
MAGISTERARBEIT

Formal Program Verification:
a Comparison of Selected Tools and

Their Theoretical Foundations

Ausgeführt am

Institut für Computersprachen
der Technischen Universität Wien

unter der Anleitung von

A.o.Univ.Prof. DI. Dr. Gernot Salzer

durch

Ingo Feinerer, Bakk.techn.

Felixdorfer Gasse 11
A-2700 Wiener Neustadt

Wien, Jänner 2005

MASTER THESIS

Formal Program Verification:
a Comparison of Selected Tools and

Their Theoretical Foundations

Ingo Feinerer

Theory and Logic Group
Institute of Computer Languages
Vienna University of Technology

Advisor

Gernot Salzer

Vienna, January 2005

1

Zusammenfassung

Formale Spezifikation und Verifikation sind durch die durch kontinuierliche
Weiterentwicklung in letzter Zeit an einem Punkt angelangt, wo Programme
beinahe automatisch verifiziert werden können.

Das Ziel dieser Magisterarbeit ist es, sowohl kommerzielle als auch für
wissenschaftliche Zwecke entwickelte Verifikationsprogramme zu testen. Der
Hauptaugenmerk liegt auf dem Nutzen dieser Werkzeuge in der Software-
Entwicklung und in der Lehre. Hierzu wird diese Magisterarbeit die theo-
retischen Grundlagen vorstellen und auf die verschiedenen Fähigkeiten und
Eigenheiten der ausgewählten Werkzeuge eingehen.

Die theoretischen Grundlagen behandeln einerseits Ansätze, die für die
formale Verifikation gebraucht werden, andererseits wird die Funktionsweise
der ausgewählten Werkzeuge erklärt.

Die begutachteten Programme sind der Frege Program Prover, KeY, Per-
fect Developer und das Prototype Verification System. Die Beispiele, mit
denen diese Werkzeuge getestet werden, sind typische Problemstellung der
Informatik. Bei der Evaluation wird auf den ganzen Ablauf beim Einsatz
dieser Werkzeuge eingegangen und nicht nur auf das Endergebnis.

Abstract

Formal specification and verification of software have made small but contin-
uous advances throughout its long history, and have reached a point where
commercial tools became available for verifying programs semi-automatically
or automatically.

The aim of the master thesis is to evaluate commercial and academic
verification tools with respect to their usability in developing software and in
teaching formal methods. The thesis will explain the theoretical foundation
and compare the capabilities and characteristics of selected commercial and
academic tools on concrete examples.

The theoretical foundations deal on the one hand with the general ideas
and principles of formal software verification, on the other hand present some
internals of the selected tools to give a comprehensive understanding.

The discussed tools are the Frege Program Prover, KeY, Perfect De-
veloper, and the Prototype Verification System. The examples encompass
simple standard computer science problems. The evaluation of these tools
concentrates on the whole development process of specification and verifica-
tion, not just on the verification results.

2

Acknowledgements

I would like to thank my family, especially my mother Inge, for supporting
me.

Gernot Salzer, my advisor, helped me whenever he could and invested
a lot of time in discussing and investigating problems together with me.
David Crocker gave excellent support on Perfect Developer, Andreas Roth
and Steffen Schlager offered helpful instructions on KeY, Jürgen Winkler
provided papers and references on FPP. Also the subscribers of the PVS
mailing list came up with nice ideas.

3

Contents

1 Introduction 6

2 Theoretical Foundations 8
2.1 Propositional Logic . 8
2.2 Natural Deduction . 9
2.3 Sequent Calculus . 11
2.4 Hoare Calculus . 13
2.5 Weakest Preconditions . 15

3 Selected Tools 17
3.1 Overview . 17
3.2 Frege Program Prover . 19
3.3 KeY System . 21
3.4 Perfect Developer . 25
3.5 PVS Specification and Verification System 29

4 Examples 34
4.1 Criteria . 34
4.2 Methodology . 36
4.3 Frege Program Prover . 37

4.3.1 Cubic sum . 38
4.3.2 Division . 39
4.3.3 Factorial . 42
4.3.4 Fibonacci numbers . 43
4.3.5 Inconsistency test . 46
4.3.6 Multiplication . 48
4.3.7 False theorem test . 49
4.3.8 Correct theorem test 50
4.3.9 Conditional weakest precondition 51

4.4 KeY System . 52
4.4.1 Cubic sum . 53
4.4.2 Conditional . 54
4.4.3 Division . 56
4.4.4 Factorial . 57
4.4.5 List maximum . 58
4.4.6 Multiplication . 59
4.4.7 Prime . 60

4.5 Perfect Developer . 62
4.5.1 Cubic sum . 63

4

4.5.2 Factorial . 63
4.5.3 Intersection . 64
4.5.4 Inversions . 66
4.5.5 List maximum . 67
4.5.6 Multiplication . 68
4.5.7 Prime . 69
4.5.8 Quicksort . 70

4.6 PVS Specification and Verification System 71
4.6.1 Cubic sum . 72
4.6.2 Factorial . 73
4.6.3 Inversions . 74
4.6.4 Multiplication . 75
4.6.5 Quicksort . 76

5 Summary 79

5

1 Introduction

Formal software verification has become a more and more important issue in
developing security related software during the last decades. As a reaction,
ISO — the International Organisation for Standardisation — issued the ISO
15408 Standard, defining exactly various quality levels for tested and verified
software. This standard is represented in the Common Criteria Project, with
members of security organisations around the globe.

During the last years, formal specification and verification tools have been
introduced, especially designed for standard development processes. The
focus ranges from security related projects, over hardware circuit verification
to software driver verification. In particular model checking has been very
successful.

Based on this evolution this thesis deals with four specification and veri-
fication tools that enable the user to build software complying with the most
demanding restrictions of the ISO 15408 Standard. The aim is to construct
software that meets the Evaluation Assurance Levels 6 and 7 (EAL 6, EAL
7) defined in the Common Criteria Project. In other words this means fully
verified specification and code.

For a long time users of these tools have been assumed to be experts in
formal methods. With new target groups requirements changed. Therefore
this thesis evaluates the tools with respect to two groups: software engineers
with a good knowledge of computer science but without specific training in
formal methods, and students of computer science and software engineering
in the middle of their studies, being confronted with formal verification tools
for the first time.

The four tools that will be investigated are the Frege Program Prover,
KeY, Perfect Developer, and the Prototype Verification System. In the first
part of this work, the theoretical background — main calculi and ideas of
formal verification — is presented. Then the internals of the tools are dis-
cussed, showing the different approaches and techniques from the theoretical
side. Finally, by going through a set of simple standard computer science
examples, the different characteristics and capabilities are presented in a
practical form. By examining the tools from both sides, theory and practice,
their usability in developing software and in teaching formal methods for the
above defined target group is discussed.

6

Historical perspective

Formal verification has always been a well discussed problem by a lot of
excellent computer scientists. Jones [2003] mentions three phases of historical
development:

Pre-Hoare Herman Goldstine, John von Neumann, Alan Turing, Robert
Floyd and John McCarthy are only some famous computer pioneers
that can be mentioned here. They started thinking about errors in
their programs from the start on and had already ideas to avoid them.
The idea of assertions for programs was borne.

Hoare’s axiomatic approach Tony Hoare presented his axioms in his fa-
mous paper Hoare [1969] — the calculus is also discussed in section 2.4
of this thesis. This formulation led to new approaches towards formal
verification in the late 1970s.

Post-Hoare After Hoare’s axiomatic approach formal verification became
a broad scientific research problem with connections to the semantics
of programming languages. Many scientists, like Edsger Dijkstra, Tony
Hoare himself and many more, continued to work on these foundations
and made continuous improvements.

Until today automatic verification is an intensively considered problem. E.g.
Tony Hoare stated the problem of building a “verifying compiler” as one of
the big challenges of computer science in his paper Hoare [2003]. Also the
idea of reusing verified software is appreciated by the scientific community
— Meyer [2003] deals in detail with that idea.

7

2 Theoretical Foundations

This section deals with general ideas and principles underlying formal soft-
ware verification and explains basic notions and calculus frameworks.

The reader is assumed to have a minimal background on formal logic, es-
pecially in classical propositional and first order logic. Detailed explanations
of these basics are given in Gallier [2003] or Huth and Ryan [2004].

The following sections discuss an introduction to propositional logic, nat-
ural deduction, the sequent calculus, the Hoare calculus and weakest precon-
ditions.

We present only rules for propositional logic to give the flavour of the
various approaches. Real systems for proving statements about programs
are more complex in at least two respects: first, propositional logic has to
be extended to first-order or even higher-order logics, i.e., in general we need
quantification over first-order or higher-order variables. Second, provers need
built-in knowledge about the data types used in programs and formal specifi-
cations, like reals and integers, lists and sets. Moreover, special mechanisms
have to be provided to deal with equalities, inequalities and other basic the-
ories, using e.g. decision procedures.

2.1 Propositional Logic

This section deals with the basics of propositional classical logic. The fol-
lowing notations will be used as the basic formalism in later chapters.

Syntax The alphabet for propositional formulas consists of:

A countable set of propositional symbols Ai,

logical connectives ∨,∧,¬,⊃,⊥ and

auxiliary symbols (parentheses).

Definition 2.1 The set of well formed propositional formulas PROP is in-
ductively defined as:

Every propositional symbol Ai and ⊥ are ∈ PROP,

Whenever A,B ∈ PROP, then ¬A,A ⊃ B,A ∨B,A ∧B ∈ PROP.

8

Semantics

Definition 2.2 A valuation v is a function that maps well formed proposi-
tional formula to truth values, hence v : PROP 7→ {true, false}.

Let A,B ∈ PROP . We write v |= A iff A evaluates to true under the
valuation v. The satisfaction relation is defined as:

v |= A iff v(A) = true

v |= A ∧B iff v |= A and v |= B

v |= A ∨B iff v |= A or v |= B

v |= A ⊃ B iff v 2 A or v |= B

v |= ¬A iff v 2 A

2.2 Natural Deduction

Let φ1, φ2, φ3, . . . , φn be formulas, which are called premises, and ψ be an-
other formula called conclusion.

Definition 2.3 The expression φ1, φ2, φ3, . . . , φn ` ψ is called sequent.

But instead of φ1, φ2, φ3, . . . , φn ` ψ we write

φ1 φ2 φ3 . . . φn

ψ

This means that if all premises φ1, φ2, φ3, . . . , φn are true, we conclude that
the conclusion ψ is true.

From now on let φ, ψ and χ denote propositional formulas. The nat-
ural deduction rules for propositional logic distinguish between introduction
(i-rules) and elimination (e-rules) rules for connectives and are defined as
follows:

Disjunction Rules:

∨i1
φ

φ ∨ ψ ∨i2
ψ

φ ∨ ψ

∨e
φ ∨ ψ φ ` χ ψ ` χ

χ

9

Conjunction Rules:

∧i
φ ψ

φ ∧ ψ

∧e1

φ ∧ ψ
φ

∧e2

φ ∧ ψ
ψ

Implication Rules:

⊃ i
φ ` ψ
φ ⊃ ψ

⊃ e
φ φ ⊃ ψ

φ

Negation Rules:

¬i
φ ` ⊥
¬φ

¬e
φ ¬φ
⊥

Bottom Rule:

⊥e
⊥
φ

Double Negation Rule:

¬¬e
¬¬φ
φ

Some Derived Rules:

Modus tollens
φ ⊃ ψ ¬ψ

¬φ

¬¬i
φ

¬¬φ

10

Reductio ad absurdum
¬φ ` ⊥

φ

Tertium non datur
φ ∨ ¬φ

Definition 2.4 A proof in natural deduction is the smallest set X such that

the one element tree φ belongs to X for all well formed propositional
formulas φ and

if φ ∈ X, ψ ∈ X and χ ∈ X, then every application of the above defined
natural deduction rules is ∈ X.

Definition 2.5 Logical formulas φ such that ` φ holds are called theorems.

Definition 2.6 Two formulas of propositional logic φ and ψ are called prov-
ably equivalent iff φ ` ψ and ψ ` φ.

Proposition 2.7 The natural deduction calculus for propositional formulas
is sound.

Proposition 2.8 The natural deduction calculus for propositional formulas
is complete.

More information on natural deduction can be looked up in Huth and
Ryan [2004] and van Dalen [2004].

2.3 Sequent Calculus

The sequent calculus was originally developed by Gentzen, and published in
one of his famous papers [Gentzen, 1935].

Definition 2.9 A sequent is a pair (Γ,∆) of finite multi-sets of propositional
formulas.

It should be mentioned that some authors (like Fitting [1990]) define a se-
quent as a set of formulas, others as a sequence.

Instead of (Γ,∆) the notation Γ→ ∆ is common. Γ is called antecedent
and ∆ succedent. For simplicity, propositional sequents {A1, . . . , An} →
{B1, . . . , Bm} are denoted as A1, . . . , An → B1, . . . , Bm. Similarly, we write
→ ∆ and Γ→ if Γ and ∆ is empty, respectively.

A valuation v makes a sequent A1, . . . , An → B1, . . . , Bm true iff

v |= (A1 ∧ . . . ∧ An) ⊃ (B1 ∨ . . . ∨Bm)

Let Γ, ∆ be arbitrary propositional sequents and let A and B be propo-
sitions. The rules in the Gentzen System are then as follows:

11

Disjunction Rules:

(∨-l)
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆

(∨-r)
Γ ` ∆, A,B

Γ ` ∆, A ∨B

Conjunction Rules:

(∧-l)
Γ, A,B ` ∆

Γ, A ∧B ` ∆

(∧-r)
Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧B

Implication Rules:

(⊃-l)
Γ ` ∆, A Γ, B ` ∆

Γ, A ⊃ B ` ∆

(⊃-r)
Γ, A ` ∆, B

Γ ` ∆, A ⊃ B

Negation Rules:

(¬-l)
Γ ` ∆, A

Γ,¬A ` ∆

(¬-r)
Γ, A ` ∆

Γ ` ∆,¬A

Every rule consists of one or two upper sequents called premises, and one
lower sequent called conclusion.

