
Treating Temporal Uncertainties Of
Complex Hierarchical Data Visually

eingereicht von

Andreas Fellner

DIP LOMARB E I T

zur Erlangung des akademischen Grades

Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften

(Mag. rer. soc. oec.)

Fakultät für Informatik, Universität Wien

Fakultät für Informatik, Technische Universität Wien

Studienrichtung Wirtschafsinformatik

Begutachter

ao. Univ.-Prof. Mag. Dr. Silvia Miksch

Wien, im Juli 2006

i

Dedicated to my grandparents Anna and Alois.
Thank you for all the things you have

taught me, your faith,
and your love.

Abstract

Generally, planning means to make predictions of the future. The more in-
formation about a certain endeavor and its environment flow into a plan, the
more realistic it gets. But, as predictions are only assumptions, there is no
guarantee that these predictions will actually come true. Therefore, plans
should consider at least anticipated uncertainties, others are not planable
anyway. The concept PlanningLines is specialized on treating temporal un-
certainties in plans visually. This work is an attempt to evaluate Planning-
Lines in a modern visualization. Further, also the technical realization of
such an Information Visualization is of special interest.

This thesis especially treats two different domains of planning: The man-
agement discipline Project Management which supports planning in orga-
nizations and the scientific discipline Protocol Based Care which provides
medical treatment plans as protocols. Both, Project Management and Pro-
tocol Based Care, provide different concepts of handling plans. A common
technique is the splitting of a whole plan into several manageable tasks that
must be fulfilled in a specified sequence to meet the goal of an endeavor.
That means, a plan is hierarchically decomposed, furthermore, it depends
on time.

Especially, the factor time is afflicted with a lot of uncertainties which
should be considered in a plan. A time schedule that does not work may
endanger the progress of a plan or can even cause a complete fail. To mini-
mize this risk, some techniques to consider temporal uncertainties within a
plan are available. The concept PlanningLines treats such uncertainties by
applying a set of time attributes to each task which are represented visually.

To evaluate PlanningLines, a prototype was developed which applies this
concept to MS-Project and Asbru plans. Besides implementing the graph-
ical notation of PlanningLines, the prototype also provides some general
techniques of Information Visualization. The result is a modern and highly
interactive application which demonstrates the power of PlanningLines in
practice and illustrates a way of treating temporal uncertainties visually.

ii

Kurzfassung

Planen bedeutet Vorhersagen für die Zukunft zu machen. Je mehr Informa-
tionen über eine Unternehmung und dessen Umgebung in einen Plan fließen,
desto realistischer wird dieser. Da solche Vorhersagen aber nur Annahmen
sind, gibt es keine Garantie für deren eintreffen. Daher sollte ein Plan zumin-
dest absehbare Unsicherheiten berücksichtigen, andere sind ohnehin nicht
planbar. Das Konzept PlanningLines brücksichtigt zeitliche Unsicherheiten
visuell. Diese Arbeit wendet PlanningLines in einer moderen Visualisierung
an. Auch die technische Realisierung einer solchen Informations-Visuali-
sierung ist von speziellem Interesse.

Diese Diplomarbeit befasst sich mit zwei Bereichen der Planung: Der
Management Disziplin Projekt Management, welche sich mit der Planung in
Organisationen beschäftigt und der wissenschaftlichen Disziplin Protokoll-
Basierte Therapiebehandlung, die Behandlungspläne als Protokolle bereit-
stellt. Sowohl Projekt Management als auch Protokoll-Basierte Therapie-
behandlung stellen verschiedene Konzepte der Planung zur Verfügung. Eine
übliche Technik ist das unterteilen eines Planes in kleinere Aufgaben die
in einer definierten Sequenz erfüllt werden müssen um das Planungsziel zu
erreichen. Das bedeutet, dass ein Plan hierarchisch unterteilt ist und einen
zeitlichen Bezug hat.

Gerade durch den Faktor Zeit entstehen viele Unsicherheiten die in einem
Plan berücksichtigt werden sollten. Ein nicht funktionierender Zeitplan
kann den Ablauf eines Planes gefährden oder diesen überhaupt zum Schei-
tern bringen. Es gibt verschiedene Techniken um zeitliche Unsicherheiten in
einem Plan zu berücksichtigen und damit dieses Risiko zu minimieren. Das
Konzept PlanningLines behandelt solche Unsicherheiten indem jede Auf-
gabe mit einer definierten Menge von Zeitattributen versehen wird welche
grafisch dargestellt werden.

Um das Konzept PlanningLines zu evaluieren wurde ein Prototyp ent-
wickelt, der es auf MS-Projekt- und Asbru- Pläne anwendet. Neben der
grafischen Notation wurden auch einige andere Techniken der Informations-
Visualisierung implementiert. Das Ergebnis ist eine moderne und inter-
aktive Applikation, welche die Stärken von PlanningLines in der Praxis
veranschaulicht und einen Weg aufzeigt, wie mit zeitlichen Unsicherheiten
visuell umgegangen werden kann.

iii

Contents

Abstract ii

Kurzfassung iii

Acknowlegements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of the Thesis . 2

2 State of the Art 4
2.1 Project Management . 4

2.1.1 Overview . 4
2.1.2 Definitions . 5
2.1.3 Responsibilities of Project Management 6
2.1.4 Problems in Project Planning 9
2.1.5 Graphical Plan Representation - Charting Techniques 12
2.1.6 Software Tools . 18

2.2 ProtocolBased Care . 22
2.2.1 Overview . 22
2.2.2 Clinical Guidelines and Protocols 23
2.2.3 The Guideline Representation Language Asbru 24
2.2.4 Graphical Representation of Treatment Plans 27
2.2.5 Related Projects . 32

2.3 Information Visualization . 34
2.3.1 Overview . 34
2.3.2 Definitions . 35
2.3.3 Responsibilities of Information Visualization 36
2.3.4 Common Techniques 37
2.3.5 Interaction Techniques 40
2.3.6 Software Toolkits supporting Information Visualization 41
2.3.7 InfoVis Toolkit . 41
2.3.8 Prefuse . 42
2.3.9 Piccolo . 43

iv

CONTENTS v

2.3.10 Syncfusion Essential Diagram 45

3 PlanningLines 46
3.1 Comparison to PERT and Gantt 46
3.2 Requirements . 47
3.3 Design Concept . 48

3.3.1 PlanningLine Glyph 49
3.3.2 PlanningLines Display 54

3.4 Example of a Project Plan . 57
3.5 Temporal Uncertainties . 58
3.6 Discussion . 59

4 Prototype Design 61
4.1 Requirements and Environment 61

4.1.1 Basic Environment . 62
4.1.2 General Requirements 62
4.1.3 PlanningLines . 63
4.1.4 Display . 64
4.1.5 Timescale . 65
4.1.6 User Interaction Techniques 65

4.2 Toolkits . 66
4.2.1 Selection of Toolkits 67
4.2.2 InfoVis Toolkit . 69
4.2.3 Prefuse . 72

5 Prototype Implementation 76
5.1 Features . 76

5.1.1 Data Sources . 76
5.1.2 TimeScale . 77
5.1.3 Activities of a Plan . 77
5.1.4 View . 78
5.1.5 Screenshots . 79

5.2 Manual . 81
5.3 Not Implemented Features . 82

6 Prototype Architecture 84
6.1 General . 85

6.1.1 Package Structure . 85
6.1.2 Coordinate Systems 86
6.1.3 Notes on Prefuse . 87
6.1.4 Interfaces . 88

6.2 Data . 89
6.2.1 Reading Raw Data . 89
6.2.2 Data Preprocessing . 90

CONTENTS vi

6.2.3 Data Table . 90
6.2.4 Reading Data Table 90
6.2.5 PlanningTree . 90

6.3 TimeScale . 92
6.3.1 General . 93
6.3.2 Granularity . 94
6.3.3 Graphical Representation 95
6.3.4 TimeScaleLayer . 97
6.3.5 Open Problems . 98

6.4 Visual Structures . 98
6.4.1 Filtering the Tree . 99
6.4.2 Visual Structures in ItemRegistry 101
6.4.3 Rendering of Visual Structures 103
6.4.4 View . 105

6.5 Graphical Concepts . 109
6.5.1 Double Buffering . 109
6.5.2 Affine Transformation 110

7 Conclusion 113
7.1 Summary . 113
7.2 Evolution . 114
7.3 Learned Lessons . 115

8 Future Work 116

A Indeterminacies Calculation Table 117

B UML Notation 119

Bibliography 121

Acknowlegements

vii

Chapter 1

Introduction

“If a picture is not worth 1000 words, to hell with it”
-Ad Reinhardt

1.1 Motivation

Planning plays an important role in our life in general. Everyday we have to
make a lot of decisions and some of them have to be planned too. To reach
a planned occasion or event, other decisions and predictions have to be met.
The planning of bigger endeavors can get very complex, therefore we use
several techniques to support it. Depending on the context, such techniques
reach from simple notices or small graphics to highly sophisticated methods
like diagrams or graphical notations. Especially, bigger endeavors or projects
requires special attention to planning.

Project Management is a scientific discipline that is concerned with plan-
ning and executing business projects. Business projects typically have to or-
ganize a lot of events and tasks, manage different resources, and consider a
budget. Therefore, several methods and techniques are provided to support
the creation and management of plans.

Typically, projects are seen as a sequence of different tasks and activities
that are executed along time. Mostly, several resources are assigned to tasks.
A typical project plan is an exact time schedule where all tasks and activities
are accommodated. To make such a schedule manageable, tasks are very
often hierarchically decomposed into smaller pieces of work.

Another discipline that is involved with planning is Protocol Based Care.
The main aims of it are the creation and spread of medical treatment plans.
A medical treatment plan is a recommendation for treating diseases or per-
forming therapies that is used by clinical staff. Such a plan typically has to
consider different states of patients. Mostly, the execution of the plan has to
react on patients’ state, therefore, such plans typically work with conditions.
Similar to Project Management , tasks of a treatment plan also refer to time.

1

CHAPTER 1. INTRODUCTION 2

Creating a time schedule for any kind of plan can be a real challenge.
Often the success of the whole project depends on it, therefore, special
attention has to be paid towards this issue. Schedules are often created
by assuming fixed durations of tasks. But as such assumptions are only
predictions of the future they may not correlate with reality. Therefore,
some flexibility is claimed in plans.

PlanningLines is a visualization concept developed for the representation
of Asbru plans. Asbru is a formal representation language for medical treat-
ment plans. It provides a mechanism that enables the creation of flexible
plans by considering temporal uncertainties. This is obtained by using a set
of time attributes that assigns intervals instead of fixed start and end-points
and two different durations on how long an activity can last. Therefore, the
visualization technique PlanningLines also supports the flexible creation of
plans.

Generally, visualization of plans is a common technique to support plan-
ning. The scientific discipline Information Visualization provides methods
and concepts which support the representation of information visually. The
base of every Information Visualization is an underlying notation on how
information is communicated to users. Even if the notation of Planning-
Lines originally was developed to visualize Asbru plans, the concept can
also be applied to Project Management plans. Strictly speaking, Planning-
Lines was developed by considering two common visualization techniques of
Project Management : PERT and Gantt.

The aim of this thesis is the implementation of a prototype that applies
PlanningLines to MS-Project plans as well as to Asbru plans. The resulting
Information Visualization should demonstrate a way of treating temporal
uncertainties in plans visually.

Thus, the prototype should also help to prove the concept of Planning-
Lines regarding its usability in a real application. Furthermore, the proto-
type should prove that PlanningLines works with common Project Manage-
ment plans too. The concept of PlanningLines should extend the original
concept by several techniques known of the domain of Information Visual-
ization. Another aim of this thesis is the evaluation of open-source toolkits
for graphical representation regarding their operability.

1.2 Overview of the Thesis

This thesis starts with a State of the Art report (Chapter 2) that outlines
all surrounding scientific disciplines the prototype is concerned with. Be-
sides discussing Project Management and Protocol Based Care, Information
Visualization is described in detail. Of each discipline an overview is given,
further some details regarding to proper work are described in detail.

Chapter 3 introduces the concept of PlanningLines in detail. The whole

CHAPTER 1. INTRODUCTION 3

notation is explained, and special cases of PlanningLines are outlined.
After the theoretical part of this thesis, the practical part starts by

listening the requirements of the prototype (Chapter 4). There, also the
selection of adequate toolkits is described. Chosen toolkits are outlined in
depth.

Chapter 5 gives an overview of all implemented features of the proto-
type. Furthermore, possible extensions of the functionality for future work
are given here. Chapter 6 gives insights into the architecture of the proto-
type. Also some technical programming concepts used in the Information
Visualization are described in detail.

Concluding, a recapitulation of the work is given in Chapter 7 and a
short outline of future work in Chapter 8.

Chapter 2

State of the Art

This state of the art Section tries to describe the related scientific environ-
ment the prototype is confronted with. Especially Project Management and
Information Visualization are very large and complex disciplines with count-
less different approaches and techniques developed over decades. Protocol
Based Care is a younger discipline, but also here a lot of different projects
researching new ways in healthcare can be found. Therefore, a brief overview
of each discipline is given and related matters are described in depth.

2.1 Project Management

2.1.1 Overview

“Project Management, in its modern form, began to take root only a few
decades ago. Starting in the early 1960s, businesses and other organizations
began to see the benefits of organizing work around projects and to under-
stand the critical need to communicate and integrate work across multiple
departments and professions” [Sisk, 1998]. Therefore, Project Management
has established itself as an own international discipline and “project man-
ager” has become an own profession in the past years.

Optimizing resources and preparing a time schedule are two of the most
important parts in Project Management . One of the pioneers in scientific
management was Frederick Winslow Taylor (1856 - 1915) who researched
methods to improve industrial efficiency. His main focus was set to analyzing
work and its elementary parts (e. g. , movements, proportions of shovels) with
the aim to improve productivity [Wikipedia, the free encyclopedia, 2006a].

Taylors associate, Henry Laurence Gantt (1861-1919), studied the order
of work and developed Gantt charts to illustrate workflows (first published
1910 in “The Engineering Magazine”, NY). These charts are such powerful
analytical instruments in management that they are used nearly unchanged
in modern Project Management [Sisk, 1998].

4

CHAPTER 2. STATE OF THE ART 5

Because of large and complex plans of governments and their institutions
in World War II and in the Cold War the term project was coined (e. g. , Man-
hattan Project). New instruments like network diagrams (Program Evalu-
ation and Review Technique (PERT)) and the Critical Path Method (CPM)
were introduced to speed up military projects in the USA. The process
flow and structure of military undertakings quickly spread into many pri-
vate enterprises and organizations. So, and the term Project Management
arose [Wikipedia, the free encyclopedia, 2006c].

Today, Project Management is one of the most important instruments
in management and gains importance because of sharing work within busi-
nesses. In a modern business it is essential to work together on common
goals to survive. Especially large cooperations are spread in different loca-
tions and work (own or outsourced) has to be coordinated. But even small
businesses are dependent on good management to produce high quality and
affordable products.

2.1.2 Definitions

Before discussing Project Management itself, some common definitions are
necessary.

Process

A process is a sequence of activities that takes a resource and produces
(transforms the input) an outcome [Harrington, 1991]:

“Any activity or group of activities that takes an input, adds
value to it, and provides an output to an internal or external
customer.”

Both, the input and the output of a process, can be nearly everything
like time, space, expertise, or any other resource. In general, a process takes
up some time and it may be categorized as singular, recurrent, or periodic
process. It is important to note that every process must produce a value for
its customer - otherwise it should be eliminated because of wasting resources.

An activity stands for any possible task like mechanical or creative work,
research, or another process (sub process).

Project

There are a lot of different definitions of the term project depending on
context and scientific discipline. With regards to Section 2.1.2 a project can
be seen as a set of different processes that have to be performed to reach
the end of a project.

CHAPTER 2. STATE OF THE ART 6

Generally, a project stands for a bigger endeavor, but in today’s usage
the term often stands for any work being done by more than one person -
even if it is the normal operational work of an organization. This usage is
inadequate since one of the most important characteristic of a project is its
unique result. That means that a project is something new for the executive
organization or involved people.

One of the most common definitions for a project is [Wysocki et al.,
2000]:

“A project is a temporary sequence of unique, complex, and con-
nected activities having one goal or purpose and that must be
completed by a specific time, within budget, and according to
specification.”

Another useful definition of the Project Management Institute (PMI)
[Project Management Institute, 2000]:

“A project is a temporary endeavor undertaken to create a unique
project or service.”

According to these definitions, a project is temporally limited, that
means it has a clearly defined beginning and ending. Another important
characteristic is the complexity - many different activities (often performed
by various organizations, departments, or people) have to be identified,
planned, and organized. Due to the usual interdependencies between ac-
tivities it is necessary to plan the logical and chronological order of the
different tasks exactly.

2.1.3 Responsibilities of Project Management

As projects can be classified into types like complex tasks, temporary orga-
nizations, or social systems and can be differentiated by industry, ownership,
duration, and so on, there is no “one way” in management of these [pma -
Project Management Austria, 2002,Gareis, 2000]. Of course Project Man-
agement follows some general paradigms and a lot of methods and techniques
are well established in this discipline. But managing a project is a task with
a lot of different aspects and success often depends on personal skills and
experience of the managers.

Project Management is a combination of many scientific disciplines like
General Management, Risk Management, Quality Management, and - de-
pending on the ownership - technical skills like Software Engineering, Med-
ical Treatment etc. Therefore, a project manager has to cover a lot of
different knowledge in combination with social and technical skills which
makes Project Management a scientific discipline of its own.

CHAPTER 2. STATE OF THE ART 7

A project (see Section 2.1.2) is typically a large, new, and complex mis-
sion to handle. Therefore it has to be analyzed, planned, and prepared
carefully long time before the ultimate start. Otherwise it is endangered to
fail, or at least involves large costs and a lot of time.

The initiating and planning-phase helps the management to determine
resources, define subprocesses and milestones, and get an overview of the
amount of work that must be done to meet the requirements. But also
expected costs, risks, problems and their solutions can be cleared up before-
hand [Project Management Institute, 2000]:

“Project management is the application of knowledge, skills, tools,
and techniques to project activities to meet project requirements.
Project management is accomplished through the use of the pro-
cesses such as: initiating, planning, executing, controlling, and
closing. The project team manages the work of the projects, and
the work typically involves:”

� “Competing demands for: scope, time, cost, risk, and qual-
ity.”

� “Stakeholders with differing needs and expectations.”

� “Identified requirements.”

According to this definition, five different phases can be differentiated:

Initiating-Phase

Before the planning-phase starts, goals and objectives must be defined.
Sometimes this task is not so difficult (e. g. , building a bridge) but very
often finding the specifications is a long process (e. g. , large IT-projects)
that should be handled exactly and precisely (changing the requirements at
a projects’ runtime is not effortless or even impossible). Furthermore, in-
volved people or businesses, expected costs, and resources must be identified
or elected.

Planning-Phase

Generally, planning means to make predictions for the future. Activities
have to be planned and prepared, interdependencies identified, teams se-
lected, etc.. All these tasks have to be organized regarding to their logical
and temporal prerequisites. As well, eventual upcoming problems should be
recognized and treated in this phase, otherwise they could result in unex-
pected complete re-planning while execution.

This leads to several problems, especially with regards to temporal se-
quences. Often it is not possible to determine the durations of activities

CHAPTER 2. STATE OF THE ART 8

exactly - assumptions and estimations have to be considered within a plan.
These assumptions lead to temporal uncertainties within a plan which have
to be treated. At the end of this phase, a formal and detailed project plan
should exist.

Execution- and Controlling-Phase

During the “lifetime” of a project, the main task of Project Management
is to control the work. A common method for controlling the progress of
a project is the concept of milestones (verification of in-time completion of
certain sub aims, defined in the project plan (see Section 2.1.4). Whenever
a task does not proceed as expected, responsibility for manging the further
execution lies in Project Management .

Closing-Phase

Closing a project typically starts some time before the work is done. De-
pending on the definitions of the initial and planning-phase, final tests, pre-
sentations, and acceptance tests fall into this part of Project Management .
But, also reviews and discussions about the evolution are appropriate instru-
ments to analyze the work being done and get new experience for further
projects.

Interaction of Phases

Figure 2.1: Sample of overlapping project phases listened along the time [Project
Management Institute, 2000].

As everything in Project Management , the phases differ from project to
project because of their own characteristics (e. g. , ownership or amount).
Generally, it is not possible to assign work to a certain phase (e. g. , in an
IT-project defining the system architecture can be done in the planning or
execution-phase) or estimating the amount of a certain phase. Moreover,
there are not many hard rules defined describing how a project has to be

CHAPTER 2. STATE OF THE ART 9

managed - just suggestions and some common paradigms. With respect to
time, the different phases often overlap. Such intersections can be found
especially in really large projects where first parts are already finished while
the whole project is still in the planning-phase.

2.1.4 Problems in Project Planning

Although, there are a lot of scientific techniques and concepts for managing
large projects, statistics show that many projects fail or do not meet the
requirements in practice (see Figure 2.2 that shows a statistical evaluation
of 30000 IT projects).

Figure 2.2: Project resolution history (1994-2000) [The Standish Group, 2001].

The Standish Group categorizes IT projects into three different resolu-
tion types [The Standish Group, 2001]:

� Successful: The project is completed on time and on budget, with all
features and functions originally specified.

� Challenged: The project is completed and operational, but over bud-
get, over the time estimate, and with fewer features.

� Failed: The project is canceled before completion or never imple-
mented.

Meeting the statement “The project success depends on the relationships
of the project to the relevant project environments” [Gareis, 2000] is a quite
difficult task for the management. There are countless reasons that can
make a project fail like unexperienced project managers, competence prob-
lems within the team, missing technical skills, or inaccurate planning [The

CHAPTER 2. STATE OF THE ART 10

Standish Group, 2001]. Wherever people work, mistakes are made. It is not
possible to consider each eventual incident, but especially in the planning-
phase a lot of mistakes can be prevented.

Project Plan

The major goal of the planning-phase is an exact and accurate project plan,
i. e. , a document describing all single steps that have to be performed to meet
the requirements. Besides formal descriptions of the project, the project plan
also contains detailed time schedules, personal responsibilities and liabilities,
and cost and resource-planning.

To get an overview of the whole project, it is necessary to divide the
work into some clear and logical tasks. Many upcoming activities and tasks
are already evaluated (i. e. , done in preceding projects) - others have to be
defined and worked out by the involved people of the project. Some activ-
ities are well known (e. g. , common operational works of the organization),
some will be outsourced, and others will have to be organized just from
the beginning. Complexity, existing knowledge, amount of involved people,
and needed resources of a task determine how exact and detailed it has to
planned.

Once all tasks are specified and worked out, a project plan can be created.
All the tasks and their subtasks must be organized according to their logical
and chronological order. Depending on the complexity, this can be quite
difficult work. Several planning techniques (like Gantt or PERT) and software
tools (see sections 2.1.6) implementing these techniques can help to represent
all coherences visually. With corresponding tools, different views (charting
techniques) and levels of detail can be created and displayed. Typically, it
is necessary to apply several charting techniques as they address different
objectives (see Section 2.1.5).

Temporal Uncertainties

Especially a correct time scheduling is a decisive but sensible factor within
the planning-phase of a project. “Time is money” is a significant slogan
in economy, but arranging a timetable is a very difficult task for the man-
agement of a project. For reasons of expense, the needed time of activities
or tasks required by a project is often calculated under the assumption of
ideal conditions and circumstances. Every unexpected event can result an
inaccurate time schedule for a single activity and this again can result in a
collapse of the entire project. Anyway, management cannot consider each
eventuality withing the time schedule, some temporal uncertainties will al-
ways remain. Good Project Management is distinguished by a flexible and
realistic handling of chronological sequences.

With realistic assumptions about durations of tasks, adequate methods,

CHAPTER 2. STATE OF THE ART 11

and software tools, an adequate and efficient timetable can be produced.
This means, that each single task gets enough time for fulfilling the as-
sociated requirements. Estimating the time for each task should be done
together with the executive and responsible people. To handle eventually
upcoming delays, several models can be found. In general every model de-
pends on one of the following three approaches [Vidal, 2004]:

� Reactive: The project plan is created without consideration of tem-
poral uncertainties and the proper execution of the plan starts as
usual [Smith, 1994]. If there is a violation of a time constraint, a
possible solution to pass the situation will be searched or, if not pos-
sible, a complete re-planning will be done from this moment on. The
advantage of this technique is, that a lot of possible uncertainties can
be ignored while execution runs as expected.

� Progressive: Planning is done until the first expected temporal uncer-
tainty is reached. Whenever this point is reached, the next Section of
the plan will be created. These steps are continued again and again,
until the project is finished. This technique is often referred to as a
rolling time-horizon plan generation [Vidal et al., 1996] and is a good
approach in smaller projects. Once there are a lot of parallel or se-
quential processes within a project this technique is not practicable.

� Proactive: This approach tries to consider each possible temporal un-
certainty before it actually occurs. Applying this way requires a lot
of information about every activity within the project. One idea is to
calculate the execution with fuzzy durations and compute the proba-
bility of success to fulfill the project. Another idea is to add flexibility
to the plan by using “floating” begins and ends (see Figure 2.3).

Figure 2.3: Sample of “floating” begins and ends.

Of course, thinking about temporal uncertainties does not guarantee a
smooth flow of the project, but it is more probable. Especially the proactive

CHAPTER 2. STATE OF THE ART 12

approach provides possibilities that smaller delays of an activity do not affect
the entire project. But also shorter durations of tasks than expected can
influence the progress in a positive way. Anyway, in case of a failure, Project
Management can still continue with the reactive technique to find the way
back to a working plan.

