.e., analyzing
the source model and identifying pattern occurrences,
and pattern instantiation, i.e., synthesizing the target
model such that the same patterns as in the source
model appear. Defining a model transformation in two
steps promises simplification of each step and re-use of
steps when transformations between multiple BPM
languages need to be defined.

We presume that this approach copes with the fine
grained heterogeneities of modeling languages,
because differences in particular details can be
abstracted as higher-level patterns. Of course, a
transformation can only be defined based on patterns
that can be identified and generated using the source
and target modeling languages, respectively.
Furthermore, compared to metamodel-oriented
transformations using patterns is more of a top-down
approach. This will help to quickly identify cases that
can be transformed (i.e., identified and generated), and
cases that cannot.

2.3. Workflow Patterns

The behavior aspect is the main aspect of process
modeling. It is used to describe how the business
process proceeds from its beginning to its end, and the
order in which its tasks1 should be executed. This
aspect is generally seen as an integrating aspect,
meaning that in BP models all other aspects, such as

informational and organization aspect, are integrated
by the behavior aspect [7].

Kindler et al. [8] made a more precise
differentiation and divided the behavior aspect into
two parts. The integral aspect covering only the tasks
and the control flow aspect which consists of the
concepts used to model the succession of the tasks.
Only the tasks are used to integrate other aspects.

Since the integral and control flow aspects are the
”heart of a process”, we focus on them and leave other
business aspects to future work. Of particular interest
is the control flow aspect, because it is very rich in
concepts and variability, as will be discussed in the
following. There is a huge body of work relevant to the
control flow aspect, most 1Throughout this paper, we
use the terms task and activity interchangeably
prominently the catalogue of workflow patterns (WF
patterns) [9] that has been used for analyzing the
features and expressiveness of a set of workflow and
BPM languages.

There are various publications which analyze
distinct BPM languages regarding their support for the
WF patterns. White [10] inspected the Business
Process Management Notation (BPMN) and the UML
2.0 Activity Diagram (AD) to find out how far the WF
patterns can be represented in these languages. The
AD has also been examined in [11]. With the aim of
assessing the weaknesses and strengths of the AD and
its coverage of business process modeling problems. In
[12], EPCs have been analyzed with regard to the
representation of the WF patterns. Additionally, an
extended EPC has been developed which covers all
WF patterns.

All of the above mentioned publications conclude
that not all of the WF patterns are supported in the
various BPM languages. But the basic control flow
patterns (WF patterns 1-5), the advanced branching
and synchronization patterns (WF patterns 6-9) and the
structural patterns (WF patterns 10 and 11) are
supported by every BPM language which has been
inspected.

Based on these contributions and the fact that the
control flow aspect is similar in BPM and Workflow
Models, we used the WF patterns as the starting point
for our work. Furthermore we inspected four different
BPM languages, ADONIS® Standard Modeling
Method (ADONIS®) [4], Event-driven Process Chains
(EPC) [5], Business Process Definition Notation
(BPMN) [13] and UML Activity Diagrams (AD) [14]
to find out if WF patterns are sufficient to define
model transformations on them.

Soon it became apparent that three of the four BPM
languages we inspected lack formal semantics, i.e.,
there is no executable semantics defined. Furthermore

WF patterns are realized differently in these BPM
languages, i.e., some languages use explicit join
elements (EPC, BPMN) whereas others do not
(ADONIS®). In case of AD the decision is left to the
designer of a model. This potentially leads to
ambiguities that have to be considered in
transformation definitions. Due to the missing
executable semantics, we restricted our work to the
WF patterns 1-11 which cover the control flow aspect
of each inspected BPM language. When testing the
applicability of the selected WF patterns we found out
that they are not sufficient for our purposes, but useful
as a generic basis for defining higher-level patterns
independent of particular BPM languages.

3. Structural Transformation Patterns

In this section we propose a set of transformation
patterns for the control flow aspect that cover the
majority of cases occurring in BP models. The
transformation patterns have been developed based on
the WF patterns and on the analysis of existing BP
models of different BPM languages.