Definition 2.10 A sequent A1, . . . , An → B1, . . . , Bm is falsifiable iff there
exists a valuation v such that

v |= (A1 ∧ . . . ∧ An) ∧ (¬B1 ∧ . . . ∧ ¬Bm).

12

Definition 2.11 A sequent A1, . . . , An → B1, . . . , Bm is valid iff for every
valuation v

v |= (A1 ∧ . . . ∧ An) ⊃ (B1 ∨ . . . ∨Bm).

This is also denoted by

|= (A1, . . . , An)→ (B1, . . . , Bm).

Definition 2.12 An axiom is any sequent Γ→ ∆ such that Γ and ∆ contain
some common formula.

Proposition 2.13 Every axiom is valid.

A deduction tree is a tree whose nodes are labelled with sequents. Every
sequent at an inner node must be obtained from the sequents at its children
nodes by applying one of the rules of sequent calculus. The label on the
root is the sequent that is proved. It is called the conclusion. A proof is a
deduction tree that has only axioms as leaves. A counterexample is a sequent
consisting only of propositional letters that is no axiom. A failed deduction
tree is a deduction tree with a counterexample as one of its leaves. A sequent
is provable iff there is a proof tree of which it is the conclusion. If a sequent
Γ→ ∆ is provable, it is denoted as

` Γ→ ∆.

Proposition 2.14 The Gentzen calculus for formulas in propositional logic
is sound. Thus, if a sequent Γ→ ∆ is provable, then it is valid.

Proposition 2.15 The Gentzen calculus for propositional formulas is com-
plete. Thus, every valid sequent is provable. Furthermore there exists an
algorithm for deciding whether a sequent is valid and if so, a proof tree is
generated.

The interested reader may find additional material in Gallier [2003] and
Salzer [2002].

2.4 Hoare Calculus

This calculus was introduced in Hoare [1969].
The input-output relation for a program S is specified as follows:

{P} S {Q}.

13

P and Q are logic formulas. In this context they are often called assertions
or conditions. P is the precondition and Q is the postcondition. The precon-
dition describes the set of intended initial states for the program S, whereas
the postcondition describes the set of final states for S, if S terminates.

Definition 2.16 {P} S {Q} is partially correct if every terminating com-
putation of S starting from a P -state ends up in a Q-state.

Definition 2.17 {P} S {Q} is called totally correct if every computation
of S starting from a P -state terminates and ends up in a Q-state.

The Hoare calculus proves the correctness of programs with a syntax-
driven axiomatic system. The Hoare System consists of the following axioms
and rules:

Skip statement:

{P} skip {P}

Assignment statement:

{P
[

t
v

]
} v ← t {P}

where P
[

t
v

]
describes the state P except that v has the value of t.

Composition rule:

{P} S1 {R} {R} S2 {Q}
{P} S1; S2 {Q}

Conditional rule:

{P ∧B} S1 {Q} {P ∧ ¬B} S2 {Q}
{P} if B then S1 else S2 {Q}

Loop rule:

{P ∧B} S {P}
{P} while B do S {P ∧ ¬B}

14

Consequence rule:

P ⊃ P1 {P1} S {Q1} Q1 ⊃ Q

{P} S {Q}

The rules presented so far are not enough to prove the termination of any
program. This system is only able to prove partial correctness. In order to
prove total correctness, it is necessary to adapt the loop rule:

Loop rule 2:

{P ∧B} S {P}
{P ∧B ∧ (t = x)} S {t < x}

P ⊃ t ≥ 0

{P} while B do S {P ∧ ¬B}

Notice that t is an integer expression and x is an integer variable that is not
part of P , B, t or S.

Proposition 2.18 The Hoare calculus for the partial correctness of pro-
grams is sound.

Proposition 2.19 The Hoare calculus for the total correctness of programs
is sound.

Proposition 2.20 The Hoare calculus for the partial correctness of pro-
grams is complete.

Further information can be found in Apt and Olderog [1994] or Salzer
[2002].

2.5 Weakest Preconditions

Let S be a program statement and let Q be a predicate.

Definition 2.21 The weakest precondition wp(S,Q) is the set of initial
states, described by a predicate, for which S terminates and Q is true on
termination.

In contrast to the axiomatic Hoare logic the termination is inherent in the
definition of pre- and postconditions.

Proposition 2.22 A program S is correct with respect to the predicates P
and Q if P ⊃ wp(S,Q).

Weakest preconditions satisfy the following properties:

15

Axioms:

wp(S, false) = false

P ⊃ Q

wp(S, P) ⊃ wp(S,Q)

wp(S, P ∨Q)

wp(S, P) ∨ wp(S,Q)

wp(S, P ∧Q)

wp(S, P) ∧ wp(S,Q)

The weakest preconditions for typical program statements can be computed
as follows:

Skip rule:

wp(skip, Q) = Q

Assignment rule:

wp(v ← t, Q) = Q
[

t
v

]
Composition rule:

wp(S1;S2, Q) = wp(S1, wp(S2, Q))

Conditional rule:

wp(if B then S1 else S2, Q) = (B ⊃ wp(S1, Q)) ∧ (¬B ⊃ wp(S2, Q))

= (B ∧ wp(S1, Q)) ∨ (¬B ∧ wp(S2, Q))

Loop rule:

wp(while B do S,Q) = H(Q)

= H0(Q) ∧H1(Q) ∧H2(Q) ∧H3(Q) ∧ . . .
where

H0(Q) = ¬B ⊃ Q

Hk+1(Q) = B ⊃ wp(S,Hk(q))

For additional material consult Gannon et al. [1993], Gries [1989] or Dijk-
stra and Scholten [1990]. For the advanced reader, Winkler [1995] discusses
the different views and implications of weakest precondition as a predicate
transformer versus the idea of weakest precondition as a state set transformer.

16

3 Selected Tools

This section introduces the reader to the tested tools in a theoretical fashion.

3.1 Overview

We evaluate the verification tools with respect to the following intended users:

Software engineers with a good knowledge of computer science but with-
out specific training in formal methods

Students of computer science and software engineering in the mid-
dle of their studies, being confronted with formal verification tools for
the first time.

The four tools selected for this thesis are:

Frege Program Prover (FPP) FPP was chosen because of its academic
nature. It was explicitly designed for teaching formal methods. It is
also a candidate for being used in some lectures at the TU Vienna.

The tested version is available as web service, which was last updated
on May 22, 2001.

KeY System (KeY) KeY is the successor of the Karlsruhe integrated Ver-
ifier (KiV). KiV has a long tradition and is well known in academia.
The KeY system is, at least concerning its intentions, one of the few
systems comparable to FPP and PD.

The tested version is KeY-0.1342, the most recent internal version pro-
vided by the KeY team.

Perfect Developer (PD) PD was already used for internships and courses
at TU Vienna and claims to be one of the few existing commercial tools
that can be used by almost any person with just a little knowledge of
formal methods.

The tested version is Perfect Developer 2.00.

Prototype Verification System (PVS) PVS is famous and widely cited,
and has served as a reference for many years. Therefore it is included
in this comparison even though it aims mainly at verification of algo-
rithms, not programs.

The tested version is PVS 3.2.

17

Further tools We list some other tools, which are of interest in the context
of software verification, but which will not be discussed in detail.

Isabelle Isabelle can be obtained from www.cl.cam.ac.uk/Research/HVG/

Isabelle/. It provides a generic theorem prover, supports higher-order
logic, ZF set theory and a lot of other features. It is developed at the
Cambridge University and TU Munich.

ACL2 ACL is both a programming language in which one can model com-
puter systems and a tool for proving properties of those models. It can
be found at http://www.cs.utexas.edu/users/moore/acl2/.

B-Method The B-Method includes the B-Tool and B-Toolkit and is in de-
tail explained at http://vl.fmnet.info/b/.

Model Checking Tools Model checking tools have been very successful in
real world applications during the last years. Examples are
SPIN (http://spinroot.com),
SMV (http://www-2.cs.cmu.edu/∼modelcheck/smv.html) and
SLAM (http://research.microsoft.com/slam/) used for driver ver-
ification.

A more extensive overview and description on various tools can be found at
the formal methods virtual library at http://vl.fmnet.info/#notations.

Related work In general there do not exist many comparisons in the style
of this thesis. Special impact on this work had Griffioen and Huisman [1998].
They compare PVS and Isabelle by implementing some examples and inves-
tigating the logics behind these tools. They come to the result that both
tools are very powerful, but also have some weak points. They give advice
on how to combine both tools to obtain even better proofs. Zolda [2004]
compares Isabelle and ACL2 and points out the different approaches. He
comes to the conclusion that both tools have a lot of functionality but need
a good background in logic. Freining et al. [2002] compare FPP with NPPV
and SPARK. NPPV and SPARK have advantages in special tasks, but FPP
is the winner in the specified test environment.

18

www.cl.cam.ac.uk/Research/HVG/Isabelle/
www.cl.cam.ac.uk/Research/HVG/Isabelle/
http://www.cs.utexas.edu/users/moore/acl2/
http://vl.fmnet.info/b/
http://spinroot.com
http://www-2.cs.cmu.edu/~modelcheck/smv.html
http://research.microsoft.com/slam/
http://vl.fmnet.info/#notations

3.2 Frege Program Prover

The Frege Program Prover, from now on called FPP, was developed at the
University of Jena, Department of Mathematics and Computer Science, Pro-
gramming Languages and Compilers.

Find an introduction to FPP at http://psc.informatik.uni-jena.de/
Fpp/fpp-intr.htm, whereas the system itself can be found at http://psc.
informatik.uni-jena.de/FPP/FPP-main.htm.

FPP is an experimental system, implemented as a web application, for
analysing the semantics of programs and for performing correctness proofs
of annotated programs. FPP supports a subset of Ada — the concrete FPP
syntax can be found at psc.informatik.uni-jena.de/Fpp/fpp-synt.htm.
Identifiers are assumed to be integer or boolean variables.

FPP offers various capabilities:

Computation of the weakest precondition FPP computes the weakest
precondition for a given program statement S in combination with a
given postcondition Q. The internal mechanism is mainly based on the
calculations of weakest preconditions as presented in section 2.5.

Check for the correctness of a program Given a precondition P , a pro-
gram S and a postcondition Q, FPP checks whether the Hoare triple
{P} S {Q} is consistent. Such a triple is called consistent, if the pro-
gram S satisfies the conditions stated by the precondition P and the
postcondition Q. Hence FPP checks consistency by testing

P ⊃ wp(S,Q)

Theorem prover FPP can be used as a theorem prover by setting the pre-
condition P to “true”, the program S to “NULL” and the postcondition
Q to the theorem that needs to be proved. The typical structure of such
an FPP instance looks like:

--!Pre: true;

NULL;

--!Post: <theorem to be proved>;

It should be mentioned that this functionality is a logical consequence
of the two previous capabilities. It is not considered to be competitive
with other pure theorem provers.

19

http://psc.informatik.uni-jena.de/Fpp/fpp-intr.htm
http://psc.informatik.uni-jena.de/Fpp/fpp-intr.htm
http://psc.informatik.uni-jena.de/FPP/FPP-main.htm
http://psc.informatik.uni-jena.de/FPP/FPP-main.htm
psc.informatik.uni-jena.de/Fpp/fpp-synt.htm

For checking the correctness of a program, FPP needs to perform mathe-
matical proofs. This is done with an extended version of Analytica (confer
Clarke and Zhao [1993], Bauer et al. [1998]). FPP does the translation be-
tween the input program written in a subset of Ada into a representation
that Analytica can handle. In the next step Analytica tests the Hoare triple
on validity and returns the result. As Analytica is a main part of FPP for
checking the correctness, it will be shortly presented.

Analytica Analytica is an automated theorem prover, originally intended
for elementary analysis. It is written in the Mathematica programming lan-
guage, which is based on term rewriting. In fact each step executed by
Analytica is the application of a rewriting rule.

Mathematica provides a rule-based programming language. Mathematica
rules are of the form Pattern op Body with op being one of =, :=, -> or :>.
The Pattern part describes a class of expressions, where a rule is applicable.
The Body defines the expression to which the left side should be rewritten.
Rules are either eager or lazy rules (depending on the op operator), specifying
the details of the rewriting process. For details on this process look up a good
book on term rewriting (e.g. Baader and Nipkow [1998]).

Analytica works in four phases: Skolemisation, simplification, inference
and rewriting.

Skolemisation ∃ quantifiers are replaced by ∀ quantifiers. Within this
translation it is necessary to consider free and bound variables and
to introduce new function symbols. This is necessary to guarantee
that the original formula is only satisfiable iff the skolemised formula
is satisfiable.

Simplification Simplification is considered the most important step in An-
alytica. Simplification of a formula is executed in a so-called proof con-
text. The proof context describes those formulas that may be assumed
true during the simplification process. Analytica features various pow-
erful rules to reduce the complexity of formulas.

Inference The inference phase is based on a sequent calculus as already
presented in section 2.3. To Analytica rules have been added to provide
easier handling, but the theoretic concept is the same.

