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ABSTRACT 
Metamodels are a prerequisite for model-driven engineering 
(MDE) in general and consequently for model-driven web 
engineering in particular. Various modeling languages, just as in 
the web engineering field, however, are not based on metamodels 
and standards but instead define proprietary languages rather 
focused on notational aspects. Thus, MDE techniques and tools 
can not be deployed for such languages. The WebML web 
modeling language is one example that does not yet rely on an 
explicit metamodel. Instead, it is implicitly defined within the 
accompanying tool in terms of a document type definition (DTD), 
i.e., a grammar-like textual definition for specifying the structure 
of XML documents. Code generation then has to rely on XSLT-
based model-to-code transformations. 
In this paper, we propose a metamodel for WebML which is 
based on the Meta Object Facility (MOF). To establish such a 
metamodel a semi-automatic approach is provided that allows to 
generate MOF-based metamodels from DTDs. The metamodel for 
WebML accomplishes the following aims: First, it represents an 
initial step towards a transition to employing MDE techniques 
(e.g., model transformations or language extensions through 
profiles) within the WebML design methodology. Second, it 
represents an important step towards a common metamodel for 
Web modeling. Third, the provision of a MOF-based metamodel 
ensures interoperability with other MDE tools. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – methodologies, 
representation.  

General Terms 
Design, Standardization, Languages 

Keywords 
Web Modeling Language, Metamodel, DTD, Model Driven Web 
Engineering 

1. INTRODUCTION*‡ 
In the web engineering research field various modeling 
approaches have been proposed in the past 10 years, such as 
WebML [7], UWE [15], W2000 [2], OOHDM [29], OO-H [10], 
WSDM [9], and OOWS [27], aiming at counteracting a 
technology-driven and ad hoc development of web applications. 
At the same time, model-driven engineering (MDE) [5] has 
received considerable attention and is well on its way to 
becoming a promising paradigm in software engineering. In 
MDE, models replace code as the primary artifacts in the software 
development process. MDE forces developers to focus on 
modeling the problem domain and not on programming one 
possible (platform-specific) solution. Thus, the abstraction from 
specific programming platforms by modeling at a platform-
independent level and the definition of model transformations 
allow generating several platform-specific implementations. 
While some of the above mentioned web modeling approaches 
already provide tools and techniques for modeling web 
applications in a platform-independent way, their code generation 
facilities, if existent, mostly support one specific platform, only, 
yielding transformations from a platform-independent model 
directly to code. For these reasons, although first proposals for a 
transition to the model-driven paradigm in web engineering have 
already been made, e.g., [18], [17], [32], [30], [19], existing web 
modeling approaches represent model-driven approaches in the 
sense of MDE to a limited extent, only. 
Thus, the demand arises to bridge existing Web modeling 
methodologies with MDE. In this respect, metamodels represent 
an important prerequisite. In contrast to the MDE paradigm, 
however, most web modeling languages originally have been 
designed without using meta-modeling techniques, rather focused 
on notational aspects of the language. With no explicit 
metamodels available, however, one can not profit from MDE’s 
advantages such as model transformations and a common format 
for model exchange (e.g., XMI [22]). The WebML [7] web 
modeling language is one example that does not yet rely on an 
explicit metamodel. Instead, it is implicitly defined within the 
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accompanying tool WebRatio in terms of a DTD [35], i.e., a 
grammar-like textual definition for specifying a structure for 
XML documents. In contrast to MOF’s [21] expressivity, 
however, DTDs represent a rather restricted mechanism for 
describing languages. Moreover, the text-based representation of 
DTDs hampers on the one hand their readability and 
understandability for humans and on the other hand the 
language’s extensibility. WebRatio first, internally represents 
models in XML [35], and second, uses XSLT [37] for code 
generation. Since XSLT, however, is not intended for heavy 
structural transformations, writing XSLT programs for code 
generation is difficult and error-prone. Concerning these 
problems, a metamodel-based approach allows expressing 
transformation rules in a more compact and readable way by 
using existing model transformation languages such as QVT [28] 
and ATL [14]. 
To make WebML MDE-capable, we propose a MOF-based 
metamodel for WebML. To establish such a metamodel, a semi-
automatic approach [33] to generating MOF-based metamodels 
from DTD-based language definitions has been developed. The 
contributions of a metamodel for WebML are as follows: (1) Such 
a metamodel represents an important prerequisite and thus, an 
initial step towards a transition to employ model-driven 
engineering techniques (e.g., model transformations or language 
extensions through profiles) within the WebML design 
methodology. (2) Additionally, it is also an important step 
towards a common reference metamodel for Web modeling 
languages [15]. (3) The provision of a MOF-based metamodel 
ensures interoperability with other MDE tools. Moreover, our 
transformation approach enables the visualization of any DTD-
based language in terms of MOF-based metamodels and thus, 
enhances the understandability of those languages. 
The remainder of this paper is organized as follows. Section 2 
presents the architecture of our metamodel generation framework, 
including on the one hand a set of transformation rules, heuristics, 
and recommended manual refactorings, and on the other hand an 
implementation within the MetaModelGenerator (MMG), which 
is based on the Eclipse Modeling Framework (EMF). In Section 
3, we discuss the semi-automatically generated WebML 
metamodel. Section 4 gives an overview of related work. Finally, 
we outline conclusions and future work in Section 5. 