A AS SpM Sp

A A A

Sp

A

A A

M

M E

AS

Start

E

End

Sp

SplitActivity

M

Merge

A

Figure 5. Block-structured Process Model

The transformation patterns are introduced by
means of block-structured and graph-structured
models. For the initial definition of the patterns, a
block-structured model (see Fig. 5) is used. This kind
of representation seems to be most suitable for an
intuitive understanding of the patterns. As BPM
languages also support the creation of graph-structured
models, i.e., models that are not restricted to a block-
structure, the difficulties which arise in pattern
matching are discussed by means of graph-structured
models (see Fig.7 and Fig.8).

3.1. Patterns in block-structured models

As the name implies, block-structured models are
composed of blocks of elements. Blocks could be
nested within other blocks but it is not allowed that
blocks partly overlap or that blocks include an end
element. This eases the identification and definition of
the transformation patterns, because each kind of block

can be identified as a pattern. In the following, seven
transformation patterns are proposed (see Fig. 6).

The Start Pattern consists of a single element found
in the Model in Fig.5 which marks the begin of a
process model.

The End Pattern consists of a single element which
marks the end of a process model.

S

A

M Sp

A A

Sp

A

A A

M

Start Pattern

E

End Pattern Sequential-Path Pattern

Branching Pattern
Loop Pattern

Figure 6. Structural Transformation Patterns

The Sequential-Path Pattern is composed of one or
more directly successive activities. For this pattern,
WF pattern 1 (Sequence) has been extended. To enable
uniform transformation definitions, a single activity is
also recognized as Sequential-Path Pattern.

The Branching Pattern is a part of a process model
between the point where the control flow is split into
multiple flows, and the point where the control flow is
merged from multiple into one successive flow (see
Fig. 6). In contrast to the patterns described so far, a
Branching Pattern contains nested patterns
(Sequential-Path and/or further Branching Patterns
and/or Loop Patterns). The Branching Pattern is
further categorized according to the kinds of
branchings that are used quite often in BP models.
These are:

• Parallel Branches. The Parallel Pattern starts with

a parallel split and ends with a parallel join. This
pattern combines WF pattern 2 (Parallel Split) and
3 (Synchronization).

• Alternative Branches. The Alternative Pattern
starts with a alternative split and ends with a
alternative join. This pattern combines WF pattern
4 (Exclusive Choice) and 5 (Simple Merge).

• Multiple Alternative Branches. The Multiple
Alternative Pattern starts with a multiple
alternative split and ends with a multiple alternative
join. This pattern combines WF pattern 6 (Multi-
choice) and 7 (Synchronizing Merge).

A special kind of Branching Pattern is the Loop

Pattern. It is a part of a BPM where a flow leads from a

split element to a merge element which is a
predecessor of the split element (see Fig. 6). This
pattern includes all elements on the branch leading
backwards. It is based on WF pattern 10 (Arbitrary
Cycles).

Each block-structured process model consists of a
combination of different patterns, and the above
defined patterns are sufficient to describe every block-
structured process model. The different patterns can be
found in sequence or nested. While finding
transformation patterns in block-structured models is
straightforward, the next section deals with finding
transformation patterns in graphstructured models.

3.2. Patterns in graph-structured models

Compared to block-structured models, patterns in
graphstructured models can be overlapping (see Fig. 7)
and branching patterns are not necessarily merged by a
common merge element (see Fig. 8). The pattern
definitions given in Section 3.1 need to be extended in
adequate order to enable matching these patterns in
graph-structured models.

The definitions for the Start Pattern, the End
Pattern and the Sequential-Path Pattern remain
unchanged.

AS Sp

A

A

A

A

AM

M ESp

Figure 7. BP model containing overlapping
patterns

AS Sp

A

A

A

A

AM

E

Sp

EM

Figure 8. BP model containing patterns
without common merge

For the Branching Pattern the end-condition needs
to be refined: All of the outgoing branches (including
the branches of subsequent split elements) of a split

element lead either (a) to a common merge element
(see Fig. 9a) or (b) to an end element that can not be
reached from the common merge element (see Fig.
10b) or (c) to an predecessor element of the split
element (see Fig. 10c).

Sp

A

A

A

M

Sp

A

A

AM

MSp
(a)

Figure 9. Nested Branching Patterns

The definition for the Loop Pattern itself remains
unchanged but a Loop Pattern starting in a Branching
Pattern must be considered in the definition of the
Branching Pattern as follows: In addition to leading to
an end element which is not the common merge
element a branch could also lead (c) to a predecessor
element of the common split element (see Fig. 10).