Often, common planning techniques are extended by possibilities of treat-
ing temporal uncertainties. A relatively new charting technique is Planning-
Lines (see Section 2.1.5) which already treats temporal uncertainties in a
proactive manner.

Treating temporal uncertainties costs time within the planning-phase,
but, besides the mentioned advantages, there is also another benefit that
should legitimate this work: The necessary analyses to create a detailed
time schedule result in additional information about activities. The gain of
information flows back into the management of a project. On the one hand,
problems may be identified in the planning-phase and can be treated before-
hand. On the other hand, expected slack times can be minimized as detailed
information about the task itself and surrounding tasks are available.

Typically, the results of creating a time schedule and treating temporal
uncertainties improve the chance to complete single activities at all and in
time.

2.1.5 Graphical Plan Representation - Charting Techniques

One of the most important methods to support organizing and planning
in Project Management is the graphical representation of projects. On the
one hand, project managers can get an overview of the project or parts of
it (today, plans are usually hierarchically decomposed to view them with
different levels of detail). On the other hand, plans help to control the
progress of the entire project. There are a lot of different techniques, the
most common are described below considering an example project.

Each technique follows its own objectives, therefore in Project Manage-
ment more different techniques are applied to a project typically. Of course
it is possible to create planning charts on paper, but today there are a lot of
computer programs to do this work. Software provides easy ways to realize
the exact charting of plans, re-planning or modifications can be done easily.
This implies that realistic controlling can be performed during “runtime” of
a project.

Work Breakdown Structure

Work Breakdown Structure (WBS) is a common planning technique used
many organizations like National Aeronautics and Space Administration
(NASA) [NASA, 1994]:

CHAPTER 2. STATE OF THE ART 13

“The purpose of a Work Breakdown Structure (WBS) is to divide
the program/project into manageable pieces of work to facilitate
planning and control of cost, schedule and technical content. A
WBS is written early in program/project development. It iden-
tifies the total work to be performed and divides the work into
manageable elements, with increasing levels of detail.”

This technique is applied at the beginning of the planning-phase. An
accurately done WBS allows the project team to get an exact reflection of the
whole project. Usually, ends of critical elements within the WBS are defined
as milestones, a useful technique helping Project Management to acquire the
progress of a project in the controlling-phase. The most common method
to represent a WBS is a hierarchical tree (see Figure 2.4) together with a
describing table containing detailed information. It is important to notice
that a WBS does not represent any sequence or scheduling of the project but
it provides an exact view of hierarchical decompositions.

Figure 2.4: Sample of a Work Breakdown Structure.

Gantt Charts

The main task of Gantt charts is to show the timing of tasks or activities in
a project [Morris, 2000]:

“A chart that depicts progress in relation to time, often used in
planning and tracking a project.”

All tasks are listed along the vertical axis, time along the horizontal axis.
A single task is represented by a rectangular bar with a fixed height and a
width depending on the duration of a task. The horizontal position refers
to the timescale along the horizontal axis (see Figure 2.5). A Gantt chart
in its original meaning provides an easy way to represent temporal facts
about a project, but it is not possible to depict dependencies or hierarchical
decompositions between tasks.

Therefore Gantt charts were enhanced by several variants and combina-
tions of variants over the years. One common and useful extension is to

CHAPTER 2. STATE OF THE ART 14

Figure 2.5: Sample of a Gantt chart.

display interdependencies of tasks. To realize this demand, Gantt charts are
seen as a network of tasks, logical relations are represented with arrows
between activities (see Figure 2.6). Due to this combination with a net-
work technique, Gantt charts are a much more powerful instrument to plan
complex projects.

Figure 2.6: Sample of a Gantt chart with logical relations.

Another common extension is the representation of hierarchical tasks.
As usual in a WBS, complex tasks are divided into smaller subtasks. To
represent such composite tasks special bars with triangular ends are used
(see Figure 2.7). This method allows the management to split a bigger
project into single, more detailed charts.

PERT

The Program Evaluation and Review Technique (PERT) depicts information
about tasks, durations, and dependencies between activities of a project.

CHAPTER 2. STATE OF THE ART 15

Figure 2.7: Sample of an expanded hierarchical Gantt chart.

While a WBS represents only tasks, PERT also shows the chronological se-
quence of them. Therefore, PERT provides more details of a project and
is typically applied later in the planning-phase than other techniques. Al-
though it is possible to read out dependencies of tasks, the main focus of
PERT is set to the possibility of temporally analyzing the project (duration
of subtasks, entire project, etc.).

A PERT chart is a network of all tasks within a project. There are several
ways for representing a task within PERT charts, but most common are boxes
with the task name and information about the most important time factors
(i. e. , Earliest Starting Time (EST), Latest Starting Time (LST), Earliest
Finishing Time (EFT) and Latest Finishing Time (LFT)) (see Figure 2.8).

Figure 2.8: Sample of different PERT notations.

Each task is connected with its successor tasks (logical relations). Usu-
ally, this relationship means, that the prior task must be finished before the
later one can start. PERT does not work with a timescale, therefore inac-
curate scheduling is not as obvious as in Gantt charts. But generally, PERT

charts provide much more information about temporal factors and condi-
tions than simple Gantt charts or other network plans. Additionally, there
are several analytical ways available to explore problems or critical paths
within a project.

CHAPTER 2. STATE OF THE ART 16

Figure 2.9: Sample of a PERT chart.

Besides the representation, PERT also provides an analytical technique to
determine durations of single tasks or the whole project [Modell, 1996]. This
technique is based on three assumed values: optimistic duration (o), pes-
simistic duration (p), and most likely duration (m). With a simple formula
the expected duration (e) is calculated:

e =
o + 4 ∗m + p

6
Another way to deal with temporal uncertainties is to determine the fol-

lowing four quantities: Earliest Start, Latest Start, Earliest End and Latest
End. With this additional declarations it is possible to calculate the critical
path of a project.

PlanningLines

Besides the mentioned widespread planning techniques, there are a lot of
others aiming at special problems in Project Management . A relatively new
one are PlanningLines, developed as a result of a user study with physicians
(see Section 2.2.4) by the Institute of Software Technology and Interactive
Systems, Vienna University of Technology [Aigner, 2003]. Originally, this
visualization technique was intended to represent medical treatment plans,
but it can also be applied to Project Management . PlanningLines’ pri-
mary attention is dealing with temporal uncertainties (see Section 2.1.4) in
a proactive way.

PlanningLines can be seen as a combination of Gantt and PERT charts.
Instead of single rectangular bars, as used in Gantt charts, complex glyphs
(single PlanningLines) are applied to each task. Such a glyph represents the
typical data of a common PERT task visually (see Figure 2.10). This glyph
allows to display the most important temporal attributes clearly.

A glyph consists of the following elements [Aigner et al., 2005a]:

� Start-interval (Earliest Starting Time (EST) and Latest Starting Time
(LST));

CHAPTER 2. STATE OF THE ART 17

� Minimum Duration (minDu) and Maximum Duration (maxDu); and

� End-interval (Earliest Finishing Time (EFT) and Latest Finishing Time
(LFT)).

Figure 2.10: Concept of a PlanningLine glyph.

The duration bars are encapsulated between the bounding start and end-
intervals. As the caps stand for intervals, the actual start or end must be
within the respective cap, and the actual duration must be between minDu

and maxDu (for more informations see Section 3.3.1).
Similar to Gantt charts, PlanningLines are arranged along the vertical

axis of a chart, referring to a timescale on the horizontal axis (see Figure
2.11). This representation provides the management of a project to take
advantage of the clarity of Gantt charts in combination with the detailed
temporal view of PERT charts.

Figure 2.11: Sample of a PlanningLine regarding to a timescale.

As mentioned before, Gantt charts are available in many different varia-
tions, like hierarchical views and relationships between activities. The only
difference of PlanningLines in comparison with Gantt is the visual repre-
sentation of tasks. Therefore, most of the common enhancements of Gantt

charts can be applied to PlanningLines too, which makes them a powerful
alternative in Project Management .

CHAPTER 2. STATE OF THE ART 18

2.1.6 Software Tools

As usual in nearly every discipline, many different software tools are in
use. Software that facilitate Project Management typically support planning
and organizing of budge, time, and resources. Mostly, data is organized
in tables and the results are communicated visually. Project Management
tools can be differentiated into desktop and web applications, as well as free
and proprietary implementations. Especially, tools that provide charting
techniques are of particular interest.

MS-Project

Microsoft Project (see Figure 2.12) is an additional part of the MS-Office
package, a complete solution of standard business software. Because MS-
Office is widely used worldwide and the cooperation between the applica-
tions, MS-Project is the world leading software tool used in Project Man-
agement [Microsoft, 2006].

Figure 2.12: Screenshot of MS-Project showing a Gantt chart.

MS-Project (in combination with other MS-Office tools) is designed to
meet many different aspects of Project Management :

� To support planning, different visualization techniques can be applied
(variations of Gantt and some kinds of network plans like PERT). Once

CHAPTER 2. STATE OF THE ART 19

one chart is created, other basic views are produced automatically (see
figures 2.5 - 2.9). Generally, all techniques are extended by the possi-
bility of hierarchical decomposition, this allows to work with different
levels of detail.

� A detailed resource planning is realized by a groupable data table (see
Figure 2.13). Once a resource is defined, it can be applied to any task
of any project (shared resource pool). This feature facilitates usage
of MS-Project with more different projects depending on the same
resources.

� During execution, it provides methods like tracking the progress of
a project, scheduling time, managing the budget, and creating and
sending reports to concerned people automatically.

Figure 2.13: Sample of resource planning table in MS-Project.

Analytical methods are applied automatically by MS-Project during the
planning-phase and during execution, values are updated periodically or on
demand. These include CPM and PERT calculations (see Section 2.1.5), but
also the budget is calculated by considering specific costs for each needed
time unit of resources.

Another advantage of MS-Project is its compatibility to MS-Viso, a
charting tool. Each project can be exported to MS-Viso as a WBS. Based on
this WBS, further special charting techniques can be applied (e. g. , charting
with special symbols for presentations, etc.).

Generally, MS-Project is a desktop tool for managers, but in the mean-
while, professional version assumed, also centralized tasks and automated
processes can be managed globally, using the MS-Project server in combi-
nation with web-access. This extensions have caused particular interest in
this product, especially of large and widely spread companies.

GanttProject

GanttProject (see Figure 2.14) is an open-source solution written in Java
hosted by SourceForge.net [SourceForge, 2006] and is available for free. Be-
sides an own file format, GanttProject supports MS-Project files too.

GanttProject is designed similar to MS-Project, but provides not that
much functionality. It is restricted to the basics of Gantt and PERT charts,

CHAPTER 2. STATE OF THE ART 20

CPM is applied as analytical method, a calendar is included, and it also
provides limited resource-planning.

Figure 2.14: Screenshot of GanttProject showing a Gantt chart.

Concluding, GanttProject is not adequate to manage large business
projects, but it is suitable for planning small projects.

@Task

@Task is a proprietary Project Management solution for large enterprises
[@Task, 2006]. Data of projects are stored centralized in a database, content
is provided by servers cross the web using several technologies (HyperText
Markup Language (HTML), Java, Wireless Application Protocol (WAP), etc.,
see Figure 2.15). This ensures a permanent and independent access to man-
aged projects, but also allows authorized users to manage the software itself.
@Task interacts with MS-Project and other third party applications. Scal-
ability is reached by the possibility of running the application on several
clusters.

@Task provides a lot of standard features like resource-planning, project-
planning (Gantt, PERT, WBS), time scheduling, and some analytical meth-
ods (see Figure 2.16). To facilitate collaboration, each user works on a
personalized portal (see Figure 2.17), containing all necessary and relevant
information, including a personalized calendar that is automatically gener-
ated. Besides that, @Task provides various possibilities of communication

CHAPTER 2. STATE OF THE ART 21

Figure 2.15: System Architecture of @Task [@Task, 2006].

Figure 2.16: Sample of a Gantt chart in @Task [@Task, 2006].

CHAPTER 2. STATE OF THE ART 22

Figure 2.17: Sample a personalized portal in @Task [@Task, 2006].

(i. e. , sending generated reports periodically to related members, e-mail no-
tification on new project issues, etc.).

After discussing important aspects of Project Management , the next Section
gives an introduction of Protocol Based Care. There are some correlations
between these disciplines, especially between project-planning and clinical
guidelines which are representing plans for medical treatment.

2.2 ProtocolBased Care

2.2.1 Overview

In our modern world, computers and machines strongly influence our life
and every science discipline. Todays’ health care would not work without
all the available technology, but especially in theoretical parts of medicine
technical innovations are hardly used. As medical treatment plans are nei-
ther standardized nor written down mostly, new ways of communication
are demanded in this domain. Especially the demands of more quality and
standardization in medical treatment could be solved through applying new
techniques of information technology.

There are a lot of definitions of Protocol Based Care depending on con-
text and country. Basically, Protocol Based Care is a multi-disciplinary
approach to provide clear standards and statements in health care. The
main aims are safety, quality, and clinical effective ways of treatment. One

CHAPTER 2. STATE OF THE ART 23

way to meet these demands are clinical guidelines [NHS - Modernisation
Agency, 2002].

2.2.2 Clinical Guidelines and Protocols

An important part of Protocol Based Care is computer support for clinical
treatment. Therefore, different organizations have turned their attention
to the realization of this. There are several ways to make a computer deal
with information, but especially in the medical domains it is not that easy to
join all requirements (complexity, constraints, conditions, etc.) of treatment
plans.

An approach to meet these demands are computerized clinical guidelines.
An important benefit of clinical guidelines is that they can be processed by
computers. This makes them easily to to spread locally, therefore standard-
ization and quality in medical treatment can rise significantly if they are
created properly, tested, and proved [Woolf et al., 1999].

Such a guideline or protocol is an explicit recommendation for clinicians.
This can help to proceed the work and clinicians can update their knowledge
to the latest scientific facts. To spread clinical guidelines locally, a framework
(e. g. , internet platform) must be provided to which clinicians are connected
[NHS - Modernisation Agency, 2002].

A common definition of clinical guidelines is [Shahar, 2002]:

“Clinical guidelines are a set of schematic plans, at varying levels
of abstraction and detail, for management of patients who have a
particular clinical condition (e.g., insulin-dependent diabetes).”

“Clinical protocols are typically highly detailed guidelines, often
used in areas such as oncology and experimental clinical trials.”

A clinical guideline can be seen as a reusable skeletal plan to identify or
treat a particular medical condition. But of course applied treatment differs
from patient to patient because of respective characteristics. Therefore, a
guideline needs room for some flexibility to ensure an adequate treatment
considering all circumstances. Another very important issue is the possibil-
ity to compose plans by using predefined plans (or sub plans). It does not
make sense to define each single step of a treatment plan newly whenever it
is needed, a better way is to take care of reusing elements (i. e. , hold them
in a database or library). That allows composing new plans with already
defined elements, saving time, and avoiding mistakes.

To meet these requirements, it is important to care about an effective
way of representation. One useful way to map such a plan is a formal
representation language. Although defining such a representation language
is a lot of work, but, once developed, there are some advantages compared
to other methods known in knowledge management. Because a language

CHAPTER 2. STATE OF THE ART 24

has its own clear syntax, logic, and semantic, it can be used by different
organizations to build their own applications upon such a representation
language. It can be seen as an standardized and expandable base in a
domain that provides the possibility to develop each preferred application.

Conceivable applications upon a formal representation language are exe-
cution units (local on a computer, but also client-server architectures or in-
ternet solutions), graphical visualizations of plans, and tools to create or edit
a plan (architecture tools). Even if automatic execution of treatment plans
by computers is imaginable (and desirable, but this is controversial [Woolf
et al., 1999]), today, a lot of attention is drawn to find adequate methods to
represent treatment plans. Additionally, supporting graphical visualizations
of protocols is an important issue researchers are concerned with.

Computerized treatment plans themselves are generated by using formal
methods of the domain of knowledge management. Therefore, ways have to
be found to communicate such guidelines to clinical staff who should finally
work with them. Besides generating textual plans, graphical representation
of treatment plans is a possibility to impart a guideline to clinicians [Aigner
and Miksch, 2004].

2.2.3 The Guideline Representation Language Asbru

One formal representation language to create clinical guidelines is Asbru,
developed by the Institute of Software Technology and Interactive Systems,
Vienna University of Technology and the Section on Medical Informatics,
Stanford University.

Asbru is a time-oriented, intention-based, skeletal plan-specification rep-
resentation language that is used in the Asgaard Project 1 to represent clin-
ical guidelines and protocols in XML. Asbru can be used to express clinical
protocols as skeletal plans [Friedland and Iwasaki, 1985] that can be instan-
tiated for every patient (for an example see Figure 2.18). It was designed
specific to the set of planmanagement tasks [Miksch, 1999]. Asbru enables
the designer to represent both the prescribed actions of a skeletal plan and
the knowledge roles required by the various problem-solving methods per-
forming the intertwined supporting subtasks. The major features of Asbru
are that

� prescribed actions and states can be continuous;

� intentions, conditions, and world states are temporal patterns;

� uncertainty in both temporal scopes and parameters can be flexibly
expressed by bounding intervals;

1In Norse mythology, Asgaard was the home of the gods. It was located in the heavens
and was accessible only over the rainbow bridge, called Asbru (or Bifrost) (For more
information about the Asgaard project see http://www.asgaard.tuwien.ac.at).

CHAPTER 2. STATE OF THE ART 25

� plans might be executed in sequence, all plans or some plans in par-
allel, all plans or some plans in a particular order or unordered, or
periodically;

� particular conditions are defined to monitor the plan’s execution; and

� explicit intentions and preferences can be stated for each plan sepa-
rately.

A clinical guideline represented with Asbru is a set of plans and actions
that are executed in a defined sequence. To control the execution of a plan
several conditions can be set like filter precondition, abort condition, and
complete condition. The execution sequence of actions (variable assignment,
forced user inputs, or conditions) or new plan-activations (plan, user per-
formed plan, or cyclic plan) are defined in the plan-body (see Figure 2.18)
of each plan [Aigner and Miksch, 2004]:

� sequential: The given actions are executed in the given order.

� parallel: The given actions are initialized at the begin and executed
parallel.

� any-order: Same as sequential, but actions can be defined in any order.

� unsorted: The actions are executed in any order.

Typically, each plan can be decomposed into other sub plans again and
again until a non decomposable plan is reached (recursive dissolving). There-
fore, an Asbru plan is a complex hierarchical structure with relationships and
interdependencies between single plans. Besides the hierarchical relation-
ships, also temporal dependencies can be defined. To deal with them, each
plan can contain time annotations, i. e. , attributes that describe the tempo-
ral behavior and aspects of a plan. This is realized using four time-points
(Earliest Starting Shift (ESS), Latest Starting Shift (LSS), Earliest Finishing
Shift (EFS), and Latest Finishing Shift (LFS)) and two durations (Minimum
Duration (minDu) and Maximum Duration (maxDu)). Time-points are de-
fined relatively to a specific or abstract reference-point2 [Aigner, 2003]. This
way of handling temporal uncertainties is equivalent to the proactive way
of dealing with temporal uncertainties in Project Management (see Section
2.1.4).

2As all time-points refer to a reference-point, they are termed as shifts. To have a
consistent terminology throughout this thesis, from now on shifts are also termed as time
(e. g. , Earliest Starting Shift (ESS) means the same as Earliest Starting Time (EST)).

CHAPTER 2. STATE OF THE ART 26

Figure 2.18: Example of Asbru 7.3 code: Parts of a clinical treatment plan for
artificial ventilation of newborn infants [Aigner and Miksch, 2004].

CHAPTER 2. STATE OF THE ART 27

2.2.4 Graphical Representation of Treatment Plans

As mentioned before, graphical representation is an important concern in
Protocol Based Care. Developed technical standards need to be communi-
cated to physicians, nurses, and other clinical staff who should work with
plans finally.

Graphical representation is an adequate way to communicate a treat-
ment plan in a way needed by clinical staff. If the visualization is done
properly, all different characteristic of a treatment plan (like hierarchical
decomposition, sequences, or conditions) can be shown within a single vi-
sualization application. Such an application allows to represent a guideline
in different levels of detail, therefore, on the one hand, a good overview of
the whole treatment plan is given, on the other hand, detailed views are
possible.

Several common charting techniques to visualize logical sequences and
hierarchical data are available and also thinkable (or already in use) in Pro-
tocol Based Care projects [Tu et al., 2002,Aigner and Miksch, 2004]:

� Flowcharts: Flowcharts are a powerful instrument to represent a con-
dition based plan (see Figure 2.19).

� Structograms, PERT charts and Petri nets: Techniques to view logical
and temporal sequences of a plan.

� Treemaps: A common technique to represent hierarchical data.

Figure 2.19: Example an flowchart algorithm (detection of a disease) [Hadorn,
1995].

CHAPTER 2. STATE OF THE ART 28

Especially flowcharts are popular in Protocol Based Care because most
physicians are familiar with this visualization technique, therefore accep-
tance is high. Each action is walked through depending on conditions placed
between them. Flowcharts represent the whole plan, which allows to trace
all possible states of a plan.

But, as mentioned before, a clinical guideline is a very complex plan
and all of these visualization techniques are not appropriate to join all re-
quirements of treatment plans. Therefore, combinations and extensions of
these general techniques are needed to produce a highly sophisticated and
practical visualization of treatment plans.

Graphical Representation Tool of Asbru Plans - CareVis

Besides the general demands of a visualization (like performance, intuitive
interaction, application safety, etc.), the main challenges in representation
of clinical guidelines written in Asbru are [Aigner and Miksch, 2004]:

� logical sequences;

� hierarchical decomposition;

� execution order; and

� conditions.

CareVis is a visualization tool for Asbru plans, designed to communicate
plans to clinicians. It was developed with the aim to solve the mentioned
problems within a single application. To meet the demands of physicians a
user study was performed (for more details see [Aigner, 2003]), the concepts
of CareVis are a result of this user study and an evaluation with experts.

Generally, CareVis (see Figure 2.21) consists of two different views, a
logical view on the left side to represent relationships and hierarchical de-
composition between plans, and a temporal view on the right side of the
application to display temporal dimensions of plans and patient data upon
time [Aigner and Miksch, 2006].

The logical view [Aigner and Miksch, 2004] represents the plan body
of an Asbru plan. That means, this view is responsible to illustrate the
logical order of plans in combination with conditions and the execution
sequence (see Figure 2.20). This is reached by applying modified flowcharts,
containing some additional information, i. e. , literature links or parameter
information.

Each plan that contains sub plans can be decomposed within this view.
Instead of a rectangular plan symbol, another (logical) view appears within
the original view. Besides the logical relations, this allows to show the
hierarchical decomposition of a plan [Aigner and Miksch, 2006].

CHAPTER 2. STATE OF THE ART 29

Figure 2.20: Logical view of the given Asbru plan (see Figure 2.18) [Aigner and
Miksch, 2004].

Figure 2.21: Screenshot of the CarVis application, including some patient data
[Aigner and Miksch, 2006].

CHAPTER 2. STATE OF THE ART 30

As an Asbru plan contains temporal dimensions too, these have to be
displayed separately. The temporal view is responsible to visualize these
temporal aspects of a selected plan in combination with additional patient
data over a period of time. A timescale is shown on the top of the temporal
view. All elements below refer to this scale. To visualize a plan regarding
to its temporal characteristics the visualization technique PlanningLines is
applied (see Section 2.1.3 and 3). The temporal view is coupled with the
logical view, that means, a selected plan in the logical view is shown in the
temporal view too. Besides the temporal aspects of a plan, the hierarchical
decomposition is also determinable (see Figure 2.21).

Applying two different views meets all specific demands to visualize As-
bru plans. Of course this visualization is specialized to Asbru plans, but
also other Protocol Based Care projects can advantage from this approach.

Graphical Authoring Tool for Asbru Plans - AsbruView

AsbruView is a visualization tool and user interface for Asbru plans, but
it is not specially designed to communicate plans to physicians. The main
purpose of AsbruView is authoring plans by scientists and medical domain
experts, that means creating of new plans and changing of already existing
ones [Kosara and Miksch, 2001].

AsbruView consists of three different views, a topological view, a tem-
poral view, and a third view called SOPOView. The topological view (see
Figure 2.22) exists of three dimensions: A dimension to represent logical de-
pendencies between plans referring to time, a dimension to display parallel
plans (width), and a dimension to display different levels of plans (hierar-
chical decomposition). Conditions and states of a plan are represented by
metaphors of daily life (i. e. , taffic signs).

Figure 2.22: Anatomy of the topological view in AsbruView [Kosara and Miksch,
2001].

The temporal view arranges plans along their chronological order. A
timescale referring to a given absolute reference-point, is placed on the top of
the view. Plans are displayed with a special sort of glyph (see Figure 2.23),

CHAPTER 2. STATE OF THE ART 31

similar to PlanningLines. Such a glyph consists of two rectangular bars
(standing for Minimum Duration (minDu) and Maximum Duration (maxDu)),
and four points (Earliest Starting Time (EST), Latest Starting Time (LST),
Earliest Finishing Time (EFT), and Latest Finishing Time (LFT)). Addi-
tionally, there exist several variations of this glyph (e. g. , different symbols)
depending on the amount of available points or durations. All points are
defined relative to the reference-point of the timescale.

Figure 2.23: Glyph of an plan in AsbruView (adapted from [Kosara and Miksch,
2001]).

