A State Machine executing UMM Business
Transactions

Christian Huemer* and Marco Zapletal
*Business Informatics Group, TElectronic Commerce Group
Institute of Software Technology and Interactive Systems, Vienna University of Technology, Austria
huemer @big.tuwien.ac.at, marco@ec.tuwien.ac.at

Abstract— UN/CEFACT’s modeling methodology (UMM) is
a UML profile for modeling global B2B choreographies. The
current UMM version comprises three main views for describing
a computation independent model from a neutral perspective.
Currently, the UMM version is missing a platform independent
model showing how each partner has to realize the message
exchanges to support the agreed choreography. In this paper we
derive such a platform independent model from a UMM business
transaction - a key artifact of the computation independent
model. The resulting model is based on a state machine describing
the local view of a participating business partner. This state
machine unambiguously defines how a business partner has to
react on incoming messages and on message expected but not
received.

I. INTRODUCTION

The model driven architecture (MDA) approach of the OMG
distinguishes three different views of a system that result in
different kind of models [1]: (1) The computation independent
viewpoint focuses on the environment of the system and
its requirements. The details of the structure and processing
of the IT system are unspecified. It leads to a computation
independent model (CIM) that is familiar to the practitioners
of the domain under consideration who do not need to care
how to realize the functionality of an IT system. (2) The
platform independent viewpoint focuses on the operation of an
IT system while hiding the details necessary for a particular
platform. It leads to a platform independent model (PIM)
exhibiting a certain degree of platform independence in order
to be suitable for a number of different platforms of similar
type. (3) The platform specific viewpoint extends the platform
independent viewpoint with an additional focus on the details
of using a specific platform by an IT system. It leads to a
platform specific model (PSM) limited to a particular platform.

Traditionally, the MDA approach focuses on the develop-
ment of application systems and their code. However, a MDA
approach may also be used in developing inter-organizational
systems describing how autonomous applications of different
organizations have to interact. This is also in accordance with
the Open-edi reference model, an ISO standard co-ordinating
the collaboration between organizations [2]. Open-edi sepa-
rates the what in the Business Operational View (BOV) from
the how in the Functional Service View (FSV). The BOV cov-
ers the business aspects such as business information, business
conventions, agreements and rules among organizations. The
FSV deals with information technology aspects supporting the

execution of business transactions. In MDA terms the BOV is
a computation independent model and the FSV is a platform
specific model.

Candidate platforms on the FSV are traditional electronic
data interchange platforms such as UN/EDIFACT and ANSI
X12, as well as more recent technologies like Web Services
and ebXML. The BOV layer must focus on modeling the
business processes of a business collaboration. Traditionally,
business process modeling (cf. [3] [4]) concentrates on the
orchestration of business processes internal to a company in
order to create a customer value [5]. In a B2B environment
the focus must be on the processes that happen in-between the
organizations. The processes may be described from the point
of view of a participating partner (i.e., a local choreography)
or from an neutral and global perspective (i.e., a global chore-
ography). The BOV must capture the committments between
collaborating business partners. Similarily to a contract these
commitments have to be described from a global perspective.

The UN/CEFACT modeling methodology (UMM) is de-
signed to model choreographies of collaborating business
partners from a global perspective. It is a UML profile defining
a set of stereotypes, tagged values and constraints on the UML
meta model for its special purpose. The UMM foundation
module [6] - which we have co-edited - specifies three major
steps: (1) The business domain view (BDV) is used to gather
existing knowledge from stakeholders and business domain
experts. In interviews the business process analyst tries to get
a basic understanding of the business processes in the domain.
The resulting use case descriptions of business processes are
on a rather high level and are classified according to a pre-
defined business operations map.

(2) Those business processes from the BDV that provide a
chance for collaboration will be further detailed by the busi-
ness process analyst in the business requirements view (BRV).
The business process analyst tries to discover interface tasks
creating/changing business entities that are shared between
business partners and, thus, require communication with a
business partner. This enables to detect business transaction
use cases which describe the requirements for basic interac-
tions between business partners which involve an information
exchange and an optional response. Furthermore, business
collaboration use cases describe more complex processes
which usually span over - and thus include - multiple business
transaction use cases.

57

(3) The business transaction view (BTV) builds upon the
BRV and defines a global choreography of information ex-
changes and the document structure of these exchanges. The
basic building blocks of a global choreography called business
collaboration protocol are business transactions which are
further detailed in this paper.