A

A

M

E

Sp (b)Sp

M

A

(c)

Sp

A

A

A

M

Sp

(a)

Figure 10. Nested Branching Patterns and
Loop Pattern

By adding these extensions, it is possible to identify

the transformation patterns in each model of a generic
graphstructured language. In the next section, a case
study demonstrates the use of transformation patterns.

4. Case Study - Using Structural Patterns
for BP model transformation

In the following we shortly introduce the involved
BPM languages and their main elements. Then the use
of our structural patterns is demonstrated by means of
a case study, which treats the translation from a
ADONIS® BP model into the according EPC BP
model. Finally we compare our approach with a
supposed definition of the same scenario in QVT and
summarize the advantages of our approach.

4.1. ADONIS® Standard Modeling Language

The ADONIS® Standard Modeling Language [4]
provides different kinds of model types which cover
different business aspects. The BP model is used to
model the business processes itself, i.e., its behavior
and control flow aspect. Furthermore it is used to
integrate the organizational and the information aspect.
Since our work focuses on the control flow aspect, we
concentrate on the BP model. ADONIS® is a graph-
structured BPM language.

Activity

Start End Decision

Parallel JoinParallel Split

b) Control Flow Elementsa) Integral Elements

Activity

Start End Decision

Parallel JoinParallel Split

b) Control Flow Elementsa) Integral Elements

Figure 11. Main elements of ADONIS®

The integral model element is the activity (see Fig.

11a). A sequence of activities is modeled by means of
the successor which represents the control flow in the
BP model. The control flow elements (see Fig. 11b)
are used to model the control flow.

The ADONIS® BP model provides no special
element for modeling merges of alternative control
flows. Furthermore, the decision element does not
distinguish between alternative split and multiple
alternative split.

4.2. Event Driven Process Chains

Event Driven Process Chains (EPCs) [5] have been
introduced by Keller, Nuettgens and Scheer in 1992.
EPCs are basically used to model processes.

Basic Function Event

b) Control Flow Elementsa) Integral Elements

AND-Split OR-Split

XORAND

XOR-Split

OR

XORAND OR

AND-Join OR-Join XOR-Join

Basic Function Event

b) Control Flow Elementsa) Integral Elements

AND-Split OR-Split

XORAND

XOR-Split

OR

XORAND OR

AND-Join OR-Join XOR-Join

Figure 12. Main symbols of EPCs

We focus on the main elements which are used to
model the integral and control flow aspect of a BPM,
the elements Function, Event, AND, OR and XOR (see
Fig. 12).

The Function describes an activity. It creates and
changes Information Objects within a certain time. The
event represents a BP state and is related to a point in
time, it could be seen as passive element compared to
the function as an active element (compare [15]). The
remaining control flow elements (see Fig. 12b) are
used to structure the proceed of the BP model.
Different from ADONIS®, EPCs do not provide a
specific element to indicate the begin and the end of a
BP model. Event elements are used instead. Event
elements are not allowed to be in front of an OR and
XOR element. Function and event elements must
alternate in the proceed of the BP model.

4.3. Translation of an ADONIS® model into an
EPC model

For the case study we have chosen a model
translation scenario in which a BP model defined in
the ADONIS® Standard Modeling Language (see Fig.
13) is transformed to a BP model defined in EPC (see
Fig. 17). The aim is to leave the given semantic of the
BP model unchanged and adapt the syntax of the
model according to the target BPM language (EPC).

The case study consists of four parts, definition of
the patterns in each language, decomposition of the
source BP model (see Fig. 13) according the defined
patterns, transformation of each pattern, gluing of the
target patterns to form the target BP model (see Fig.
17).