2. FROM DTDs TO METAMODELS 
Formal languages require precise definitions in terms of a meta-
language in order to be understandable by computers. In the past, 
various meta-languages have been employed for defining formal 
languages. Amongst them are EBNF [34] for describing the 
syntax of (programming) languages, DTD and XML Schema [36] 
for defining the structure of XML documents in terms of elements 
and attributes, and MOF, which represents the state-of-the-art for 
defining modeling languages. In Figure 1, we illustrate these 
relationships and our transformation framework [33] within the 
realms of the Object Management Group’s (OMG) four-layer 
architecture [24]. 
According to [5], the relation between a model and its metamodel 
is also related to the relation between a program and the 
programming language in which it is written, defined by its 
grammar, or between an XML document and the defining XML 
schema or DTD. Hence, in OMG’s four-layer architecture DTDs 
can be assigned to the same layer (M2) as metamodels and XML 

documents can be assigned to the same layer (M1) as models. In 
particular, Figure 1 depicts the relationship between on the one 
hand languages (M2), e.g., specific DTDs such as the WebML 
DTD, general-purpose metamodels like UML, and domain-
specific metamodels and on the other hand representations of the 
real world (M1), e.g., XML documents and (UML) models. The 
upper part of Figure 1 indicates the fact that languages themselves 
may be formally defined in terms of a meta-language (M3). A 
DTD must conform to the DTD-grammar described in EBNF and 
metamodels must conform to MOF. Correspondences (C) 
between language elements of the DTD-grammar and MOF can 
be used for transforming a particular DTD into a MOF-based 
metamodel. These generic correspondences are implemented as 
transformation rules and heuristics in the MetaModelGenerator 
(MMG), which takes a DTD as input and produces a 
corresponding MOF-based metamodel.  
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Figure 1: Language Layers and the MetaModelGenerator  

2.1 MetaModelGenerator 
Our transformation framework for generating metamodels from 
DTDs is based on a two-phase process. While in the first phase a 
preliminary metamodel can be automatically generated using a set 
of transformation rules and heuristics, in the second phase explicit 
user interaction is required in order to improve the semantics of 
the metamodel by certain refactoring actions, since DTDs offer 
less semantic expressiveness than MOF. 

Heuristics

XMI-Serializer

<ecore class>
<ecore>

<ecore class>
<ecore att>

Omondo

DTD

XMI

MetaModelGenerator
(MMG)

User

DTD element type
object graph

Metamodel 
element object
graph

DTD-Parser

<!ELEMENT A>
<!ATTLIST A>

<!ELEMENT B>
<!ATTLIST B>

<!ELEMENT C>
<!ATTLIST C>

Semantic
enrichment

Transformer «uses»

 
Figure 2: Architecture and Mode of Operation of the MMG 



Figure 2 illustrates the DTD-to-MOF framework and 
implementation details of the MMG, which is based on the 
Eclipse Modeling Framework (EMF)2 and on an open source 
DTD parser3. In a first step a specific DTD serves as input to the 
DTD parser, which parses the DTD and builds a Java object graph 
of DTD element types in memory. Then each element type in the 
object graph is visited and transformed according to the 
transformation rules and heuristics described in Section 2.3.1 and 
Section 2.3.2, respectively. Each transformation rule is 
implemented as a separate Java method which takes DTD element 
type objects as input and generates the objects for the 
corresponding metamodel elements. If a transformation rule uses 
a heuristic, then the corresponding method calls a helper method 
which implements the heuristic. As soon as the complete element 
object graph of the metamodel has been generated, the default 
XMI Serializer of EMF is activated in order to serialize the 
metamodel as an XMI file. This XMI file can be loaded into 
OMONDO4 - a graphical editor for Ecore-based metamodels, 
available as an Eclipse plug-in. In a last step, the metamodel 
should be refactored by a user according to the semantic 
enrichment rules explained in Section 2.3.3. 

2.2 Concepts of DTDs and Metamodels 
In the following, we will provide a brief introduction to the main 
concepts of DTD and MOF. Afterwards, we give an explanation 
of their correspondences and propose resulting transformation 
rules and heuristics. Since by the time of writing there is no 
standardized implementation of MOF 2.0 available, we are using 
Ecore, a slightly modified EMOF5 implementation in Java, which 
is provided by the EMF. Ecore’s concepts essentially correspond 
to EMOF, which is sufficient in the context of this paper. The 
concepts of DTD and Ecore are given in terms of UML class 
diagrams (cf. Figure 3 and Figure 4). With respect to Figure 1, 
these two diagrams belong to M3 and represent the operands on 
which to define correspondences. 
The UML class diagram given in Figure 3 presents the most 
important DTD concepts and has been designed based on 
previous work [13] and the DTD-grammar described in EBNF. 
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Figure 3: Overview of DTD language concepts 
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complete MOF (CMOF). 