Figure 2.24: Sreenshot of AsbruView [Kosara and Miksch, 2001].

The third view is called the SOPOView, which is based on Sets of Pos-
sible Occurrences (SOPOs) [Rit, 1986], a method to visualize tasks regarding
their temporal attributes. Similar to PlanningLines or the glyphs of the
temporal view in AsbruView , SOPOs also use a set of time-points (EST, LST,
EFT, and LFT) and two durations (minDu and maxDu). These points are
assigned on two time axes, one stands for starting-times, the other one for

CHAPTER 2. STATE OF THE ART 32

finishing-times (see Figure 2.25). Therefore, any point in this diagram rep-
resents a time interval with start and end-time, all given intervals within
the gray area are possible intervals of a certain task.

Figure 2.25: SOPO diagram (adapted from [Messner, 2000]).

The SOPOView can be chosen instead of another view to get an addi-
tional view of a plan (see Figure 2.26). Even if it is possible to read out all
relevant temporal information of a plan, this view has two disadvantages: It
is quite hard to depict hierarchical decompositions and parallel plans in a
usable way, and this kind of diagram is hard to understand (as a usability
study with physician showed) [Kosara et al., 2001].

2.2.5 Related Projects

There are several projects researching different approaches to support Pro-
tocol Based Care. Below, just a few projects are introduced3.

PRODIGY Project

The PRODIGY Project4 was funded by the Department of Health in Eng-
land. It is a computer-based decision support system, including a guideline

3For more information about Protocol Based Care projects see
http://www.openclinical.org (accessed on May 30th, 2006).

4For more information about PRODIGY Project see http://www.prodigy.nhs.uk (ac-
cessed on May 30th, 2006).

CHAPTER 2. STATE OF THE ART 33

Figure 2.26: Screenshot of the SOPOView in AsbruView [Messner, 2000].

model that is integrated to commercial medical information systems.
PRODIGY is scenario based, that means, depending on patient’s condi-

tion and actual treating, the model calculates possible scenarios and actions
for further treating based on defined rules (conditions). Considering already
applied scenarios, the therapy of a certain patient can be seen over time,
helping physicians to make decisions [OpenClinical, 2006].

EON

EON5, developed by Stanford Medical Informatics, is a suite of models and
software components supporting the creation of clinical guideline based ap-
plications [OpenClinical, 2006].

Encoding of EON guidelines is done in the Protégé-2000 knowledge-
engineering environment (developed by Standford University too), extended
by special demands of healthcare. Protégé is a knowledge framework using
plans which are based on ontologies. Graphical editors for creating and edit-
ing plans are available. Three different models were developed to meet the
requirements of Protocol Based Care: A model to represent patient data, an
information model containing domain specific attributes and relations, and
a model defining the structure of clinical guidelines called Dharma. Further,
some applications like a guideline-execution-engine or an explanation-server
are available [Tu and Musen, 2001].

5For more information about EON see http://smi-web.stanford.edu/projects/eon (ac-
cessed on May 30th, 2006).

CHAPTER 2. STATE OF THE ART 34

HGML

HGML6 - Hypertext Guideline Markup Language, developed by University
of Medicine and Dentistry of New Jersey, is a specification of condition and
recommendation-elements used in clinical guidelines. Tags are defined in
XML/XHTML which can be used in text guidelines.

Several applications were developed to work with guidelines supported
by HGML. That includes a web editor for reading guidelines and a patient
information system to collect data of patients and receive recommendations
for further treatments [OpenClinical, 2006].

As mentioned, one important issue in Protocol Based Care is communicating
clinical plans to users. This is reached by creating visualizations users can
work with. Therefore, the next Section refers to Information Visualization, a
scientific discipline specialized on the demands of graphical representations.

2.3 Information Visualization

2.3.1 Overview

The visual sense is the most sophisticated ability of humans - making data
visible to gain knowledge uses this strength of humans directly [Meyer, 1997].
Information Visualization is the scientific discipline to display abstract data
in a useful, clear, and comprehensible way.

There are several aims of Information Visualization. On the one hand, it
is used to provide insight in certain data and support exploration of these,
on the other hand, Information Visualization is applied to ensure under-
standing of information that is too abstract, too complex, or contains re-
lationships and dependencies to other information. Generally, the aim of
Information Visualization is communicating new information and facilitat-
ing new insights of the user.

As information can occur in countless variations, there are no general
rules how data has to be communicated, it always depends on the domain,
Information Visualization is applied for. But typically, Information Visu-
alization methods follow some common and appropriate paradigms. Such
paradigms are available for providing adequate visual representations for
the given information, but also for programming techniques to ensure well
engineered applications (regarding data storage, data transformation, visual
mappings, etc.).

Before mentioning these paradigms, some definitions should be given
beforehand to outline the scope of Information Visualization.

6For more information about HGML see http://infolab.umdnj.edu (accessed on May
30th, 2006).

CHAPTER 2. STATE OF THE ART 35

2.3.2 Definitions

Data

The terms information and data are often used interchangeable which leads
to confusion. However, these terms are not synonym. In general, data is just
a representation of something, often used for computer processing. Data
itself has no meaning, meaning primal occurs when data gets interpreted
[Joint Publications, 2001]:

“Representation of facts, concepts, or instructions in a formal-
ized manner suitable for communication, interpretation, or pro-
cessing by humans or by automatical means. Any representations
such as characters or analog quantities to which meaning is or
might be assigned.”

Data can be differed into physical data and abstract data. Physical data
refers to the real world (inherently referring to space), for example coordi-
nates or measurable data. Abstract data only exists in a virtual realty, that
means it is only valid within a defined space (see Section 2.3.2) depending
on the given context [Voigt, 2002]:

“... data that has no inherent mapping to space. Examples for
abstract data are the results of a survey or a database of the
staff of a company containing names, addresses, salary and other
attributes.”

Information

Information is data with an associated meaning [Joint Publications, 2001]:

“... The meaning that a human assigns to data by means of the
known conventions used in their representation.”

Information is data that always has to be seen in relation to its context or
topic. For example: A single number does not have any importance without
an additional context, therefore it can be specified as abstract data. If it
is known that this number is a phonenumber, the given number becomes
information. But if the same number is declared as a creditcard number,
completely different information is extracted out of the same data. How
data has to be interpreted is defined via the information space.

Information Space

The context (or topic) of an information is often called information space.
This space describes the virtual space a piece of information belongs to.

CHAPTER 2. STATE OF THE ART 36

Such a space can be represented as ranges of valid values, logic mechanism,
formal descriptions, etc.

To understand the information space it is important to see the rela-
tionships between objects in a semantic context (which can be multidimen-
sional). This often makes it difficult to create an information space and to
transmit this virtual space to users in a proper way.

2.3.3 Responsibilities of Information Visualization

Information Visualization is a method to visualize abstract data, informa-
tion, and knowledge to enable the viewer to see, to browse, and to under-
stand the information. Information Visualization is a very complex disci-
pline, covering many other disciplines like informatics, computer graphics,
or Human Computer Interaction (HCI). As mentioned in Section 2.3.1, In-
formation Visualization is based on visual impressions (mappings) which
can be perceived by humans. A well established definition of Information
Visualization is [Card et al., 1999]:

“... the use of computer-supported, interactive, visual represen-
tations of abstract data to amplify cognition.”

Furthermore, six ways are proposed on how visualization can amplify
cognition [Card et al., 1999]:

1. “by increasing the memory and processing resources avail-
able to the users,”

2. “by reducing the search for information,”

3. “by using visual representations to enhance the detection of
patterns,”

4. “by enabling perceptual inference operations,”

5. “by using perceptual attention mechanisms for monitoring,
and”

6. “by encoding information in a manipulable medium.”

Therefore, one of the general problems in developing adequate Informa-
tion Visualization methods is to create meaningful visual structures, con-
taining all necessary information a user needs to work with. But, besides
representing single information elements, also the information space has to
be communicated to users. That means, all relevant dependencies and re-
lations, but also assumptions, margins, validation criteria, etc. must be
considered. Concluding, there are always several possibilities on how infor-
mation can be represented, but only a few are really useful depending on
the purpose of a certain visualization.

CHAPTER 2. STATE OF THE ART 37

This is the reason, why Information Visualization should be seen in
contrast to scientific visualization that i predominantly works with physical
data [Voigt, 2002]:

“Information visualization should be seen in contrast to scientific
visualization, which deals with physically-based data. This kind
of data is defined in reference to space coordinates, which makes
it relatively easy to visualize in an intuitive way. The space co-
ordinates in the dataset are mapped to screen coordinates. Ex-
amples are geographic data and computer tomography data of a
body.”

As in scientific visualization visual structures are clear (given by na-
ture), in Information Visualization the design of visual structures has to be
explored beforehand.

Exploring the visual appearance of information not only depends on
the kind of data. It is very important to consider intended users as well
as the tasks the Information Visualization should support. That means,
the target group of users must be defined clearly, as different groups may
demand different representations of the same data. It heavily depends on
users’ background, domain knowledge, experience, etc. Further, also the
tasks of the Information Visualization must be declared beforehand.

But besides visual representations, also interaction techniques and dis-
tortion techniques have to be considered which are influenced by target
groups and performed tasks again.

2.3.4 Common Techniques

The main goal of Information Visualization is to represent information to
gain further knowledge. That means, by getting information represented by
a visualization, users are able to extract new information or knowledge out
of the existing. Information Visualization helps to gain knowledge because
it enables insight and exploration of certain data.

The task of developing an Information Visualization method is also
a process of gaining knowledge by exploration and analyzing data, called
Knowledge Crystallization.

Knowledge Crystallization

Knowledge Crystallization is the process of collecting information, finding
relations and schemata these information fit in, explore which information is
really relevant and which not. Finding the optimal schema can be a complex
task, but should result a meaningful Information Visualization (see Figure
2.27) [Card et al., 1999]:

CHAPTER 2. STATE OF THE ART 38

“The goal of a knowledge crystallization process is to get the
most compact description possible for a set of data relative to
some task.”

Figure 2.27: Knowledge Crystallization [Card et al., 1999].

Concluding, developing a Information Visualization also consists of mak-
ing a decision how information is presented finally.

Exploratory Techniques

Typically, the more complex information and their space are, the more com-
plex the visualization gets. An Information Visualization can apply several
techniques to communicate information to users (see Figure 2.28):

� Visualization Techniques: Specify how information is represented vi-
sually. Common techniques are graph views and hierarchical views,
other more complex techniques are icon-based or geometric.

� Distortion Techniques: Allow users to see information they are inter-
ested in, in a higher level of detail (focus), surrounding information in
a lower level of detail (context). Examples for distortion techniques
are fisheye-views or hyperbolic trees.

� Interaction Techniques: Allow users to control the visualization, like
zooming or panning (for more details see Section 2.3.5).

CHAPTER 2. STATE OF THE ART 39

Figure 2.28: Dimensions of Visualizations [Keim and Kriegel, 1996].

Once adequate visual mappings and techniques to represent informa-
tion are found, the actual technical development starts. There are several
methodologies on how an Information Visualization can be implemented,
like the Information Visualization Reference Model [Chi, 2000]. Another
common way for developing is the InfoVis Pipeline.

InfoVis Pipeline

The InfoVis Pipeline is a recommendation on how an Information Visu-
alization is structured. The pipeline starts with data on the one end and
ends with a finished visualization (view). This procedure is structured into
four forms of data, three data transformations and three steps of human
interaction (see Figure 2.29).

Starting with raw data, this abstract data is transformed into data ta-
bles. Each data row contains all the relevant values of a single data record
and additional information about relations or dependencies to other records.
Once the table is present, needed records are transformed into visual struc-
tures. In the end, the created visual structures are displayed in a view.

This process provides several advantages: First, each single step is per-
formed on user interaction. This does not mean, that a user has to confirm
each single step, instead the logic of the application can be implemented
for example in a way things are done only on demand (e. g. , in hierarchical
structures, visual mappings are just loaded one level in advance).

Another advantage is that different views can be applied to the created
visual structures, or different visual structures can be applied to a single
record of the data table. Therefore, different views can be given based on
the same abstract data.

Besides other advantages (e. g. , data loading on demand, etc.), this

CHAPTER 2. STATE OF THE ART 40

Figure 2.29: InfoVis Pipeline [Card et al., 1999].

methodology generally keeps a visualization expandable for further develop-
ment.

2.3.5 Interaction Techniques

Interaction is the only way users can control a visualization directly, there-
fore, developers have to pay special attention to interaction issues. Besides
the proper implementation of interaction techniques, it is important to take
care of a fast response time whenever the user interacts. Typically, comput-
ers allow interaction through keyboard (typing, shortcuts, etc.) and mouse
(moves, clicks, gestures), but sometimes also additional system-peripherals
are applied.

Panning

Panning is an interaction technique that helps to navigate within a view.
Instead of using a bounded view, a user interface that supports panning
typically has no bounds. That means, a user can navigate to any direction
without limitations given through bounds. Mostly, navigation with panning
is realized by dragging the mouse above a view and the view goes along with
the movements a user performs.

Zooming

Zooming allows the user to change the size of visual structures on the view.
Typically, not only the size of items is affected, but also spaces and distances
between items. Technically, each single point of a view is transformed to a
new position, depending on the zoom factor. Zooming is relevant, if there
are a lot of items or there are items of different size.

CHAPTER 2. STATE OF THE ART 41

Semantic Zooming

Semantic zooming means that not only sizes change when zooming (geo-
metric zooming), but also displayed contents change. When zooming in,
additional (more detailed) information is given (focus), when zooming out,
too detailed information is hidden (context). This can be applied to written
information of single items, but even new visual structures can be added or
removed of the view if necessary.

Semantic zooming is used to prevent clutter on the view. Whenever
an Information Visualization is thought to communicate much information,
ways have to be found to avoid an overspill of displayed information. Se-
mantic zooming is a method where users have to decide which information
they are interested in are shown in detail as they have interact before all
available information is displayed.

2.3.6 Software Toolkits supporting Information Visualiza-
tion

There are several toolkits supporting Information Visualization. Such toolk-
its provide methods to store data, create visual structures, and implemen-
tations of views. Typically, different interaction techniques that may be
extended on demand are also provided by visualization toolkits. Besides
proprietary toolkits, also open-source toolkits are available.

2.3.7 InfoVis Toolkit

The InfoVis Toolkit 7 (see also Section 4.2.2) is an interactive graphical open-
source toolkit written in Java, developed by the University of Paris-Sud. It
is designed to support the creation of advanced 2D visualizations in Java
Swing applications. Special attention was paid to process large amounts of
data. Its main features are [Fekete, 2004]:

� “Generic data structures suited to visualization.”

� “Specific algorithms to visualize these data structures.”

� “Mechanisms and components to perform direct manipula-
tion on the visualizations.”

� “Mechanisms and components to select, filter and perform
well-known generic information visualization tasks.”

� “Components to perform labeling and spatial deformation.”

Data is stored in a unified underlying data structure based on tables.
Tables allow to represent nearly every kind of data structure and improves

7For more information about the InfoVis Toolkit see http://ivtk.sourceforge.net (ac-
cessed on May 30th, 2006).

CHAPTER 2. STATE OF THE ART 42

memory usage and performance. In this point, the InfoVis Toolkit is conform
with the Visualization Reference Model (see Section 2.3.4).

Some layout and rendering algorithms are predefined, which makes it
very easy to create standard visualizations like treemap or graph visualiza-
tions. Own, more complex visualizations, can extend existing controls or
create new ones. The display can be bound directly to its underlying ta-
bles, that means when a value in a table changes, the display is notified
about that to be able to react. Also some interaction techniques are already
implemented, like zooming and navigation techniques.

Figure 2.30: A Table Matrix and a Treemap realized with the InfoVis Toolkit
[Fekete, 2006a].

2.3.8 Prefuse

Prefuse 8 (see also Section 4.2.3) is an open-source toolkit written in Java,
developed by the University of California, Berkeley.

For each abstract data item, a node is created and stored withing a
graph structure. Relations between nodes are saved as edges that can be
visualized too. All nodes are hold centralized in a container that is able
to transform these abstract data into visual structures. Visual structures
are created separately out of the abstract nodes. This separation between
abstract and visual data is often referred as polylithic design (in contrast to
monolithic design where abstract and visual data are concentrated within
one object).

Several interaction techniques are already predefined (like zooming or
panning). Further, Prefuse provides layout and assignment algorithms that
place visual structures on the view. Typically, interaction and layout algo-
rithms are defined as action, which are combined within runnable containers

8For more information about Prefuse see http://prefuse.sourceforge.net (accessed on
May 30th, 2006).

CHAPTER 2. STATE OF THE ART 43

that are performed on input events (mouse, keyboard, etc.). Instead of using
predefined actions, they can be easy extended to meet own requirements.

Not only abstract and visual data is separated in Prefuse, also the paint-
ing of items is performed by own objects. Renderers are assigned to visual
structures that perform all painting issues of an object. Implemented ren-
derers are hold centralized in a factory, therefore a visualization can use
different renderers for nodes and edges (i. e. , this allows semantic zooming).

Figure 2.31: Network diagram showing social structures realized with the Prefuse
Toolkit [Heer et al., 2005].

2.3.9 Piccolo

Piccolo9 is an open-source toolkit written in Java and C#, developed by the
University of Maryland. During design of Piccolo, most attention was set
to realize Zoomable User Interfaces (ZUIs).

Data is stored in a scene-graph, that means nodes containing data are
hierarchically stored together with additional elements like cameras or layers
that contains visual transformations or grouping information. A layer con-
tains one or more nodes that can be viewed with a camera. This structure
is very complex but provides a lot of possibilities, especially with regards to
viewing and navigating.

In contrast to Prefuse, Piccolo uses a monolithic design. A node contains
abstract as well as visual data, further painting issues are performed by a
node itself. This design ensures fast results when developing an Information
Visualization but extensions of functionality are more difficult to realize.

Piccolo was developed to support developing 2D graphic programs with
special demands in zooming. Piccolo provides smooth animated zooming,
animated panning, and a lot of other effects. Other functionality provided
includes efficient repainting of the screen with bounds management, event
handling and dispatching, picking, and layouting.

9For more information about Piccolo see http://www.cs.umd.edu/hcil/piccolo (ac-
cessed on May 30th, 2006).

CHAPTER 2. STATE OF THE ART 44

Figure 2.32: Tree realized with the Piccolo Toolkit [Piccolo, 2006].

Figure 2.33: Graph realized with Syncfusion Diagram.

CHAPTER 2. STATE OF THE ART 45

2.3.10 Syncfusion Essential Diagram

In general, Syncfusion10 is not a Information Visualization toolkit, but a
commercial component library for .NET applications. However, one of its
components, the Essential Diagram provides a highly interactive form to
represent visual structures. This makes the Essential Diagram to an inter-
esting component doing Information Visualization in .NET.

Essential Diagram uses the Model-View-Controller (MVC) design pattern
to clearly separate data, presentation, and user interaction. Visual data
structures are hold in a model, a view renders the model to the screen, and
a controller handles user inputs.

Data is stored hierarchically, that means each visual structure (node) can
contain parents and children. Besides the logical structure, also a graphical
structure can be applied by using edges (see Figure 2.33).

In practice, Essential Diagram is easy to use for smaller visualizations.
Realization of complex visualizations with special demands is a quite hard
task, because extension of fundamental classes (like the model or the view)
is not or only with additional effort possible.

The major goal of this work is the development of a prototype representing
plans with the concept PlanningLines. Therefore, after outlining and dis-
cussing surrounded scientific disciplines, next Chapter describes this concept
and its notation in detail.

10For more information about Syncfusion see http://www.syncfusion.com (accessed on
May 30th, 2006).

Chapter 3

PlanningLines

Treating temporal uncertainties is an important task in planning. Informa-
tion Visualization in combination with PERT provides a way to deal with
them in a comfortable and practical manner (see Section 2.1.5 and 2.3.3),
but temporal facts are only represented textually. Even if PERT is a widely
spread and accepted technique, the textual representation may be a dis-
advantage, especially when mapping large and complex plans. Getting an
overview and identifying problems can be hard work. Therefore, PERT is
usually used in combination with other charting techniques like Gantt to
minimize these disadvantages.

A possible alternative to PERT is the charting technique PlanningLines,
which represents temporal attributes in a graphical way. Even if the con-
cept PlanningLines was originally developed to represent medical treatment
plans, it is a suitable and adequate technique for any kind of plan regarding
to time.

3.1 Comparison to PERT and Gantt

As PlanningLines were developed to treat temporal uncertainties in combi-
nation with a clear and meaningful representation of tasks, there are some
advantages compared to PERT, which is the most common charting tech-
nique used to deal with temporal uncertainties:

� Indeterminacies: PERT is a visualization technique that uses textual
descriptions of temporal facts. Only tasks and their interdependencies
are shown visually (a common variation also illustrates hierarchical
decomposition). Missing attributes of a task do not influence the vi-
sualization at all, only some empty text-fields allow to identify these
indeterminacies. The notation of PlanningLines considers missing val-
ues by communicating all given (and also missing) temporal conditions
of a task to users visually. To treat all possible combinations of tempo-

46

CHAPTER 3. PLANNINGLINES 47

ral attributes, also special constellations of PlanningLines can occur.
This allows users to spot eventual problems at a glance.

� Chronological Interdependencies: PERT charts only represent logical
relations between tasks. Chronological interdependencies must be
gathered by textual information. As PlanningLines uses a timescale to
which all tasks refer, all coherencies within a plan can be determined
easily.

� Perceptibility of Tasks: All tasks represented with the PERT notation
have an identical look. Visually, it does not make a difference how long
a task lasts or if an activity contains temporal uncertainties. This
representation makes it hard to distinguish tasks by their temporal
facts (which is often equivalent to the importance or value of a task).
Especially in large and complex plans, identifying possible problems
and coherencies or getting an expressive overview may be hard to
achieve. PlanningLines allows to retrieve all important information at
a glance.

All these problems are caused by the underlying notation of PERT charts
which basically is based on textual descriptions. Relevant temporal infor-
mation must be gathered by users themselves from these descriptions. The
accumulation process can be hard work, therefore in practice only slack
times between tasks are considered mostly. But, it is easier to retrieve de-
tailed temporal information of textual description. Visual information may
be easy to conceive but getting details may be difficult.

To map tasks referring to time, Gantt is the leading charting technique
used. Gantt charts allow a well structured and clear visual representation of
tasks along time. This technique is based on a timescale all task refer to,
therefore the start and end of a task can be identified at a glance.

Coherencies and durations of tasks are easy to determine, an extension
of the notation even allows to represent hierarchical decomposition. As the
visual sense is the most sophisticated ability of humans, Gantt charts are
usually conceived quickly and offer a clear and meaningful overview of a
plan. Nevertheless, insight is communicated too when using hierarchically
decomposed plans. As established this technique is, there is no notation to
consider temporal uncertainties in Gantt charts so far.

PlanningLines tries to combine the advantages of PERT and Gantt charts.
That means, tasks are represented as usual in a Gantt chart, containing
additional temporal attributes as used in PERT that are represented visually.

3.2 Requirements

Originally, the concept of PlanningLines was designed to enable a temporal
view of treatment plans written in Asbru for clinical staff like physicians

CHAPTER 3. PLANNINGLINES 48

or nurses. Both, application area and target group, require some special
demands a charting technique must fulfill.

First, as most medical staff is not familiar with complex visualization
techniques, an essential demand of PlanningLines is a visual form domain
experts can work with. This means, the notation of PlanningLines must be
clear, easy to understand, and relevant information have to be communicated
in a way users can conceive them fast.

Further, a medical task within a treatment plan can contain a lot of
complex data, including temporal uncertainties. As Asbru uses several loose
attributes (e. g. , possible start and end-times or possible durations a task
can last), the notation of PlanningLines must support all occurable combi-
nations of these attributes (including missing ones). All temporal attributes
should be represented in a clear visual form instead of textual descriptions.

Also, a treatment plan written in Asbru usually contains a lot of differ-
ent single tasks that can be interrelated. Such coherencies can be logically
(e. g. , Task B follows Task A) or hierarchically (e. g. , Task B consists of
Task C and Task D). These relationships also have to be communicated to
users to ensure a correct understanding of the whole plan.

Concluding, besides the notation also the interaction possibilities of an
application that uses PlanningLines are of interest. Well considered interac-
tion techniques ensure a useful and meaningful view, on the one hand, and
usability and acceptance increases on the other hand .

Even if these requirements are intended for the medical domain, also
demands of planning in general are covered therewith. The original concept
was expanded and modified by the demands of Project Management , so
PlanningLines are suited to fulfill issues of Project Management too.

3.3 Design Concept

Considering the mentioned requirements, two major issues can be identi-
fied1: first, the representation of a single activity or task, second, the rep-
resentation of multiple tasks belonging together (e. g. , parts of a plan or a
whole plan) [Aigner et al., 2005a].

As the concept is though to be applied in a visualization, there is are
several other issue that may affect the representation (e. g. , graphical ex-
tensions and applied interaction techniques). But such concepts are not
strictly defined, therefore, developers of a visualization may combine the
original concept with other concepts and interaction techniques (see Section
4).

Representing a single task is realized using a glyph (“A symbol, such as a
stylized Figure or arrow on a public sign, that imparts information nonver-

1All shown images in this Chapter are design concepts. The representation used by
the prototype may differ in some details.

CHAPTER 3. PLANNINGLINES 49

bally” [Morris, 2000]). Generally, this glyph provides the same information
graphically as an element of PERT does textually.

As all information refer to time, such a glyph always depends on another
graphical element representing time. Typically, time is illustrated by using
a more or less detailed timescale to which all glyphs of a plan are related.