Rewriting Rewriting implements those concepts presented above for Math-
ematica. Various tactics are available.

For details see Bauer et al. [1998], Winkler [1997] and Freining et al. [2002].

20

3.3 KeY System

The KeY system is developed and maintained by the Chalmers University of
Technology, the University of Koblenz-Landau and the University of Karls-
ruhe. The online address for this project is http://www.key-project.org/.

According to Ahrendt et al. [2004], KeY allows to write formal specifica-
tions and to verify those specifications in the context of UML based software
development. In detail the KeY tool consists of and uses:

Basis CASE tool KeY is an extension to UML CASE (Computer Aided
Software Engineering) tools, mainly the commercial Together Control
Center from the Borland Software Corporation. An integration in the
Eclipse Java development environment is under construction.

OCL constraints OCL is short for Object Constraint Language (cf. OMG
[2003a]). It is used to specify constraints on objects in the Unified
Modelling Language (UML). UML is in the meantime an accredited and
recognised standard in object-oriented software development processes
(cf. OMG [2003b]). KeY uses OCL to define the formal specification.
KeY supports the user in creating and analysing OCL constraints and
offers especially:

Creation of OCL constraints KeY is able to generate automati-
cally constraints by using design pattern instantiations. For stan-
dard formulations predefined instantiations of design pattern exist
and can be easily used. On the other hand the user is free to for-
mulate any valid OCL statement without assistance of KeY.

Formal analysis of OCL constraints Constraints on classes which
affect other constraints are automatically recognised and their re-
lations between each other are analysed irrespective of implemen-
tation details.

Verification of implementations From the given OCL constraints
KeY can prove whether an implementation satisfies obligations.
This way KeY can verify programs.

21

http://www.key-project.org/

Figure 1: Architecture of the KeY system, Ahrendt et al. [2004, p. 3]

JavaCard The target language of KeY is JavaCard. JavaCard is a subset
of the widely used Java programming language — both developed by
Sun Microsystems — with some restrictions, tailored for applications
with smart cards that need a secure environment. A description of
the JavaCard language is described in Sun Microsystems [2003] and is
not given in this document as it is very similar to the well-known Java
programming language.

Architecture KeY consists of various components (Figure 1):

Modelling component As already mentioned, KeY allows the user to cre-
ate, process and analyse OCL constraints. This component handles
this task. The CASE tool is responsible for modelling and rendering
UML elements, whereas KeY uses external tools to manipulate OCL
constraints. In addition OCL specification templates are available in
this component.

Verification middleware KeY internally uses a dynamic logic for Java-
Card, which will be explained below. The verification middleware does
now the translation of the OCL constraints, the JavaCard program

22

code and the UML model in this JavaCard dynamic logic. This is then
the input to the deduction component and hence connects the two
layers modelling component and deduction component. Furthermore
the proofs are managed and stored in this component.

Deduction component Based on the proof obligations resulting from the
verification middleware, the deduction component tries to find proofs
and discharge the proof obligations. The prover is interactive, but is
designed to prove as much as possible automatically.

JavaCard Dynamic Logic Within KeY it is possible to specify precondi-
tions, postconditions and class invariants. KeY allows now to check whether
those assertions are valid after the execution of an implementation. The
logic behind this procedure is a dynamic logic adapted for the JavaCard
programming language.

Dynamic logic can be seen as an extension to classical Hoare logic that
was already introduced in section 2.4. As presented in Ahrendt et al. [2004,
p. 11 ff], deduction in this dynamic logic uses symbolic program execution
and program transformations.

The dynamic logic is built from non-dynamic standard logic with some
modal logic extensions. For every program statement in JavaCard an equiva-
lent statement in JavaCard dynamic logic can be found — KeY has an 100%
JavaCard coverage.

Similarly dynamic logic statements can be found for OCL constraints, as
the complexity of OCL is not as high as the complexity of the whole JavaCard
programming language.

Once the proof obligations have been collected, and all OCL and Java-
Card statements have been transformed into the JavaCard dynamic logic, a
deductive calculus is used: This calculus uses techniques like those presented
in section 2.3, and is kind of sequent-style calculus. All in all there are about
250 rules as a lot of constructs need to be considered. Some examples are:

Active statement rules As JavaCard allows different scopes and blocks, it
is useful to restrict the computation to only those program statements
that have some impact on the further program execution. Then these
statements are called active.

Assignment and update rules The idea is the same as in classical Hoare
logic, but object-oriented programming style adds some difficulties.
Typically assignments on objects are not as trivial as some references
might need to be considered. Special rules were introduced to manage
this problem in an efficient way.

23

Exception rules JavaCard encourages the use of try-catch-finally and
exceptions, which are no issues in standard sequent calculus. Again
rules that deal with this issue were added.

Taclets KeY introduced the principle of taclets in theorem proving: “A
taclet combines the logical content of a sequent calculus rule with pragmatic
information that indicates when and for what it should be used.” [Ahrendt
et al., 2004, p. 14]. Taclets are considered powerful enough for theorem
proving in combination with a relatively simple and convenient way for the
user to write them. An excellent excursion to the topic of taclets can be
found in Beckert et al. [2004].

24

3.4 Perfect Developer

The Perfect Developer system, abbreviated PD, was designed and developed
at Escher Technologies Ltd. in England. The main online reference is http:
//www.eschertech.com/products/index.php.

PD claims to be a tool for developing software systems that can be verified
automatically. As a result a typical development process with PD should
incorporate various phases:

• The user starts with a formal definition of functional requirements,
where typical definitions deal with safety properties and expected be-
haviours.

• Based upon this a formal model can be elaborated. Diagrams in the
Unified Modelling Language (UML) are supported. This allows the
user to specify behaviour in a standardised way, enabling broader use
and common understanding. Abstract data and abstract operations
are defined, non-determinism is reduced to its minimum. Many times
this leads to executable models in a very early development phase of
the standard software engineering process.

• The formal model from the previous phase can now be checked against
requirements. The requirements can be stated easily in form of precon-
ditions, postconditions, invariants and other assertions within PD.

• Once the model has been built to encompass all necessary require-
ments, the next step is to refine the model to an implementation. PD
can generate code directly from the specification. Another way is to
specify a separate implementation that is checked against the model.
The implementation includes concrete data structures and executable
statements of varying complexity.

• After passing the previous steps the result is a model and an implemen-
tation. Verification of the model against the implementation reveals
either errors, incomplete and inaccurate specifications or guarantees
valid program code.

• As a final step code for target platforms can be generated. There are
C++, Java and Ada available. This allows the code to be used on
virtually any important operating system or hardware platform.

The PD Language Perfect Developer uses a strongly typed specification
and implementation language, offering manifold constructs to the user.

25

http://www.eschertech.com/products/index.php
http://www.eschertech.com/products/index.php

Standard types like bool, byte, char, int, real, string, . . .

User defined enumerations An enumeration is defined as a collection of
values with an ordering relation. In fact an enumeration is a class in
PD, with operators for finding the lowest, the highest values, predeces-
sor and successors.

User defined classes Object-oriented principles are implemented in a rig-
orous way: From abstract to final classes, single inheritance, polymor-
phism and dynamic binding are supported.

Class templates PD offers six structures for different well defined uses:
sets, bags (multi-sets), sequences, pairs, triples and mappings. Map-
pings define a relation between elements from the input domain to the
output range. Typical applications are lookup tables or relational data-
bases. Numerous operations on these structures are built-in, as well as
rich theories for proving assertions about them.

Unions PD allows to combine types to build others. The standard exam-
ple are strings, which are just character sequences in the PD language.
Another example are lists of some type in combination with void rep-
resenting the end of the list or the null value in other programming
languages.

Operator and function overloading As PD supports template mecha-
nisms, PD can easily build distinct signatures for overloading oper-
ator or function symbols. This ensures type safety with user-friendly
naming conventions.

Partial functions Within the typed logic partial functions with equality
or arithmetic behaviour are possible. Functions are either interpreted,
possibly-interpreted or uninterpreted.

Expressions Within PD a lot of expressions exist: Quantified expressions,
type widening expressions, type enquiry expressions, heap expressions,
conversion expressions, scope resolution and ? as a shorthand for not
yet specified behaviour. For details see Crocker [2001, chapter 5.4].

The PD Prover With the ongoing development of Perfect Developer the
internal mechanisms were upgraded. At the beginning PD was influenced by
approaches of Floyd and Hoare and the calculation of weakest preconditions
(see sections 2.4 and 2.5).

26

Based on this approach a sequent calculus prover system was introduced.
A further improvement was the use of a Rasiowa-Sikorsky deduction system.
The main inference rules are:

Primary prover inference rules Those rules unify terms, expand func-
tions or create meta-variables. In addition there exist manifold rules
for standard connectives of the PD first order logic.

Term creation rules like transitivity rules are subject to this topic.

Hard-coded rewrite rules

Other rewrite rules

The next version of PD already used a resolution procedure and paramod-
ulation with intense help of the built-in term rewriter component. The term
rewriter is made up of two sets of rules:

Hard-coded rules Rules that are frequently used belong to this group or
rules that simply cannot be parameterised.

Parameterised rewrite rules The larger set of rules is part of this group.
The spectrum varies from rules with different operands to rules with
preconditions.

The language of PD has the power of first order predicate calculus with
some additional higher-order constructs. The prover is basically able to prove
classical two-valued logic, what implies that higher-order logic statements are
transformed first. Additional rules are necessary for object-oriented features,
like polymorphism or dynamic binding.

Perfect Developer is also strongly influenced by the Verified Design-By-
Contract principle:

Verified Design-By-Contract The Verified Design-By-Contract idea is
build upon the principle of Design-By-Contract. Design-By-Contract can be
characterised as a system of preconditions and postconditions that have to
hold for a given program. The implementations differ regarding the degree
of formalisation:

Comments Comments state conditions in the source code. The problem is
that these conditions cannot be automatically checked as they are just
comments to the compiler.

27

Annotations with run-time checks Special statements in the program-
ming language generate code that does not influence the effect of the
program but check invariant conditions during run-time. This allows
the user to find errors in the testing phase.

Annotations with static analysis It would be optimal if the compiler (or
prover) could check the conditions before the program is even executed.
But for common programming languages this is almost impossible due
to:

• Heavy use of pointers and complex data structures for relatively
simple data

• Most languages were simply not designed for verification

• Standard programming languages lack powerful statements to ex-
press useful verification conditions

Verified Design-By-Contract addresses these problems: In Perfect Developer
it is possible to construct specifications that consist of preconditions, post-
conditions, invariants and further annotations. The Perfect language is pow-
erful enough to write expressive conditions (∀ and ∃ constructs exist within
Perfect) such that the behaviour of a program can be exactly defined.

As a result code should just serve as an implementation to the specifica-
tion. Often it is not even necessary to provide code because PD can construct
executable code from the single specification. This ensures maximum consis-
tency between code and its behaviour described in the specification.

A more detailed explanation of (Verified) Design-By-Contract can be
looked up in Crocker [2004b], Crocker [2004a], Crocker [2003b] and Crocker
[2003a]. They discuss the topics presented here in a far more detailed way
and should be consulted for deeper insight.

28

3.5 PVS Specification and Verification System

The Prototype Verification System PVS was developed at the Stanford Re-
search Institute. The main project address is http://pvs.csl.sri.com/.

PVS is a prototype system for writing specifications and constructing
proofs. PVS offers an expressive high-order logic in combination with semi-
automatic proving. Hence user interaction is often necessary. PVS appears
to the user as an extension to the common “Emacs” editor. The main com-
ponents are:

Type-checker The high-order logic in PVS is strongly typed. The type-
checker has to enforce those restrictions on variables and other pro-
gram structures. The conditions generated for this job are called type
correctness conditions (TCCs) in PVS.

Proof checker This component is the main part of PVS. Specifications are
proved under consideration of TCCs and preconditions. The proving
phase in PVS is implemented as a life-cycle process (cf. Owre et al.
[1992, p. 3]):

Exploratory phase The main objective is to provide meaningful out-
put to the user in order to support the user in finding errors or
improving the specification.

Development phase Once the specification is fixed the proof goes
into some more details. Very important is the efficiency of the
proof development.

Presentation phase The proof is prepared to be presented to the
user. This requires the system to produce good and meaningful
explanations to the user.

Generalisation phase Once the proof is finished, the next aim is
to weaken its precondition. This might strengthen the proof by
providing a more general statement.

Maintenance phase Maintenance is an extension to the idea of gen-
eralisation. This implies for the proof that its precondition may
change. Therefore it might be necessary to redo parts of the proof
to adapt to the new situation.

The PVS Language The lexical structure of the PVS language can be
found in [Owre et al., 2001a, p. 7]. In addition the PVS Specification Lan-
guage offers numerous powerful features:

29

http://pvs.csl.sri.com/

Type declarations Available are uninterpreted, interpreted and enumer-
ated types and subtypes.

Variable declarations PVS interprets variables as logical variables, not as
program variables. As a result it is possible to use binding expressions
such as FORALL, EXISTS or LAMBDA.

Constant declarations As PVS supports high-order logic the term con-
stant applies to any n-ary function. Normal constants can be seen as
0-ary functions. As in type declarations, constants can be uninterpreted
or interpreted.

Recursive definitions Recursive definitions are allowed in PVS, but it is
necessary to give PVS information on termination. The user has to
define a MEASURE function that decreases strictly on recursive calls.

Macros Macros are available for convenience use.

Inductive definitions It is possible to define a function or behaviour (e.g.
predicate) in an inductive style. Some restrictions have to be guaran-
teed — for details refer [Owre et al., 2001a, p. 23 ff].