Element type declarations are first-class citizens in DTDs. 
Element types (XMLElemType) have a name and are specialized 
into XMLAtomicET (contains no other element types but character 
data), XMLEmptyET (no content is allowed), XMLAnyET (the 
content is not constrained – this declaration is not adequate for 
language definitions and is therefore missing in Figure 3), 
XMLCompositeETMixedContent (a mix of character data and 
child element types), and XMLCompositeETElemContent 
(consists of an XMLContentParticle). An XMLContentParticle is 
either an XMLSequence, an XMLChoice, or an XMLElemType). 
An XMLChoice or an XMLSequence can be enclosed in 
parentheses for grouping purposes and suffixed with a ‘?’ (zero or 
one occurrences), ‘*’ (zero or more occurrences), or ‘+’ (one or 
more occurrences). For a single element type the cardinality can 
also be described by one of the three mentioned cardinality 
symbols. The absence of a particular symbol, however, denotes a 
cardinality of exactly one. 
Attribute-list declarations declare one or multiple XMLAttributes 
(i.e., name-value pairs) for a single element type. Each 
XMLAttribute has a name, a data type, and a default declaration. 
The most commonly used data types for attributes are: CDATA 
(String), ID, IDREF (refers to one ID-typed element), IDREFS 
(refers to multiple ID-typed elements), and Enumeration. There 
are four possibilities for default declarations: #IMPLIED (zero or 
one), #REQUIRED (exactly one), #FIXED (the attribute value is 
constant and immutable), and Literal (the default value is a quoted 
string). 
Figure 4, summarizes the most important concepts of Ecore. 
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Figure 4: Overview of Ecore language concepts6 

EClasses are the first-class citizens in Ecore-based metamodels. 
An EClass may have multiple EReferences and EAttributes for 
defining its properties as well as multiple super classes.  
An EAttribute is part of a specific EClass. The data type of an 
attribute is either a simple data type or an enumeration, i.e., 
EEnum. Additionally, an attribute can have a lower and an upper 
bound multiplicity. 
EReference is - analogous to EAttribute - part of a specific EClass 
and can have a lower and an upper bound multiplicity. In 
addition, an EReference refers to an EClass and optionally to an 

                                                                 
6 Based on http://download.eclipse.org/tools/emf/2.2.0/javadoc/ 

org/eclipse/emf/ecore/package-summary.html#details 



opposite EReference for expressing bi-directional relationships. 
Besides, a reference can be declared as a containment reference. 
EPackages group EClasses, EEnums, as well as nested 
EPackages. Each element is directly owned by a package and 
each package can contain multiple model elements. 
EDataTypes serve for defining the types of attributes. String, 
Boolean, Integer, and Float are part of Ecore’s default data types 
set. 
EEnum allows to model enumerations of literals and can be used 
as an attribute’s data type. An EEnum owns an arbitrary amount 
of values, i.e., EEnumLiterals. 
EAnnotations are used for describing additional information 
which cannot be presented directly in Ecore-based metamodels. 
Each model element can have multiple annotations and each 
annotation belongs to a specific model element. 

2.3 DTD – Metamodel Correspondences 
In the following we give a brief overview of our transformation 
framework consisting of a set of transformation rules (cf. Section 
2.3.1), heuristics (cf. Section 2.3.2), and manual refactorings (cf. 
Section 2.3.3) and refer the interested reader to [33] for a more 
elaborate discussion. 

2.3.1 Transformation Rules 
We designed transformation rules and sub rules, first, for 
transforming element types of DTDs and second, for transforming 
their attributes. Some of them are supported by heuristics (cf. 
Section 2.3.2) which lead to improved readability and higher 
quality of the metamodel but require some user validation (cf. 
Section 2.3.3). Table 1 summarizes the proposed transformation 
rules. 
Rule 1 – DTD::XMLElemType_2_Ecore::EClass. For each 
XMLElemType an EClass is created and the name of the EClass is 
set to the element type name. Depending on the particular 
subclass of XMLElemType additional metamodel elements have to 
be created in the transformation process (cf. Table 1). 
Rule 1.1 - DTD::XMLContentParticle.cardinality_2_Ecore:: 
EReference.multiplicity. Each XMLContentParticle may have a 
certain cardinality, which is represented in metamodels through 
multiplicity (lower/upper bound) of the reference end. 
Rule 2 – DTD::XMLAttribute_2_ECore::EAttribute. For each 
XMLAttribute an EAttribute is created, which is attached to the 
EClass representing the XMLElemType, which in turn owns the 
XMLAttribute. The name of the EAttribute is set to the name of 
the XMLAttribute. The data type of XMLAttribute is one of the 
following: {CDATA, ID, IDREF, IDREFS, Enumeration} with 
each requiring an appropriate transformation (cf. Table 1).  
Rule 2.1 – DTD::XMLAttribute.cardinality_2_Ecore:: 
EAttribute.multiplicity. Attributes in both, DTDs and metamodels 
have a certain kind of cardinality. In DTDs, the cardinality of an 
XMLAttribute is determined on the one hand by the differentiation 
between single-valued (e.g., ID, CDATA, and IDREF) and multi-
valued (e.g., IDREFS) and on the other hand by the XMLAttribute 
declaration (#REQUIRED, #IMPLIED, #FIXED, and default 
value). Table 1 illustrates how XMLAttribute cardinalities are 
transformed into EAttribute multiplicities. 