The second major goal considered in the design concept is the represen-
tation of multiple glyphs and their coherencies among each other. There are
two kinds of coherencies that can be distinguished, logical relations between
tasks or tasks that are composed hierarchically. All developed concepts
falling in this domain support a well structured view on a plan, facilitat-
ing the identification of critical areas, helping to understand relations, and
allowing a comparison of tasks and activities.

3.3.1 PlanningLine Glyph

The glyph used to represent a task of a plan with PlanningLines has to
cover all temporal attributes of a task. To reach this, the concept of Life-
Lines [Plaisant et al., 1998] was extended by several elements. A LifeLine is
a horizontal bar showing time-oriented data. The new visual element which
is resulted of these extensions is called PlanningLine.

The most important extension that was applied is the possibility of rep-
resenting more time attributes than just the begin and end of a task. A
PlanningLine glyph consists of several graphical elements nested into each
other (see Figure 3.1). These additional elements allow to visualize all at-
tributes used in a typical PERT task.

Figure 3.1: 3D concept of a PlanningLine glyph.

Instead of using an explicit start and end-point, intervals are applied to
PlanningLines. These intervals are represented with caps bounding both
start and end of a PlanningLine. Encapsulated between these intervals
are two bars, illustrating a minimum and maximum duration of a task.
Combinations of these elements provide multiple ways of modeling temporal

CHAPTER 3. PLANNINGLINES 50

facts, and, they are also capable to illustrate temporal uncertainties and
indeterminacies.

Temporal Attributes

A glyph consists of following temporal attributes [Aigner et al., 2005a] (see
Figure 3.2):

� Starting-interval (Earliest Starting Time (EST) and Latest Starting
Time (LST));

� Minimum Duration (minDu) and Maximum Duration (maxDu); and

� Ending-interval (Earliest Finishing Time (EFT) and Latest Finishing
Time (LFT)).

Figure 3.2: Visual representation of a PlanningLine.

These temporal facts imply that the actual starting-time of an activity
might be any point between EST and LST, the actual finishing-time between
EFT and LFT. Also the actual duration of an activity is not given exactly,
it might be any timespan between minDu and maxDu.

The mental model (see Figure 3.3) for the glyph illustrates how the
time attributes have to be seen: Both caps representing possible intervals
of actual start or end hold the duration bars in between. These caps are
fixed (bound to a timescale), as they are given concretely by EST, LST, EFT,
and LFT. The duration bars are only defined by spans, they can be moved
to left or right as much as the bounding caps allow. Further, the minimum
duration bar must be within the maximum duration bar.

Time annotations can either be given absolutely referring to a timescale
(e. g. , 25 June 2006), or relatively to a reference-point (e. g. , 5 minutes after

CHAPTER 3. PLANNINGLINES 51

Figure 3.3: Mental model of a PlanningLine.

the end of Activity X). This is especially useful in medical treatment plan-
ning, as plans are usually reused (e. g. , composing a plan of some predefined
subplans).

Figure 3.4: Model of a PlanningLine with relative time annotations (adapted
from [Aigner, 2003]).

Temporal Attribute Constraints

To obtain a valid set of temporal attributes, some logical constraints must
be complied with. These constraints can be easily derived by considering
the underlying mental model of a PlanningLine. Formally, these constraints
are [Aigner et al., 2005b]:

� The interval between the Latest Starting Time (LST) and the Earliest
Finishing Time (EFT) defines the smallest possible and the interval
between the Earliest Starting Time (EST) and the Latest Finishing
Time (LFT) defines the largest possible time window for the duration
of an activity.

� For each single time-point in the starting-interval [EST, LST], there
must exist at least one duration out of [minDu, maxDu], which allows
the finishing-interval [EFT, LFT] to be reached.

� Each single time-point in the finishing-interval [EFT, LFT] must be
reachable by at least one duration out of [minDu, maxDu] from the
starting-interval [EST, LST].

� Each duration must connect one instant in the starting-interval with
one instant in the finishing-interval.

CHAPTER 3. PLANNINGLINES 52

Regarding to the mental model, the interval caps hold both duration
bars. That means, each duration bar must be at least as large as the spaces
between LST and EFT, otherwise the bar would fall out. Furthermore, no
possible duration can last longer than the given caps allow as the bars would
not fit in. Therefore, following general logical rules can be given to maintain
a valid PlanningLine [Duftschmid, 1999]:

� LST ≥ EST, LFT ≥ EFT, EFT ≥ EST, LFT ≥ LST, maxDu ≥ minDu

� minimum(EFT-EST, LFT-LST) ≥ minDu ≥ EFT - LST

� LFT - EST ≥ maxDu ≥ maximum(EFT-EST, LFT-LST)

Indeterminacies and Special Constellations

To obtain a valid PlanningLine, the set of time attributes must not be
complete. Even if one or more attributes are missing, it is often possible
to create a complete PlanningLine anyway. Depending on the given logical
constraints, missing attributes can be calculated manually if they can be
determined from others. Nevertheless, the logical rules only define valid
intervals of durations. Therefore, all calculations are based on following
assumptions:

1. Maximum Duration (maxDu) defines the span between EST and LFT

(although the rules would also allow a shorter duration).

2. Minimum Duration (minDu) defines the span between LST and EFT

(even though a longer duration would be possible).

3. In case of overlapping intervals, the shortest possible duration between
the intervals is taken for the Minimum Duration (minDu).

As calculations are only possible when at least one duration is given,
firstly, it must be tried to extract them out of the given time-points if one
or both are missing. The minDu can only be calculated if LST as well as EFT

are defined:

minDu = EFT − LST (3.1)

In case of overlapping intervals and defined EST or LFT, the second logical
rule is assumed for the minDu:

minDu = minimum(EFT − EST, LFT − LST) (3.2)

The maxDu is calculated with the LST and EFT. If one of these is missing,
it is not possible to determine a plausible duration:

CHAPTER 3. PLANNINGLINES 53

maxDu = LFT − EST (3.3)

Once, at least one duration is predefined in the plan or was calculated
considering above given rules, other missing time-points are tried to cal-
culate. Typically, outer points of intervals are calculated considering the
maxDu, inner points with regards to the minDu. Appendix A shows all con-
stellations of a PlanningLine where calculations are possible. Further, the
applied formulas for each constellation are given too (regarding to the Equa-
tion numbers).

In case of LST or EFT is missing, following rules are applied:

LST = EFT −minDu (3.4)
EFT = LST + minDu (3.5)

If both, LST and EFT, are missing, but, a minDu and EST or LFT is given,
following rules are applied in the given order. That means, if EST is defined,
it is assumed that there is no starting-interval. In this case, EFT must
be reached in Minimum Duration (minDu). Otherwise, an indeterminate
ending-interval is assumed and the LST of the starting-interval is calculated:

EFT = EST + minDu (3.6)
LST = LFT −minDu (3.7)

In case of EST or LFT is missing, a calculation of maxDu was definitely
not possible, therefore, an existing Maximum Duration (maxDu) was defined
in the plan. Nevertheless, to stay consistent in all calculations this defined
duration is also seen as maximal possible duration a task can last. Therefore,
following rules are applied:

EST = LFT −maxDu (3.8)
LFT = EST + maxDu (3.9)

Such calculated attributes are displayed as if they were present. Also, if
either the start-interval or the end-interval is indeterminate (EST or LFT is
missing and calculation is not possible), instead of the caps little diamonds
illustrate the only given time-point (see Figure 3.5). If neither calculations
nor diamonds make it possible to obtain a valid PlanningLine, it will not
be displayed.

Regarding to the given rules and considering handling of missing at-
tributes, some special constellations of a PlanningLine can occur. These
constellations reach from overlapping intervals to the use of diamonds in-
stead of caps [Aigner et al., 2005b] (samples with explanations of special
constellations, see Figure 3.6).

CHAPTER 3. PLANNINGLINES 54

Figure 3.5: PlanningLine with no starting-interval.

Figure 3.6: Examples of special constellations of PlanningLines: (a) shows over-
lapping intervals, (b) has no maximum duration, (c) earliest and latest starting-
time is the same, (d) missing latest finishing-time in combination with a not defined
maximum duration.

3.3.2 PlanningLines Display

The responsibility of the display is the representation of multiple activities.
Typically, a plan consists of several interrelated tasks. Once all tasks are
fulfilled successfully, also the plan itself has reached its end. Therefore,
when visualizing a plan, it is important to take care of a meaningful and
clear representation of the single tasks themselves, but the representation of
their coherencies among each other must be considered too.

Besides dealing with logical relations, the concept of PlanningLines also
contains the handling of hierarchically decomposed activities. As practice
has shown, it is useful to split bigger activities or tasks into smaller pieces
of work (called subtasks). On the one hand, this method allows to view a
plan in different levels of detail, on the other hand, smaller tasks are better
to manage in reality.

As PlanningLines were originally designed to represent Asbru plans
which are composed hierarchically, a notation of representing hierarchies
was applied to PlanningLines from the beginning. But also in Project Man-
agement hierarchical decomposition is a common technique to map complex
project plans.

Arrangement of PlanningLines

Generally, the representation of PlanningLines uses a two-dimensional chart
where the horizontal axis refers to time and along the vertical axis Planning-
Lines are arranged (in case of hierarchical decomposition also the depth of
tasks). This view is exactly the same view as used by hierarchical Gantt

charts.

CHAPTER 3. PLANNINGLINES 55

Time is represented with a timescale. This scale is placed in the top of the
view and all PlanningLines relate to this timescale. The entire view depends
on the actual interval represented by the scale. That means, the horizontal
alignment (position and dimension) of every PlanningLine is designated by
the actual state of the scale.

The single PlanningLines are listened along the vertical axis, starting
with the root activity on the top. The arrangement depends on the used
layout algorithm, but typically items are sorted downwards along their ac-
tual start. However, as the concept PlanningLines also supposes logical re-
lations and hierarchical decompositions (see Section 3.3.2 and 3.3.2), some
restrictions in alignment are given as these coherencies force a grouping of
related PlanningLines.

Timescale

The timescale on the top of the view is the central element of the view
[Aigner, 2003]. In fact, a scale consists of two points, a start-point on the
left of the view and an end-point on the right. The interval represented by
these points can be in the past, the present, or in the future. The interval
is separated by several vertical lines with additional captions that represent
points in time. The distance between these ticks depends on the granularity
of the scale (see Figure 3.7). Granularity is the separation of a time interval
into logical units. The timescale shown in Figure 3.7 has a granularity of
minutes for the bigger ticks and a granularity of 15 seconds for the smaller
ones.

Figure 3.7: Sample timescale with the granularity minutes (adapted from [Aigner,
2003]).

A timescale in an Information Visualization typically is dynamic. That
means, the user can affect which interval is actually represented. Going
conform with the scale, the entire view of a plan has to be adapted whenever
a user interacts and vice versa. Only PlanningLines containing points which
fall into the interval the timescale actually represents are visible. Also the
actual width of a PlanningLine may change on users’ interaction as it also
depends on the actual interval.

As the timescale can map every possible time interval, also granularity
has to be dynamic. Granularity can be any possible and adequate time span
(e. g. , milliseconds, hours, days, years, 50 years, etc.). It depends on the
application if a user can choose granularity itself or if it is set automatically
(best fitting to the interval actually represented).

CHAPTER 3. PLANNINGLINES 56

Logical Relations

Due to possible logical relations of tasks among each other, the display has
to care about a representation of these coherencies. In contrast, also loose
activities can exist, that means their execution start is not dependent on
any other activities. Two different kinds of logical relations are supported
by PlanningLines.

� End/Start: The actual start of an activity is only possible when one or
more other activities have already finished. Such a logical relation is
necessary when the actual activity depends on the output or resources
of its predecessors. If an activity has more than one predecessor, com-
pletion of all of them is assumption before the execution of the activity
can start.

� Start/Start: The actual start of an activity triggers other activities to
start. This can be useful when two or more activities share the same
resources.

PlanningLines uses connecting arrows to display logical relations (see
Figure 3.8). An arrow starts from the predecessor and points to the suc-
cessor, it also indicates the direction of the relation. It is very import to
take care of a clear illustration of these coherencies, because logical relations
can easily cause problems in fulfilling a plan. By using arrows, users of the
visualization can spot these areas at a glance.

Figure 3.8: Sample of a (a) Start/End relation and a (b) Start/Start relation.

Hierarchical Decomposition

Hierarchical decomposition is given whenever a task is split into smaller
pieces of work. That means, the activity stands for a summary of other
tasks. The depth of the resulting hierarchy is not restricted in any way, so
it is ensured that large and complex plans can be visualized too.

CHAPTER 3. PLANNINGLINES 57

Figure 3.9: Hierarchical decomposition displayed with PlanningLines. (a) shows a
collapsed PlanningLine noticeable by the expanding-symbol, (b) shows an expanded
PlanningLine as summary bar.

A PlanningLine containing other activities is marked with a small tri-
angle on its left side. This symbol is well known from different applications
representing expanded or collapsed states of leafs in a tree view. Once a
PlanningLine is expanded, a summary bar appears instead of the Planning-
Line. A summary bar (see Figure 3.9) is a line with triangular ends. As
this bar refers to the timescale too (its width is the same as the task lasts),
it is possible to recognize its containing subtasks by following the vertexes
of the ends.

This representation also allows to illustrate deeper hierarchies as further
summary bars have to fit in their particular parents’ summary bar.

Expanding or collapsing such a hierarchy is performed by users. There-
fore, users can choose the level of detail on how a plan is shown. An ex-
panded task provides more details than a collapsed tasks. Therefore, users
can choose the level of detail of certain areas of the whole plan.

3.4 Example of a Project Plan

Figure 3.10 shows a part of a project plan of a construction work using
PlanningLines. Most of the described notation is used within this plan.
The timescales’ granularities are weeks and days, weekends are highlighted
additionally.

This plan uses hierarchical decomposition to combine activities. In case
of collapsing the whole plan, only two activities would remain: the activ-
ity “Carcass” (including all work from “Earthworks” to “Roof”), and the
following work “Screed”. Withing the first summary bar, there is the com-
posed activity “Fundament/Walls” containing “Foundation” and “Walls and
Ceilings”.

All activities are connected with arrows which describe logical relations
among each other (“End/Start” relations). Especially the task “Screed” is
interesting in this context: it follows “Windows/Doors” as well as “Roof”.
That means that the whole “Carcass” must be complete before the actual
start of “Screed”.

Different forms of temporal uncertainties are also included. When com-
paring the two activities “Windows/Doors” and “Roof” one can see at a

CHAPTER 3. PLANNINGLINES 58

glance that the activity “Windows/Doors” is afflicted with more uncertain-
ties regarding begin and end than activity “Roof”. On the one hand, “Win-
dows/Doors” has a lot of slack time and large beginning and ending-intervals
whereas activity “Roof” has a fixed beginning and much less uncertainty in
its finishing-time. On the other hand, activity “Roof” is more indeterminate
in terms of its duration compared to “Windows/Doors”.

Figure 3.10: Example of a simple project plan, including logical relations and
hierarchical decomposition (adapted from [Aigner et al., 2005a]).

3.5 Temporal Uncertainties

The notation of PlanningLines allows an exact treating of temporal uncer-
tainties. It enables the creation of a plan with a flexible time schedule.
Applied time annotations in combination with logical relations and hierar-
chical decomposition allow the representation of nearly every thinkable plan
that refers to time.

Generally, time is an important factor in planning. Thinking about
temporal uncertainties does not guarantee a perfect execution of a plan.
But, thats for sure, thinking about temporal facts beforehand will cause
better elaborated plans than ignoring them. The use of flexible start and
end-points in the concept PlanningLines supports creation of flexible plans.
A graphical representation helps to grasp sequences and relations. The
resulting perceptions of the graphical representation flows back into planning
itself, but they are also useful while execution of a plan to track progress.

PlanningLines use a proactive way of treating temporal uncertainties,
that means possible uncertainties are considered before the actual execution
of a plan starts (see Section 2.1.4). This way demands some flexibility

CHAPTER 3. PLANNINGLINES 59

applied to the whole plan (therefore to most of the single activity too).
PlanningLines provide the needed flexibility by using a complex set of

time annotations. These attributes allow defining floating begins and ends
of activities. That means, instead of using a fixed begin and end an interval
indicates a time span when an activity can start or end. This flexibility is
used through the whole plan (e. g. , if one activity has a floating end, also
its successor may consider this circumstance using a floating start).

Besides these intervals, also the given durations used in PlanningLines
help to apply flexibility to a plan. Typically, they are used to define the
finishing-interval once a start-interval is given. But in more sophisticated
plans, these durations also can be independent from the intervals (as long
as they fulfill the logical constraints (see Section 3.3.1)). In this case, these
durations help to estimate the probable end once an activity has started, or
even can help to set priorities of tasks (e. g. , activity has started very late,
to keep time schedule of the whole it is necessary to complete this task in
minimum duration).

Typically, planning does not consider temporal uncertainties. In prac-
tice, often fixed durations are assigned to tasks. But, estimations of dura-
tions are mostly ascertained using an interval (e. g. , “this work lasts between
three and five days”). When no flexibility is applied to a plan, any duration
of the estimated interval is assumed. If perfect conditions and circumstances
are expected, the smallest duration flows into the plan, otherwise a longer
duration.

PlanningLines allows to consider each point within an ascertained inter-
val. If more temporal information are available (e. g. , estimation of dura-
tions and time-slot for execution), these facts are also taken into account.
But it is also possible to work with fixed time slots and fixed durations as
used in Gantt charts for example. This can be obtained by equalizing related
attributes (EST and LST, EFT and LFT, minDu and maxDu).

Considering temporal uncertainties with PlanningLines provides a visual
impression of all activities including all possible characteristics of them. As
all attributes are represented graphically in a logical order, characteristics
of tasks can be seen at glance. But the visualization can also put only parts
of a plan in perspective. Therefore, possible problems not seen at design
time can be spotted easily, so solutions for these problems can be worked
out before execution starts.

3.6 Discussion

The concept PlanningLines is an alternative to common charting techniques.
It combines the powerful view of Gantt charts with the exact presentation of
temporal uncertainties used in PERT. As all information are provided graph-
ically without loosing details, this technique is suitable for use in professional

CHAPTER 3. PLANNINGLINES 60

Project Management too.
Comparing PERT with PlanningLines, a user evaluation showed that

users are capable to use and apply PlanningLines easily [Aigner et al.,
2005b]. On the one hand, detailed questions about temporal uncertain-
ties could be answered, even if PERT is advanced in this point. On the other
hand, critical sections are spotted easier using PlanningLines than PERT.
This result was predictable, as it is harder extract exact information from
graphical content than textual content. However, this problem is solvable
using an advanced user interface providing additional textual information.
Concluding the evaluation study, PlanningLines are easy to understand and
are accepted by the participants as a practical technique.

After presenting PlanningLines and its notation in detail, the next Chapter
describes the requirements of the prototype. There, also applied techniques
of Information Visualization are illustrated. These techniques help to nav-
igate within a plan, but also provide additional textual information for a
better representation of temporal attributes.

Chapter 4

Prototype Design

After the theoretical part and a detailed Section of treating temporal un-
certainties with PlanningLines, the practical part of this thesis, a prototype
applying PlanningLines to MS-Project and Asbru plans, is now outlined.
The implementation of the prototype was done within the scope of the As-
gaard Project following the intention of resulting a sophisticated and usable
application. There are several purposes this application and its development
should meet:

� Demonstrating the power of PlanningLines within a practical Infor-
mation Visualization.

� Extending the notation of PlanningLines with an adequate user inter-
face and interaction techniques, helping to communicate all informa-
tion to users.

� Providing a base for the temporal view of CareVis (see Section 2.2.4).

� Evaluating and testing of open-source toolkits for graphical visualiza-
tions.

Generally, the toolkit was developed using Java1 SDK 1.4 in combination
with the development platform Eclipse2.

4.1 Requirements and Environment

Meeting the requirements of the prototype can be divided into several dif-
ferent areas. Besides the given development environment of the Asgaard
Project , used toolkits for managing data and graphical representation have

1For more information about Java see http://java.sun.com (accessed on May 30th,
2006).

2For more information about the Eclipse development platform see
http://www.eclipse.org(accessed on May 30th, 2006).

61

CHAPTER 4. PROTOTYPE DESIGN 62

to be cleared up beforehand. Choosing suitable toolkits depends on fac-
tors like the selected data structure of storing tasks and their information,
planned interaction techniques, performance issues, and the possibility of
manipulating a given toolkit in a way needed by the application (exten-
sions, compatibility, etc.).

4.1.1 Basic Environment

The application must be platform independent, it should be executable using
Microsoft, Apple, and Linux operating systems. Thinking about its proper
purpose, a graphical visualization, the need of dealing with complex data,
the surrounding environment of the Asgaard Project , and the availability of
open-source toolkits Java seems to be the adequate programming language.

At the time of development start, Java 1.4 was in use for writing appli-
cations for the Asgaard Project . To stay compatible, this version was also
used for this prototype even though newer versions were already available.

Besides standard Java and Java Swing components, also open-source
components are accredited to ensure fast development on the one hand and
to get insight views of them for further development on the other hand.

In the end, there should be an executable Java Archive (Jar) running
on the mentioned operation systems without further requirements than an
installed Java-engine.

4.1.2 General Requirements

As in every graphical visualization, special attention has to be paid towards
performance. Often executed algorithms have to be optimized, painting of
components may not waste too much time, and especially repainting should
be executed only when necessary.

Another issue is memory usage and management of data structures.
Complex data structures should be created only when needed, furthermore,
fast access must be ensured to often used data. A large amount of mem-
ory can also affect performance, and often memory usage can be minimized
when an application is well developed. Therefore, abstract data and visual
structures are only created when needed. As the plans are hierarchically
decomposed, children of a task are only loaded on demand, that means, a
user must explicitly request to see respective subtasks.

As this application represents a prototype with potential to be once part
of a sophisticated practice tool supporting Protocol Based Care (see CareVis,
Section 2.2.4), it is important to choose an architecture that allows further
development easily. Therefore, interfaces must be defined well, classes must
be separated strictly, and the classes must be written in a way they can
be extended easily. The demand of flexibility and ability of extension also
requires well defined namespaces to ensure a logical structure of objects.

CHAPTER 4. PROTOTYPE DESIGN 63

Information Visualization Pipeline

The development process should follow the Information Visualization Refer-
ence Model (also called InfoVis Pipeline, Section 2.3.4). On the one hand,
this model defines internal operations of an Information Visualization like
data transformations, and on the other hand, it sets clear points where a
user can interact.

The recommendations of the InfoVis Pipeline affect the whole architec-
ture of an application. Therefore, the consideration of this model from the
beginning on is essential.

To go conform with the InfoVis Pipeline, using of toolkits must be eval-
uated toward their possibilities to stay within the model, as the storage and
transformation of data is strictly regulated by it.

Data Source

The prototype should work with two different data sources. On the one
hand, it should be able to read and represent MS-Project plans, on the
other hand, it should also work with Asbru plans.

Reading MS-Project plans requires a Java library for translating a MS-
Project file. The open-source library MPXJ3, developed by Tapster Rock4,
a software vendor producing strategic management software, is a free library
that provides exactly this functionality. This library contains methods to get
all necessary information like time annotations, relations, and hierarchical
decomposition of a MS-Project plan.

Asbru plans are loaded by using the internal library Asbru-Xml. This
library parses a eXtensible Markup Language (XML) plan and creates a
data model which contains all information about a plan. This model can
be used to read out all plans with regards to their hierarchical structure,
furthermore, all necessary time annotations are provided. The usage of
Asbru-Xml ensures that the prototype will still work even if a newer version
of Asbru is distributed.

4.1.3 PlanningLines

The prototype must be able to display PlanningLines using the intended
notation (see Section 3.3.1) as well as all defined design issues of the display
(see Section 3.3.2). This includes also the implementation of hierarchical
views, logical relations, and a working timescale. Regarding to further de-
velopment (e. g. , view while execution of a plan), all implemented compo-

3For more information about the MPXJ library see http://mpxj.sourceforge.net (ac-
cessed on May 30th, 2006).

4For more information about the Tapster Rock see http://www.tapsterrock.com (ac-
cessed on May 30th, 2006).

CHAPTER 4. PROTOTYPE DESIGN 64

nents must be expandable (e. g. , ability of representing LifeLines instead of
PlanningLines).

Going conform with the InfoVis Pipeline, abstract data of all activities
are stored within a data table. Once an activity is meant to get visible,
a data structure which can be rendered on the display is created. The
strict separation between abstract data and visual data is often referred as
polylithic design (in contrast to monolithic design where abstract and visual
data are stored within one data structure).

Therefore, a PlanningLine requires a structure providing all needed vi-
sual information. Additionally, a renderer is needed to represent these in-
formation. Applying this architecture enables the possibility of completely
other ways of painting, therefore the demand of extensibility is met.

4.1.4 Display

The display is the view of the Information Visualization. As the concept of
PlanningLines also contains a notation of representing multiple Planning-
Lines and their relations among each other (see Section 3.3.2), these de-
mands must be fulfilled by the display. It is responsible for an exact and
correct representation of all PlanningLines.

The display was chosen to be not bounded. The possibility of expanding
and collapsing PlanningLines would affect the bottom boundary, or, if it
would be fixed, the maximum depth of the hierarchy must be calculated
beforehand which would violate the on-demand loading concept. Further,
all considered toolkits that are eligible to perform the graphical issues works
with a not bounded view, therefore, it was obvious to overtake their concept.