Formula Declarations Formulas are very important in PVS. Formulas can
either be axioms, assumptions, lemmas, theorems or obligations (and
many more). With them it is possible to describe the behaviour of
programs in the specification.

Conversions Conversions are inserted automatically by the type-checker
subcomponent, as soon it appears to be necessary.

Types PVS offers complex types, subtypes, function types, tuple types,
record types and dependent types.

Expressions For the PVS Specification language various expressions are
defined. The semantics of the structures is similarly to any other func-
tional programming language. For an exact specification look at [Owre
et al., 2001a, p. 43 ff] and Owre and Shankar [1999].

• Boolean Expressions

• IF-THEN-ELSE Expressions

• Numeric Expressions

• Applications

Function applications as defined in mathematics.

30

• Binding Expressions

The main binding expressions are λ and quantifiers.

• LET and WHERE Expressions

• Set Expressions

• Tuple Expressions

• Projection Expressions

• Record Expressions

• Record Accessors

• Override Expressions

• Coercion Expressions

Furthermore a lot of expressions are possible (especially tables and
abstract data types). Again the interested reader may refer Owre et al.
[2001a].

Theories Specifications in PVS are built from theories, that may be para-
meterised. The reason for theories was to provide maximal modularity
and code-reusability.

The grammar in an extended Backus-Naur form for the PVS Language is
defined in [Owre et al., 2001a, p. 83 ff, Appendix A].

The Logic of PVS The rules presented here are the theoretical back-
ground for the prover. Those rules are implemented in an efficient way but
the idea works in the same way as presented here:

PVS internals heavily use sequent calculus. For propositional logic a
short outline was given in section 2.3. The notation introduced in section 2.3
conforms with the notation used for PVS high-order logic sequent calculus.

The main connectives that PVS provides and hence need to be considered
are:

¬ NOT

∧ AND &

∨ OR

⊃ IMPLIES =>

⇐⇒ IFF <=>

∀ FORALL

∃ EXISTS

λ LAMBDA

All rules presented in section 2.3 are basis for the sequent calculus in PVS.
Furthermore there are:

31

Equality Rules:

if a ≡ b
Γ ` a = b,∆

a = b,Γ[b] ` ∆[b]

a = b,Γ[a] ` ∆[a]

with Γ[e] denoting one or more occurrences of e in Γ.

Quantifier Rules:

(∀-l)
Γ, A

[
t
x

]
` ∆

Γ, (∀x : A) ` ∆

(∀-r)
Γ ` A

[
a
x

]
,∆

Γ ` (∀x : A),∆

(∃-l)
Γ, A

[
a
x

]
` ∆

Γ, (∃x : A) ` ∆

(∃-r)
Γ ` A

[
t
x

]
,∆

Γ ` (∃x : A),∆

with A
[

t
x

]
means that in A all free occurrences of x are substituted by a term

t (with possible renaming of bound variables). This way it is guaranteed that
no free variables in t are captured, what is necessary for a correct high-order
calculus. a has to be a new constant.

Conditional Rules:

Γ, IF (A,B[b], B[c]) ` ∆

Γ, B[IF (A, b, c)] ` ∆

Γ ` IF (A,B[b], B[c]),∆

Γ ` B[IF (A, b, c)],∆

Γ, A,B ` ∆ Γ,¬A,C ` ∆

Γ, IF (A,B,C) ` ∆

32

Γ, A ` B,∆ Γ,¬A ` C∆

Γ ` IF (A,B,C),∆

with IF (A,B, IF (C,D,E)) as an abbreviation for IF A THEN B ELSIF C
THEN D ELSE E ENDIF. The transformation of an A[e] to A[a] means that all
occurrences of e in A are replaced by a.

More exhaustive descriptions about the logic behind PVS and its prover
components can be looked up in Owre et al. [2001b]. Owre et al. [2001c]
and Owre et al. [1992] give a good introduction into PVS, whereas some
applications of PVS may be found in Owre et al. [1998].

33

4 Examples

In this section the four chosen tools FPP, KeY, PD and PVS are tested with
examples that need to be verified. At first the criteria are defined to build a
common evaluation platform. Second, the systems are evaluated according
to this criteria. Third, the examples are presented and, finally, the result of
the verification process of each tool is discussed.

4.1 Criteria

Criteria define the specific context and environment for practical tests. Thus
it is relevant to specify them in a detailed way in order to provide a repro-
ducible test scenario.

Tests of verification tools often end up in a single final result. All invested
work is aggregated to the completion of a selected case study. During the
evaluation of the criteria for this work, the decision to incorporate the whole
process — from the problem formulation to the final proof — was taken. In
fact this is similar to the idea mentioned in Bundy [2004].

As already mentioned in section 3.1 on page 17 our target groups are:

Software engineers with a good knowledge of computer science but with-
out specific training in formal methods

Students of computer science and software engineering in the mid-
dle of their studies, being confronted with formal verification tools for
the first time.

Criteria were chosen to test the capabilities in context for this target
groups. The criteria are divided up into two categories:

Program related criteria This set of criteria is applicable for the whole
verification tool and not restricted to specific examples. The defined
criteria are as follows:

Commercial or academic nature Gives some background on the
tool.

Supported platforms and portability

Installation

General support

Code generation Assuming a verified specification, how easy is it to
generate code? Automatic generation avoids introducing errors
due to an error-prone manual translation.

34

Learning curve How long does it take to work with this tool in an
efficient way? Does the system support the user in learning a
successful process of verification?

Problem related criteria These criteria make more sense to be looked at
in a context for a specific problem.

Ease of problem formulation Here is discussed, whether the prob-
lem can be formulated in a natural and short way. Complex prob-
lem formulations are the first step for the introduction of errors
and need to be avoided as far as possible.

Complexity of user interaction Does the system prove programs
automatically? How often is it necessary to give hints to the
prover or adapt the specification? How difficult is it to adapt the
specification?

Degree of coverage Is it possible to prove a correct specification un-
der all conditions?

Support in finding errors During the development process no user
starts with a perfect specification. To which extent the system
can help the user in finding problems or invalid specifications is
relevant at this point.

It should be clear that some criteria are interchangeable within both cate-
gories under different test scenarios. In fact, the result of this test should
encompass all criteria, and should lead to more insight in the specific advan-
tages and disadvantages of each tool.

The criteria are deliberately neither rated nor weighted, as the impact of
the various criteria differ too much under different scenarios. The plan is to
give a comprehensive idea of how these tools work and which purpose they
fulfil, not a ranking with winners and underdogs.

35

4.2 Methodology

The selected tools are tested with relatively easy and short standard com-
puter science problems. This way it should be possible to implement different
algorithms for most systems without having too much difficulties. This en-
ables the reader to compare the systems in a practical environment, as the
reader can follow various implementations for the same problem.

The problems handle topics of the following fields of interest:

Elementary number theory Factorial, Fibonacci numbers, sum, prime
numbers, iterative multiplication and division

Array problems Inversions, Quicksort, List maximum

Weakest preconditions

It should be especially mentioned that some test scenarios or examples
were taken in the style of already published papers: Some FPP examples are
very similar to the examples presented in Freining et al. [2002], whereas the
quicksort example for PVS was taken from Griffioen and Huisman [1998], as
it shows the capabilities for PVS very well.

36

4.3 Frege Program Prover

An introduction to FPP and some theoretical background was given in sec-
tion 3.2. As supposed in the foreword on the criteria in this section, program
related criteria are discussed:

Commercial or academic nature FPP is an academic tool tailored for
teaching purposes. FPP is still under development and future versions
are announced to support more features and to offer more powerful
provers.

Supported platforms and portability FPP is a web service. So porta-
bility and platforms are no point, virtually any device with a web
browser is supported by FPP.

Installation Installation is not needed, making it very convenient for the
user.

General support The team around FPP offered a lot of help. For any
problems qualified solutions were found in short time via email, and the
FPP team provided help in obtaining specific literature and academic
articles on FPP.

Code generation As FPP supports a subset of Ada natively, no translation
is necessary. Assertions are just comments, so a Ada compiler can
generate code without further modifications.

Learning curve As FPP is considered as an academic teaching tool, the
learning process should be clear and fast. And in fact FPP is quite
easy to learn. With the examples on the FPP homepage and the simple
syntax, the user is able to understand and write programs after a very
short time.

37

4.3.1 Cubic sum

Compute the sum of cubed numbers.

Program code

--!pre: n > 0;

i := 0;

result := 0;

--!pre : n > 0 AND i = 0 AND result = 0;

--!post: result = n**2 * (n + 1)**2 / 4;

--!inv : result = i**2 * (i + 1)**2 / 4 AND i <= n;

--!term: n - i;

WHILE i < n LOOP

i := i + 1;

result := result + i**3;

END LOOP;

Prover output

--!pre : (n >= 1)

--> wp : (n >= 1)

--> vc : (True)

--> Result: proved

i := 0;

result := 0;

--!pre : (n >= 1 AND i = 0 AND result = 0)

--!post : (result = n**2*(1 + n)**2/4)

--!inv : (result = i**2*(1 + i)**2/4 AND i <= n)

--!term : (-i + n)

-->functionality ---------------------------

-->initial : (n >= 1 AND i = 0 AND result = 0)

--> ==> (result = i**2*(1 + i)**2/4 AND i <= n)

--> Result : proved

-->induction : (n >= 1 + i AND

--> result = i**2*(1 + i)**2/4 AND i <= n)

--> ==> ((1 + i)**3 + result =

--> (1 + i)**2*(2 + i)**2/4 AND 1 + i <= n)

--> Result : proved

-->final : (n <= i AND

--> result = i**2*(1 + i)**2/4 AND i <= n)

38

--> ==> (result = n**2*(1 + n)**2/4)

--> Result : proved

-->termination ---------------------------

-->initial : (n >= 1 + i AND

--> result = i**2*(1 + i)**2/4 AND

--> i <= n => -i + n >= 1)

--> Result : proved

-->induction : (n >= 1 + i AND

--> result = i**2*(1 + i)**2/4 AND i <= n)

--> ==> (-i + n >= -i + n)

--> Result : proved

WHILE i < n LOOP

i := i + 1;

result := result + i ** 3;

END LOOP;

Analysis

Ease of problem formulation The problem can be formulated in a clear
and obvious manner. The assertions can be specified in an exact math-
ematical style, the termination function and invariants were not hard
to guess.

Complexity of user interaction During the first attempts not everything
could be proved automatically. It was necessary to refine the specifica-
tion and to restrict the variable ranges. With a rigorous specification
we achieved complete automatic verification.

Degree of coverage A total coverage was possible. This FPP program is
asserted to stop in finite time and to be correct.

Support in finding errors As one can see from the quite clear prover out-
put, it is traceable to find specification problems. The process of veri-
fication with induction is clear and reproducible.

4.3.2 Division

Calculate the quotient and remainder of a division for a given dividend and
divisor.

Program code

39

--!pre: divisor > 0 AND dividend >= 0;

remainder := dividend;

quot := 0;

--!pre: divisor > 0 AND remainder = dividend AND quot = 0;

--!post: dividend = remainder + quot * divisor AND

remainder < divisor;

--!inv: dividend = remainder + quot * divisor AND divisor > 0;

--!term: remainder;

WHILE remainder >= divisor LOOP

remainder := remainder - divisor;

quot := quot + 1;

END LOOP;

Prover output

--!pre : (divisor >= 1 AND dividend >= 0)

--> wp : (divisor >= 1)

--> vc : (divisor >= 1 AND dividend >= 0 => divisor >= 1)

--> Result: proved

remainder := dividend;

quot := 0;

--!pre : (divisor >= 1 AND remainder = dividend AND

quot = 0)

--!post : (dividend = divisor*quot + remainder AND

divisor >= 1 + remainder)

--!inv : (dividend = divisor*quot + remainder AND

divisor >= 1)

--!term : (remainder)

-->functionality ---------------------------

-->initial : (divisor >= 1 AND remainder = dividend AND

quot = 0)

--> ==> (dividend = divisor*quot + remainder AND

divisor >= 1)

--> Result : proved

-->induction : (remainder >= divisor)

--> AND (dividend = divisor*quot + remainder)

--> AND (divisor >= 1)

--> ==> (dividend = -divisor +

divisor*(1 + quot) + remainder)

--> AND (divisor >= 1)

40

--> Result : proved

-->final : (remainder < divisor)

--> AND (dividend = divisor*quot + remainder)

--> AND (divisor >= 1)

--> ==> (dividend = divisor*quot + remainder AND

divisor >= 1 + remainder)

--> Result : proved

-->termination ---------------------------

-->initial : (remainder >= divisor)

--> AND (dividend = divisor*quot + remainder)

--> AND (divisor >= 1)

--> ==> (remainder >= 1)

--> Result : proved

-->induction : (remainder >= divisor)

--> AND (dividend = divisor*quot + remainder)

--> AND (divisor >= 1)

--> ==> (remainder >= 1 - divisor + remainder)

--> Result : proved

WHILE remainder >= divisor LOOP

remainder := remainder - divisor;

quot := quot + 1;

END LOOP;

Analysis

Ease of problem formulation The problem can be formulated in a so-
phisticated way, but it is inevitable to specify the variable ranges (e.g.
that dividend >= 0, . . .) exactly. The only difficulty is finding a
termination function that helps FPP in the verification process.

Complexity of user interaction The proof is done automatically, no ad-
justments were necessary in advance except slight modifications con-
cerning nonnegative variable ranges.

Degree of coverage FPP can prove that this program fragment is correct.