Paper
assigned

Well-known
author to the
community? Review paper

carefully

no

Update own CV
"Reviewed Papers”

Review paper fast

Paper
reviewed

yes

Download and
print paper

Figure 13. Source model in ADONIS® notation

The source BP model de scribes a simplified
reviewing process (see Fig. 13). When a paper is
assigned the first activity is to download and print it.
After that, the flow is split into two flows indicating
that the update of the own CV and the Reviewing can
be executed in any order. The intensity of the
reviewing is dependent on the celebrity of the author.
In case of a well-known author the paper could be
assumed as good and according to this be reviewed
fast. Otherwise the paper must be reviewed carefully.
After that the control flows merge in a parallel join
element and the process ends. The BP model consists

of one start, one end, four activity, one parallel split,
one parallel join and one decision element. The merge
of the decision ”Well-known author?” is modeled
implicitly. For the transformation we suppose an
algorithm that contains the general configuration
which is equal for all inspected BPM languages, e.g.
the start pattern has no predecessor and the end pattern
no successor elements and that the loop pattern ends in
a predecessor element etc. Based on this, specific
configuration parameters have to be defined for each
BPM language (cf. definitions in Table 1).

n/aAny
element

noDecisionLoop

EndAny
element

noDecisionAlternative
Branch

EndParallel
Join

yesParallel
Split

Parallel
Branch

n/aLast
activity in
sequence

n/aActivitySequential-
Path

n/an/an/aEndEnd

n/an/an/aStartStart

Other
end
elements

End/Merge
element

Explicit
end/merge
element

Begin
element

Pattern

n/aAny
element

noDecisionLoop

EndAny
element

noDecisionAlternative
Branch

EndParallel
Join

yesParallel
Split

Parallel
Branch

n/aLast
activity in
sequence

n/aActivitySequential-
Path

n/an/an/aEndEnd

n/an/an/aStartStart

Other
end
elements

End/Merge
element

Explicit
end/merge
element

Begin
element

Pattern

Table 1. Pattern defined in ADONIS®

At the moment we assume four different

parameters, the begin element, the explicit end/merge
element (indicating whether the end/merge is explicitly
modeled or not), the merge/end element and other end
elements (if branching patterns are not merged - see
graph-structured models).

The second step in our transformation scenario is to
walk through the source BP model and decompose it
into our defined patterns. Since the example includes
nested patterns, multiple decomposition cycles are
used:
• In the first decomposition cycle we found a start

pattern (see Fig. 14a), a Sequential-Path pattern
(see Fig. 14b), a Parallel Branch pattern (see Fig.
14c) and an end pattern (see Fig. 14d).

• The second decomposition cycle analyzes the
Parallel Branch pattern. It is further decomposed in
an Alternative Branch pattern (see Fig. 14e) and a
sequential-path pattern (see Fig. 14f).

• In the last cycle the sequential-path pattern is
decomposed into two Sequential-Path patterns as
depicted in Fig. 14g).
Now we have decomposed our source BP model

into adequate patterns which will in the following be
transformed into patterns of the EPC language as
defined in Table 2.

Paper
assigned

Well-known
author to the
community? Review paper

carefully

no

Update own CV
"Reviewed Papers”

Review paper fast

Paper
reviewed

yes

Download and
print paper

(a) (b) (c) (d)

Well-known
author to the
community? Review paper

carefully

no

Review paper fast
yes

Update own CV
"Reviewed Papers”

Review paper
carefully

Review paper fast

(e) (f) (g)

Figure 14. Decomposition of the model

The transformation of each pattern has to be done

according to the information captured in the tables 1
and 2. The transformation of the start and end patterns
is straight forward (see Fig. 15a and c).

n/aXORyesXORLoop

End
Event

XORyesXORAlternative
Branch

End
Event

ANDyesANDParallel
Branch

n/aLast event
or funtion
in sequence

n/aEvent or
Function

Sequential-
Path

n/an/an/aEventEnd

n/an/an/aEventStart

Other
end
elements

End/Merge
element

Explicit
end/merge
element

Begin
element

Pattern

n/aXORyesXORLoop

End
Event

XORyesXORAlternative
Branch

End
Event

ANDyesANDParallel
Branch

n/aLast event
or funtion
in sequence

n/aEvent or
Function

Sequential-
Path

n/an/an/aEventEnd

n/an/an/aEventStart

Other
end
elements

End/Merge
element

Explicit
end/merge
element

Begin
element

Pattern

Table 2. Pattern defined in EPCs

In case of transforming the Sequential-Path patterns
from ADONIS® to EPC we have to take care, that the
EPC conditions, such as alternate Events and
Functions and no Event followed by an OR or XOR
element, are fulfilled. Therefore, we transform each
ADONIS® Sequential-Path pattern into a EPC
Sequential-Path pattern that starts with an Event. The
information contained in the Events is derived from the
preceding model element and the control flow edge
that connects them. In case that the control flow edge
contains no information, the postfix ”-done” is added
(see Fig. 15b, d and e). The transformation of the
Branching pattern consists of a translation and a
composition.