Table 1: Transformation rules between DTD and Ecore 
 Rule DTD Concept Ecore Concept 

R 1 XMLElementType (ET) EClass 

  XMLElementType. name   EClass.name 

(1) XMLEmptyET no additional elements 

(2) XMLAtomicET EAttribute for PCDATA 

(3) XMLCompositeET 
ElemContent 

Containment References 

(4) XMLCompositeET 
MixedContent 

Containment References,
EAttribute for PCDATA 

(5) XMLSequence, XMLChoice EClasses annotated with 
«SEQ» and «ALT», resp. 

R1.1 XMLContentParticle.cardinality EReference.multiplicity 

(1) Zero-or-one (?) 0..1 

(2) Zero-or-more (*) 0..* 

(3) One-or-more (+) 1..* 

XM
L 

El
em

en
t T

yp
e 

(4) Default, no symbol 1 

R2 XMLAttribute EAttribute 

  XMLAttribute.name   EAttribute.name 

(1) CDATA String 

(2) ID String, Attr. id set true 

(3) IDREF String or Heuristic 1  

(4) IDREFS String or Heuristic 1 

XMLEnum EEnum or Heuristic 2 (5)

   XMLEnumLiteral    EEnumLiteral 

R2.1 XMLAttribute.cardinality EAttribute.multiplicity 

Single-valued 1 (defaultValue) 
(1) Default value 

Multi-valued 1..* (defaultValue) 

Single-valued 1 (dV, unchangeable) 
(2) #FIXED 

Multi-valued 1..* (dV, unchangeable) 

Single-valued 1 
(3) #REQUIRED 

Multi-valued 1..* 

Single-valued 0..1 

XM
L 

At
tr

ib
ut

e 

(4) #IMPLIED 
Multi-valued 0..* 

2.3.2 Heuristics 
The effectiveness of the proposed heuristics is strongly correlated 
with the quality of the DTDs’ design. For example, the heuristics 
operate more effectively if naming conventions, e.g., for IDREFs, 
are used or the content of the DTD is split up into several external 
DTDs, which group related element types. The proposed 
heuristics are deployed to exploit the following semantically rich 
language constructs of Ecore, namely (1) typed references, (2) 
data types, and (3) packages as a grouping mechanism. The 
heuristics of our framework are described in the following and 
summarized in Table 2. 

Heuristic 1 - IDREF(S) Resolution. A DTD does not restrict 
which element types can be referenced from an attribute of type 
IDREF or IDREFS. Thus, it is possible to reference any element 
having an ID attribute in an XML document from any IDREF or 
IDREFS attribute. Due to this peculiarity of DTDs, it is neither 
possible to determine if certain element types may be referenced, 



only, nor which element type(s) may be referenced based on the 
information given in the DTD. Sometimes, however, it is possible 
to find the referenced element types relying on naming 
conventions of element types and attributes. Note, that the user 
still must validate the generated references in order to detect 
random name-matches, which means that a referenced class does 
not correspond to the intended referenced element. 
Heuristic 2 - Boolean Identification. DTDs do not allow to 
specify XML attributes of type Boolean explicitly. Instead, an 
element’s attribute can be of type Enumeration with two literals, 
e.g., true and false. In this case Rule 2 produces an EEnumeration 
with two literals, namely true and false. For this special case, 
however, an attribute of type Boolean is semantically richer and 
more compact. Heuristic 2 recognizes such optimization 
possibilities and generates an attribute of type Boolean. 

Heuristic 3 - Grouping Mechanism. In DTDs, there is no 
mechanism for grouping related element declarations. In 
metamodels on the contrary, packages are the intended grouping 
mechanism. This feature allows hierarchically structured 
metamodels, which are more readable and better understandable 
than flattened metamodels. In DTDs, the grouping mechanism can 
be simulated by defining external DTDs and referencing these 
from within a so called root DTD. A root DTD is equivalent to a 
root package in a metamodel and external DTDs are equivalent to 
subpackages of the root package. 

Table 2: Heuristics 

Heuristic DTD Concept Ecore Concept 

H1 

If (XMLTokenAtt.kind == 
IDREF) && 
(XMLElemType.name == 
XMLAttribute.name) 

1) EReference from 
EAttribute with type IDREF 
to EClass 2) annotate with 
«IDREF(S)» 