Support in finding errors The first attempt for this program lacked the
condition, that divisor > 0. It was not obvious from the output of
FPP what was the exact problem. It took some time to identify the
problematic part.

41

4.3.3 Factorial

Compute the factorial for a given number.

Program code

--!pre: n >= 0;

product := 1;

--!pre: product = 1 AND n >= 0;

--!post: product = factorial(n);

--!inv: product = factorial(i);

FOR i IN 1..n LOOP

product := product * i;

END LOOP;

Prover output

--!pre : (n >= 0)

--> wp : (n >= 0)

--> vc : (True)

--> Result: proved

product := 1;

--!pre : (product = 1 AND n >= 0)

--!post : (product = Factorial(n))

--!inv : (product = Factorial(i))

-->functionality ---------------------------

-->func : (initial AND induction AND final AND null loop)

-->initial :(1 <= n AND product = 1 AND

--> n >= 0 => product = 1)

--> Result : proved

-->induction :(1 <= n AND product = Factorial(-1 + i) =>

--> i*product = Factorial(i))

--> Result : proved

-->final :(1 <= n AND product = Factorial(n) =>

--> product = Factorial(n))

--> Result : proved

-->null loop :(1 >= 1 + n AND product = 1 AND

--> n >= 0 => product = Factorial(n))

--> Result : proved

FOR i IN 1 .. n LOOP

product := product * i;

42

END LOOP;

Analysis

Ease of problem formulation Very natural formulation. For the asser-
tions FPP supports the predefined function factorial, making it triv-
ial to write invariants and postconditions.

Complexity of user interaction No user interaction was necessary.

Degree of coverage FPP could prove 100% on the first attempt.

Support in finding errors The prover output is short and obvious. Errors
were not found.

4.3.4 Fibonacci numbers

Compute the n-th Fibonacci number.

Program code

--!pre: n >= 1;

previous := 0;

current := 1;

count := 1;

--!pre : n >= 1 AND previous = 0 AND current = 1 AND count = 1;

--!post: current = fib(n);

--!inv : count >= 1 AND count <= n AND previous = fib(count-1)

AND current = fib(count);

--!term: n - count;

WHILE count < n LOOP

x := current;

current := current + previous;

previous := x;

count := count + 1;

END LOOP;

Prover output

--!pre : (n >= 1)

--> wp : (n >= 1)

--> vc : (True)

--> Result: proved

43

previous := 0;

current := 1;

count := 1;

--!pre : (n >= 1 AND previous = 0 AND current = 1

AND count = 1)

--!post : (current = (-(1 - Sqrt(5))**n +

(1 + Sqrt(5))**n)/(2**n*Sqrt(5)))

--!inv : (count >= 1)

--> AND (count <= n)

--> AND (previous)

--> = Fib((-1 + count))

--> AND (current)

--> = Fib((count))

--!term : (-count + n)

-->functionality ---------------------------

-->initial : (n >= 1 AND previous = 0 AND current = 1

AND count = 1)

--> ==> (count >= 1)

--> AND (count <= n)

--> AND (previous)

--> = Fib((-1 + count))

--> AND (current)

--> = Fib((count))

--> Result : proved

-->induction : (n >= 1 + count)

--> AND (count >= 1)

--> AND (count <= n)

--> AND (previous)

--> = Fib((-1 + count))

--> AND (current)

--> = Fib((count))

--> ==> (1 + count >= 1)

--> AND (1 + count <= n)

--> AND (current)

--> = Fib((count))

--> AND (current + previous)

--> = Fib((1 + count))

--> Result : proved

-->final : (n <= count)

--> AND (count >= 1)

44

--> AND (count <= n)

--> AND (previous)

--> = Fib((-1 + count))

--> AND (current)

--> = Fib((count))

--> ==> (current = (-(1 - Sqrt(5))**n +

--> (1 + Sqrt(5))**n)/(2**n*Sqrt(5)))

--> Result : proved

-->termination ---------------------------

-->initial : (n >= 1 + count)

--> AND (count >= 1)

--> AND (count <= n)

--> AND (previous)

--> = Fib((-1 + count))

--> AND (current)

--> = Fib((count))

--> ==> (-count + n >= 1)

--> Result : proved

-->induction : (n >= 1 + count)

--> AND (count >= 1)

--> AND (count <= n)

--> AND (previous)

--> = Fib((-1 + count))

--> AND (current)

--> = Fib((count))

--> ==> (-count + n >= -count + n)

--> Result : proved

WHILE count < n LOOP

x := current;

current := current + previous;

previous := x;

count := count + 1;

Analysis

Ease of problem formulation FPP supports the fib function. This helps
to keep the formulation short and expressive. No tricks were necessary.

Complexity of user interaction It was necessary to refine the specifica-
tion and to tighten variable ranges. Then FPP could prove the correct-
ness.

45

Degree of coverage After those slight modifications a total coverage was
reached.

Support in finding errors Although the program code is very short, the
prover output is already quite long. Nevertheless the output does not
offer deep insights into problematic issues for FPP.

4.3.5 Inconsistency test

The idea is to test the prover component with inconsistent input programs
and look at its reaction and output.

Program code

--!pre: x = 0;

x := x - 1;

--!post: (EXISTS y: y >= 0 AND y <= 10: x = fib(fac(y))

AND x = fac(fib(y)));

Prover output

--!pre : (x = 0)

--> wp : (exists((y)),

--> (y >= 0)

--> AND (y <= 10)

--> AND (-1 + x)

--> = Fib((fac(y)))

--> AND (-1 + x)

--> = fac(((-(1 - Sqrt(5))**y +

--> (1 + Sqrt(5))**y)/(2**y*Sqrt(5)))))

--> vc : (x = 0)

--> ==> (exists((y)),

--> (y >= 0)

--> AND (y <= 10)

--> AND (-1 + x)

--> = Fib((fac(y)))

--> AND (-1 + x)

--> = fac(Fib((y))))

--> Result: not proved

--> fc : Not((0 <= Var(V(4)))

--> AND (-10 + Var(V(4)) <= 0)

--> AND (1/Sqrt(5))

46

--> * (-(1 - Sqrt(5))**(fac(Var(V(4)))))

--> + ((1 + Sqrt(5))**(fac(Var(V(4)))))

--> = (-2**(fac(Var(V(4)))))

--> AND fac((2**(-Var(V(4))))

--> * (1/Sqrt(5))

--> * (-(1 - Sqrt(5))**(Var(V(4))))

--> + ((1 + Sqrt(5))**(Var(V(4)))))

--> = (-1))

x := x - 1;

--!post : (exists((y)),

--> (y >= 0)

--> AND (y <= 10)

--> AND (x)

--> = Fib((fac(y)))

--> AND (x)

--> = fac(((-(1 - Sqrt(5))**y +

--> (1 + Sqrt(5))**y)/(2**y*Sqrt(5)))))

Analysis

Ease of problem formulation Not important. The problem just consists
of a statement and a postcondition stating a difficult and inconsistent
assumption.

Complexity of user interaction No user interaction. The main point is
to look at the prover output when FPP encounters inconsistent program
code.

Degree of coverage Obviously this code cannot be verified.

Support in finding errors The prover output is very complex and unman-
ageable. FPP does not really make clear what the problems is, there
is too much output on for the first moment irrelevant conditions. Of
course the example was chosen this way to add complexity to the trivial
example, but FPP has shown that it cannot produce good output on
tricky input. In the examples before the output was often quite rea-
sonable. Especially bigger programs with not so exact specifications
appear often to a typical software engineer in his daily development
process.

47

4.3.6 Multiplication

Multiply two integer numbers.

Program code

--!pre: x = u AND y = v AND u >= 0 AND v >= 0;

z := 0;

--!pre : x = u AND y = v AND x >= 0 AND y >= 0 AND z = 0;

--!post: z = u * v;

--!inv : x * y + z = u * v AND y >= 0;

--!term: y;

WHILE y > 0 LOOP

z := z + x;

y := y - 1;

END LOOP;

Prover output

--!pre : (x = u AND y = v AND u >= 0 AND v >= 0)

--> wp : (x = u AND y = v AND x >= 0 AND y >= 0)

--> vc : (x = u AND y = v AND u >= 0 AND v >= 0)

--> ==> (x = u AND y = v AND x >= 0 AND y >= 0)

--> Result: proved

z := 0;

--!pre : (x = u AND y = v AND x >= 0

AND y >= 0 AND z = 0)

--!post : (z = u*v)

--!inv : (x*y + z = u*v AND y >= 0)

--!term : (y)

-->functionality ---------------------------

-->initial : (x = u AND y = v AND x >= 0

--> AND y >= 0 AND z = 0)

--> ==> (x*y + z = u*v AND y >= 0)

--> Result : proved

-->induction : (y >= 1 AND x*y + z = u*v AND y >= 0)

--> ==> (x + x*(-1 + y) + z = u*v AND -1 + y >= 0)

--> Result : proved

-->final :(y < 1 AND x*y + z = u*v AND y >= 0 => z = u*v)

--> Result : proved

-->termination ---------------------------

48

-->initial :(y >= 1 AND x*y + z = u*v AND y >= 0 => y >= 1)

--> Result : proved

-->induction :(y >= 1 AND x*y + z = u*v AND y >= 0 => y >= y)

--> Result : proved

WHILE y > 0 LOOP

z := z + x;

y := y - 1;

END LOOP;

Analysis

Ease of problem formulation Very intuitive and straight forward.

Complexity of user interaction The constraints for the variables needed
some further work, but could be added in short time.

Degree of coverage Total coverage after slight modifications.

Support in finding errors It was immediately clear that FPP needed con-
straints on the variables. The output again tends to get longish with
those constraints. But all in all this example was no challenge for FPP.

4.3.7 False theorem test

Test FPP’s internal prover component with a simple invalid theorem.

Program code

--!pre: a => b;

NULL;

--!post: a AND c => c AND (NOT b);

Prover output

--!pre : (a => b)

--> wp : (a AND c => c AND Not b)

--> vc : ((a ==> b) AND a AND c => c AND Not b)

--> Result: not proved

--> fc : (b AND c AND a)

NULL;

--!post : (a AND c => c AND Not b)

49

Analysis

Ease of problem formulation Theorems can be stated very easily in FPP.
The statement block is just NULL and the theorem to be tested is stated
as a postcondition.

Complexity of user interaction Theorems can be proved or discharged
completely automatically.

Degree of coverage Obviously 0%, as the input is an invalid theorem.

Support in finding errors The explanation is good and specifies a counter
example.

4.3.8 Correct theorem test

Test FPP’s internal prover component with a small valid theorem.

Program code

--!pre: true;

NULL;

--!post: (a => (b => a)) AND ((a AND (a => b)) => b);

Prover output

--!pre : (True)

--> wp : ((a AND b ==> a) AND (a AND (a ==> b) ==> b))

--> vc : ((a AND b ==> a) AND (a AND (a ==> b) ==> b))

--> Result: proved

NULL;

--!post : ((a AND b ==> a) AND (a AND (a ==> b) ==> b))

Analysis

Ease of problem formulation The same as in the previous example —
very natural.

Complexity of user interaction No user interaction necessary.

Degree of coverage The valid theorem is totally proved by the prover com-
ponent.

Support in finding errors Specification errors leading to invalid formulas
result in instructive counter examples (cf. previous example).

50

4.3.9 Conditional weakest precondition

Test FPP’s ability to compute weakest preconditions.

Program code

x := 3;

IF x + y < 19

THEN

x := x + 19;

ELSE

x := y + y;

END IF;

--!post: x > y;

Prover output

--> wp: (19 >= 4 + y AND 22 >= 1 + y OR 19 <= 3 + y AND

--> 2*y >= 1 + y)

x := 3;

IF x + y < 19 THEN

x := x + 19;

ELSE

x := y + y;

END IF;

--!post: (x >= 1 + y)

Analysis

Ease of problem formulation Not applicable.

Complexity of user interaction Weakest preconditions can be computed
fully automatically by FPP, as long as loops are avoided.

Degree of coverage The system finds the weakest precondition. However,
its inability to simplify expressions disguises the fact that the formula
is equivalent to TRUE.

Support in finding errors Not applicable.

51

4.4 KeY System

KeY was already introduced in section 3.3. At this point KeY is analysed
with examples and its practical nature is discussed:

Commercial or academic nature KeY is of academic nature. The tested
version of KeY uses a commercial CASE tool, but the KeY prover
component can be used separately. Future version will probably use
Eclipse which is freely available.

Supported platforms and portability Official supported platforms are
Linux, Solaris and Windows. Portability of the written code is given as
long as a Java compiler exists on the platform. For most modern oper-
ating systems this should not be a problem and hence good portability
is attested here.

Installation The installation is quite a complex task: KeY uses Borland
Together Control Center as the basic CASE tool, what means extra
installation. Together CC is not freely available in general (there ex-
ist evaluation and academic versions) and the installation process was
tricky. It took some time to get KeY working.

General support The KeY team offered excellent support. As the tested
version of KeY was still in alpha stage, help was quite often required, as
some subcomponents were not implemented or did not work without
modifications. At each point the KeY team gave support and did a
great job in helping with verifying the examples. The support was a
highlight in the work with KeY.

Code generation As the code is written in JavaCard, a standard Java com-
piler can build code. This avoids manual error-prone translation, mak-
ing the whole process more secure.

Learning curve The familiarity with the widely used Java language prob-
ably helps many users in working with KeY. OCL constraints are rel-
atively simple and can be learnt in a short time. A problem was the
lack of documentation — but this is acceptable if a tool is still officially
considered in alpha stage.

52

4.4.1 Cubic sum

Compute the sum of cubed numbers.