Paper
assigned

Paper
assigned

Paper
reviewed

Paper
reviewed

Download and
print paper

Paper
assigned -

done
Download and

print paper

Review paper
carefully

Update own CV
"Reviewed Papers”

Review paper fast

Well-known
author to the
community -

yes

Review paper
fast

Well-known
author to the
community -

no

Review paper
carefully

Download and
print paper -

done

Update own
CV "Reviewed

Papers"

(a) (b) (c)

(d) (e)

Figure 15. Transformation of Start, End and
Sequential-Path pattern

Figure 16a illustrates how the Alternative Pattern is
transformed into EPC. Here the knowledge of the
explicit merge element in EPC is used to create this
element at the end of the Alternative Pattern. After
that, the Parallel Pattern is translated and composed as
shown in Fig. 16b.

Well-known
author to the
community? Review paper

carefully

no

Update own CV
"Reviewed Papers”

Review paper fast
yes

Well-known
author to the
community -

yes

Download and
print paper -

done

Well-known
author to the
community -

no

Review paper
fast

Review paper
carefully

Update own
CV "Reviewed

Papers"

XOR XOR

AND AND

Well-known
author to the
community? Review paper

carefully

no

Review paper fast
yes

Well-known
author to the
community -

yes

Well-known
author to the
community -

no

Review paper
fast

Review paper
carefully

XOR XOR

(a)

(b)

Figure 16. Transformation and Composition

Finally we have to glue all the parts together to
form the target EPC model as depicted in Fig. 17.

Paper
assigned

Download and
print paper

Well-known
author to the
community -

yes

Download and
print paper -

done

Well-known
author to the
community -

no

Review paper
fast

Review paper
carefully

Update own
CV "Reviewed

Papers"

Paper
reviewed

XOR XOR

AND AND

Figure 17. Translated target model

Attention must be given to the sequential-path

pattern after the start pattern. In this case the event of
the target pattern has to be deleted because of the
preceding start event (see Fig. 15b) to avoid
consecutive events. In case of defining the above BP
model transformation scenario with a metamodel-
based language such as ATL or QVT, there are
similarities concerning the Start, End and Sequential-

Path pattern. These patterns could also be transformed
by using simple metamodel correspondences. But in
case of creating the explicit merge element in the target
language we have to write a lot of imperative code.
This code is in most cases not reusable for other model
transformation scenarios, whereas the pattern-
definition for a given BPM language is reusable when
trans-forming its models into another BPM language.
Additionally pattern-based definitions can be easily
adopted for translating the models in the other
direction. This is useful in case of the synchronization
of BP models as depicted in Fig. 1c. In case of
merging BP models (see Fig. 1a) the patterns fulfill
two different functions. First the detection of the equal
structures in the source models and second, their
correspondence to the target model.

A general observation that we made is that in case
of a transformation from a BPM language with few
elements for expressing control flow structures, such
as ADONIS®, to a BPM language which provides
more elements to express control flow structures, such
as EPC, it is preferable to take a model transformation
approach that additionally supports pattern-based
definitions.

5. Related work

There is a formal method for decomposing
flowgraphs [16] which at first sight looks very similar
to our approach of defining patterns for BP models.
Basically this approach aims to improve the
measurability of imperative source code. Based on the
fact, that imperative programming languages could be
illustrated as directed graphs the authors show that
specific programming constructs could be modeled as
sub graphs, so called primes. Decomposition of
flowgraphs into primes assumes block-structured
models. In case of graph-structured models which
occur in BPM languages, occurring primes can become
arbitrarily complex. Furthermore the number of
different primes is not limited in case of graph-
structured BP models. Thus it is not possible to define
the number of primes in advance. So structural patterns
for analyzing BP models have to be more abstract as
the introduced primes. Defining the begin and the
possible ends of a distinct pattern reduces the number
of different patterns to be defined.

In defining model transformations, patterns have
already been used for various purposes.