H2 
If XMLEnumAtt is one of 
{true, false}, {1, 0}, {on, 
off}, {yes, no} 

EAttribute.type is Boolean 

H3 If DTD imports external 
DTDs 

EPackages of the external 
DTDs are nested within the 
root DTD EPackage  

2.3.3 Semantic enrichment of generated metamodels 
The last step towards a MOF-based metamodel requires user 
interaction for semantic enrichment as well as validation of the 
automatically produced metamodel. Such user interactions are 
strongly recommended because DTDs are poorer in semantics 
than MOF-based metamodels, which is due to a limited set of 
concepts. The most important semantic enrichment tasks require 
domain knowledge and concern the following problems of DTDs: 
(1) DTDs provide no explicit concepts to express inheritance. 
Thus, the user has to manually refactor the generated metamodels 
in order to achieve inheritance relationships, e.g., by introducing 
new (abstract) classes and reduce redundant definitions of 
attributes and references, leading to an improved structure and 
higher readability. 
(2) DTDs have a limited set of data types that can not be extended 
(e.g., to support Integer or Boolean data types). Thus, the user has 
to check all attributes of the generated metamodel, if any of them 
should be of type Integer or another special type. 
(3) Some IDREF(S) may be automatically resolved according to 
Heuristic 1. Due to the possibility of random name matches, 
however, the user has to validate if the resolution of the 

IDREF(S) is correct or if another class should be referenced. 
Furthermore, the framework currently marks all IDREF(S) 
attributes that could not be resolved by naming conventions. 
Thus, the user has to refactor all attributes which are marked with 
the annotation «IDREF(S) must be resolved manually». 
Knowledge of the problem domain is required to create the 
corresponding references to the intended classes. 
(4) It is not possible to describe bi-directional associations in 
DTDs using the inherent mechanisms (i.e., IDREF(S)). In 
contrast, metamodels use bi-directional associations as a central 
modeling concept. In particular, in Ecore two uni-directional 
references are connectable through the eOpposite attribute of 
class EReference to represent bi-directional associations. DTDs 
lack this information which requires the user to manually connect 
two uni-directional references resulting from IDREF(S) attributes 
and mark them as bi-directional associations. 

3. A METAMODEL FOR WebML 
In the following we present an Ecore-based metamodel for 
WebML. We first give an overview on the package structure (cf. 
Section 3.1) and then describe some of the packages in more 
detail7 (cf. Section 3.2 - 3.5). Concluding this section, we point 
out problematic parts of the WebML DTD, with respect to an 
unambiguous language definition due to DTD’s weaker semantic 
expressiveness, and discuss the solutions to those problems within 
the WebML metamodel (cf. Section 3.6). 

3.1 Overview 
The WebML language definition consists of several DTDs with 
WebML.dtd being the root DTD that imports the others. In the 
following we focus on the main language concepts that have been 
introduced in [7] and that are defined within Structure.dtd and 
Navigation.dtd. Other tool-related DTDs that specify the mapping 
to a relational database and the graphical illustration of WebML 
elements within the editor are not regarded in this paper.  
Figure 5 presents a high-level view of the semi-automatically 
generated WebML metamodel, i.e., its packages and their 
interrelationships. 

WebML

Content

Hypertext Content
Management

Access 
ControlHypertext

Organization
CreateUnit
ModifyUnit

ConnectUnit

ChangeGroupUnit
LoginUnit

DataUnit
IndexUnit

Link

Siteview
Area
Page

Entity
Relationship

Attribute

 
Figure 5: WebML Packages View 

While Structure.dtd corresponds to the Content package in Figure 
5, we have reorganized the concepts from Navigation.dtd into 
four packages, namely Hypertext, ContentManagement, 

                                                                 
7 The complete metamodel is available at http://big.tuwien.ac.at/ 

projects/webml/. For an in-depth description of each modeling 
concept we refer the reader to [7]. 



HypertextOrganization, and AccessControl. Concepts from the 
Content package are used for modeling the content level of a web 
application. The other packages contain modeling concepts for the 
hypertext level. Some concepts from the HypertextOrganization 
package, e.g., Page, can also be found at the presentation level. 
The integration of a Presentation package, however, is subject to 
future work, since WebML provides design support for the 
presentation level within the WebRatio tool, only, and these 
mechanisms have not been defined in [7] as being part of the 
language. 

3.2 Content Package 
The Content package (cf. Figure 6) contains modeling concepts 
that allow to model the content layer of a web application, which 
regards the specification of the data used by the application. 

Content

Domain

superentity0..1

inverse
1

attribute
*

type
1

* domainValue

relationship*

1 to

DomainValue

WebML_Type

TypeAttributeEntity

Relationship

 
Figure 6: Content Package 

Since WebML’s data model is based on the ER [8] model, it 
supports ER modeling concepts: An Entity type represents a 
description of common features, i.e., Attributes, of a set of 
objects. Note, that unlike UML class diagrams, ER diagrams 
model structural features, only. Attributes can have a Type, e.g., 
String, Integer, Float, Date, Time, and Boolean. An enumeration 
type is represented by the Domain and DomainValue class, 
respectively. Entity types that are associated with each other are 
connected by Relationships. 

3.3 Hypertext Package 
The Hypertext Package (cf. Figure 8) summarizes ContentUnits, 
used, for example, to display information from the content layer 

in a certain way, which may be connected by Links. The hypertext 
layer represents a view on the content layer of a Web application, 
only, and thus, the Hypertext Package reuses concepts from the 
Content Package, namely, Entity, Relationship, and Attribute. In 
order to handle the large amount of different kinds of 
ContentUnits and to reduce redundant feature definitions we 
introduced a generalization hierarchy, which includes the 
additional abstract classes ContentUnit, DisplayUnit, and 
SortableUnit. The abstract class LinkableElement has been 
introduced in order to cope with language concepts of other 
packages, e.g., ContentManagement::ContentManagementUnit, 
that can also be connected by links (cf. Section 3.6.4). 