Program code

public class CubicSum {

/**

* @preconditions n >= 0

* @postconditions 4 * result = n*n * (n+1)*(n+1)

*/

public static int cubicSum(int n) {

int i = 0;

int result = 0;

while (i < n) {

i++;

result += i*i*i;

}

return result;

}

}

Analysis

Ease of problem formulation The problem can be formulated very easily
in a procedural style in the Java syntax. The pre- and postconditions
can also be stated in a clear manner according to the syntax of OCL
constraints. A problem was that OCL does not support real numbers,
which led at first to an exception. It was necessary to bring the factor
4 to the left side in the @postconditions otherwise the result would
be typed as real according to KeY. But in fact this can never happen
due to the internal structure of the formula.

Complexity of user interaction The amount of user interaction is unfor-
tunately very high. The induction rules for the while construct are
complex and tricky. Only with a lot of tricks from the KeY team we
could reproduce the whole proof. Without such help it is really hard,
what makes the life not easier for a standard software engineer.

Degree of coverage After a lot of tricks and with a lot of knowledge from
the user KeY could verify the correctness of this program.

53

Support in finding errors As good the general support from the KeY
team was, as intricate we found the reports and output from KeY.
The integration of the KeY prover within the Together CC CASE tool
and the fact that the prover has a graphical user interface are for sure
good ideas, but the realisation was very confusing. It is hard enough
to prove a correct program — finding errors from that is even harder
with no special knowledge on the internals of the KeY prover.

4.4.2 Conditional

This example tests KeY on simple conditional statements. Especially the
complexity of proofs for very simple programs is here an issue.

Program code

public class If {

/**

* @preconditions y > 1

* @postconditions x > y

*/

public static void ifTest(int x, int y) {

x = 3;

if ((x + y) < 19)

x += 19;

else

x = y + y;

}

}

Prover output Only a short excerpt from the complete prover output is
presented here. In fact it is intended to show the user the complexity for such
a short example. Hence for all other tested KeY examples the prover output
is left out here and the interested user is advised to consult the external
package with all examples and their solutions.

(branch "dummy ID"

(rule "imp_right" (formula "1"))

(rule "method_body_expand" (formula "2"))

(rule "greater" (formula "1"))

(rule "greater" (formula "2") (term "0"))

(rule "assignment_allnormalass" (formula "2"))

54

(rule "if_else_eval" (formula "2") (term "2")

(inst "#boolv=_var8"))

(rule "eliminate_variable_declaration_boolean"

(formula "2") (term "2"))

(rule "compound_less_than_comparison_1" (formula "2")

(term "2") (inst "#v0=_var9"))

(rule "variable_declaration_allmodal" (formula "2") (term "2"))

(rule "eliminate_variable_declaration_int"

(formula "2") (term "2"))

(rule "remove_parentheses_right" (formula "2") (term "2"))

(rule "assignment_addition" (formula "2") (term "2"))

(rule "less_than_comparison" (formula "2") (term "4"))

(rule "and_right" (formula "2"))

(branch "dummy ID"

(rule "imp_right" (formula "2"))

(rule "assignment_allnormalass" (formula "3") (term "2"))

(rule "if_else_split" (formula "3"))

(branch "dummy ID"

(rule "boolean_equal" (formula "1"))

(rule "true_left" (formula "1"))

(rule "compound_assignment_op_plus" (formula "3") (term "2"))

(rule "compound_int_cast_expression" (formula "3")

(term "2") (inst "#v=_var10"))

(rule "variable_declaration_allmodal" (formula "3") (term "2"))

(rule "eliminate_variable_declaration_int"

(formula "3") (term "2"))

(rule "remove_parentheses_right" (formula "3") (term "2"))

(rule "compound_addition_2" (formula "3") (term "2")

(inst "#v1=_var12") (inst "#v0=_var11"))

(rule "variable_declaration_allmodal" (formula "3") (term "2"))

(rule "eliminate_variable_declaration_int"

(formula "3") (term "2"))

(rule "assignment_allnormalass" (formula "3") (term "2"))

(rule "variable_declaration_allmodal" (formula "3") (term "4"))

(rule "eliminate_variable_declaration_int"

(formula "3") (term "4"))

(rule "remove_parentheses_right" (formula "3") (term "4"))

(rule "assignment_allnormalass" (formula "3") (term "4"))

(rule "assignment_addition" (formula "3") (term "6"))

(rule "add_literals" (formula "3") (term "1"))

(rule "cast_4" (formula "3") (term "4"))

55

(rule "assignment_allnormalass" (formula "3") (term "4"))

(rule "method_call_empty" (formula "3") (term "2"))

(rule "empty_modality" (formula "3") (term "2"))

)

Analysis

Ease of problem formulation The problem formulation is very natural,
almost trivial. Anyone starting with programming should be able to
come up with this formulation.

Complexity of user interaction The complexity was considerable high,
although the input program is definitely one of the easiest one can
imagine. The prover output gives a first hint on the complexity of this
job.

Degree of coverage In the end the correctness of this program could be
proven.

Support in finding errors With a lot of knowledge it might be possible
to find errors from the prover output directly, for most users it is a non
trivial job. A support in its proper sense is not available.

4.4.3 Division

Calculate the quotient and remainder of a division for a given dividend and
divisor.

Program code

public class Division {

/**

* @preconditions rem > 0 and divisor > 0

* @postconditions rem@pre = rem + result * divisor and

rem < divisor

*/

public static int divide(int rem, int divisor) {

int quot = 0;

while (rem >= divisor) {

rem -= divisor;

quot++;

}

56

return quot;

}

}

Analysis

Ease of problem formulation The executable program part is written in
a natural procedural style. The only thing that needed special consid-
erations were the OCL constraints, especially that some variables need
a restricted variable range. Nevertheless KeY offers here good help
with the graphical OCL constraint builder.

Complexity of user interaction The proof is very complex, especially the
induction is presented by KeY in a very technical way. Without the
hints and the help of the encouraging KeY team the proof is hard to
follow.

Degree of coverage The program could be proven after longish consider-
ations on how to proceed.

Support in finding errors Due to the complexity of the whole verification
process an extra support in finding errors is not available.

4.4.4 Factorial

The factorial for a given number shall be computed.

Program code

public class Fac {

/**

* @preconditions n >= 0

* @postconditions result > 0

*/

public static int fac(int n) {

if (n == 0)

return 1;

else

return (n * fac(n - 1));

}

}

57

Analysis

Ease of problem formulation The recursive definition of the fac function
is very intuitive and fully supported by JavaCard. The OCL constraints
are very limited as they deny the use of function calls. On the one
hand this keeps constraints short and clear, on the other hand powerful
constraints are hard to write in this restricted formalism.

Complexity of user interaction The recursive definition makes it hard
to get an idea on how to start with the verification process. A disad-
vantage is that the automatic proving strategies of KeY often do not
really simplify the proving process. The required user interaction is
relatively high.

Degree of coverage In the end the claim that the result is always positive
could be verified.

Support in finding errors Once again, the proving process is quite com-
plex, making it difficult to find errors.

4.4.5 List maximum

Find the maximum from a list of numbers.

Program code

public class ListMax {

/**

* @preconditions l.length() > 0 and l <> null

* @postconditions result >= l.get(0)

*/

public static int listMax(int[] l) {

int max = l[0];

for (int i=0; i < l.length; i++) {

if (l[i] > max)

max = l[i];

}

return max;

}

}

58

Analysis

Ease of problem formulation Once more KeY shows its big advantage:
the natural formulation due to the use of JavaCard. For any Java
programmer the program is no challenge. The OCL constraints are
not difficult either, but on the first attempt the OCL constraints were
unintentionally written in a wrong syntax. The OCL parser accepted
OCL constraints, but the prover could not handle them.

Complexity of user interaction Unfortunately the program could not be
verified completely automatically, although the preconditions and post-
conditions are very simple.

Degree of coverage The postcondition could be proved under the assump-
tion of the preconditions and the program statements.

Support in finding errors Due to the complex proving process it is hard
to find any errors.

4.4.6 Multiplication

Multiply two integer numbers.

Program code

public class Mult {

static int x;

static int y;

/**

* @preconditions x >= 0 and y >= 0

* @postconditions result = x@pre * y@pre

*/

public static int mult() {

int z = 0;

while (y > 0) {

z = z + x;

y = y - 1;

}

return z;

}

}

59

Analysis

Ease of problem formulation The program itself and the conditions are
obvious and easy to formulate. Only for the OCL constraints one has
to be careful about the non-negativity conditions and the reference to
the variables at program start (with the @pre formalism).

Complexity of user interaction User interaction is necessary, again an
involved induction proof for non-KeY experts.

Degree of coverage The whole program could be verified.

Support in finding errors None.

4.4.7 Prime

Test whether a nonnegative number is prime.

Program code

public class Prime {

/**

* @preconditions n >= 0

* @postconditions n >= 0

*/

public static boolean isPrime(int n) {

if (n < 2)

return false;

for (int i=2; i < n; i++) {

if ((n % i) != 0)

return false;

}

return true;

}

}

Analysis

Ease of problem formulation This program is somehow tricky: the pro-
gram formulation is natural, but there were problems in specifying
useful properties for prime numbers in the OCL formalism. Hence in
the end the conditions were chosen as easy as possible. But this does

60

not make it easier to prove the obligations, as the conditions do not
correlate with the program.

Complexity of user interaction The complexity is very high, making the
proving process very complicated.

Degree of coverage In spite of the simple conditions the program could
not be fully verified.

Support in finding errors KeY did not help in finding errors in this con-
text.

61

4.5 Perfect Developer

Some theoretical background on Perfect Developer was given in section 3.4,
whereas the focus is here on its practical usage:

Commercial or academic nature PD is a commercial tool with special
conditions for academic institutions.

Supported platforms and portability The development environment of
PD and the Perfect compiler and verifier kit run under Windows and
Linux. The generated code of PD is either Ada, C++ or Java and hence
runs on any supported platform for these programming languages.

Installation The installation process is clear and well documented. On the
officially supported platforms standard installation mechanisms pre-
pare the system in order to start working immediately with PD. For
Windows and certain recent Linux distributions the installation is au-
tomatic and is finished within minutes. For other Linux distributions
some additional work may be necessary. PD, in particular the graphi-
cal user interface, relies on very recent versions of some libraries, which
for instance are not available in the stable release of Debian Linux
(woody) by default. Backporting and recompiling the libraries solves
the problem.

General support Escher Technologies, the producer of PD, runs a mailing
list, where questions of any nature were answered often within one or
two days. The support is fast and competent.

Code generation The standard target languages of the automatic trans-
lation of the Perfect language are C++ and Java. So virtually any
deployed operating system has support for at least one of these lan-
guages. So portability issues are not worth being further discussed.

Learning curve PD offers a lot of features, that take time to learn. For
programmers not familiar with declarative or functional programming
it might be a challenge to formulate programs in a non procedural way.
Once the user has internalised the language structure the user is able
to express specifications and programs in a concise and natural way.

62

4.5.1 Cubic sum

Compute the sum of cubed numbers.

Program code

function cubicSum(n: nat): nat

decrease n

^= (

[n = 0]:

0,

[]:

n^3 + cubicSum(n - 1)

)

assert result = (n^2 * (n + 1)^2 / 4);

Analysis

Ease of problem formulation The problem can be easily formulated in a
recursive style, which is fully supported by PD. The assertions are also
clear.

Complexity of user interaction No user interaction during the proof is
possible.

Degree of coverage Almost all obligations could be discharged. Type con-
straint restrictions could not be proven in this formulation — PD could
not show that n^3 + cubicSum(n - 1) in combination with the asser-
tion is of type nat.

Support in finding errors PD gives useful hints what seems to be the
problem. Of course the user has to look carefully on this part but at
least the user has some clue about PD problems.

4.5.2 Factorial

Compute the factorial for a given number.

Program code

function factorial(n: nat): nat

decrease n

^= ([n = 0]:

63

1,

[]:

n * factorial(n - 1)

)

via

var tot: nat != 1;

loop

var nn: nat != 0;

change tot

keep tot’ = factorial(nn’)

until nn’ = n

decrease n - nn’;

nn! + 1, tot! * nn’

end;

value tot

end

assert result > 0;

Analysis

Ease of problem formulation PD supports an implementation part, as
used in this example. The declarative formulation describes the behav-
iour, whereas the implementation part describes, how the computation
shall be done. PD ensures that both parts fit together and verifies them
against each other.

Complexity of user interaction No user interaction was necessary, the
program was verified fully automatically.

Degree of coverage PD could prove the total correctness of this program
formulation.

Support in finding errors The prover output for this program is very long
(about 20 pages), but PD generates a separate file if it encounters
problems. With some hints of PD the user has good chances to find
the source of errors.

4.5.3 Intersection

Count how many elements from the first list also occur in the second one.
Both lists have to be sorted.

64

Program code

function cardIntSec(A: seq of nat, B: seq of nat): nat

pre A.isndec, B.isndec

satisfy result = #(those x::A :- (exists y::B :- x = y))

via

var cardCount: nat != 0;

loop

var a: nat != 0,

b: nat != 0;

change cardCount

keep a’ <= #A, b’ <= #B, A.isndec & B.isndec &

#(those x::A :- (exists y::B :- x = y))

= cardCount’ + #(those x::A.drop(a’)

:- (exists y::B.drop(b’) :- x = y))

until a’ = #A | b’ = #B

decrease (#A + #B) - (a’ + b’);

if

[A[a] = B[b]]:

cardCount! + 1,

a! + 1;

[A[a] < B[b]]:

a! + 1;

[A[a] > B[b]]:

b! + 1;

fi;

end;

value cardCount

end;

Analysis

Ease of problem formulation The declarative part was easy to formulate
and written within minutes. The implementation is longish and was
difficult to formulate.