However, together with the timescale, this component is the most im-
portant element within the visualization. All painting actions (including
additional necessary operations like calling a layouter, assigning renderer,
etc.), are managed and executed by the display. It needs access to all vi-
sual structures and decides when the Information Visualization has to be
repainted.

Also user interactions have to be maintained by the display. Depending
on the requested action, the display has to forward incoming events to an
object that performs the requested actions or must handle the events itself.
As user interaction typically changes the view, so repainting of the view is
necessary whenever a user interacts.

Besides issues given by PlanningLines, the display has to refer to the
timescale. In fact, ticks represented by the timescale should be continued
on the displays’ background. This helps users to identify points represented
by PlanningLines.

Another requirement that helps users to associate a point on the display
with a date, is a component called time-cursor. A time-cursor is a simple
vertical line in front of the display (also in the foreground of Planning-

CHAPTER 4. PROTOTYPE DESIGN 65

Lines), and can be moved along the horizontal axis. This line is used to
get detailed information about time depending on its position. On the one
hand it adjoins to the timescale so users can identify dates visually, on the
other hand the exact time of the position is also represented textually on
the bottom of the line.

4.1.5 Timescale

As the timescale is the central and most important element within the entire
visualization, it is necessary to apply special attention to it. The timescale
must be able to represent each possible time interval. Possible intervals can
reach from some milliseconds to many years or even more. The interval
should be separated by bigger and smaller lines into two successive units
(also called granularity, e. g. , main spaces represents weeks, small spaces
days). Ticks must be annotated whenever possible (depending on the dis-
tance to surrounding lines), also the start and end-point of the actual interval
must have a clear caption.

As all other graphical elements within the Information Visualization are
mounted to the timescale, it must be able to provide the associated date for
every single pixel and vice versa, whenever a component requests it.

In case of the prototype, the scale itself must calculate the displayed
granularities automatically. A user must not take care about changing the
units, an algorithm determines the best fitting granularity depending on the
represented interval. Also labeling of single ticks has to be calculated by an
algorithm, comparing available and needed space for each label.

As users will navigate within the plan, the timescale has to be recalcu-
lated very often. But not only the visible interval changes when navigating,
also the applied granularity can change. Changing of these means a new cal-
culation of all graphical parts of the scale on the one hand, and a complete
repaint on the other hand. Both, calculation and repaint, consume time,
therefore it is very important to reduce calculations to a minimum and take
care about the runtime of necessary calculations. The challenge in finding
a fast algorithm is caused by the fact that dates (and their positions on
the screen) cannot be calculated linear as a calendar contains erratic times
(e. g. , a month can have between 28 and 31 days).

Furthermore, completely repainting should also be reduced to the abso-
lute minimum, as the scale consists of a large amount of graphical elements
(single lines and labels).

4.1.6 User Interaction Techniques

To ensure usability, some interaction techniques have to be applied to the
application. As this prototype is only a viewing tool, the main focus is paid

CHAPTER 4. PROTOTYPE DESIGN 66

toward navigation within the view and controlling the state of hierarchically
decomposed tasks.

As a plan can consist of a large amount of tasks with different durations,
they may differ strongly (e. g. , the main task lasts two years, its smallest
subtask only one day). Therefore it is necessary to care about a reasonable
representation. If durations differ really strongly, short tasks would even
not be visible if the display is adjusted to the longer tasks.

Therefore, to ensure an adequate representation of each PlanningLine,
zooming should be applied to the view. Zooming ensures that each Planning-
Line can be viewed in the appropriate temporal context. Zooming should be
controlled with the mouse-clicking on any point of the display (right mouse-
button) and dragging the mouse up or down. The view will change its zoom
factor as long as the mouse is dragged. But not only the view and the size
of the underlying tasks change when zooming in or out, also the represented
interval of the timescale changes (possibly granularity also changes as this
happens automatically).

Also semantic zooming should be applied. As it would be useless to
display very small PlanningLines, such PlanningLines are only represented
as a small gray rectangle to show their existence. Only when a user zooms in
and the task becomes big enough a representation makes sense, a Planning-
Line is painted instead.

To move through a plan, another navigation technique is necessary. One
possibility would be the usage of scrollbars, but scrollbars on a view that
is not bounded are hard to implement and use. So panning is the favorite
interaction technique for navigation. The user just has to click on any point
in the view, hold the left mouse-button, and drag in any direction. The view
itself (and also the timescale) moves along with the mouse drags until the
button is released.

As a plan can contain hierarchical decomposition, the user needs a way
to expand and collapse tasks. This should be realized with a double-click
on a PlanningLine or with a single click on the respective symbol indicating
the hierarchy.

4.2 Toolkits

Based on the requirements, open-source toolkits that support the develop-
ment have to be found. Applying toolkits for graphical representation also
means to go conform with the architecture of them in the own application.
Therefore, the selection of proper toolkits is an important task that should
be considered carefully.

CHAPTER 4. PROTOTYPE DESIGN 67

4.2.1 Selection of Toolkits

The first chosen toolkit is the MPXJ library to read MS-Project files. As
there is no available alternative, there was no discussion about using it.
Moreover, reading MS-Project files is just a small part within the application
and only the basic functionality of the library is needed.

The selection of graphical toolkits was a bit harder work, as each toolkit
affects the whole application. Particularly, three open-source toolkits seemed
to be appropriate for the prototype: Prefuse, InfoVis Toolkit , and Piccolo
(for an overview of these see Section 2.3.6).

To ensure a well designed Information Visualization, the InfoVis Pipeline
is the central design pattern. All single variations of data and transformation
of these toolkits must be conform to this recommendation, therefore the
decision of adequate toolkits was heavily influenced by meeting the demands
of the InfoVis Pipeline (see Figure 4.1).

Figure 4.1: Information Visualization with the InfoVis Pipeline [Card et al., 1999].

The first form of data is raw data. In case of the prototype, raw data can
be an Asbru plan as well as a MS-Project plan. In the first step, this raw
data is transformed into a data table. A data table is an adequate form to
hold information, using indexes also allows to map hierarchical and logical
relations among data rows. As only string representations are needed, this
data structure saves memory without loosing information. Therefore, a data
table is an adequate basic structure holding data of the entire plan without
wasting resources. Also regarding to expandability and further development
it is a proper structure, since it is easily possible to transform every potential
data source into a table.

One idea was to use a standard Java Table and expand it to meet the
demands of the Information Visualization. But the InfoVis Toolkit is also
based on data tables and provides additional implementations of filling them
out of a data source. So it was obvious to use this toolkit. Advantages
of the InfoVis Toolkit table are the spare use of resources and its provided
interfaces and mechanism to read data (especially text-based data types like

CHAPTER 4. PROTOTYPE DESIGN 68

eXtensible Markup Language (XML) or Comma Separated Values (CSV)) or
transform data to a table.

An Information Visualization realized with InfoVis Toolkit is meant to
visualize all data within the table at once, since its display is bound to it.
As not the whole plan should be visualized at once, Prefuse and Piccolo
seemed to be more suitable for this purpose. Further, these toolkits provide
more possibilities of rendering, animation, and interaction.

Piccolo provides a highly sophisticated view on visual structures. An-
imations can be applied easily, its camera technique enables different per-
spectives, and its zooming possibilities (as most attention was set to this
issue) are terrific.

However, visual data structures are hold together with other elements
like cameras or layers within a scene graph. Furthermore, there is no sepa-
ration between the visual elements and abstract data itself. This design is
called monolithic, that means a base class provides most common function-
ality for different types of visual items (including abstract data, visual data,
painting, etc.). To create own items, just an extension of this base class is
necessary [Piccolo, 2006]. On the one hand, this design makes it easy to
create visual items, but on the other hand, a lot of non-used functionality
may waste performance and memory.

The Prefuse architecture forces a clear separation between abstract and
visual data. This saves resources and results a clear and understandable
source-code without needless elements or functionality. Furthermore, Pre-
fuse works with a predefined graph structure that also supports trees (a
graph with a unique root). This structure is exactly what was needed to
store hierarchical decomposed activities of a plan, therefore is was obvious
to use Prefuse at least for data storage.

Considerations about combination of Prefuse with Piccolo were dis-
carded fast as their architectures are too different. First, it seemed that
Prefuse allows a fast development regarding to data management, but do-
ing the visualization itself would be a real hard work. The monolithic design
of Piccolo promises quick visual results, Prefuse with its polylithic design
needs more time until results are visible.

But the polylithic design of Prefuse provides some advantages regarding
to extensibility, especially applying different kinds of graphical representa-
tion. Even though working with Prefuse is not that easy as Piccolo (at least
in the beginning), it was realized quickly that Prefuse has the power to meet
all demands of the prototype. And once the complex architecture of Prefuse
is conceived, fast results can be realized.

Another important benefit of Prefuse is that the toolkit also was designed
considering the InfoVis Pipeline. This fact makes it easy for the prototype
to stay conform with the reference model. Picture 4.2 depicts the parts of
the prototype with regards to the InfoVis Pipeline.

In contrast to the original concept, an additional data form (therefore

CHAPTER 4. PROTOTYPE DESIGN 69

Figure 4.2: Prototype InfoVis Pipeline considering used toolkits.

also an additional transformation) can be seen within the model applied to
the prototype (compare with Figure 4.1). Prefuse depends on a graph or
tree, therefore this data form is indispensable. Although, the table is applied
even if it would be possible to create this tree directly out of the raw data.
Two reasons legitimate this additional data form:

1. The prototype takes two different kinds of raw data. The table can be
seen as a standardization of the input, further development with the
aim of supporting other data sources just has to care about filling the
table, without having detailed knowledge about the graph structure
used by Prefuse.

2. As I/O operations waste a lot of time, it is essential to read a plan at
once. The data table is a memory saving element to hold the whole
plan throughout the runtime of the application. This enables a dy-
namic implementation of the tree, Prefuse nodes with all their func-
tionality are just created when they are definitely needed (first appear-
ance of an activity).

4.2.2 InfoVis Toolkit

A data table is the base of an Information Visualization done with the Info-
Vis Toolkit . As only the use of this table is designated within the prototype,
the main attention is paid toward this data structure.

A Table consists of metadata and named Columns. Besides standard us-
age of a data table, also graphs and trees are supported by defined columns
enabling the establishment of relations through indexes. But special behav-
iors can be also realized easily manually when needed.

Similar to the Table, a Column also consists of metadata and Rows. The
metadata allows to specify a special type of Columns. A StringColumn only
consists of strings, an IntColumns of integers, etc. A lot of different columns
are predefined (see Figure 4.3), extensions are possible. Each Column can
have empty rows too, which is a very important issue in case of sparse data

CHAPTER 4. PROTOTYPE DESIGN 70

(also concerns PlanningLines as empty values are supported). But besides
standard types like strings and integers, also more complex types like general
Java objects can be mapped within a column [Fekete, 2006b].

Figure 4.3: Hierarchy of InfoVis Toolkit tables and columns [Fekete, 2006b].

Typically, a table consists of one or more columns. As a column is an
array of a given type, it contains indexes, thus the table itself is indexed too.
Even if a real row object is missing, it can be generated easily by accessing
the values of columns through the indexes.

The InfoVis Toolkit also supports changes in tables during runtime. No-
tifications (events) about changes can be used to apply these to the visu-
alization itself. Also formation of data is supported (e. g. , a date can be
stored within a LongColumn, although dates are returned by the column).

As already mentioned, tables measurably improve the memory foot-
print and performance compared to other data structures for complex types
[Fekete, 2004]. The basic of an Information Visualization done with InfoVis
Toolkit is the table which can access raw data through defined readers and
writers. Once a table is loaded, the proper visualization is performed (see
Figure 4.4).

The object Visualization is bound to the table. Semantic attributes
which are defined in associated columns are transformed into visual at-
tributes (e. g. , color, size, label, sorting order). Besides the standard visual
attributes, specific attributes like coordinates or relations between objects
can be defined in separate columns too. Each Visualization maintains a set
of shapes which again are associated with attributes. Shapes are held within
the ShapeColumn and are repainted whenever it is necessary. Painting is
done by the rendering function [Fekete, 2006b].

The visualization also supports changing of the original data. Whenever

CHAPTER 4. PROTOTYPE DESIGN 71

Figure 4.4: Internal structure of the InfoVis Toolkit. Squares represent data
structures whereas ellipses represent functions [Fekete, 2004].

the table changes, the Visualization is notified and the whole representation
is repainted or even recomputed if a visual attribute is affected of the change
[Fekete, 2006b].

In Components a large set of interaction components are concentrated.
Predefined components are combined within own control panels and include
sliders to change size or colors of items, but also components for selection
or clicking items [Fekete, 2004].

Another possibility of managing the Information Visualization are dy-
namic queries. These are simple expressions used to filter rows of the data
table. It is possible to combine more than one filter expression using con-
junctions. These queries can also be managed by visual components, such
as sliders to interact to the visualization [Fekete, 2004].

InfoVis Toolkit is a toolkit, which pays most attention toward saving
resources. Even if there is a measurable advantage in comparison to other
toolkits, there are other factors like usability or simplicity too that charac-
terize a good toolkit. The toolkit is very hard to use, at least there is no
underlying logic a developer can conceive quickly. But the toolkit provides
a lot of examples for standard problems, like scatter plots, etc. These prede-
fined applications are easy to use if no special demands of the Information
Visualization are needed.

CHAPTER 4. PROTOTYPE DESIGN 72

4.2.3 Prefuse

Prefuse was chosen to handle all the graphical stuff of the prototype. Also
demanded interaction techniques should be fulfilled with this toolkit, there-
fore, special attention is set to all given features of the toolkit. With applying
Prefuse also its architecture must be inherited by the own application.

Like the prototype, Prefuse was also developed considering the Info-
Vis Pipeline (see Figure 4.5). Fulfilling the design recommendation of the
InfoVis Pipeline demands a lot of different classes providing the necessary
separation between abstract data, visual data, and views. But once such a
polylithic design is reached, further extensions are easily to perform because
of the high data abstraction.

Figure 4.5: Prefuse framework according to the InfoVis Pipeline [Heer et al.,
2005].

Even if Prefuse provides mechanism for reading raw data, the InfoVis
Toolkit is responsible for this part in the prototype. The central element
in Prefuse is the ItemRegistry. This container is responsible for holding
abstract data and creating visual mappings of these data when needed.

The ItemRegistry supports a graph as well as a tree to store abstract
data. Internally, the structure is referred as backing graph. The structure is
established by using Nodes and Edges connecting belonging Nodes. Further-
more, the ItemRegistry also maintains all created visual elements associated
with the abstract data. It also provides mechanism to map between abstract
and visual data.

A visual entity is called VisualItem and contains all necessary infor-
mation needed for visualization (like location, size, color, etc.). Nodes as
well as edges of the graph can be visualized. Furthermore, the ItemRegistry
also maintains different Renderers for each type of VisualItem. A Renderer
implements all necessary painting issues.

The transformation of abstract data to visual analogues is done through
filters which reduce the abstract information (Node or Edge) to visual con-
tent (VisualNode or VisualEdge) [Heer et al., 2005]. The filtering process
is equivalent to the visual mapping transformation of the InfoVis Pipeline.

CHAPTER 4. PROTOTYPE DESIGN 73

But, besides filtering the content itself, also assignments of the resulting
visual structures are typically applied together.

Filtering is realized with a list of Actions that are stored within a
runnable container called ActionList. An ActionList has a reference to an
ItemRegistry and is invoked manually in code, periodically as defined, or on
users’ interaction (e. g. , on click on an item).

Typically, a filtering ActionList consists of following parts (see Figure
4.5) [Heer, 2004]:

1. Filter: This Action is responsible to transform abstract data as stored
in the backing graph to visual analogues. To do this task, the filter
steps through the backing graph and creates a VisualItem for each
abstract instance. Additionally, garbage collection of not needed items
within the ItemRegistry is initiated by the filter.

2. Layout: This Action is responsible for a correct placing of items within
the view. Typically graphs or trees are represented within Prefuse, so
some common layout algorithms (e. g. , ForceDirectedLayout or Radial-
TreeLayout) are already predefined in the toolkit. Special algorithms
can be easily implemented by extending existing algorithms or writing
own ones from scratch. A Layout has direct access to the VisualItem
it should place, so assignments can be performed easily.

3. Assignment: These Actions set visual attributes like colors, sizes,
fonts, etc. This is very useful in common visualizations, where such
assignments are often dependent on abstract data.

Generally, the layout Action is also an assignment Action, but as layout
is one of the most important parts within an Information Visualization, this
Action can be seen separately. Additionally to the filter process, also anima-
tion of visual attributes like color or size can be realized by using periodical
ActionLists that are executed whenever a defined duration elapsed.

Once all VisualItems are created, they can be rendered onto the Display.
The Display is the graphical component of the Prefuse toolkit. As most of
the Prefuse components, also the Display is connected with an ItemRegistry.
In addition, multiple Displays can refer to the same ItemRegistry, enabling
different views (e. g. , see Figure 4.6: detailed view in combination with an
overview).

The Display is an extended component of the Java Swing JComponent,
a super class for all painting issues. Therefore, the Display has also inher-
ited the whole Java Swing painting architecture including Double Buffering .
Nevertheless, Double Buffering is done manually for some performance rea-
sons and to have more control about it.

Whenever the Display has to be repainted, it requests all VisualItems
of the ItemRegistry. As each VisualItem has an associated Renderer doing

CHAPTER 4. PROTOTYPE DESIGN 74

Figure 4.6: Sample of a visualization using a second overview display [Heer, 2004].

the painting, the Display just has to paint itself (e. g. , the background) and
then delegates the painting of each item to the respective Renderer. Before
painting a VisualItem, the respective Renderer is asked for the position and
maximal area the graphical representation of the item needs. So the Display
can decide which items have to be painted and which not. Such a bounding-
management saves resources, as items that are not visibly anyway on the
actual view are not rendered.

Besides predefined Renderer that cover often used forms used in a com-
mon Information Visualization, it is possible to create own Renderers and
associate them with the RendererFactory of the ItemRegistry. Following this
architecture, different Renderers can be applied to items, enabling different
graphical representations for example used to enable semantic zooming.

Painting itself uses the standard painting architecture of Java Swing.
That means, the Java Graphics object of the Display is passed through all
visual components, which can perform their own paintings using standard
Java components like strokes, colors, and fonts. The user is not bound
to predefined painting methods of a toolkit, the whole range of possibilities
provided by Java can be used. Therefore, Prefuse allows developers to create
each thinkable graphic to communicate information.

The Java2D library is used to support affine transformations. The
graphic context is bound to a matrix, allowing transformations of the whole

CHAPTER 4. PROTOTYPE DESIGN 75

Display. That means, besides the logical coordinate system (absolute co-
ordinates), there is a virtual one (view coordinates). When painting, each
point of the absolute coordinate system is translated into the view coordinate
system (see Section 6.1.2).

Using affine transformations provides possibilities like resizing (zoom-
ing), translation (panning), or rotation without changing any assignment
attributes of visual elements. As conversions between absolute coordinates
and view coordinates are done automatically, a developer usually must not
consider the view coordinate system. Zooming or panning only change
the underlying transformation matrix, through use of automatic routines
of Java2D the results are displayed (details about affine transformations can
be found in Section 6.5.2).

The Display also supports interaction with visualized items, as the Java
ControlListener interface is applied. This interface calls defined code when-
ever mouse or keyboard events arise. Therefore, a user just has to provide
own methods collected in a ControlListener object to be able to react on
interaction events. This can be done with ActionLists for example.

Concluding, Prefuse is a very powerful toolkit, providing a large set of
components and methods a developer needs to build an Information Visu-
alization. There are a lot of predefined elements (like renderers, layouts, or
controls) that are sufficient for smaller visualizations.

As mentioned earlier, the polylithic design is not that easy to understand
in the beginning of a development, but once conceived, a visualization is easy
to realize even if special demands have to be fulfilled. Furthermore, using
Prefuse forces a clear and well designed architecture of own applications.

Prefuse was created with most attention paid to developers who will
finally work with the toolkit. In an evaluation study this goal was approved
[Heer et al., 2005]. In the meanwhile, there is also a not so small community
using and upgrading the toolkit, which is an argument for its usability.

The next Chapter describes the implemented features of the Information
Visualization that were realized by using the described toolkits. Also imag-
inable features that are not implemented yet are discussed.

Chapter 5

Prototype Implementation

As all requirements of the prototype were defined and toolkits were chosen,
the implementation started. The result of the implementation is an Infor-
mation Visualization that makes it possible to load MS-Project plans as well
as Asbru plans, and represent these plans using the concept PlanningLines.
As this prototype is designed to be also part of CareVis and not a stand
alone application, the executable window that implements this Information
Visualization is only for testing and presentation purposes. Nevertheless,
some features provided by this executable user interface are included in this
overview too, as the work is performed by the Information Visualization
itself.

In Section 5.2 a short user manual of the application is given. There,
interaction possibilities and the menu bar is described.

5.1 Features

The prototype is a viewer for Asbru plans and MS-Project plans in the
notation of PlanningLines. All design concepts of the charting technique
PlanningLines are realized. The application uses a sophisticated view pro-
viding different navigation techniques. Time is depicted with a timescale on
the top of the view that adapts itself depending on the actual view.

5.1.1 Data Sources

Two different types of data sources can be used within the application which
are MS-Project plans and Asbru plans. There are two different file name ex-
tensions of MS-Project plans: *.mpp and *.mpx. Theoretically, both should
be usable, practically only *.mpp plans can be used since the MPXJ library
to read MS-Project plans has some problems with the *.mpx format.

If indeterminacies of time annotations appear during reading a plan,
missing values are calculated automatically if possible. This minimizes spe-

76

CHAPTER 5. PROTOTYPE IMPLEMENTATION 77

cial constellations of tasks (see Section 3.3.1). As MS-Project plans do not
contain most of the time annotations at all, also a randomizer can be used
to fill these missing values. The randomizer has no benefit for the end user,
but it is helpful for presentation of the application.

5.1.2 TimeScale

The timescale maintains itself, no adjustments or configurations have to be
done by a user. Time is displayed using two related units, one for the main
separations, the other to separate these main intervals again into smaller
units. The choice of these units (also called granularity) heavily depends
on the actual interval a user views. Therefore, granularity is calculated
automatically and also changes automatically when the interval has changed.
This ensures an appropriate representation of time regardless how detailed
or rough a plan is displayed.

The highest granularity that is used are years, the smallest are millisec-
onds. Additionally, besides the logical graduations like days or weeks, there
are also granularities like “four hours” or “four months”. These additional
granularities provide a smooth changing between units and therefore a scale
that is always separated in a way a user expects.

Also labeling of the scale itself and units of separations is done auto-
matically. Single ticks get a caption whenever it is suitable and possible. If
captions are possible or not depends on available space to the next tick. Fur-
thermore, the actual start and end are also labeled, just as an information
about the main granularity that is used at the moment.

5.1.3 Activities of a Plan

There are two different modes to display an activity of a plan, and other
two modes how to display hierarchical decomposition. Thus, altogether
there are four views that can be applied to a plan (the execution window
provides them in a menu to switch between them).

Of course, the preferred view are PlanningLines. A PlanningLine is
displayed as given by the concept (see Section 3). Each PlanningLine is la-
beled and an additional small triangle depicts whether the task is composed
of further subtasks that can be expanded. Special constellations that occur
because of missing time annotations of a task are also represented, since it
is required by the concept (see Section 3.3.1). Furthermore, if EST and LFT

are equal, instead of a PlanningLine a milestone is represented.
As a preparation of the Information Visualization for displaying a plan

at execution time, the duration bars are movable between the respective
bounds. For demonstration, the moving of duration bars can be done by
using a shortcut (Ctrl) in combination with the dragging mouse (left button)
too.

CHAPTER 5. PROTOTYPE IMPLEMENTATION 78

The next view that can be applied are LifeLines. Instead of representing
all time attributes of a task, only a single labeled rectangle containing the
symbol to expand or collapse children is displayed. The length of the Life-
Line is given through Earliest Starting Time (EST) and Latest Finishing
Time (LFT).

There are two views to display hierarchical decomposition that can be
applied to both mentioned representations. The first one just leaves the
PlanningLine or LifeLine when it is expanded. Only the expand/collapse
symbol indicates the state of a task. The second way is to depict an expanded
task by using a labeled summary bar instead of the original representation.
Expanded tasks can be identified easily and children which belong together
are separated clearly.

Independent of the representation of a task, a tooltip always provides the
most important information about it. Furthermore, if a task is too short
for an adequate representation as PlanningLine or LifeLine, only a small
labeled gray bar indicates the existence of it. Once the resolution of time is
high enough (zoom in) so that a representation as PlanningLine or LifeLine
makes sense, the proper representation is done automatically.

Concluding, logical relations between tasks are displayed using arrows
that connect related tasks and depict also the direction and kind of relation
(Start/Start or End/Start, see also Section 3.3.2). A layout algorithm tries
to find the best possible arrangement of linked activities.

5.1.4 View

The view provides the layouted sight onto a whole plan, and consists of at
least one activity. If a plan is loaded, the view, and therefore the timescale
too, is initialized in a way that the whole time interval a plan lasts is visible.
The first task (root task) is placed centered in the top of the view’s area.
The free space to the left and right is described by a factor, which can
be chosen programmatically depending on the application the Information
Visualization runs in.