The global choreography is best suited to define the com-
mittments between the partners. Nevertheless, each partner is
responsible to implement a system that is compliant to the
agreed choreography. This means that each partner must derive
its local choreography and implement it on a certain platform.
However, the handling of messages to be sent and to be
received in the local choreography is independent of the mes-
saging platform of Web Services, ebXML or UN/EDIFACT.
Thus, we suggest to add another view to the UMM which
defines the local choreography of message exchanges for each
partner. In previous versions of UMM, the business service
view (BSV) was used to depict the message exchanges, but it
was removed, since the concepts based on sequence diagrams
were inappropriate. In this paper we suggest to extend the
UMM by a BSV that is based on state machines executing
UMM business transactions.

II. UMM BUSINESS TRANSACTIONS

A business transaction is the basic building block to define
a choreography of a business collaboration between collabo-
rating business partners. We provide a more detailed analysis
of business transactions and business collaboration protocols
in [7]. Communication in a business collaboration is about
aligning the information systems of the business partners.
Aligning the information systems means that all relevant
business objects (e.g. purchase orders, line items, etc.) are
in the same state in each information system. If a business
partner recognizes an event that changes the state of a business
object, it initiates a business transaction to synchronize with
the collaborating business partner. It follows that a business
transaction is an atomic unit that leads to a synchronized state
in both information systems.

We distinguish two very basic types of business transac-
tions: In the first type, the initiating business partner reports
an already effective and irreversible state change that the
reacting business partner has to accept. Examples are the
notification of shipment or the update of a product in a
catalog. This is the case of a one-way business transaction,
because business information (not including business signals
for acknowledgments) flows only from the initiating to the
reacting business partner. In the second type, the initiating
partner sets the business object(s) into an interim state and
the final state is decided by the reacting business partner.
Examples include request for registration, search for products,
etc. This is the case of a two-way transaction, because business
information flows from the initiator to the responder to set the
interim state and backwards to set the final and irreversible
state change. In a business context, irreversible means that
returning to an original state requires compensation by another
business transaction [8]. E.g., once a purchase order is agreed

upon in a business transaction a rollback is not allowed
anymore, but requires the execution of a cancel order business
transaction.

In UMM, a business collaboration protocol is specified as
a flow of business transaction activties. The left hand side
of Figure 1 shows a very simple example of a business
collaboration protocol specifying a sequence of two busi-
ness transaction activities. Of course, the number of business
transaction activities is usually much higher leading to a
much more complex flow including splits, mergers, loops etc.
Each business transaction activity is refined by a business
transaction which is another activity graph. This graph follows
the strict pattern as shown on the right hand side of Figure 1. It
is always built by exactly two business actions, a requesting
business activity and a responding business activity. Each
business action is performed by exactly one authorized role
executed by a business partner. The assignment of the business
action to an authorized role is realized by business transaction
swimlanes. The requesting business activity is assigned to
the initiator and the responding activity is assigned to the
responder.

In UMM we distinguish two types of one-way transactions.
If the business information sent is a formal non-repudiatable
notification, the transaction is called notification. Otherwise
the transaction is known as information distribution. Further-
more, there exist four different types of two-way transactions.
If the responder already has the information available before-
hand, it is a query/response transaction. If the responder does
not have the information, but no pre-editor context validation is
required before processing, the transaction is a request/confirm
one. If the latter is required, the next question is whether
the transaction results in a residual obligation between the
business partners to fulfill terms of a contract. If so, it is
a commercial transaction. Otherwise it is a request/response
transaction. These types of business transactions cover all
known legally binding interactions between two decision mak-
ing applications as defined in Open-edi [2]. They have proven
to be useful in RosettaNet [9].

The different types of business transaction patterns differ
in the defaults for the tagged values that characterize business
actions: is authorization required, is non-repudiation required,
time to perform, time to acknowledge receipt, and time to
acknowledge processing. The values for is non-repudiation
of receipt required and for retry count are only defined for
the requesting business activity. Most of these attributes are
self-explanatory. An acknowledgment of receipt is usually sent
after grammar validation, sequence validation, and schema val-
idation. However, if the is intelligible check required flag is set
to false, the acknowledgment is sent immediately after receipt
without any validation. An acknowledgment of processing is
sent after validating the content against additional rules to
ensure that the content is processable by the target application.
It should be noted that both kinds of acknowledgments are
business signals and are not acknowledgments on the network
level realizing reliable messaging. Retry count is the number
of retries in case of control failures.