Complexity of user interaction The implementation part was tricky to
write and is error prone. Only after a lot of reformulations the number
of non verifiable obligations could be reduced. PD still could not prove
the invariant of this program.

Degree of coverage Due to the complex implementation part PD could
not verify the whole program. Without the separate implementation

65

part PD could verify the whole program and was still able to produce
executable code. So the implementation with its improved performance
behaviour leads to not verifiable program fragments for PD.

Support in finding errors PD gives good hints on errors or problematic
formulations in the declarative part, but fails to give such good reports
for the implementation part.

4.5.4 Inversions

Compute the number of inversions within a sequence of numbers.

Program code

function countInversions(A: seq of nat): nat

^= (

#flatten

(

for i::0..<#A

yield for those j::0..<#A

:- i < j & A[i] > A[j]

yield pair of (nat, nat){i, j}

)

)

assert result < (#A)^2;

Prover output

Failed to prove obligation: Assertion valid

In the context of class: Examples

Obligation location: Examples.pd (19,9)

Condition defined at: Examples.pd (30,19)

To prove:

#flatten(

(for i::0 .. <#A yield

for those j::0 .. <#A :- (i < j) &

(A[j as nat] < A[i as nat])

yield pair of (nat,nat) {i as nat,j as nat}))

< (#A ^ (2 as nat))

Reason: Exhausted rules

66

Could not prove:

(+ over for x::0 .. (-1 + #A) yield

#(those x::(0 .. (-1 + #A)).ranb :-

(A[j] < A[x]) and (j < x))) < (#A ^ 2)

Analysis

Ease of problem formulation The formulation is tricky and needs intri-
cate operators to obtain the correct return type. Nevertheless the for-
mulation is very short and compact.

Complexity of user interaction No modifications were necessary. The
proving process by PD is done without any user interaction.

Degree of coverage All obligations can be discharged except the assertion
result < (#A)^2. The proof requires induction, which is not sup-
ported by PD.

Support in finding errors As one can see from the prover output above,
PD shows what the problem is in verifying this program, but gives no
hint on how to solve it.

4.5.5 List maximum

Find the maximum from a list of numbers.

Program code

function listMax(l: seq of nat, maxValue: nat,

maxValueIndex: nat, i: nat):

pair of (nat, nat)

decrease #l

^= (

[#l = 0]:

pair of (nat, nat){maxValue, maxValueIndex},

[]:

(

[l.head > maxValue]:

listMax(l.tail, l.head, i, i + 1),

[]:

67

listMax(l.tail, maxValue,

maxValueIndex, i + 1)

)

)

assert (#l > 0 & maxValue = 0 & maxValueIndex = 0 & i = 0) ==>

(result.x = l.max);

Analysis

Ease of problem formulation The functional recursive definition allows
a short formulation. Language constructs like pair and seq allow so-
phisticated return types.

Complexity of user interaction No extra user interaction was necessary.

Degree of coverage Everything except the final assertion can be proved.
The final assertion requires induction, which is not supported by PD.

Support in finding errors PD signals that it cannot prove the final asser-
tion, but gives no help how to solve this.

4.5.6 Multiplication

Multiply two integer numbers.

Program code

function mult(x: nat, y: nat, z: nat): nat

decrease y

^= (

[y = 0]:

z,

[]:

mult(x, y - 1, z + x)

)

assert result = (x * y + z);

Analysis

Ease of problem formulation The formulation was very easy and clear.
No tricks were necessary.

Complexity of user interaction None. Complete automatic verification.

68

Degree of coverage PD could verify the program completely.

Support in finding errors The output is clear and short for the trivial
example.

4.5.7 Prime

Tests whether a nonnegative number is prime.

Program code

function factors(n: nat): seq of int

^= (

those x::2..(n-1) :- (n % x) = 0

);

function isPrime(n: nat): bool

^= (

[n < 2]:

false,

[]:

factors(n) = seq of int{}

)

assert (result | (n < 2)) = (forall i::2..(n-1) :-

(n % i) ~= 0);

Analysis

Ease of problem formulation PD allows to write down the mathemati-
cal properties for primes in a very intuitive way. This minimises the
probability of introducing intricate errors already in the design phase.

Complexity of user interaction No fine tuning is necessary. The prover
works automatically.

Degree of coverage All properties could be verified.

Support in finding errors On the first attempt the assertion was specified
in the wrong way. The user could see immediately that PD could not
verify the final assertion.

69

4.5.8 Quicksort

Sorts a sequence of numbers according to the well known Quicksort algorithm
developed by Tony Hoare.

Program code

function quickSort(numbers: seq of int): seq of int

decrease #numbers

^=

(

[#numbers = 0]:

seq of int{},

[]:

(

let pivot ^= numbers.last;

let pivotindex ^= <#numbers;

let rest ^= numbers.remove(pivotindex);

let smallerOrEqual ^= those x::rest :-

x <= pivot;

let bigger ^= those x::rest :- x > pivot;

quickSort(smallerOrEqual).append(pivot)

++ quickSort(bigger)

)

)

assert result.isndec;

Analysis

Ease of problem formulation The functional definition of the Quicksort
algorithm is very intuitive and a real advantage. This avoids errors in
a non declarative implementation.

Complexity of user interaction No additional help needs to be given to
the PD prover.

Degree of coverage PD could not show that this Quicksort formulation
yields the same properties as the built-in isndec property, since it
requires induction.

Support in finding errors No support necessary.

70

4.6 PVS Specification and Verification System

PVS was already presented in section 3.5. Its characteristics are:

Commercial or academic nature PVS is of academic nature, with some
commercial additions. The tool can be freely downloaded and used by
any end user.

Supported platforms and portability Supported platforms are only So-
laris and Intel Linux platforms. PVS uses heavily Emacs and LISP.
Theoretically it is possible to port the application, but so far this has
not been done.

Installation The installation is straightforward. It suffices to copy the
whole build into a directory and call a small script to relocate rele-
vant links. On a standard Linux system PVS finds immediately Emacs
and necessary libraries without problems.

General support The PVS team runs various mailing lists. Competent
and fast answers per e-mail make up a good support.

Code generation PVS is not intended to produce executable code. PVS is
a specification language integrated with support tools and a theorem
prover. So the code has to be written in the specification language,
which then can be verified. A translation of such algorithms into real
code is still necessary.

Learning curve PVS is hard to learn. PVS offers many possibilities during
the proving phase. How and when to use them requires not only inten-
sive training with PVS but also a profound knowledge of logic. PVS is
highly interactive, advanced knowledge is definitively necessary.

71

4.6.1 Cubic sum

Compute the sum of cubed numbers.

Program code

cubicSum: THEORY

BEGIN

n: VAR nat

cubicSum(n): RECURSIVE nat =

IF n = 0 THEN 0 ELSE n^3 + cubicSum(n - 1) ENDIF

MEASURE n

cubicSum_test: LEMMA cubicSum(3) = 36

cubicSum_formula: LEMMA cubicSum(n) = n^2 * (n + 1)^2 / 4

END cubicSum

Proof procedure

cubicSum_test: (grind)

cubicSum_formula: (induct-and-simplify "n")

Analysis

Ease of problem formulation The recursive specification is natural and
constitutes a nice mathematical way to describe this problem.

Complexity of user interaction The (grind) meta rule is powerful and
discharges most obligations. After careful study of the documentation
it is also clear that an induction on the recursively decreasing variable
is the way to success.

Degree of coverage With the above commands the whole program could
be verified.

Support in finding errors PVS hardly gives hints on structural problems.
Often the proving process becomes so interactive and intricate that it
is hard to follow PVS problems. The user has already to have a plan
to use induction, otherwise he will fail.

72

4.6.2 Factorial

The factorial for a given number shall be computed.

Program code

fac: THEORY

BEGIN

n, x, y, z: VAR nat

fac(n): RECURSIVE nat =

(IF n = 0 THEN 1 ELSE n*fac(n-1) ENDIF)

MEASURE (LAMBDA n: n)

mul_mon: LEMMA FORALL x, y, z:

(x > 0 AND y > z) IMPLIES x * y > x * z

fac_non_neg: LEMMA FORALL x: fac(x) > 0

fac_inc: LEMMA FORALL x: fac(x + 1) < fac(x + 2)

fac_test: LEMMA fac(0) = 1

fac_test2: LEMMA fac(5) = 120

END fac

Proof procedure

fac_test: (grind)

fac_test2: (grind)

fac_non_neg: (induct "x")

(grind) (grind)

mul_mon: (induct "x")

(grind) (grind)

fac_inc: (skolem!)

(expand "fac" :occurrence 2)

(lemma mul_mon)

(inst -1 "fac(1+x!1)" "x!1+2" "1")

(prop)

(grind) (lemma fac_non_neg) (grind)

(grind)

Analysis

73

Ease of problem formulation The function and the lemmas can be ex-
pressed in an intuitive functional style.

Complexity of user interaction The amount of user interaction is quite
high, especially for fac_inc. The rewriting and instantiating of already
proved lemmas is non trivial and needs insight into the structure of the
proof.

Degree of coverage With the above mentioned tricks everything could be
verified.

Support in finding errors Due to the complex proving procedure, PVS
could not give any hints.

4.6.3 Inversions

Prove some properties on inversion pairs of numbers.

Program code

inv: THEORY

BEGIN

A: VAR ARRAY[nat -> nat]

lenA: VAR nat

%% A set is defined as a predicate in PVS

inv(A, lenA): set[[nat, nat]] =

{ (i: below(lenA), j: below(lenA)) |

i < j AND A(i) > A(j) }

%% An array is a (total) function in PVS

inv_test: LEMMA inv((LAMBDA (x: nat):

IF x = 0 THEN 3 ELSE 1 ENDIF), 2) =

add((0,1), emptyset[[nat, nat]])

inv_null: LEMMA inv((LAMBDA (x: nat): 0), 0) =

emptyset[[nat, nat]]

END inv

Proof procedure

74

inv_test: (apply-extensionality)

(grind)

inv_null: (apply-extensionality)

(grind)

Analysis

Ease of problem formulation PVS makes it quite difficult to handle this
problem. The first aspect is that arrays are just functions. This leads
to difficulties with return types and getting the length or the number
of elements of an array.

Complexity of user interaction Sets cause problems with the meta strat-
egy (grind). At first one has to use the mechanism of extensionality. It
takes time to extract this from the documentation or the PVS mailing
list.

Degree of coverage The properties could be proved, but with a significant
amount of interactivity.

Support in finding errors PVS failed to give any support for this prob-
lem. In the beginning in inv_test the order of numbers in the arrays
was unwillingly permuted. PVS gave no hints why it could not prove
anything. It took hours to find the error manually.

4.6.4 Multiplication

Multiply two integer numbers.

Program code

mult: THEORY

BEGIN

c, x, y, z: VAR nat

mult(x, y, z): RECURSIVE nat =

IF y = 0 THEN z ELSE mult(x, y - 1, z + x) ENDIF

MEASURE y

mult_test: LEMMA mult(3, 5, 0) = 15

mult_ok: LEMMA FORALL (x, y, z): mult(x, y, z) = x * y + z

mult_add: LEMMA mult(x, y, z + c) = mult(x, y, c) + z

75

mult_ok2: LEMMA FORALL (x, y): mult(x, y, 0) = x * y

END mult

Proof procedure

mult_test: (grind)

mult_ok: (induct-and-simplify "y")

mult_add: (induct-and-simplify "y")

mult_ok2: (skosimp*)

(rewrite "mult_ok" :subst ("z" 0))

Analysis

Ease of problem formulation The program itself can be easily formu-
lated in a recursive style. The lemmas for the conditions are also easily
stated with the help of quantifiers.

Complexity of user interaction At the first try it is hard to find out
that the proof of mult_ok2 requires the proof of a more general the-
orem, mult_ok. Only the latter can be proved directly by induction.
mult_ok2 is then obtained by instantiation and rewriting.

Degree of coverage With the rewriting complete coverage was possible.
The high interactivity of the user shall be mentioned here explicitly.

Support in finding errors PVS gives only passive support in finding er-
rors. By inspecting unprovable sequents one has to deduce which
premises are missing or whether errors in the specification occurred.

4.6.5 Quicksort

Sort a sequence of numbers according to the well known Quicksort algorithm
developed by Tony Hoare. This example is due to Griffioen and Huisman
[1998].

Program code

sort[T:TYPE,<=:[T,T->bool]]: THEORY

BEGIN

ASSUMING

total: ASSUMPTION total_order?(<=)

76

ENDASSUMING

l,m: VAR list[T]

e: VAR T

i: VAR nat

b: VAR bool

x,y: VAR T

p: VAR pred[T]

IMPORTING list_adt[T]

% def and lems on sorting.

sorted_rec(l): RECURSIVE bool =

null?(l) OR null?(cdr(l)) OR (car(l) <= car(cdr(l))

AND sorted_rec(cdr(l)))

MEASURE length(l)

qsort(l:list[T]): RECURSIVE list[T] =

IF null?(l) THEN null

ELSE

LET piv = car(l)

IN append(qsort(filter(cdr(l),(LAMBDA e: e <= piv))),

cons(piv,

qsort(filter(cdr(l),(LAMBDA e: NOT e <= piv)))))

ENDIF

MEASURE length(l)

qsort_sorted : LEMMA sorted_rec(qsort(l))

END sort

int_sort: THEORY

BEGIN

IMPORTING sort[int,<=]

int_oke: LEMMA FORALL (l:list[int]): sorted_rec(qsort(l))

qsort_test: LEMMA qsort((: 3, 1, 2 :)) = (: 1, 2, 3 :)

qsort_test2:

77

LEMMA qsort((: 4, 3, 5, 2, 1, 6, 6, 9, 8, 7 :)) =

(: 1, 2, 3, 4, 5, 6, 6, 7, 8, 9 :)

END int_sort

Proof procedure Due to the length of the proof, the proof was omitted
here. It can be found in the source code package accompanying this thesis.