Furthermore, the view is responsible for navigation within a plan. There-
fore, two different techniques are applied. Zooming is done by dragging the
mouse with pressed right button over the view. Besides changing the size of
the displayed items, also the represented interval (and maybe the displayed
granularity) of the timescale changes along the zoom factor. Zooming is
only applied in the horizontal direction, that means that the height of a
single PlanningLine never changes (the same applies to vertical distances
between tasks too). Vertical stretching would lead to a confuse and unclear
view as PlanningLines and vertical spaces would get too large. This would
also lead to a loss of communicated information as a user cannot recognize
coherencies any more at a certain zoom level.

Panning is done the same way as zooming, but instead of the right mouse-

CHAPTER 5. PROTOTYPE IMPLEMENTATION 79

button the left one must be pressed. Similar to zooming, the timescale
adapts itself to the actual area the user watches. But in this case, the
granularity cannot change as the relative time interval of the scale stays
always the same when panning.

Small buttons on the top of the timescale allow quick navigation. One
resets previously done zooming and panning, so the whole plan can be seen
in its original size and at its original position. Other buttons pan to the
beginning or ending of a plan.

Single ticks represented by the timescale are continued on the view’s
background. This background separation provides users a better identifi-
cation of time facets of overlying tasks. Furthermore, the view provides a
time-cursor, a single red line displaying the actual time of its positions. This
time-cursor can be moved by the user (dragging with left mouse-button)
along the horizontal axis of the view to get the exact time of a position he
is interested in.

5.1.5 Screenshots

This Section shows some screenshots of the implemented prototype. All
pictures depict the same MS-Project sample project which shows most of
the implemented notation.

Figure 5.1 shows the timescale of the prototype. At the moment a gran-
ularity of weeks is selected, further, each week is separated into single days.
The small buttons on the top are used for navigation, the middle one resets
the zoom factor and centers the plan, the left one moves the plan to the
upper left corner, the right one moves it to the upper right corner.

Figure 5.1: The timescale of the prototype.

Figure 5.2 illustrates the sample project. The gray tasks illustrates tasks
where no durations are given. All tasks are children of the top most task
“sampleproject” which is expanded and therefore shown as summary bar.
Further, all task are related to others which is illustrated by the blue arrows.
The red line is the moveable time-cursor.

Figure 5.3 illustrates the same project except that a higher zoom factor
is used. As the actual granularity has switched from month to weeks, the
background also highlights the weekends.

Figure 5.4 shows the four different views of the sample project. A task
can be presented as PlanningLine or LifeLine, further, hierarchical decom-
position can be represented with a summary bar by leaving the original

CHAPTER 5. PROTOTYPE IMPLEMENTATION 80

Figure 5.2: The prototype shows a MS-Project sample project.

Figure 5.3: The same sample project shown with a higher zoom factor.

CHAPTER 5. PROTOTYPE IMPLEMENTATION 81

visual structure (only the expanding-symbol indicates the expand/collapse
state).

Figure 5.4: This picture illustrates the different views of the same plan. (a) shows
hierarchical PlanningLines which uses a summary bar to represent an expanded
task, (b) only shows PlanningLines, (c) shows hierarchical LifeLines, and (d) shows
LifeLines without summary bars.

5.2 Manual

The whole Information Visualization is controlled by using the mouse. Ex-
panding or collapsing of nodes is done with clicking on the respective symbol
of a PlanningLine or performing a double-click on any point of a Planning-
Line. Panning and zooming is done by holding a mouse-button and dragging
the mouse in any direction. The left key is used for panning, the right one
for zooming.

To move the duration bars of a single PlanningLine, the Ctrl -key in
combination with the left mouse-button must be pressed while moving the
mouse on a bar to the left or right.

Customized tooltips of tasks are shown whenever the mouse-cursor is
left on a PlanningLine or LifeLine for a short while.

The menu provided by the execution window provides some functionality
too. The “File” menu is used to open plans or quit the application. The
different views that can be applied to a plan can be selected in the “View”

CHAPTER 5. PROTOTYPE IMPLEMENTATION 82

menu. Furthermore, the functionalities of the navigation buttons of the
TimeScale are defined in the “Navigate” menu again:

� File:

– Open: User can choose an Asbru or MS-Project plan to display.
This function is also available when a plan is displayed already.
The actual one is just replaced by the new one.

– Open with Randomizer: Instead of the “Open” entry, this
dialog can be used to open a MS-Project plan (Asbru is not pos-
sible). All time annotations may be generated randomly, already
defined ones may be deleted too. So, also special constellations
are generated.

– Quit: Exits the application.

� View:

– LifeLines: Only LifeLines are shown. Hierarchical decomposi-
tions are also shown using LifeLines instead of summary bars.

– Hierarchical LifeLines: LifeLines are shown, hierarchical de-
compositions are depicted using summary bars.

– PlanningLines: Only PlanningLines are shown. Hierarchical
decompositions are also shown using PlanningLines instead of
summary bars.

– Hierarchical PlanningLines: PlanningLines are shown, hier-
archical decompositions are depicted using summary bars.

� Navigate:

– View All: The plan is placed at its initial position (nearly cen-
tered) and the zoom factor is reseted. Depending on depth of
expanded tasks, the whole plan or at least the upper area of it is
shown at once.

– Go To Start: Pans the view to the upper left area of the plan.
The zoom factor stays at it is.

– Go To End: Pans the view to the upper right area of the plan.
The zoom factor stays at it is.

5.3 Not Implemented Features

The following features are thinkable for further implementation, but not
realized yet:

CHAPTER 5. PROTOTYPE IMPLEMENTATION 83

� Controlling the Information Visualization using the keyboard and
shortcuts.

� Second view displaying an overview of the whole plan (Bird View)
used for navigating within the original view.

� Fisheye view for displaying details of a region of special interest.

� Providing all temporal attributes textually too.

� Change of visual attributes like color, font, etc. at runtime.

� Providing dynamic creation of additional time-cursors, so users can
use multiple of them to mark positions of interest.

� Possibility of changing the visibility state of items manually. This
option would allow to watch only a set of items a user is interested in.

The prototype was implemented as a viewer of plans. But it is also
imaginable to use it for plan-authoring or monitoring a plan while execution.
Preparing it for execution should not be that difficult, but authoring of plans
would cause a lot of work, as the whole logic of a plan and the functionality
to create tasks would have to be implemented.

The next chapter describes the architecture of the prototype. It is not a
detailed description of the source code, rather technical concepts and the
idea behind them are outlined. Further information about the toolkits,
basic environment, but also interaction techniques can be found there too.

Chapter 6

Prototype Architecture

This Section gives an overview about the architecture and technical details
of the prototype. Throughout this chapter UML1 class diagrams are used to
facilitate the understanding of architectural details (see also UML Notation,
Appendix B). Note that following UML diagrams are not exhaustive, they
are just used to communicate the most important coherencies as this chapter
is not thought as a complete documentation of source code.

Additionally, some general diagrams or images following no explicit spec-
ification or notation are taken whenever it is suitable (see Section “the many
ways of spreading information” 2.3).

Generally, the entire architecture was heavily influenced by the archi-
tecture of Prefuse as nearly all visual components are implemented using
this toolkit and its framework. Furthermore, all data transformations (from
raw data until a complete view) are conform with the InfoVis Pipeline (see
Section 2.3.4). Therefore, describing the architecture of the prototype also
follows this recommendation. Figure 6.1 depicts the most important objects
used within the prototype regarding the InfoVis Pipeline.

Figure 6.1: Prototype InfoVis Pipeline considering used objects within the appli-
cation.

1Unified Modeling Language

84

CHAPTER 6. PROTOTYPE ARCHITECTURE 85

6.1 General

6.1.1 Package Structure

Figure 6.2 shows the general package structure (also known as namespaces
[Wikipedia, the free encyclopedia, 2006b]) of the implemented prototype:

Figure 6.2: Package structure.

� ui: Consists of user interface classes. Also the runnable top-level UI
container, that is used to demonstrate the proper Information Visual-
ization, can be found in this package.

� util: General helper classes used throughout the whole implementa-
tion. Also interfaces and a static class doing conversions between the
different coordinate systems can be found in this package.

� io: Namespace for all relevant classes used for input and output issues.
Also a factory managing different data reader can be found here.

� data: This package contains the data table to hold the abstract data
read from a file. Furthermore, also a class manipulating single data
rows in case of indeterminacy is in this package.

CHAPTER 6. PROTOTYPE ARCHITECTURE 86

� timescale: The static timescale.

� timescale.graphics: Contains necessary classes to paint the time-
scale, like ticks or labels.

� visualization: This package contains all classes needed by the Pre-
fuse toolkit like container to hold abstract and visual data, layout
mechanism, and renderers.

� visualization.controls: This sub-package provides classes that han-
dle all relevant user interactions.

� visualization.graphics: Holds graphical elements of the application.
All visual items to represent a PlanningLine are composed with objects
of this package.

6.1.2 Coordinate Systems

Java maintains two different coordinate systems [Sun Microsystems, 2001]:

� “User space is a device-independent, logical coordinate sys-
tem. Applications use this coordinate system exclusively;
all geometries passed into Java 2D rendering routines are
specified in user space.”

� “Device space is a device-dependent coordinate system that
varies according to the target rendering device.”

From now on, user space coordinates are called absolute coordinates and
device coordinates are called view coordinates. Besides automatically done
conversions to transform absolute coordinates to view coordinates (often per-
formed by platform device driver [Sun Microsystems, 2001]), there is another
important transformation mechanism which can be influenced manually: the
Display’s transformation matrix. This matrix is used to perform user inter-
actions like panning and zooming without changing absolute coordinates.

Generally, all coordinates with regard to time within this application
are absolute coordinates, conversions are done by the Graphics2D object
automatically when rendering the Display. Whenever a user does some
interaction that changes the alignment of the view, technically only the
matrix is concerned of this change.

But the TimeScale also has access to the transformation matrix and
provides all calculations in both coordinates systems. Furthermore, some
visual objects also calculate points manually by using the matrix. Therefore,
a static helper class (Coordinates, see Figure 6.3) provides functionality to
make conversions manually.

This is necessary since some rendering routines have to be executed
manually, as automatically routing (and therefore automatically conversion)

CHAPTER 6. PROTOTYPE ARCHITECTURE 87

would cause deformations because zooming is only applied in the horizontal
direction. But visual elements of Java expects equal zooming in both direc-
tions, they do not bother about the fact that one direction is not touched.

A simple vertical line, for example, gets the thicker the higher the hor-
izontal zoom factor is, it is stretched. The thicker line would be suitable
if zooming is performed in both directions, as the whole object would get
larger and therefore the lines must also be adapted. But in the case that ver-
tical zooming is disabled, the thicker line is not adequate as the proportions
to the rest of the element are not suitable anymore.

Thus, concerned visual elements disable the automatic routine of render-
ing and have to perform conversions between the coordinate systems manu-
ally (see Section 6.5.2). In this case, this deformation concerns vertical lines
of interval caps, expanding-symbols of a PlanningLine, and labels.

Figure 6.3: Static coordinate conversions.

Furthermore, all coordinates in both systems are stored in double pre-
cision. As each absolute x-coordinate is associated with an exact date from
the beginning on, this is necessary. Otherwise, zooming would cause wrong
view coordinates because of ignored decimal places, also captions of tasks or
the timescale would be false.

Nevertheless, a view coordinate is automatically rounded when it is trans-
formed to a screen coordinate. That means, a single screen point (pixel)
represents a time interval of indefinite length (depends on the actual gran-
ularity) and there is no possibility to calculate it back to an exact view or
absolute coordinate.

6.1.3 Notes on Prefuse

Generally, all implemented elements of Prefuse are initialized, stored, and
maintained by the class ItemRegistry. The ItemRegistry is the core element
of a visualization done with Prefuse [Heer, 2004]. It is responsible to hold
items containing abstract data (Nodes or Edges) within a graph structure
and create visual analogues (VisualNodes) to abstract items using Renderers
that are maintained in a factory. Furthermore, the registry also maintains
the mapping between abstract and visual data, rendering queues of all vi-
sualized items, and references to all Displays that work with the content of

CHAPTER 6. PROTOTYPE ARCHITECTURE 88

this registry (see also Section 4.2.3).
Figure 6.4 illustrates the most important classes and their relations to

the ItemRegistry.

Figure 6.4: UML diagram of the ItemRegistry.

6.1.4 Interfaces

There are two important interfaces used within the prototype. The Planning-
Interval interface is used to exchange abstract data that contains temporal
facts. Implementations must provide methods to access and change the
respective temporal attributes. The PaintingObject is used for rendering
issues, implementations must provide assignment information (typically re-
garding to another PaintingObject) and a paint method that can render the
object on a Graphics2D element (see Figure 6.5).

Figure 6.5: Interfaces of the prototype.

CHAPTER 6. PROTOTYPE ARCHITECTURE 89

6.2 Data

This Section outlines the transformation of raw data to abstract structures
that are adequate for later visualizing.

The AbstractDataTable is an extension of the InfoVis Toolkit Default-
Table and used to store the data of the whole plan. It is the only InfoVis
Toolkit element used within the application. No other functionality was
used of InfoVis Toolkit , but the table could be used as base for an own
visualization done with InfoVis Toolkit .

Prefuse is used to visualize activities. It is important to understand the
polylithic structure of Prefuse. For each visual element there also exists a
second element containing only the abstract data. Both, abstract and visual
objects, are maintained by the predefined ItemRegistry that stores them in
two separated trees.

6.2.1 Reading Raw Data

Both, MS-Project and Asbru plans are read using own readers. The Abstract-
RawDataReader defines the functionality of a reader. This class was chosen
to be abstract, as it contains some functionality that should be equal for
each possible reader (e. g. , filling the table with rows).

The task of a reader is to read a given file, extract all single tasks, and
write them into the InfoVis Toolkit data table. As the AbstractDataTable
consists only of string representations of data, a reader has to allocate a
unique ID so that relations (hierarchical and logical) can be established
between the tasks. Further, a reader has to take care about setting the root
task (ID 0) which contains at least an EST and LFT. The root task must
cover all possible time-points of subtasks.

DataRow

The object DataRow stores all temporal attributes of a task and some ad-
ditional information like name, children, parent, and logical relations. This
row also implements the interface PlanningInterval to provide functionality
to access and set temporal values.

As the InfoVis Toolkit does only support indexed columns, this object
was developed to fill this gap. Each DataRow has a unique ID which is used
to request respective data of each column.

The DataRow is used to fill the data table, but it is also returned by the
table when Prefuse needs access to the abstract data. Also implemented
abstract data structures used together with Prefuse consist basically of a
DataRow.

A DataRow holds the same information as a single row within the
AbstractDataTable, but instead of a string representation the proper types

CHAPTER 6. PROTOTYPE ARCHITECTURE 90

are used, e. g. , EST is stored as a string within the table and as Date in the
DataRow.

6.2.2 Data Preprocessing

Before the data is finally stored in the data table, a static object called
RawDataProcessor tries to fill temporal indeterminacies within a row (see
Section 3.3.1). Therefore, this object searches for indeterminacies within
the set of attributes of a task and tries to calculate missing values. This is
done to avoid special constellations of PlanningLines when missing values
can be extracted manually. Missing values can be calculated by considering
the constraints of temporal attributes (see Section 3.3.1).

6.2.3 Data Table

The implemented InfoVis Toolkit table stores data of all tasks through-
out the lifetime of the application 2. The AbstractDataTable consists of a
IntColumn for the ID, a StringColumn to store the name, several Date-
Columns and LongColumns representing all time annotations of a task, and
several ObjectColumns mapping relationships to other tasks. Relationships
are mapped using the unique ID of the tasks which are stored in Vectors.

Relations can be hierarchical (Parent and Children columns) and log-
ical (only successors are mapped in the columns StartSuccessor and End-
Successor). Additionally, also the neighbors of all tasks are mapped as
Brothers.

6.2.4 Reading Data Table

Data of each task is accessed through its unique ID. The ID 0 is the root
task of a plan, further tasks are extracted from the children of the root. The
ID is also the number of the row within the table.

When retrieving data from the table, a DataRow is created again out of
a row. All strings stored in the table are casted back to their original type,
so further objects can work with the abstract information.

Rows are only accessed when the Prefuse PlanningTree creates its own
abstract structure of a task for later visualizing. The received DataRow is
also used as container within the nodes of Prefuse.

6.2.5 PlanningTree

Once the data table is loaded completely, a Prefuse tree is initialized. The
PlanningTree is an extension of the predefined DefaultTree of the toolkit.

2The latest prefuse version contains its own implementation of a data table. When
upgrading the prototype to this newer version, the usage of this table may be thinkable.

CHAPTER 6. PROTOTYPE ARCHITECTURE 91

Basically, this tree holds different entities in a hierarchical form and provides
multiple ways of accessing them.

It is important to note that all elements within this tree are only abstract
information. None of these objects contains any data needed for the proper
visualization, but the abstract information are used to create visual data
later.

The PlanningTree is initialized with a reference to the already created
AbstractDataTable. Single entities stored in the tree are objects of the type
PlanningTreeNode, PlanningTreeEdge, and DefaultEdge.

To save resources, the PlanningTree is only filled on demand. That
means, when initializing the tree, only the root node is created (and also
visualized automatically). The root node represents the lowest level of the
hierarchy within a plan, its duration stands for the duration of the whole
plan. Therefore, when the Information Visualization is rendered the first
time, only this root node is visible. Further nodes are only created on users’
interaction.

Technically, each PlanningTreeNode knows if it has any children even
if they are not loaded yet. This information is provided by the underly-
ing DataRow as children. The existence of children also affects the visual
representation, as a PlanningLine is marked as expandable.

Whenever an already visualized item is expanded by any user interaction,
the PlanningTree is asked if the children of the task are already loaded. If
not, the tree extracts information about children of the actual Planning-
TreeNode, retrieves the abstract data of the underlying data table, creates
the respective PlanningTreeNodes and PlanningTreeEdges, and inserts them
into the own data structure.

Once a node is created, it stays in the tree to ensure further access to it
(details about expanding or collapsing a task can be found in Section 6.4.1).

PlanningTreeNode and PlanningTreeEdge

As mentioned earlier, PlanningTreeNodes and PlanningTreeEdges are in-
tegral parts of the PlanningTree. The tree also consists of DefaultEdges
used to map the hierarchy, but these entities are never visualized within
the application. PlanningTreeNodes are connected among each other using
this type of edges. Also navigation through the structure of the tree uses
DefaultEdges, but these mechanisms are provided automatically by Prefuse,
so they are not outlined here.

A PlanningTreeNode is the abstract representation of a task and is an
extension of the DefaultTreeNode. It is the basic structure which can be
transformed into a visual structure when a task is visualized (e. g. , dates
are translated into x-coordinates, the name is used for the label, etc.).

A PlanningTreeEdge is the abstract representation of a logical relation
between two tasks. It is an extension of the DefaultEdge, but in contrast

CHAPTER 6. PROTOTYPE ARCHITECTURE 92

edges of this type, PlanningTreeEdges are rendered on the view (see Section
3.3.2).

Each PlanningTreeNode contains an associate DataRow of the data table
containing all information needed. As the polylithic design of Prefuse forces,
a PlanningTreeNode does not contain any visual information, it is just a
container that supports typical functionality of a graph node and stores
abstract data. Visual information is created later when filtering the abstract
nodes (see Section 6.4.1).

As a DataRow, a PlanningTreeNode implements the interface Planning-
Interval helping to spread temporal data of a task. This is obtained by
storing the associated DataRow within the Node.

A PlanningTreeEdge consists of two PlanningTreeNodes, a predecessor
and a successor. Further, a flag indicates the type of relation (Start/Start
or End/Start), as the visual analogues of edges must consider the direction
graphically. The visual representation of a PlanningTreeEdge is also created
when this tree is filtered.

Figure 6.6: Sample of a PlanningTree containing Nodes and Edges.

6.3 TimeScale

As the TimeScale is the central element within the Information Visualiza-
tion, this element is explained first. The TimeScale is a static class and
responsible for:

CHAPTER 6. PROTOTYPE ARCHITECTURE 93

1. Providing an associate date for each horizontal point (x-coordinate) of
the view.

2. Providing an associated x-coordinate for each date.

3. Calculating the best fitting units a time interval is separated in (gran-
ularity).

4. Providing a visual object of the actual scale.

The TimeScale works with all time zones and considers all calendar
anomalies like leap years or daylight savings. The highest resolution (gran-
ularity) the scale can map are milliseconds, the lowest are years. However,
other resolutions than the predefined can be added easily.

6.3.1 General

The TimeScale is initialized with the start and end-date of the whole plan
it is created for. A factor describes the ratio3 of the maximum span the
TimeScale can represent compared to the time interval the whole plan lasts
(e. g. , the ratio is two and a plan lasts four months overall: That means
that the maximum span the TimeScale can represent is eight months). The
resulting granularity of this span is the lowest resolution the scale handles,
only zoom in is possible. This restriction would not be necessary, but, it is
useful as lower resolutions are senseless because the whole plan has sufficient
space within this span.

This ratio is also considered when calculating the aligned start and end-
date of the scale when it is visible the first time (see also Granularity, Section
6.3.2). For example, the four month plan starts on May 1, 2006 and ends on
September 1, 2006. Considering the ratio and a granularity of “moths”, the
actual start of the scale is the March 1, 2006 and the end is the November
1, 2006. These dates only describe the actual span of the TimeScale when
the plan is visualized the first time. Nevertheless, the scale can also display
times before or after the given interval.

However, the calculated start-date is used as reference-point for later
calculations. In fact, these dates define the absolute coordinate system (see
Section 6.1.2). The start-time is the absolute point 0, the end-time the
absolute point given by the width.

Once the start and end-dates of the TimeScale are set, some factors are
calculated that allow translations from a x-coordinate to a date and vice
versa. As the precision of these calculations must meet one pixel, the width

3As all dates of the scale are aligned depending on the calculated granularity, the ratio
is not quite exact. In reality, the maximum span can be a bit larger than given by this
factor.

CHAPTER 6. PROTOTYPE ARCHITECTURE 94

of the view is used to calculate these factors (spans are always given in
milliseconds):

TimeFactor =
Width

MaximumSpan

PixelFactor =
MaximumSpan

Width

Of course, only one of them is really necessary, but further calculations
are more clear using both. These factors in combination with the exact
start-date are enough to calculate absolute coordinates on a given date and
dates on a given abolute x-coordinate:

x = (date− ScaleStart) ∗ TimeFactor

date = ScaleStart + x ∗ PixelFactor

Note, that above mentioned time-points and factors are calculated con-
sidering absolute coordinates. That means, independent of the actual view,
these values and assigned calculations are constant for the whole lifetime of
the TimeScale.

But the TimeScale also deals with view coordinates, therefore, it holds a
reference to the affine transformation matrix of the Display. This is needed
to provide above mentioned calculations considering both coordinate sys-
tems, on the one hand, but also to be able to calculate a graphical repre-
sentation, on the other hand. Representation depends on zoom factor and
translations done with panning and the actual granularity.

6.3.2 Granularity

Milliseconds is the highest possible resolution the TimeScale can represent,
further, all calculations also consider milliseconds. But, as the visual repre-
sentation is granulated into logical units (e. g. , days or years) the TimeScale
must provide translations to other resolutions than milliseconds (see also
Figure 6.7).

The static class DisplayGranularity is a helper class of the TimeScale
which contains all possible granularities. At the moment, all logical granu-
larities from milliseconds to years are predefined, further, some other gran-
ularities like “five minutes”, “four hours”, or “four months” are included.
As the granularity is automatically adjusted to the actual span (depends on
zoom factor), these additional granularities take care of an adequate view
where the spaces between ticks are neither too large nor too small.

The switching between granularities is also maintained by the class Dis-
playGranularity. Whenever the zoom factor of the view changes, the actual
span represented by the TimeScale is calculated again. Based on this span,

CHAPTER 6. PROTOTYPE ARCHITECTURE 95

the DisplayGranularity determines if a higher or lower granularity would be
more suitable than the last one used.

Furthermore, this class also provides the functionality to align a date
to a certain granularity. Aligning works in both directions. Assuming an
actual granularity of “months”, July 11, 2006 may be aligned to July 1,
2006 or August 1, 2006. Aligning always considers the next position of a
tick, in case of months, ticks are always set on the first day of the month at
12:00 AM. The aligning process starts with milliseconds and aligns stepwise
the date for each granularity in the demanded direction until the certain
granularity is reached (see also Table 6.1).

6.3.3 Graphical Representation

As user interactions force a repaint of the whole Information Visualization,
the TimeScale must also provide an actual representation of itself. Graphi-
cally, the TimeScale consists of lot of small lines (main-ticks and small-ticks
between the main-ticks) that separate the displayed interval into some log-
ical pieces (given by the granularity) and a lot of labels (see Figure 6.7).
All these elements are combined in the class Scale. Like most of the graph-
ical elements within this application, also the Scale is composed of visual
elements (MainTicks and SmallTicks) that implement the PaintingObject
interface.

Figure 6.7: Graphical representation of the TimeScale.

The Scale is held by the TimeScale. Whenever the application asks for
an actual representation, the TimeScale returns its Scale. If the view has not
changed since last time of repainting, the last calculated Scale is returned,
otherwise the Scale must be recalculated.

Recalculating of the Scale is only necessary if the transformation matrix
has changed (through zooming or panning) or the width of it has changed
(resize of the window). As the actual granularity of the scale may change
when zooming or resizing the view, firstly, the DisplayGranularity deter-
mines if there is a more adequate granularity (see Section 6.3.2).