3.4 ContentManagement Package 
The ContentManagement package contains modeling concepts 
that allow the modification of data from the content layer. Similar 
to the generalization hierarchy in the Hypertext package, we also 
introduce additional abstract classes in the ContentMangagement 
package (cf. Figure 7), i.e., OperationUnit, ContentManagement-
Unit, EntityManagementUnit, and RelationshipManagementUnit. 
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Since the specific ContentManagementUnits are able to create, 
modify, and delete Entities as well as establish or delete 
Relationships between Entities from the content layer, the 
ContentManagement package reuses concepts from the Content 
Package, namely Entity and Relationship. 

3.5 HypertextOrganization Package 
The Page, Area, and SiteView modeling concepts are used to 
organize and structure information, e.g., Hypertext::ContentUnits, 
as well as operations on data from the content level, e.g., 
ContentManagement::OperationUnits. They are grouped within 
the HypertextOrganization package (cf. Figure 9). 
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Figure 9: HypertextOrganization Package8 

The HypertextOrganization package builds on the Hypertext 
package and the ContentManagement package. The abstract 
classes introduced in the Hypertext and ContentManagement 
packages allow to more precisely define what kind of units can be 
part of a Page, an Area, and a SiteView (cf. Section 3.6.5). 

3.6 WebML DTD vs. WebML Metamodel 
As already mentioned, DTDs lack expressivity when compared to 
metamodels. While metamodels provide a mechanism to constrain 
the instance layer, e.g., with OCL [23], such constraints have to 
be implemented within the respective modeling tool in case of a 
DTD-based language. In the following, we provide concrete 
examples of such limitations, which we identified in the 
refactoring process of the WebML metamodel, and we propose 
appropriate solutions. 

3.6.1 Awkward Cardinalities 
As already explained in Section 2.2, DTDs offer a restricted 
mechanism to specify cardinalities, i.e., there are no language 
concepts for defining cardinalities having a lower bound greater 
than one and for defining cardinalities having an upper bound 
other than ‘1’ or ‘*’. For example, the definition of the 
AlternativePage modeling concept requires the AlternativePage 
to have at least two sub-pages. This is expressed in the WebML 
DTD as follows: 
<!ELEMENT AlternativePage (Page, Page+)> 

Yet, this definition might be misleading. One possible 
interpretation is that the first XMLContentParticle represents a 
special page, e.g., a default page. Another possible, i.e., the 
correct, interpretation, however, is that the first and the second 

                                                                 
8 Please note, that for readability purposes the OCL xor-

constraints are illustrated in UML syntax. 

XMLContentParticle together represent one set of Pages, i.e., one 
containment reference, but with special restrictions on their 
cardinalities, i.e., 2..*. In metamodels, this constraint can be 
expressed unambiguously, which is shown by the 
AlternativePage.page reference in Figure 9. 

3.6.2 Missing role concept 
In DTDs, it is not possible to express that an element type can be 
deployed in different contexts, i.e., a role concept such as in UML 
is missing. As an example, the MultiChoiceIndexUnit may have 
two Selectors, with one being used in the role of a preselector. In 
the WebML DTD, this is expressed as follows: 
<!ELEMENT MultiChoiceIndexUnit (Preselector?, 
Selector?,…)> 
<!ELEMENT Selector(SelectorCondition+)> 
<!ELEMENT Preselector(SelectorCondition+)> 

Since the Preselector element type declaration is identical to the 
Selector element type declaration, one can conclude that the 
Preselector element type represents the same concept as the 
Selector but used in a special context. In contrast, in metamodels 
this context information can be incorporated by reference names. 
Therefore, the WebML metamodel only contains the Selector 
class, which is referenced as a preselector by the 
MultiChoiceIndexUnit (cf. Figure 8). A similar example can be 
found in the ContentManagement package, where a Selector can 
act as sourceselector or targetselector for 
RelationshipManagementUnits (cf. Figure 7). 

3.6.3 Missing XOR constraints 
DTDs do not provide a mechanism to express xor-constraints for 
attributes, which is frequently required for IDREF(S) attributes. 
The only way to define such constraints in DTDs is setting the 
cardinality of the attributes as #IMPLIED which means zero-or-
one. However, this declaration does not ensure the intended 
constraint (i.e., the interrelationship between the attributes), 
because all attributes or none of the attributes could still occur at 
the same time at the instance layer. Consider the following 
example from the WebML DTD: An Area can have either a 
defaultArea or a defaultPage, but not both at the same time. 
<!ELEMENT Area (…)> 
<!ATTLIST Area 
  … 
  defaultPage IDREF #IMPLIED 
  defaultArea IDREF #IMPLIED 
  …> 

The attribute list declaration is not able to ensure this constraint at 
the instance layer. In metamodels, however, such a constraint can 
be ensured by xor-constraints expressed in OCL between the 
attributes as well as between the references resulting from 
IDREF(S) resolutions. Within the corresponding metamodel (cf. 
Figure 9) an xor-constraint between the references defaultPage 
and defaultArea has to be introduced to ensure that only one of 
the two references occurs at the instance layer. 