Analysis

Ease of problem formulation This example shows how powerful the PVS
specification language is. Generic and modular theories with abstract
data types are used here. PVS allows to write expressive formulas with
short code.

Complexity of user interaction The proof is very complex with high user
interactivity due to the massive use of PVS features. Also lists are
somehow tricky, as it is sometimes necessary to give PVS hints on the
used types (eg. ::nat).

Degree of coverage All properties could be verified.

Support in finding errors Similar to the previous example.

78

5 Summary

The last two sections compared in detail the four selected tools: section 3
presented the tools from a theoretical point of view, whereas section 4 dis-
cussed the implementation of several examples to illustrate the differences
and capabilities. This section summarises the results with respect to the two
target groups, namely software engineers and students of computer science
with a limited background in formal logic.

Frege Program Prover FPP supports a small subset of Ada consisting of
typical imperative program structures like loop, case- and if-statements.
The only data types available are integer and boolean. The language
for specifying pre- and post-conditions is rather restricted. E.g., func-
tion definitions, recursive specifications and structured data types like
arrays are not supported.

FPP is able to verify simple programs and to compute their weakest
pre-conditions. The prover, Analytica, acts as a black box signalling
either the validity of a formula or returning unprovable sub-formulas;
formal proofs are not supplied.

Due to its simplicity and its web interface, FPP is easy to learn and use.
It seems to be a valuable tool for illustrating the ideas of formal program
verification in basic courses. It is not suitable, however, for advanced
courses on the subject or for real world applications, as it is neither able
to deal with standard examples from Gries [1989] and Dijkstra and
Scholten [1990] involving arrays, nor does it support object-oriented
features. Moreover, the terse output in pure ASCII makes it difficult
to trace errors.

The KeY system The KeY system supports a subset of Java known as
JavaCard, which is increasingly used for mobile and embedded devices.
Verification is based on dynamic logic, a generalisation of the Hoare
calculus. The system is integrated into a professional CASE tool (Bor-
land’s Together Control Center); an integration into the free Eclipse
environment is under way. Objects and constraints can be specified
using UML and OCL.

Java, UML, OCL, and CASE tools are familiar to software engineers
and students alike, which helps in getting started. Nevertheless, KeY
cannot be recommended for these target groups at present: the in-
teractive prover and its interaction with the user are in their infancy
(compare the example in section 4.4.2) and are inadequate for any se-

79

rious use. Moreover, OCL is not expressive enough to specify complex
program behaviour.

Considering that KeY is still in alpha stage, it seems to be worthwhile
to reevaluate the system in a few years in order to see whether it lives
up to expectations.

Perfect Developer PD consists of a full-fledged object-oriented program-
ming language, Perfect, of a powerful automated theorem prover and
of a code generator translating programs from Perfect to Java, Ada,
and C++. A rich collection of built-in data types, classes, functions
and theories allows the user to write concise specifications on a fairly
abstract level.

PD is a technically mature product that is ready for use in a regular
development process. However, software engineers will need some time
to become sufficiently acquainted with the many features of Perfect.
Moreover, at least a basic knowledge of formal logic is required to be
able to interpret the prover output and to use it for detecting errors
in the specification or in the program. Perfect Developer is also well
suited for teaching advanced courses on formal program verification.
Usually there will not be enough time to cover all features of Perfect.
Therefore a tutorial is required that concentrates on just those elements
of the language that are necessary to implement and verify instructive
examples like those in Gries [1989].

PD is the only tool of the four that comes close to the ideal of au-
tomatic and easy program verification. But there are also still some
shortcomings. One is that the prover currently does not support in-
duction. Consequently certain recursive functions and loops cannot be
verified by the system. Another weakness, at least from an academic
point of view, is the lack of information concerning the inner work-
ings of the prover. Ideally the logical rules used in correctness proofs
should be open for inspection such that independent proof checkers can
establish additional trust in the system.

Prototype Verification System PVS is a powerful interactive theorem
prover, which has been used for various real world applications. In
contrast to the other systems it does not generate verified program
code, but proves properties of algorithms. The prover is versatile and
offers many possibilities. It is automatic to a certain degree, but usually
requires frequent user interactions.

Due to its many basic inference rules and tactics it takes a long learning

80

Figure 2: Comparison of FPP, KeY, PD and PVS

phase to become familiar with the system. Moreover, users of PVS
need a firm background in mathematics and formal logic to guide the
prover. In our opinion typical software engineers and average students
of computer science will have a hard time using PVS. Graduate or
Ph.D. students might have a chance, provided they are given enough
time. For courses with just a few hours per week in the lab PVS seems
to be too complex.

Figure 2 compares the four selected tools FPP, KeY, PD and PVS ac-
cording to formal background in logic and the field of application.

Tools for formal software verification have made considerable progress in
recent years. With the advent of tools that offer formal methods on a level
accessible to software engineers the costs for formal software verification will
decrease such that it will be used in more and more projects. Universities
have to react already today by training students in formal methods, using
one or the other system.

81

Latest announcements have also affirmed that there is ongoing develop-
ment in the field of software verification tools and the grand challenge towards
the verifying compiler is more up-to-date than ever before. Nevertheless a
lot needs to be done to achieve a wide acceptance of formal verification:

Most of the general public, and even many programmers, are
unaware of the possibility that computers might check the cor-
rectness of their own programs [Hoare, 2003, p. 65].

82

Resources

Additional material, like the examples and their source code, and this thesis
are available online at http://www.logic.at/staff/feinerer.

References

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Mar-
tin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter Schmitt. The KeY tool. Software and
System Modeling, 2004. Online First issue, to appear in print.

Krzysztof Apt and Ernst-Rüdiger Olderog. Programmverifikation. Springer-
Verlag, 1994. ISBN 3-540-57479-4.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

Andrej Bauer, Edmund Clarke, and Xudong Zhao. Analytica — An Experi-
ment in Combining Theorem Proving and Symbolic Computation. Journal
of Automated Reasoning, 21:295–325, 1998.

Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle, Andreas
Roth, Philipp Rümmer, and Steffen Schlager. Taclets: A new paradigm for
constructing interactive theorem provers. Revista de la Real Academia de
Ciencias Exactas, F́ısicas y Naturales, Serie A: Matemáticas (RACSAM),
98(1), 2004. Special Issue on Symbolic Computation in Logic and Artificial
Intelligence.

Alan Bundy. The Paradox of the Case Study, 2004. URL http://www-unix.

mcs.anl.gov/AAR/issuesept04/index.html#paradox.

Edmund Clarke and Xudong Zhao. Analytica — A Theorem Prover for
Mathematica. The Mathematica Journal, 3:56–71, 1993.

David Crocker. The Perfect Developer Language Reference Manual, Septem-
ber 2001.

David Crocker. Developing Reliable Software using Object-Oriented Formal
Specification and Refinement. Escher Technologies Ltd., 2003a.

David Crocker. Perfect Developer: A tool for Object-Oriented Formal Specifi-
cation and Refinement. Tools Exhibition Notes at Formal Methods Europe,
2003b.

83

http://www.logic.at/staff/feinerer
http://www-unix.mcs.anl.gov/AAR/issuesept04/index.html#paradox
http://www-unix.mcs.anl.gov/AAR/issuesept04/index.html#paradox

David Crocker. Automated Reasoning in Perfect Developer. Escher Tech-
nologies Ltd., 2004a.

David Crocker. Safe Object-Oriented Software: The Verified Design-By-
Contract Paradigm. In Redmill and Anderson, editors, Proceedings of the
Twelfth Safety-Critical Systems Symposium, pages 19–41, London, 2004b.
Springer-Verlag. ISBN 1-85233-800-8.

Edsger Dijkstra and Carel Scholten. Predicate Calculus and Program Seman-
tics. Springer-Verlag, 1990.

Melvin Fitting. First-order logic and automated theorem proving. Springer-
Verlag, 1990. ISBN 0-387-97233-1.

Carsten Freining, Stefan Kauer, and Jürgen Winkler. Ein Vergleich der Pro-
grammbeweiser FPP, NPPV und SPARK. Ada-Deutschland-Tagung 2002,
pages 127–145, 2002. ISSN 1433-9986. URL http://psc.informatik.

uni-jena.de/Fpp/fpp-intr.htm#references.

Jean Gallier. Logic for Computer Science: Foundations of Automatic The-
orem Proving. Wiley, 2003. URL http://www.cis.upenn.edu/∼jean/

gbooks/logic.html.

John Gannon, James Purtilo, and Marvin Zelkowitz. Software Specification:
A Comparison of Formal Methods. International Specialized Book Service
Inc., September 1993.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathema-
tische Zeitschrift, 39, 1935.

David Gries. The Science of Programming. Springer-Verlag, 1989.

David Griffioen and Marieke Huisman. A comparison of PVS and Is-
abelle/HOL. In Jim Grundy and Malcolm Newey, editors, Theorem Prov-
ing in Higher Order Logics: 11th International Conference, TPHOLs ’98,
volume 1479 of Lecture Notes in Computer Science, pages 123–142, Can-
berra, Australia, September 1998. Springer-Verlag.

Tony Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/363235.363259.

Tony Hoare. The verifying compiler: A grand challenge for computing
research. J. ACM, 50(1):63–69, 2003. ISSN 0004-5411. doi: http:
//doi.acm.org/10.1145/602382.602403.

84

http://psc.informatik.uni-jena.de/Fpp/fpp-intr.htm#references
http://psc.informatik.uni-jena.de/Fpp/fpp-intr.htm#references
http://www.cis.upenn.edu/~jean/gbooks/logic.html
http://www.cis.upenn.edu/~jean/gbooks/logic.html

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2nd edition, 2004.
ISBN 0 521 54310X.

Cliff Jones. The Early Search for Tractable Ways of Reasoning about Pro-
grams. IEEE Annals of the History of Computing, 25:26–49, 2003. ISSN
1058-6180.

Bertrand Meyer. The grand challenge of Trusted Components. In ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering,
pages 660–667. IEEE Computer Society, 2003. ISBN 0-7695-1877-X.

OMG. Object Constraint Language Specification, 2003a. URL http://www.

omg.org/docs/ptc/03-10-14.pdf.

OMG. OMG Unified Modeling Language Specification, March 2003b. URL
http://www.uml.org/#UML2.0.

Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verifi-
cation system. In Deepak Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.
URL http://www.csl.sri.com/papers/cade92-pvs/.

Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-Calvert.
PVS: an experience report. In Dieter Hutter, Werner Stephan, Paolo
Traverso, and Markus Ullman, editors, Applied Formal Methods—FM-
Trends 98, volume 1641 of Lecture Notes in Computer Science, pages
338–345, Boppard, Germany, October 1998. Springer-Verlag. URL http:

//www.csl.sri.com/papers/fmtrends98/.

Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-Calvert.
PVS Language Reference, November 2001a.

Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-Calvert.
PVS Prover Guide, November 2001b.

Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-Calvert.
PVS System Guide, November 2001c.

Sam Owre and Natarajan Shankar. The Formal Semantics of PVS, March
1999.

Gernot Salzer. Theoretische Informatik 1. Institute of Computer Languages,
Vienna University of Technology, June 2002.

85

http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.uml.org/#UML2.0
http://www.csl.sri.com/papers/cade92-pvs/
http://www.csl.sri.com/papers/fmtrends98/
http://www.csl.sri.com/papers/fmtrends98/

Sun Microsystems. Java Card 2.2.1 Platform Specification, October 2003.

Dirk van Dalen. Logic and Structure. Springer-Verlag, 4th extended edition,
2004. ISBN 3-540-20879-8.

Jürgen Winkler. wp is Basically a State Set Transformer. Institute of Com-
puter Science, Friedrich-Schiller-University, 1995.

Jürgen Winkler. The Frege Program Prover. 42. Internationales Wis-
senschaftliches Kolloquium, Technische Universität Ilmenau, pages 116–
121, 1997. ISSN 0943-7207.

Michael Zolda. Isabelle/HOL versus ACL2: Comparing Two Inductive Proof
Systems. Institute of Computer Languages, Vienna University of Technol-
ogy, 2004.

86

	Introduction
	Theoretical Foundations
	Propositional Logic
	Natural Deduction
	Sequent Calculus
	Hoare Calculus
	Weakest Preconditions

	Selected Tools
	Overview
	Frege Program Prover
	KeY System
	Perfect Developer
	PVS Specification and Verification System

	Examples
	Criteria
	Methodology
	Frege Program Prover
	Cubic sum
	Division
	Factorial
	Fibonacci numbers
	Inconsistency test
	Multiplication
	False theorem test
	Correct theorem test
	Conditional weakest precondition

	KeY System
	Cubic sum
	Conditional
	Division
	Factorial
	List maximum
	Multiplication
	Prime

	Perfect Developer
	Cubic sum
	Factorial
	Intersection
	Inversions
	List maximum
	Multiplication
	Prime
	Quicksort

	PVS Specification and Verification System
	Cubic sum
	Factorial
	Inversions
	Multiplication
	Quicksort

	Summary