The actual granularity is the base for all further calculations as the time
spans between Ticks are given through it. As dates cannot be calculated
linear, the Java Calendar class is used for this purpose. This class considers
all anomalies like leap years or daylight savings, further, the class handles
all common time zones. Therefore, a defined span is not given in millisec-
onds, instead, the granularity of the Calendar class is used. Additionally, a

CHAPTER 6. PROTOTYPE ARCHITECTURE 96

Granularity Aligned Down Aligned Up
Milliseconds Jul 11, 2006 Jul 11, 2006

02:07:34.565 PM 02:07:34.565 PM
250 Milliseconds Jul 11, 2006 Jul 11, 2006

02:07:34.500 PM 02:07:34.750 PM
Seconds Jul 11, 2006 Jul 11, 2006

02:07:34.000 PM 02:07:35.000 PM
Five Seconds Jul 11, 2006 Jul 11, 2006

02:07:30.000 PM 02:07:35.000 PM
Fifteen Seconds Jul 11, 2006 Jul 11, 2006

02:07:30.000 PM 02:07:45.000 PM
Minutes Jul 11, 2006 Jul 11, 2006

02:07:00.000 PM 02:08:00.000 PM
Five Minutes Jul 11, 2006 Jul 11, 2006

02:05:00.000 PM 02:10:00.000 PM
Fifteen Minutes Jul 11, 2006 Jul 11, 2006

02:00:00.000 PM 02:15:00.000 PM
Hours Jul 11, 2006 Jul 11, 2006

02:00:00.000 PM 03:00:00.000 PM
Four Hours Jul 11, 2006 Jul 11, 2006

12:00:00.000 PM 04:00:00.000 PM
Days Jul 11, 2006 Jul 12, 2006

12:00:00.000 AM 12:00:00.000 AM
Weeks Jul 09, 2006 Jul 16, 2006

12:00:00.000 AM 12:00:00.000 AM
Months Jul 01, 2006 Aug 01, 2006

12:00:00.000 AM 12:00:00.000 AM
Four Months May 01, 2006 Sep 01, 2006

12:00:00.000 AM 12:00:00.000 AM
Years Jan 01, 2006 Jan 01, 2007

12:00:00.000 AM 12:00:00.000 AM

Table 6.1: The table illustrates how the date July 11, 2006 02:07:34.565 PM is
aligned depending direction and granularity.

CHAPTER 6. PROTOTYPE ARCHITECTURE 97

multiplier may be used for intermediate granularities (e. g. , “five minutes”
or “four hours”).

A Tick is defined by an exact view coordinate. These positions are
calculated as follows:

1. Determine the exact earliest date of the TimeScale. This is given
through the view coordinate 0.

2. Align down this date to the actual granularity. The associated view
coordinate of this aligned date is negative or 0. This coordinate is the
position of the first MainTick even though it is not visible. Based on
the aligned date, further dates which are conform to the granularity
are calculated.

3. The respective next date is determined by applying the defined time
span of the granularity to the previous date (these calculations are
performed through the Calendar class, so all anomalies are consid-
ered). For each calculated date a Tick is created and initialized with
the associate view coordinate.

Once all ticks are initialized, the Scale is ready for rendering. As each
Tick provides its own painting method, the Scale just has to call them
sequentially when repainting. Furthermore, the painting method of the Scale
itself must also paint additional labels for each tick whenever there is enough
space.

6.3.4 TimeScaleLayer

The prototype has got an own Java JComponent TimeScaleLayer that holds
and manages the graphical representation of the TimeScale. Like all Java
Abstract Window Toolkit (AWT) components, the form is repainted auto-
matically on events like resizing, moving, or getting the focus.

But the layer is also bound to the entire view of the visualization, the
PlanningLinesDisplay. Whenever the Display has to be repainted, it checks
if the TimeScale hast to be repainted too. In this case, the paint method of
the TimeScaleLayer is called directly.

Besides the Scale, also some additional elements are painted, like colored
background and labels indicating the used granularity and the actual start
and end of the TimeScale.

Even if a Java JComponent supports automatic Double Buffering , the
TimeScaleLayer performs this task manually. It holds the offscreen picture
of itself in memory to avoid complete repainting whenever it is not neces-
sary. That means, as the TimeScale calculates the Scale only if horizontal
alignment has changed, the TimeScaleLayer also paints the Scale only once
on its offscreen. Further paintings of the TimeScale are performed using this

CHAPTER 6. PROTOTYPE ARCHITECTURE 98

offscreen picture to ensure fast painting and avoid dispensable calculations
(see also Section 6.5.1).

6.3.5 Open Problems

Even though the TimeScale is fast and is able to provide a correct visual
representation for all possible spans, there is still one problem left. When
a view coordinate is transformed to a screen coordinate it is automatically
rounded to integer positions (pixels). View coordinates are defined in double
precision, that means that each coordinate has an associate abolute coordi-
nate and therefore an associated date. In contrast, a screen coordinate is an
interval of view coordinates as countless of view coordinates can be rounded
to the same screen point.

The time-cursor has only access to its actual screen position. When this
cursor requests its associated date from the TimeScale the exact date of
the integer is returned. But, the returned date is not related to the actual
granularity (e. g. , even though the actual granularity is “years”, the returned
date is accurate to milliseconds). This behavior is not wished, nevertheless,
a solution to align associate dates of screen points was not found yet.

6.4 Visual Structures

Once, the underlying tree structure contains at least one node, visualization
can start. As in the data Section, the ItemRegistry plays an important role
within this process. Its responsibility is to store and provide VisualItems in
a separated tree.

VisualItem is the Prefuse top level class for all visual elements, Node-
Items and EdgeItems. A Display is the view of an Information Visualization
done with Prefuse. It is able to represent VisualItems.

To create a view, there are two different data transformations necessary,
filtering and rendering. Filtering is the process of deciding which (abstract)
nodes and edges are visualized and creating visual analogues of them. This
process is initialized on users’ interaction when expanding or collapsing al-
ready existing nodes. The result of the filtering process is a second tree
stored in the ItemRegistry, containing all visual structures that may be ren-
dered.

In contrast to filtering, rendering is initialized by the Display whenever
a repaint of the view is necessary. The Display is an extended JComponent
and therefore a Java AWT element. Repainting of this component is forced
on interactions like resizing, change of visibility, etc. But also the window-
manager may force a repaint on mouse or keyboard events. Whenever the
component has to be repainted, also the rendering of available VisualItems
is done to provide an updated view.

CHAPTER 6. PROTOTYPE ARCHITECTURE 99

6.4.1 Filtering the Tree

Filtering is the process of retrieving or creating visual analogues of abstract
nodes and edges when navigating in the hierarchy (see Section 4.2.3). As
mentioned, this process is only performed on collapsing or expanding an
already existing visual node on the Display. This happens on a click on the
expanding-symbol of a PlanningLine or on double-click on it (see Control-
Listeners 6.4.4).

Filtering is done by performing two different actions: the filtering it-
self and a following layouting of all visual structures. Actually, there is a
third one, the repainting, but this action is not of special interest as it just
activates the re-rendering of the view (see Section 6.4.3).

These three actions are combined in an ActionList. An ActionList is a
runnable container that executes defined Actions in a specified order.

In case of expanding a node, following tasks are performed:

1. If children are not loaded yet, retrieve abstract data of the Abstract-
DataTable, create respective PlanningTreeNodes and PlanningTree-
Edges, and insert them within the PlanningTree. At this time, no
visual analogues of them exist.

2. Change visible state of already existing visual children of the node.
The visible state of children may be set to false as they were collapsed
earlier (remember, as the visual structures are already created, thus
they were also visible before).

3. Call the filter ActionList to create VisualItems of newly created nodes
and edges and perform a new layout for all visible items.

Collapsing nodes is done the same way, except that it is not necessary
to create new visual items.

PlanningTreeFilter

Filtering is done by the PlanningTreeFilter class which is defined as Action.
The filter forces the ItemRegistry to provide (and if necessary create) visual
structures for all abstract nodes and edges stored within the PlanningTree.
Once a PlanningTreeVisualNode or PlanningTreeVisualEdge is created, it
stays in memory of the ItemRegistry.

Of course it would be possible to hold only visible items within the Item-
Registry, but creating of visual structures involves a lot of calculations, and,
the possibility of expanding/collapsing nodes causes changes of other visual
items, even if they are not visible. Even though memory may be wasted, it
seems that a permanent storage of visual items is the only way to guarantee
a high level of performance and meet the requirements of the polylithic
design.

CHAPTER 6. PROTOTYPE ARCHITECTURE 100

The filter creates a second tree (of the type DefaultTree as no special
functionality is needed) containing all PlanningTreeVisualNodes as well as
PlanningTreeVisualEdges and writes this tree back to the ItemRegistry as
filtered graph. Besides the creation of new VisualItems, the filter may also
change the visible states of edges:

� EdgeItem: As these edges just map the hierarchical structure, all
visual representations of them are set to invisible.

� PlanningTreeVisualEdge: These edges represents logical relation-
ships between tasks. If both nodes, predecessor and successor, are
visible, the state is set to visible, otherwise theses edges are invisible
too.

PlanningTreeLayouter

The second Action that is executed while filtering is the PlanningTreeLayout.
This Action just has to maintain the vertical alignment of VisualNodes, as
the horizontal alignment is given by the TimeScale.

Setting the vertical alignment is done by an algorithm considering the
visible state of a node, hierarchical decomposition, logical relations, and also
time facets like start or duration. Note that the PlanningTreeVisualEdges
do not have to be layouted, as their position depends on the position of the
nodes a edge connects.

The algorithm to layout PlanningTreeVisualNodes follows this rules (in
the given priority):

1. If an item is not visible, the item and all its children are ignored in
the calculation.

2. Align children right below the respective parent.

3. The ordering of the children requires the consideration of logical rela-
tions. Items that are connected with another item should lie next to
each other. If this is not possible because of other logical relations,
the space between them must be minimized.

4. The earlier an item starts, the nearer it should be placed next to its
parent.

It is possible that edges cross nodes, but the PlanningTreeLayout tries
to prevent the unwanted crossings.

Subsequently, the whole view is repainted. This is also done by starting
the RepaintAction.

CHAPTER 6. PROTOTYPE ARCHITECTURE 101

6.4.2 Visual Structures in ItemRegistry

As mentioned, the filter creates a tree containing all visual structures. This
tree is stored within the ItemRegistry, so Actions and Renderers can ac-
cess it. Like the abstract structures, all visual structures implement the
Node or Edge interface. These interfaces provide all functionality to hold
implementations of them within a graph structure of Prefuse. Furthermore,
all structures are inherited from the class VisualItem. This top level class
provides the typical functionality of a visual structure, like assignment at-
tributes or painting issues.

PlanningTreeVisualNodes and PlanningTreeVisualEdges

The PlanningTreeVisualNode is the visual analogue to the PlanningTree-
Node and implements the PaintingObject interface (even though the paint
method is not implemented, as this is done by a Renderer). It is initialized
with its associated PlanningTreeNode that provides all necessary abstract
data that is needed to create a set of visual attributes. Besides common
attributes like visible state, all assignment attributes are of special interest:

� X: The x-coordinate depends on the Earliest Starting Time (EST) of
the task. During initialization, the TimeScale is asked for it.

� Y: The y-coordinate is set to 0 as it is later calculated by the Layouter.
As the vertical alignment depends on the expanding/collapsing state
of an item’s parent, this coordinate can change whenever the graph is
filtered.

� Width: Like the x-coordinate, width also depends on the TimeScale
and is stored as deviation to the x-coordinate.

� Height: The height is a fixed value in pixels and the same for all
items.

It is important to note that all coordinates except the y-coordinate are
calculated once, with regards to the absolute coordinate system. Also zoom-
ing or panning does not affect these coordinates, since all transformations
are performed using the affine transformation matrix of the graphic context,
therefore only view coordinates are affected.

But, as a PlanningLine is more complex than a simple rectangle, a
PlanningTreeVisualNode is composed of different visual elements imple-
menting the PaintingObject interface. Therefore, initializing the node itself
also means that absolute coordinates of caps, duration bars, the expanding-
symbol, etc., must be calculated and stored in the respective visual element.

CHAPTER 6. PROTOTYPE ARCHITECTURE 102

Besides assignment attributes, a visual element also provides a paint
method used for rendering. As at least the y-coordinate of the PlanningTree-
VisualNode can change, these changes must be passed to all visual elements
a PlanningTreeVisualNode is composed of.

This is obtained by a layered structure of single visual elements, where
all positions and dimensions are given in relation to the coordinates of the
topmost element, the PlanningTreeVisualNode. Concrete, these visual “chil-
dren” are:

� NotRendered: A visual element that is rendered instead of the
PlanningLine when the PlanningLine is too small. It would not make
sense to render a PlanningLine which is so small that no details are
recognizable. The minimum width set in the prototype is 30 pixels.

� LifeLine: A rectangle filling the whole task. Generally, this element is
rendered using the background color of the view so it is not visible. But
there is a second form of the LifeLine, it can also appear as summary
bar to indicate hierarchical decomposition.

� IntervalCap: Each node has two IntervalCaps representing the start
and end-interval of a task. The IntervalCap can also appear as small
diamonds, indicating that the interval is not given completely.

� ExpandingSymbol: A small triangle indicating that the Planning-
Line can be expanded to make children visible.

� LifeLineLabel: A label displaying the name of a task.

� DurationBar: Each node consists of two DurationBars, one for the
minimum duration, the other one for the maximum duration.

Typically, a PaintingObject is initialized with a reference to another
PaintingObject, called parent. Positions of an element are specified relative
to the position of the parent. The layered structure regarding to assignment
attributes means (see also Figure 6.8):

� NotRendered, IntervalCaps, and the LifeLine refer to the Planning-
TreeVisualNode.

� ExpandingSymbol, LifeLineLabel, and the maximum DurationBar refer
to the LifeLine.

� The minimum DurationBar refers to the maximum DurationBar.

A PlanningTreeVisualEdge is implemented in a similar way. It is also
a PaintingObject and holds the visual element ConnectArrow. Assignment
attributes are calculated regarding to its predecessor and successor, also

CHAPTER 6. PROTOTYPE ARCHITECTURE 103

Figure 6.8: Layer structure of a PlanningTreeVisualItem.

the ConnectArrow refers to these objects. This ensures that coordinates of
arrows representing logical relations always go conform with the connected
PlanningTreeVisualNodes. Therefore, PlanningTreeVisualEdges must not
be considered when layouting the view.

Figure 6.9 gives an overview about the implementation of visual struc-
tures using Prefuse and the interface PaintingObject.

6.4.3 Rendering of Visual Structures

Rendering is alway necessary when the view of the Information Visualization
must be repainted. Each VisualItem has an associated Renderer, in this case
the PlanningTreeNodeRenderer and the PlanningTreeEdgeRenderer.

Renderers are maintained by the RendererFactory which is maintained
by the ItemRegistry. On creation of a VisualItem, the ItemRegistry assigns
the correlating Renderer to the item (see also Figure 6.10).

In case of repainting, the paint method of the PlanningLinesDisplay is
called. As the Display is associated with an ItemRegistry, it asks for all
visible VisualItems (both, nodes and edges) stored in the filtered tree. In
the following, the associated Renderer of each item is accessed. A Renderer
typically has two important tasks:

1. Providing a bounding box that defines the location and maximal size
an item needs when painted.

2. Providing functionality for painting the actual area using a Java Graph-
ics2D object.

The bounding box is used by the Display to decide which items must
be rendered and which ones can be discarded as they would not be visible
anyway. This way of delimitation the count of items to be painted is often
called bounding-management. In case of a PlanningTreeVisualNode the area
is given by the position and dimension of the node, in case of the Planning-
TreeVisualEdge the area is the space between the two nodes connected by
the edge.

CHAPTER 6. PROTOTYPE ARCHITECTURE 104

Figure 6.9: UML diagram of nodes and edges. Blue cardinalities represent the
visual elements held by a VisualItem including the exact count. A red cardinality
illustrates the object the actual visual element refers to.

CHAPTER 6. PROTOTYPE ARCHITECTURE 105

Figure 6.10: UML diagram of the Renderers.

If the bounding box of an VisualItem intersects the visible area of the
PlanningLinesDisplay, the respective Renderer is called again to render the
visual structure.

Painting is done using a Java Graphics2D object. The Display passes
its own Graphics2D object to the different Renderers. Depending on the se-
lected view (see als Section 5.2), the Renderer decides which of the Painting-
Objects a VisualItem is composed of must be painted. As each Painting-
Object is able to paint itself, the Renderer just has to call the paint methods
of the selected elements in the right order.

6.4.4 View

The view of a Prefuse Information Visualization is created using the Display,
an extended class of the Java Swing JComponent. The prototype itself ex-
tended this class again to make some adjustments (PlanningLinesDisplay).

A Display is initialized with the ItemRegistry it refers to. The Planning-
LinesDisplay has to maintain following tasks:

1. Rendering the Information Visualization. This includes painting the
background, the items, and an additional foreground (in this case a
time-cursor).

2. Maintain a set of ControlListeners to handle user interactions.

3. Provide functionality of navigation. This is done with an affine trans-
formation matrix of the Display. Therefore, also functionality for mod-
ifying this matrix must be provided.

CHAPTER 6. PROTOTYPE ARCHITECTURE 106

As the top level class JComponent provides a lot of user interface func-
tionality, this is not outlined here. Only the graphical issues and event
handling of the Display are really important to understand. Several events
can cause rendering or repainting the view:

� Standard Java AWT repainting, caused on events like resizing or getting
the focus.

� An explicit call of the repaint method by an underlying layer or by
ControlListeners after they have finished their work and the results
must be communicated to the user.

� On a RepaintAction that forces the ItemRegistry to repaint all related
Displays.

Basically, the default Display of Prefuse provides most of the needed
functionality. But the demand of a time-cursor and a background extending
the ticks of the TimeScale forced an extension of the original paint methods,
realized with the PlanningLinesDisplay (see Figure 6.11)

Figure 6.11: UML diagram of the PlanningLinesDisplay.

Rendering

The rendering of items like nodes or edges is described in the Section above.
But, before performing this task, the background has to be painted. The

CHAPTER 6. PROTOTYPE ARCHITECTURE 107

background of the Display continues the tick-lines of the TimeScale, helping
users to identify temporal aspects of overlaying items.

Therefore, the PlanningLinesDisplay has to retrieve the positions of the
TimeScale to fill its own background with lines. This routine is only per-
formed after the TimeScale has changed. In the meantime, the lines are
held in an own offscreen picture to avoid useless painting and calculations
(see Double Buffering , Section 6.5.1).

After painting the background, the entire rendering of VisualItems is
performed. Subsequently, a single red line, called time-cursor, is painted
on the top of the view. The TimeCursor class holds an offscreen picture
containing a single line. The painting method just has to paint this picture
on the graphics context of the Display and an additional label for the ac-
tual date represented by the TimeCursor. The TimeCursor is completely
independent of zooming or panning, therefore its position does not change
when a user navigates.

The standard Java Double Buffering of the JComponent is disabled,
instead of Double Buffering is managed by the Display itself to provide
maximal possible performance of painting jobs.

ControlListeners

User interactions are realized by adding some ControlListeners the Display.
A ControlListener is an object which can handle one or more keyboard and
mouse events. Whenever the Display receives such an event, it passes it to
the respective ControlListener.

Basically, there are two kinds of events that are distinguished: general
events that affect the whole view and events that concern a certain item.
The application provides five different ControlListeners:

� ToolTipControl: This control is provided by Prefuse and maintains
tooltips for VisualItems.

� CursorControl: This listener is responsible for displaying the ade-
quate mouse cursor depending on mouse position and additional keys
that are pressed by a user. Additionally, this ControlListener also
cares about the tooltip of the TimeCursor as this is not a visual ele-
ment of Prefuse.

� ClickControl: Treats all mouse-clicks on the view. This Control-
Listener decides when a hierarchical decomposed node has to be col-
lapsed or expanded.

� DoubleClickControl: This ControlListeners handles double-clicks
on PlanningTreeVisualNodes. A double-click is another possibility to
expand or collapse a node.

CHAPTER 6. PROTOTYPE ARCHITECTURE 108

� DragControl: Handles all dragging events of the view. The action
depends on the mouse-button clicked while dragging. If it is the left
button, panning is performed. If it is the right one the zoom factor of
the view changes. The control is also responsible for moving the Time-
Cursor. An additional implemented feature is the moving of duration
bars within their bounds.

Figure 6.12 illustrates the functionality of ControlListeners. All listeners
are maintained by the Display. This is done by a MultiCaster, which merges
all defined ControlListeners (see also Figure 6.11).

Figure 6.12: UML diagram of the applied ControlListeners.

Typically, each event is ended by calling the repaint method of the Dis-
play to make changes visible.

Navigation

Generally, navigation within the view is done on user interactions (thus by
a ControlListener). Available navigation techniques are panning, zooming,
and navigating within the hierarchy. The Display provides several ways of
applying one of these techniques to the view. It is possible to specify an
exact point the view should pan to, but it is also possible to apply delta
values. Both techniques can be used animated too (by defining a duration
the process should last).

The PlanningLinesDisplay does not use standard zoom methods pro-
vided of Prefuse. Instead, an own method is applied that disables vertical
zooming. When zooming is applied in both directions, on a high zoom factor
the whole visual representations would only consist of a small part of a single
PlanningLine that is stretched. As this would be useless, a PlanningLine is
only stretched horizontal, its (visual) height keeps constant.

CHAPTER 6. PROTOTYPE ARCHITECTURE 109

Technically, both techniques just make adjustments to the underlying
affine transformation matrix of the Display. The matrix has several values
that can be changed to modify the view coordinate system and therefore the
whole view communicated to users (see Section 6.5.2).

This application does not work with animated navigation. Instead, the
DragControl, which is responsible for these issues, provides a smooth way of
panning and zooming. This is reached by using delta factors that depend
on mouse movements to change the entire view. This allows a user to decide
how fast or slow navigation is done, therefore a better feeling for these
techniques is ensured.

The ClickControl and DoubleClickControl just listen for interactions that
change the expand/collapse state of an item. Whenever this event occurs,
the filtering process is executed.

6.5 Graphical Concepts

Concluding the chapter about the architecture, some graphical methods
used within this prototype are outlined. As these are basic concepts used in
visualization, nearly all visual classes deal with these concepts.

6.5.1 Double Buffering

Double Buffering is a standard concept applied in paint methods of Java
components. Its goal is to avoid flickering of the area that is painted. Also
the performance of visualization may improve, as often needed graphical
elements can be stored and must not be repainted whenever needed.

In Java each graphical element has a graphic context (e. g. , a Graphics2D
object). This context can belong to the element itself or it is passed by
another graphical element. Typically, painting executes two steps:

1. Erasing the background of the area which must be repainted. That
means, previous paintings (that are still displayed) are replaced with
a background color.

2. Doing the new painting. In fact, the previously deleted area has to be
filled with single pixels.

A computer screen redraws itself about 60 to 100 times a second. There-
fore, it is hard to execute the painting job before the next repaint or the
screen is performed. This leads to incomplete graphics a user can recognize.
Especially, the erasing of the background causes flickering, as the whole part
of a view is exchanged with a single-colored area.

The performance of today’s computers is capable of performing very
simple graphics in a time, the flickering effect is not visible that much. But

CHAPTER 6. PROTOTYPE ARCHITECTURE 110

more complex graphics, and especially graphical animations like panning
cause an inacceptable flickering of a graphical user interface [Sun Microsys-
tems, 2001].

The idea of Double Buffering is to perform all painting jobs in the back-
ground. This is obtained by a BufferedImage which size is identical to the
area that has to be filled with graphical elements. This picture is often called
offscreen. All painting jobs are done on this image, while the screen area
stays as it is. Once, the image painting has finished, the complete image is
displayed at once on the screen.

Drawing a whole image is a very fast process. The flickering disappears
nearly completely, as the old area stays unchanged on the screen until all
calculations of the image have finished and the area is exchanged at once.

In complex visualizations, the whole screen is created using a lot of single
offscreen pictures (e. g. , composing a visual structure with a lot of offscreen
pictures, the structure itself is an offscreen picture again, the view). Such
a composing of a (layered) view is supported by the ability of transparent
backgrounds. This is the only way to provide a fast rendering of a large
amount of complex visual structures.

6.5.2 Affine Transformation

The concept of affine transformation is widely used in computer visualiza-
tion, especially when mapping a 2D object to an image [Bebis et al., 1999].
This is actually done by the painting of objects.

As described in Section 6.1.2, there are two different coordinate sys-
tems applied in this visualization. The absolute coordinate system is used
for placing and dimension issues, it is also called user space [Sun Microsys-
tems, 2001]. All elements of this application are initialized regarding to this
system.

In contrast to the user space, the device space is used for placing ele-
ments visually on the screen. The transformations from absolute to view
coordinates are done by the graphics context automatically. Therefore, the
graphics context uses a matrix describing the deviation of view coordinates
to absolute ones. This is realized with an object called AffineTransform.

When painting, the graphics context receives absolute assignment infor-
mation like coordinates or dimensions. These absolute values are passed to
the matrix which returns the associated view value.

Mapping between absolute and view coordinates is done linear. An affine
transformation changes all values using the same formulas. Parallel lines
stay parallel, relative proportions are retained [Austin, 2003].

Furthermore, view coordinates are quoted in the following way: x’ and
y’. Generally, the view coordinate system is described using following factors
for both dimensions:

CHAPTER 6. PROTOTYPE ARCHITECTURE 111

� Scale: This factor is a multiplier used for scaling view coordinates (sx
and sy). This factor is responsible for zooming.

� Translate: Describes a translation in a certain direction (tx and ty).
This factor is responsible for panning.