Design patterns in Model Driven Engineering
(MDE), as initially discussed in [17], capture recurring
problems in the design of metamodels and model
transformations. In [17], examples of design patterns

relating to transformation implementation are given.
Different to our work, these patterns are domain-
independent and thus the patterns address issues with
MDE technologies rather than a particular modeling
domain.

Pattern-based model refactoring [18] is a concept
for controlled model evolution and development
employing model transformations. Model refactoring
focuses on ”forward transformation”, i.e., trans-
formations that modify a model but do not change the
modeling language, as opposed to horizontal
transformations.

The MDA tool OptimalJ combines the MDA with
pattern-based development [19]. It uses two kinds of
patterns. First, so-called transformation patterns
perform vertical transformations, i.e., PIM to PSM and
PSM to code; these patterns embody design
knowledge. Second, so called functional patterns
reside on a particular layer, i.e., PIM, PSM or code,
and represent recurring solutions to problems of
application development. The well-known GoF design
patterns are an example of functional patterns. While
our patterns are also situated within a particular layer,
they differ in that they do not address application
development but rather recurring problems of
horizontal transformations.

The final submissions for the QVT language [3]
includes patterns as core concept of a model
transformation language, to be used for queries on
source models and as templates on target models. The
QVT submission uses a declarative formalism for
defining patterns. The patterns and the transformation
rules using the patterns are designed to support aspect-
driven transformations, as they allow construction of a
target model element by application of several rules.
While QVT defines a language to define patterns
independent of particular domains, our work focuses
on identifying particular patterns in the BPM domain.
Another difference is that the QVT language requires
distinct patterns for source and target, whereas our
approach proposes generic patterns that are used as a
bridge between source and target models, thus
exploiting the specifics of horizontal transformations.

Using higher-level abstractions to design horizontal
transformations is also proposed by [20]. In particular,
[20] defines horizontal model transformations based on
semantic concepts as defined in ontologies rather than
on syntactic concepts as defined in metamodels. Our
patterns are not focused on particular semantics but
rather are motivated by their usefulness in
transformation definition. Furthermore, the use of
patterns, i.e., complex structural abstractions, is not
elaborated in [20].

6. Conclusion and Outlook

In this paper a general approach to BP model
transformation based on patterns has been introduced.
We focus on the control flow aspect of BP models,
which is considered as one of the catchiest of the
aspects with respect to BPM transformations.

The objective was on the one hand to introduce a
transformation approach which abstracts from the
single metamodel elements usually used. On the other
hand, we have provided a detailed description of the
transformation patterns which helps to comprehend the
structure of BP models. Furthermore, a case study
about the translation of a model from ADONIS R to
EPC has been discussed. An apparent advantage of
covering the structure of BP models with
transformation patterns is that it makes the differences
between the various BPM languages visible. This
knowledge helps to focus the transformation
development effort especially on the differences
between BPM languages.

This work represents the first step in realizing the
proposed domain-specific transformation approach for
BP models. We are currently working on an algorithm
for detecting the defined patterns automatically. The
next steps include the definition of the transformation
of the individual patterns between different BPM
languages, and it is planned to evaluate this approach
in the scope of an industry project where BP models
have to be merged.

References

[1] J. Miller and J. Mukerji, MDA Guide, version 1.0.1,
Object Management Group, Inc., June 2003.

[2] J. Bézivin, F. Jouault, and D. Touzet, “An Introduction
to the ATLAS Model Management Architecture,” LINA,
Tech. Rep. 05-01, 2005.

[3] MOF QVT Final Adopted Specification, Object
Management Group, Inc., http://www.omg.org/docs/ptc/05-
11-01.pdf, November 2005.

[4] BOC, “ADONIS 3.7 - User Manual III: ADONIS
Standard Modeling Method.” BOC Ltd.

[5] G. Keller, M. Nuettgens, and A.-W. Scheer,
“Semantische Prozessmodellierung auf der Grundlage
Ereignisgesteuerter Prozessketten (EPK)”, Universitaet
Saarbruecken, Tech. Rep., 1992.

[6] M. Murzek, “ASPAT - An Aspect- and Pattern-oriented
Approach for Business Process Model Transformation,”
WIT, Tech. Rep., May 2006.

[7] W. M. P. van der Aalst and K. van Hee, Workflow
Management: Models, Methods, and Systems. The MIT
Press, January 2002.