3.6.4 Unknown Referenced Element Types 
As already mentioned, it is not possible to identify which element 
type(s) may be referenced from an IDREF-typed attribute based 
on the information given in the DTD. This peculiarity of DTDs is 
particularly problematic, if several element types can be 
referenced. These types potentially have a common supertype, 
which, however, cannot be specified in the DTD. For example, 
the IDREF-typed attribute to of the Link element type declaration 



does not restrict the referenced elements to those that the designer 
originally intended to reference. 
<!ELEMENT Link (…)> 
<!ATTLIST Link 
  … 
  to IDREF #REQUIRED 
 type (normal|automatic|transport) ‘normal’ 
  …> 

In WebML, three disjoint Link types are available, i.e., normal 
Link, automatic Link, and transport Link. Besides the Link 
concept, there are also the OKLink and KOLink modeling 
concepts from the ContentManagement package, which are 
specifically used to define links from ContentManagementUnits. 
Furthermore, besides ContentUnits and OperationUnits, there are 
other linkable elements in the HypertextOrganization package, 
namely Page and Area. Consequently, there are multiple 
sourceElement–link–targetElement tuples of which some are 
allowed in WebML, only (cf. Table 3). 

Table 3: Linking Possibilities in WebML 

From\To Content 
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Operation 
Unit Page Area 

Content 
Unit 

normal 
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normal 
transport   

Operation 
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transport 
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transport 
OK 
KO 

transport 
OK 
KO 

transport 
OK 
KO 

Page  normal 
transport 

normal 
transport 

Normal 

These sourceElement–link–targetElement tuples, however, are not 
restricted to the allowed ones in the WebML DTD. Instead these 
constraints are ensured implicitly within the tool support. Aiming 
at a precise definition of sourceElement–link–targetElement 
tuples in the WebML metamodel, we introduce the 
LinkableElement concept (cf. Figure 8), which acts as a super 
class for all possible sources and targets. In addition, we have to 
define appropriate OCL constraints to restrict the sourceElement–
link–targetElement tuples to those that are allowed in WebML 
(cf. Table 3) and that are not yet captured by the metamodel. 

3.6.5 Missing inheritance mechanism 
DTDs provide no concepts for specifying inheritance 
relationships. In the WebML DTD, Pages contain different kinds 
of ContentUnits. 
<!ELEMENT Page (ContentUnits,…)> 
<!ELEMENT ContentUnits ANY> 

The problem of the missing inheritance mechanism in DTDs often 
results in the definition of Any element types for allowing the 
containment of certain element types. Still, the Any element type 
does not restrict which element types are allowed, i.e., only 
ContentUnits, and which are not allowed at the instance layer. 
Again, these constraints must be ensured by the tool.  
In the metamodel, we therefore introduce an abstract class 
ContentUnit (cf. Figure 8), which ensures that Pages from the 
HypertextOrganization package contain subclasses of 
ContentUnit, only. A similar example can be found in the 
ContentManagement package (cf Figure 7), where the 
OperationUnit is introduced as an abstract class, which ensures 

that Areas and Siteviews from the HypertextOrganization package 
contain subclasses of OperationUnit, only. 

4. RELATED WORK 
With respect to our approach of defining a MOF-based 
metamodel for WebML we distinguish between two kinds of 
related work: first, related work concerning our primary goal to 
design a metamodel for WebML, i.e., metamodels of other web 
modeling languages, and second, related work concerning our 
methodology in designing a metamodel for WebML, i.e., 
transformation of DTDs to MOF-based metamodels. 
Metamodels in Web Engineering Methodologies. To the best of 
our knowledge, three web modeling approaches [2], [15], [19] are 
currently defined on top of a metamodel. 
W2000 [2], a successor of HDM [11], originally has been defined 
as an extension to UML. In [3], the metamodel approach (i.e., the 
provision of a metamodel based on MOF 1.4 [20]) has been 
motivated and adopted as a necessity for providing tool support 
for an evolving language definition. 
The metamodel of UWE [15] has been designed as a conservative 
extension to the UML 1.4 metamodel [26], and thus is implicitly 
based on MOF 1.4. It is intended as a step towards a future 
common metamodel for the Web application domain, which will 
support the concepts of all Web design methodologies. Similar to 
[2], a language definition already existed as UML Profile.  
Muller et al. [19] present a model-driven design and development 
approach with the Netsilon tool. The tool is based on a metamodel 
specified with MOF 1.4 and the Xion action language. The 
decision for a metamodel-based approach has been motivated by 
the fact that in the web application domain the semantic distance 
between existing modeling elements (e.g., of UML) and newly 
defined modeling elements is becoming too large. 
Our work is complementary to [2], [15], in that we propose a 
metamodel for another prominent web design methodology, i.e., 
WebML, and thus make a further step towards a common 
metamodel for the web application domain [15]. But even more 
important to us is that, by proposing a metamodel for WebML we 
enable the transition to model-driven engineering techniques 
within the WebML design methodology. Our approach to design 
the metamodel is different from others, in that we generated the 
WebML metamodel semi-automatically, instead of manually 
deriving it from an existing language definition. Besides, the 
resulting WebML metamodel is based on Ecore and thus, 
basically corresponds to MOF 2.0, while the metamodels of [2], 
[15], [19] are based on MOF 1.4. 
Transforming DTDs to metamodels. There already exist several 
approaches for transformation from the model technical space to 
the XML technical space and vice versa. In [33], we present an 
elaborate overview of existing approaches. Basically, approaches 
related to our work provide mappings between the XML technical 
space, relying on DTDs or XML Schema, and the model technical 
space, relying on UML (Profiles), but also on ORM and ER. Only 
some of them provide tool-based transformation support. To the 
best of our knowledge, there is no approach mapping between 
concepts of DTD and concepts of MOF. In doing so, our work 
differs from the existing approaches in that we support intra-layer 
correspondences (M3) and transformations (M2) (cf. Figure 1), 
while existing approaches usually define cross-layer 