� Shear: Describes the shearing points (shx and shy). This, in combi-
nation with scaling, is used for rotations.

Mathematically, this is solved using a 3x3 matrix. Transformations are
calculated using the following model (the last row is a dummy row needed
to perform matrix calculations):x′

y′

1

 =

 sx shx tx
shy sy ty
0 0 1

 x
y
1

This matrix is equivalent to the following two statements that show how

view coordinates are calculated [Sun Microsystems, 2001]:

x′ = sx ∗ x + shx ∗ y + tx

y′ = shy ∗ x + sy ∗ y + ty

Considering the functionality of the prototype that means that panning
changes the translation factors and zooming the scale factors. As zooming
is only provided in the horizontal direction, sy is equal to 1. This causes
some problems, as the automatic painting routines of Java are not able to
determine how an item should be represented if zooming is not applied in
both directions. This concerns elements like vertical lines that get too wide
and labels that are not readable anymore as the proportions are not right
(stretched in the vertical direction).

To prevent this behavior, some of the elements must be painted without
using the transformation matrix. But this also means that the absolute
coordinates of an element must be converted manually to view coordinates.

Whenever such an element has to be painted, a blank transformation
matrix is set to the Graphics2D element before painting on it. Thus, no co-
ordinates passed to the graphics context are transformed anymore. There-
fore, lines, etc., are painted in a normal way, as neither zooming nor panning
is applied to the graphics context.

As automatic routines are bypassed by setting a blank matrix, the view
coordinates have to be calculated manually by the element. The Coordinate
class provides this functionality. The received view coordinates are passed
to the Graphics2D object and the visual element is drawn. As the graphics
context does not perform any transformations again, the element is painted
the same way as there would be no zooming applied to the view.

CHAPTER 6. PROTOTYPE ARCHITECTURE 112

Finally, the original transformation matrix is set back to the Graphics2D
element, so further paintings can perform their transformations automati-
cally.

With describing the architecture of the prototype the end of this thesis is
reached. The next Chapter recapitulates the work that has done.

Chapter 7

Conclusion

7.1 Summary

Temporal uncertainties are present in every plan as the future cannot be
predetermined exactly. There are several ways how to consider such uncer-
tainties, but, plans may become very complex when uncertainties flow into
them (especially large plans). Even though PERT considers temporal uncer-
tainties and provides methods to analyse them, typically, only slack times
between tasks are considered in practice. The missing graphical notation of
these uncertainties makes it hard to work with a PERT chart that contains
the full range of possible temporal facts.

The implemented prototype tries to fill this gap of treating temporal un-
certainties visually. The concept PlanningLines which provides a graphical
notation of temporal uncertainties was applied in a modern and sophisti-
cated Information Visualization. An Information Visualization amplifies
the cognition and perception of complex information [Card et al., 1999]. In
case of temporal uncertainties within a plan, the task of an Information
Visualization is to communicate these complex coherencies to users so they
are able to understand them and see possible problems at a glance.

The prototype is able to display MS-Project or Asbru plans. Applied
interaction techniques allow users to navigate within a plan. All facts are
displayed graphically, therefore, the visual sense and the ability of conceiving
logical patterns are used directly to communicate complex plans.

Besides displaying a plan by using PlanningLines, also LifeLines can
be chosen as notation. Furthermore, the prototype supports two different
modes to display hierarchical decomposition.

Recapitulating, it seems that PlanningLines is a proper way of treating
temporal uncertainties visually. The implemented prototype combines this
concept with methods and techniques of Information Visualization. This is
a first attempt to evaluate this concept in a modern visualization. Further,
ways of technical realization of such a software were shown.

113

CHAPTER 7. CONCLUSION 114

7.2 Evolution

The main goal of this thesis was the development of a prototype which
applies the concept PlanningLines to MS-Project and Asbru plans. PERT is
the leading charting technique to treat plans with temporal uncertainties.
However, PlanningLines is a concept that tries to treat such uncertainties
graphically instead of textually as PERT does.

Techniques and methods of Information Visualization were of special
interest as they directly flow into the development of the prototype. Espe-
cially, the usage of the InfoVis Pipeline was a central aspect when developing
the prototype [Card et al., 1999]. The InfoVis Pipeline affected the whole
implementation, starting with the selection of adequate toolkits and ending
in the whole architecture which is conform to this recommendation. Firstly,
it seemed that the InfoVis Pipeline provides some additional work, but once
some details were worked out the consideration of the InfoVis Pipeline pro-
vided a lot of advantages with regards to extensibility. Additionally, the
InfoVis Pipeline ensured a well designed application which may be used in
further development.

The selection of adequate toolkits was an important task. After some
attempts with Piccolo, Prefuse was chosen to be the main framework for
implementing the Information Visualization. Prefuse provides most of the
wanted functionality a priori to support the development of the prototype.
Quickly a way was found to create PlanningLines, also assignment of them
on the view was easy to implement. Nevertheless, some problems occurred
while development.

In the beginning, zooming was applied in both directions. This is a com-
mon technique in Information Visualization to support navigation in a view.
In case of PlanningLines it turned out that zooming in the vertical direction
makes no sense as single PlanningLines get too large. Furthermore, a loss
of provided information is caused since coherencies between PlanningLines
may not be conceivable anymore because of their size. The decision of dis-
abling vertical zooming caused some problems with the automatic rendering
routines of Java. Therefore, a lot of work was investigated to solve these
problems. But, in the end this additional work was rewarded as surrounding
areas can still be spotted even if a certain task or area is displayed in detail.

Another challenge was the development of the timescale. Firstly, it
seemed that this would be an easy work. But the fact that dates are not lin-
ear caused some problems in the graphical representation. Therefore, ways
had to be found to consider calendar anomalies without loosing performance
in painting issues. However, there is still a problem left, the providing of an
associated date to a certain screen point.

After most of these problems were solved, the prototype displays plans
with temporal uncertainties visually. So problems or possibilities to lower
the whole duration of a plan can be seen at a glance. Nevertheless, by the

CHAPTER 7. CONCLUSION 115

use of tooltips and navigation techniques (zooming and panning) also details
of the plan can be extracted easily.

7.3 Learned Lessons

Visual representation of complex data is often the only possibility to conceive
the coherencies. The discipline Information Visualization provides a lot of
concepts and methods to fulfill this task. Further, developers of an Infor-
mation Visualization are supported by several free or commercial products
that can facilitate the implementation.

Nevertheless, developing of an Information Visualization is hard work.
A lot of different things have to be considered to result a usable application.
This work has shown that concepts of Information Visualization (like the
InfoVis Pipeline) or the usage of complex toolkits are reasonable even if some
additional work has to be performed when implementing the basis. But, at
least when some details must be solved this additional work is rewarded.

Chapter 8

Future Work

Since there is a new release of Prefuse available, a porting to the new
framework would provide several advantages. On the one hand, this ver-
sion supports new functionality, on the other hand, the design of it is more
lightweight and flexible. Furthermore, the new framework considers the
InfoVis Pipeline even more than the old one as data tables are supported as
basic data structure. Therefore, when the prototype is ported, the Prefuse
table could replace the InfoVis Toolkit table which would make the whole
architecture more reasonable.

Especially, the timescale demands some enhancements since the current
behavior of providing associate dates to screen points is not satisfying. A
way has to be found where the actual granularity is considered, but, this
will be a real challenge.

Some missing functionality was already mentioned in Section 5.3. Be-
sides applying more flexibility (e. g. , changing of visual attributes at runtime,
an overview window, etc.), the integration of the prototype in CareVis is
the most important issue.

Once the functionality is enhanced, user testings should be performed.
An evaluation study with domain experts would reveal how the design and
navigation is accepted and where improvements are necessary.

116

Appendix A

Indeterminacies Calculation
Table

EST LST EFT LFT minDu maxDu Applied Formulas
X X X X X (3.3)
X X X X X (3.1), (3.2)
X X X X X (3.9)
X X X X X (3.5)
X X X X X (3.4)

X X X X X (3.8)
X X X X (3.1), (3.2), (3.3)
X X X X (3.1), (3.2), (3.9)
X X X X (3.5), (3.9)
X X X X (3.6)

X X X X (3.4), (3.8)
X X X X (3.3), (3.5)
X X X X (3.3), (3.4)

X X X X (3.5), (3.8)
X X X X (3.1), (3.2), (3.8)

X X X X (3.4),(3.9)

Table A.1: The Table illustrates which formulas are applied when calculating
indeterminacies or a PlanningLine. The equation numbers refer to the formulas
given in Section 3.3.1. Note, that Equation 3.2 is only performed when Planning-
Line has overlapping intervals. The Table is continued on the next site.

117

APPENDIX A. INDETERMINACIES CALCULATION TABLE 118

EST LST EFT LFT minDu maxDu Applied Formulas
X X X (3.1), (3.2)
X X X (3.9)
X X X (3.6), (3.9)

X X X (3.7), (3.8)
X X X (3.3)
X X X (3.3)
X X X (3.5)

X X X (3.1), (3.2)
X X X (3.3), (3.6)

X X X (3.5)
X X X (3.4)

X X X (3.4)
X X X (3.9)

X X X (3.1), (3.2)
X X X (3.8)

X X X (3.8)
X X X (3.5)

X X X (3.4)
X X (3.1), (3.2)

X X (3.3)
X X (3.6)

X X (3.5)
X X (3.4)

X X (3.7)
X X (3.9)

X X (3.8)

Table A.2: Continuation of table A.1;

Appendix B

UML Notation

Figure B.1: A package which contains a sub-package.

Figure B.2: (a) shows a class, (b) an interface, (c) a class of prefuse.

119

APPENDIX B. UML NOTATION 120

Figure B.3: (a) shows an extended subclass, (b) a subclass that implements an
interface.

Figure B.4: (a) shows an association in one direction (Class A holds a reference
to Class B), (b) shows an association in both directions (Class A holds a reference
to Class B and vice versa). Further, associations may depict cardinality (e. g. , 0..1,
1, *).

Bibliography

[Aigner, 2003] Aigner, W. (2003). Interactive Visualization of Time-
Oriented Treatment Plans and Patient Data. Master’s thesis, Vienna
University of Technology, Austria.

[Aigner and Miksch, 2004] Aigner, W. and Miksch, S. (2004). Communi-
cating the Logic of a Treatment Plan Formulated in Asbru to Domain
Experts. In Computer-based Support for Clinical Guidelines and Proto-
cols (CGP 2004), pages 1–15.

[Aigner and Miksch, 2006] Aigner, W. and Miksch, S. (2006). CareVis: In-
tegrated visualization of computerized protocols and temporal patient
data. Artificial Intelligence in Medicine, 37(3):203–218.

[Aigner et al., 2005a] Aigner, W., Miksch, S., Thurnher, B., and Biffl, S.
(2005a). PlanningLines: Novel Glyphs for Representing Temporal Un-
certainties and Their Evaluation. In 9th International Conference on
Information Visualisation, IV 2005, 6-8 July 2005, London, UK, pages
457–463.

[Aigner et al., 2005b] Aigner, W., Miksch, S., Thurnher, B., and Biffl, S.
(2005b). PlanningLines Usability Studie - User Study zum Vergleich von
PlanningLines und PERT Darstellung (in German). Technical Report
Asgaard-TR-2005-3, Vienna University of Technology.

[Austin, 2003] Austin, D. (2003). Graphics2D’s Internal State - Lec-
ture Notes. http://merganser.math.gvsu.edu/david/reed03/notes/
chap4.pdf. Online; accessed April 20th, 2006.

[Bebis et al., 1999] Bebis, G., Georgiopoulos, M., da Vitoria Lobo, N., and
Shah, M. (1999). Learning affine transformations. Pattern Recognition,
32(10):1783–1799.

[Card et al., 1999] Card, S. K., Mackinlay, J. D., and Shneiderman, B.
(1999). Readings in Information Visualization: Using Vision to Think.
Morgan Kaufmann.

121

http://merganser.math.gvsu.edu/david/reed03/notes/chap4.pdf
http://merganser.math.gvsu.edu/david/reed03/notes/chap4.pdf

BIBLIOGRAPHY 122

[Chi, 2000] Chi, E. H. (2000). A Taxonomy of Visualization Techniques
Using the Data State Reference Model. In INFOVIS, pages 69–76.

[Duftschmid, 1999] Duftschmid, G. (1999). Knowledge-Based Verification
of Clinical Guidelines by Detection of Anomalies. PhD thesis, Vienna
University of Technology, Vienna.

[Fekete, 2004] Fekete, J.-D. (2004). The InfoVis Toolkit. In 10th IEEE
Symposium on Information Visualization (InfoVis 2004), pages 167–174.

[Fekete, 2006a] Fekete, J.-D. (2006a). The InfoVis Toolkit Homepage. http:
//ivtk.sourceforge.net/. Online; accessed April 16th, 2006.

[Fekete, 2006b] Fekete, J.-D. (2006b). The InfoVis Toolkit (Rapport de
recherche, INRIA Futures). http://www.inria.fr/rrrt/rr-4818.html.
Online; accessed April 16th, 2006.

[Friedland and Iwasaki, 1985] Friedland, P. and Iwasaki, Y. (1985). The
Concept and Implementation of Skeletal Plans. J. Autom. Reasoning,
1(2):161–208.

[Gareis, 2000] Gareis, R. (2000). Managing the Project Start. In The Gower
Handbook of Project Management, pages 451–467. Aldershot.

[Hadorn, 1995] Hadorn, D. (1995). Use of Algorithms in Clinical Guideline
Development in Clinical Practice. In Guideline Development: Methodol-
ogy Perspectives(AHCPR Pub. No. 95-0009), pages 93–104.

[Harrington, 1991] Harrington, H. J. (1991). Business Process Improve-
ment: The Breakthrough Strategy for Total Quality, Productivity, and
Competitiveness. McGraw Hill, 1. edition.

[Heer, 2004] Heer, J. (2004). Prefuse: A Software Framework for Interac-
tive Information Visualization. Master’s thesis, University of California,
Berkeley, USA.

[Heer et al., 2005] Heer, J., Card, S. K., and Landay, J. A. (2005). Prefuse:
A Toolkit for Interactive Information Visualization. In Proceedings of the
2005 Conference on Human Factors in Computing Systems, CHI 2005,
pages 421–430.

[Joint Publications, 2001] Joint Publications (2001). Department of Defense
Dictionary of Military and Associated Terms. http://www.fas.org/irp/
doddir/dod/jp1_02.pdf. Online; accessed March 18th, 2006.

[Keim and Kriegel, 1996] Keim, D. A. and Kriegel, H.-P. (1996). Visualiza-
tion Techniques for Mining Large Databases: A Comparison. Transac-
tions on Knowledge and Data Engineering, Special Issue on Data Mining,
8(6):923–938.

http://ivtk.sourceforge.net/
http://ivtk.sourceforge.net/
http://www.inria.fr/rrrt/rr-4818.html
http://www.fas.org/irp/doddir/dod/jp1_02.pdf
http://www.fas.org/irp/doddir/dod/jp1_02.pdf

BIBLIOGRAPHY 123

[Kosara et al., 2001] Kosara, R., Messner, P., and Miksch, S. (2001). Time
and Tide Wait for No Diagram. Technical Report Asgaard-TR-2001-2,
Vienna University of Technology.

[Kosara and Miksch, 2001] Kosara, R. and Miksch, S. (2001). Metaphors of
Movement: A Visualization and User Interface for Time-oriented, Skeletal
Plans. Artificial Intelligence in Medicine, 22(2):111–131.

[Messner, 2000] Messner, P. (2000). Time Shapes - A Visualization for Tem-
poral Uncertainty in Planning. Master’s thesis, Vienna University of Tech-
nology, Austria.

[Meyer, 1997] Meyer, W. (1997). Information Visulization Prinzipien und
Techniken (in German). Master’s thesis, Vienna University of Technology,
Austria.

[Microsoft, 2006] Microsoft (2006). Microsoft Office Online. http://
office.microsoft.com/en-us/default.aspx. Online; accessed March
15th, 2006.

[Miksch, 1999] Miksch, S. (1999). Plan management in the Medical Domain.
AI Commun., 12(4):209–235.

[Modell, 1996] Modell, M. E. (1996). A Professional’s Guide to Systems
Analysis. McGraw-Hill, Inc., Hightstown, NJ, USA, 2. edition.

[Morris, 2000] Morris, W., editor (2000). American Heritage Dictionary of
the English Language. Houghton Mifflin, 4. edition.

[NASA, 1994] NASA (1994). Work Breakdown Structure Reference Guide.
http://www.tarrani.net/shared/WBSRefGuide3.pdf. Online; accessed
February 24th, 2006.

[NHS - Modernisation Agency, 2002] NHS - Modernisation Agency (2002).
What is Protocol-Based Care?... http://www.modern.nhs.uk/
protocolbasedcare/whatis_leaflet.pdf. Online; accessed February
04th, 2006.

[OpenClinical, 2006] OpenClinical (2006). OpenClinical.org. http://www.
openclinical.org. Online; accessed March 15th, 2006.

[Piccolo, 2006] Piccolo (2006). HCIL - Human Computer Interaction Lab,
University of Maryland. http://www.cs.umd.edu/hcil/piccolo. On-
line; accessed April 14th, 2006.

[Plaisant et al., 1998] Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller,
D., and Shneiderman, B. (1998). LifeLines: Using Visualization to En-
hance Navigation and Analysis of Patient Records. In Proceedings of the

http://office.microsoft.com/en-us/default.aspx
http://office.microsoft.com/en-us/default.aspx
http://www.tarrani.net/shared/WBSRefGuide3.pdf
http://www.modern.nhs.uk/protocolbasedcare/whatis_leaflet.pdf
http://www.modern.nhs.uk/protocolbasedcare/whatis_leaflet.pdf
http://www.openclinical.org
http://www.openclinical.org
http://www.cs.umd.edu/hcil/piccolo

BIBLIOGRAPHY 124

1998 American Medical Informatic Association Annual Fall! Symposium,
pages 76–80.

[pma - Project Management Austria, 2002] pma - Project Management
Austria (2002). pm baseline (English Version). http://debian.p-m-a.
at/docs/pm_baseline_en.pdf. Online; accessed February 19th, 2006.

[Project Management Institute, 2000] Project Management Institute
(2000). A Guide to the Project Management Body of Knowledge
(PMBOK® Guide). Project Management Institute, 2000 edition.

[Rit, 1986] Rit, J.-F. (1986). Propagating Temporal Constraints for
Scheduling. In AAAI, pages 383–388.

[Shahar, 2002] Shahar, Y. (2002). Automated Support to Clinical Guide-
lines and Care Plans: The Intention-Oriented View. http://www.
openclinical.org/docs/int/briefingpapers/shahar.pdf. Online;
accessed February 28th, 2006.

[Sisk, 1998] Sisk, T. (1998). History of Project Management.
http://www.microsoft.com/downloads/thankyou.aspx?familyId=
C1F9B881-D879-4B54-B07B-55041685F15F&displayLang=en&oRef=.
Online; accessed July 06th, 2006.

[Smith, 1994] Smith, S. (1994). OPIS: A Methodology and Architecture
for Reactive Scheduling. In Zweben, M. and Fox, M., editors, Intelligent
Scheduling. Morgan Kaufmann.

[SourceForge, 2006] SourceForge (2006). SourceForge GanttProject. http:
//ganttproject.sourceforge.net. Online; accessed March 15th, 2006.

[Sun Microsystems, 2001] Sun Microsystems (2001). Programmer’s Guide
to the Java 2DTM API - Enhanced Graphics and Imaging for Java. http:
//java.sun.com/j2se/1.4/pdf/j2d-book.pdf. Online; accessed April
20th, 2006.

[@Task, 2006] @Task (2006). @Task Project Management Software. http:
//www.attask.com. Online; accessed March 15th, 2006.

[The Standish Group, 2001] The Standish Group (2001). Extreme
Chaos. http://www.standishgroup.com/sample_research/PDFpages/
extreme_chaos.pdf. Online; accessed February 20th, 2006.

[Tu et al., 2002] Tu, S., Johnson, P., and Musen, M. (2002). A Typology
for Modeling Processes in Clinical Guidelines and Protocols. Technical
Report SMI-2002-0911, Stanford University.

http://debian.p-m-a.at/docs/pm_baseline_en.pdf
http://debian.p-m-a.at/docs/pm_baseline_en.pdf
http://www.openclinical.org/docs/int/briefingpapers/shahar.pdf
http://www.openclinical.org/docs/int/briefingpapers/shahar.pdf
http://www.microsoft.com/downloads/thankyou.aspx?familyId=C1F9B881-D879-4B54-B07B-55041685F15F&displayLang=en&oRef=
http://www.microsoft.com/downloads/thankyou.aspx?familyId=C1F9B881-D879-4B54-B07B-55041685F15F&displayLang=en&oRef=
http://ganttproject.sourceforge.net
http://ganttproject.sourceforge.net
http://java.sun.com/j2se/1.4/pdf/j2d-book.pdf
http://java.sun.com/j2se/1.4/pdf/j2d-book.pdf
http://www.attask.com
http://www.attask.com
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

BIBLIOGRAPHY 125

[Tu and Musen, 2001] Tu, S. and Musen, M. (2001). Modeling Data
and Knowledge in the EON Guideline Architecture. http://smi-web.
stanford.edu/auslese/smi-web/reports/SMI-2001-0868.pdf. On-
line; accessed March 18th, 2006.

[Vidal, 2004] Vidal, T. (2004). The Many Ways of Facing Temporal Uncer-
tainty in Planning and Scheduling. In 11th International Symposium on
Temporal Representation and Reasoning (TIME 2004), pages 9–10.

[Vidal et al., 1996] Vidal, T., Ghallab, M., and Alami, R. (1996). Incremen-
tal Mission Allocation to a Large Team of Robots. In IEEE International
Conference on Robotics and Automation (ICRA’96), pages 1620–1625.
Aldershot.

[Voigt, 2002] Voigt, R. (2002). An Extended Scatterplot Matrix and
Case Studies in Information Visualization. Master’s thesis, Hochschule
Magdeburg-Stendal, Austria.

[Wikipedia, the free encyclopedia, 2006a] Wikipedia, the free encyclopedia
(2006a). Frederick Winslow Taylor. http://en.wikipedia.org/wiki/
Frederick_Winslow_Taylor. Online; accessed July 06th, 2006.

[Wikipedia, the free encyclopedia, 2006b] Wikipedia, the free encyclopedia
(2006b). Namespace. http://en.wikipedia.org/wiki/Namespace. On-
line; accessed April 18th, 2006.

[Wikipedia, the free encyclopedia, 2006c] Wikipedia, the free encyclope-
dia (2006c). Project Management. http://en.wikipedia.org/wiki/
Project_management. Online; accessed July 06th, 2006.

[Woolf et al., 1999] Woolf, S., Grol, R., Hutchinson, A., Eccles, M., and
Grimshaw, J. (1999). Clinical Guidelines: Potential Benefits, Limitations,
and Harms of Clinical Guidelines. BMJ, 318:527–530.

[Wysocki et al., 2000] Wysocki, R., Beck, R., and Crane, D. (2000). Effec-
tive Project Management. John Wiley & Sons, Inc., 2. edition.

http://smi-web.stanford.edu/auslese/smi-web/reports/SMI-2001-0868.pdf
http://smi-web.stanford.edu/auslese/smi-web/reports/SMI-2001-0868.pdf
http://en.wikipedia.org/wiki/Frederick_Winslow_Taylor
http://en.wikipedia.org/wiki/Frederick_Winslow_Taylor
http://en.wikipedia.org/wiki/Namespace
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Project_management

	Abstract
	Kurzfassung
	Acknowlegements
	Introduction
	Motivation
	Overview of the Thesis

	State of the Art
	Project Management
	Overview
	Definitions
	Responsibilities of Project Management
	Problems in Project Planning
	Graphical Plan Representation - Charting Techniques
	Software Tools

	ProtocolBased Care
	Overview
	Clinical Guidelines and Protocols
	The Guideline Representation Language Asbru
	Graphical Representation of Treatment Plans
	Related Projects

	Information Visualization
	Overview
	Definitions
	Responsibilities of Information Visualization
	Common Techniques
	Interaction Techniques
	Software Toolkits supporting Information Visualization
	InfoVis Toolkit
	Prefuse
	Piccolo
	Syncfusion Essential Diagram

	PlanningLines
	Comparison to PERT and Gantt
	Requirements
	Design Concept
	PlanningLine Glyph
	PlanningLines Display

	Example of a Project Plan
	Temporal Uncertainties
	Discussion

	Prototype Design
	Requirements and Environment
	Basic Environment
	General Requirements
	PlanningLines
	Display
	Timescale
	User Interaction Techniques

	Toolkits
	Selection of Toolkits
	InfoVis Toolkit
	Prefuse

	Prototype Implementation
	Features
	Data Sources
	TimeScale
	Activities of a Plan
	View
	Screenshots

	Manual
	Not Implemented Features

	Prototype Architecture
	General
	Package Structure
	Coordinate Systems
	Notes on Prefuse
	Interfaces

	Data
	Reading Raw Data
	Data Preprocessing
	Data Table
	Reading Data Table
	PlanningTree

	TimeScale
	General
	Granularity
	Graphical Representation
	TimeScaleLayer
	Open Problems

	Visual Structures
	Filtering the Tree
	Visual Structures in ItemRegistry
	Rendering of Visual Structures
	View

	Graphical Concepts
	Double Buffering
	Affine Transformation

	Conclusion
	Summary
	Evolution
	Learned Lessons

	Future Work
	Indeterminacies Calculation Table
	UML Notation
	Bibliography