[8] B. Axenath, E. Kindler, and V. Rubin, “An Open and
Formalism Independent Meta-Model for Business
Processes,” in Proceedings of the Workshop BPRM 2005,
September 2005.

[9] W. M. P. van der Aalst, A. H. M. ter Hofstede, B.
Kiepuszewski, and A. P. Barros, “Workflow Patterns,”
Distributed and Parallel Databases, vol. 14(1):5-51, 2003.

[10] S. A. White, “Process Modeling Notations and Work-
flow Patterns,” BPTrends, March 2004.

[11] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter
Hofstede, and N. Russell, “Pattern-based Analysis of UML
Activity Diagrams,” Eindhoven University of Technology,
Eindhoven, Tech. Rep., 2004.

[12] J. Mendling, G. Neumann, and M. Nuettgens, “Towards
Workflow Pattern Support of Event-Driven Process Chains
(EPC),” in Proceedings of the 2nd GI Workshop XML4BPM
at 11th GI Conference BTW 2005, 2005.

[13] Business Process Modeling Notation Specification,
Object Management Group, http://www.bpmn.org/, 2006.

[14] UML 2.0 Superstructure Specification, Object
Management Group, Inc., http://www.omg.org/docs/formal/
05-07-04.pdf, July 2005.

[15] J. Mendling and M. Nuettgens, “EPC Modelling based
on Implicit Arc Types,” in Proceedings of the 2nd
International Conference on Information Systems
Technology and its Applications (ISTA), 2003.

[16] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach. Boston, MA, USA: PWS
Publishing Co., 1998.

[17] J. Bézivin, F. Jouault, and J. Palies, “Towards model
transformation design patterns,” in Proceedings of the First
European Workshop on Model Transformations (EWMT
2005), 2005.

[18] S. R. Judson, “Pattern-based model transformation,” in
OOPSLA Companion, 2003, pp. 124–125. [19] A. Herzog,
”Ueber Transformationen und Patterns: Wie Compuware
OptimalJ die MDA implementiert, ” Objektspektrum,
January 2004.

[20] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T.
Reiter, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“On Models and Ontologies - A Layered Approach for
Model-based Tool Integration,” in Proceedings of the
Modellierung 2006 (MOD2006), March 2006, pp. 11–27.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BankGothicALtBT-Light
 /BankGothicAMdBT-Medium
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BrushScrD
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DiagramTTBlindAll
 /DiagramTTBlindBlack
 /DiagramTTBlindwhite
 /DiagramTTCrystals
 /DiagramTTFritz
 /DiagramTTHabsburg
 /DiagramTTOldstyle
 /DiagramTTUSCF
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /EngraversMT-Bold
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EurostileBold
 /EurostileRegular
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /KristenITC-Regular
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-DemiBold
 /MaiandraGD-Italic
 /MaiandraGD-Regular
 /Mangal-Regular
 /MatisseITC-Regular
 /MicrosoftSansSerif
 /Mistral
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguItal
 /NimbusSanT-Bold
 /NimbusSanT-BoldCond
 /NimbusSanT-BoldItal
 /NimbusSanT-Regu
 /NimbusSanT-ReguCond
 /NimbusSanT-ReguItal
 /NimbusScript-Regular
 /OCRAExtended
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SPAriesFig-Bold
 /SPAriesFig-BoldItalic
 /SPAriesFig-Italic
 /SPAriesFig-Roman
 /SPLetterFig-Bold
 /SPLetterFig-BoldOblique
 /SPLetterFig-Oblique
 /SPLetterFig-Roman
 /SPTimeFig-Bold
 /SPTimeFig-BoldItalic
 /SPTimeFig-Italic
 /SPTimeFig-Roman
 /Sshlinedraw
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /Tciuni
 /TciuniBold
 /TciuniBoldItalic
 /TciuniItalic
 /TempusSansITC
 /TheSansOffice
 /TheSansOffice-Bold
 /TheSansOffice-BoldItalic
 /TheSansOffice-Italic
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Uc_020
 /Uc_021
 /Uc_030
 /Uc_200
 /Uc_210
 /Uc_211
 /Uc_220
 /Uc_221
 /Uc_251
 /Uc_260
 /Uc_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vivaldii
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