correspondences (from M3 to M2) and transformations (from M2 
to M1). With intra-layer mappings, one is able to derive intra-
layer mappings at lower layers of the architecture. Deriving 
mappings at M2 from mappings at M3 allows performing 
transformations at M1, i.e., transformations of XML documents to 
UML models (cf. future work in Section 5). Cross-layer 
transformation approaches, however, are limited to transforming 
XML documents into object models, which have to conform to a 
UML model. Therefore, while in our approach we are still able to 
rely on linguistic instantiations between layers, cross-layer 
transformation approaches have to rely on ontological 
instantiations at M1 [1]. 

5. CONCLUSION AND FUTURE WORK 
In this work we have proposed a MOF-based metamodel for 
WebML which has been generated semi-automatically from an 
existing DTD-based language definition. Our approach for the 
generation of MOF-based metamodels from DTDs relies on a set 
of generic transformation rules, heuristics, and user interactions to 
manually improve the automatically generated metamodels. Since 
there is no implementation of MOF 2.0, we have built our 
transformation framework, the MetaModelGenerator, on the 
EMF. Thus, the WebML metamodel now is available as an Ecore-
based metamodel. With the provision of such a metamodel, the 
WebML design methodology is now ready to move on to a 
model-driven web development approach. At the same time, 
another step towards a common web modeling metamodel [15] 
has been made. 
Concerning future work, we particularly strive for first, the 
refinement of the proposed metamodel and second, its extension 
with concepts from the aspect-oriented software development 
(AOSD) paradigm for providing modeling the customization 
aspect of ubiquitous web applications. 
A common metamodel for Web modeling. In a first step, we plan 
to incorporate recent concepts of WebML (i.e., concepts which 
are partly supported in WebRatio, but not defined in the WebML 
DTD) for modeling context-aware [6] and service-enabled web 
applications [16]. According to [15], we plan to investigate other 
existing web modeling approaches in order to integrate their 
concepts within a common Web modeling metamodel. Instead of 
integrating the concepts of different methodologies in a common 
metamodel, another interesting approach would be to integrate 
them at an even higher level, i.e., in a domain ontology, while 
making use of our ongoing research approach ModelCVS [12]. 
aspectUWA - Modeling Customization in Ubiquitous Web 
Applications. Modeling of customization in ubiquitous web 
applications (UWA) is a complex task, affecting all levels of a 
UWA, i.e., the content, the hypertext, and the presentation. 
Hence, customization represents a crosscutting concern. The 
aspect of customization, however, can not be properly captured 
by current Web modeling approaches. In fact, it is often 
intermingled with the core Web application. We propose to use 
aspect-orientation as driving paradigm for capturing 
customization of UWAs at the modeling level [31]. In particular, 
we plan the extension of an existing Web modeling language 
(e.g., a refined version of the WebML metamodel) with concepts 
from the aspect-orientation paradigm. In [4], adaptivity has 
already been identified as a crosscutting concern in Web 

applications, i.e., UWE has been extended with aspect-oriented 
techniques allowing customization at the hypertext level, only. 
Besides these two main directions, further work concerns three 
disjoint extensions to our transformation framework. First, the 
transformation framework needs further testing within other case 
studies and refinements of transformation rules and heuristics. 
Second, a comparison of our currently Java-based 
MetaModelGenerator with a model-driven transformation 
approach represents another interesting future research direction. 
In particular, the proposed DTD metamodel can be reused for 
describing the DTD-to-MOF transformation rules and heuristics 
as ATL transformations. In this respect, one does not only 
generate metamodels from DTDs in order to enable MDE, but just 
in doing so, applies MDE techniques. And third, one could 
perform transformations at M1 level, i.e., transformations of XML 
documents, which conform to a DTD, into models, which again 
conform to a corresponding metamodel, by deriving 
transformation rules from the existing mappings at higher layers. 
Therefore, the MetaModelGenerator should be capable of 
producing a ModelGenerator (MG) for a given DTD. With this 
approach, we would be able to transform existing WebML 
models, represented as XML documents, into models that 
conform to our MOF-based WebML metamodel. Thus, existing 
WebML projects can be migrated to the model technical space. 
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