58

act BusinessTransaction /

ne»

act BusinessCollaborationProtocol /

:Initiator :Responder

?

velope:

«BusinessTransactionActivity»
activity 1

d/ [Success]

«BusinessTransactionActivity»
activity 2

[Failure]

Success

Failure

tivity»

initiator's activity ~

responding business document

% [Success]

Success

«RequestingInformationEnvelope»
requesting business document

~ i i Activity»
/K responder’s activity

Fig. 1.

In a one-way transaction business information is exchanged
only from the requesting business activity to the respond-
ing business activity. In case of a two-way transaction the
responding business activity returns business information to
the requesting business activity. The exchange of business
information is shown by an object flow. One business action
sets an information object flow state that is consumed by the
other business action.

An information object flow state refers to an information
envelope exchanged between the business actions. The infor-
mation envelope is characterized by three security parameters:
is confidential, is tamper proof, and is authenticated. The
structure of the information envelope’s content - which is not
detailed in this paper - is modeled in a class diagram that is
based on UN/CEFACT core components [10].

III. MAPPING BUSINESS TRANSACTIONS TO STATE
MACHINES

In this section we transform the global choreography of
UMM business transactions to a local choreography describing
the message exchanges of business documents and business
signals. UMM business transactions are described by a rather
simple pattern. This is also due to the fact that the activ-
ity graph shows only the exchange of business documents,
whereas the business signals representing acknowledgements
are described by tagged values. Thus, the local choreography
of a partners interface is not only a sequence of sending and
receiving business documents. It requires a more complex
choreography that has to reflect a reliable exchange of business
documents leading to well-defined business states even in
case of failures. In this section we propose to describe this
complex choreography by means of a state machine that
acts on incoming and outgoing messages. We use a state
machine, because it is best suited to describe the valid states
of a business partner interface and the events causing state
transitions - finally leading to a success or failure of the
business transaction.

The actions to be carried out by a business partner interface
mainly depend on the instantiation of the tagged values of

UMM Business Collaboration Protocol and Business Transaction

requesting/responding business activities. This instantion de-
pends on the UMM transaction type. Due to space limitations
we do not elaborate state machine representations for each
of the six transaction types. Instead, we demonstrate the
business partner interface by the most complex pattern -
the commercial transaction. This pattern specifies a two-way
transaction requiring all kinds of acknowledgements. State
machines reflecting other patterns are easily constructed by
omitting steps that are not required due to lower security
requirements.

A. The initiator’s part

A UMM business transaction takes place between two
authorized roles. Each role must implement its own business
partner interface. It follows, that a UMM business transaction
results in two state machines each describing a business
partner interface. Figure 2 shows the system specification for
the initiator’s part of a commercial transaction. One should
note, that due to space limitations we shortened identifiers
in the figure (e.g., ResBusinessDoc instead of responding
business document, AckReceipt instead of acknowledgement
of receipt, etc.).

A business transaction is a unit of work represented by
a composite state. It is started when the business partner
interface receives the requesting business document from the
application. It may be re-initiated due to time-out exceptions.
This means that the initiator has to restart the business
transaction if an acknowledgement of receipt/processing or
a response document is not received in time. The maximum
numer of restarts is defined by the retry count. Thus, the first
state is checkRetryCount. Its activity checklfRetryCountLeft
audits the remaining retries to re-initiate the transaction in
case of a previous failure. If the retry count is equal or greater
than zero the system proceeds with the transmission of the
request. When a business transaction is initiated for the first
time the check is always passed, because the initial retry count
must at least be zero. In case of re-initiating the business
transaction with no remaining retries the system transitions
to state sendFailedBusinessControl_Outgoing. In this state, the

59

receiveTimeOutException(TimeOutException)
. IdecreaseRetryCount
Initial
Ve 2Way-WithAcks-Initiator N
checkRetryCount \ i Doc_O
RetryLeft
+ do/ checklfRetryCountLeft + do/sendRegBusinessDoc(ReqBusinessDoc)
Initial
ReqBusinessDocSent
NoRetryLeft - — - after(timeToAckReceiptl)
waitForAckReceipt_Incoming /sendTimeOutException(TimeOutException)
and decreaseRetryCount
after(timeToRespond) receiveAckReceipt(AckReceipt)
/decreaseRetryCount
checkAckReceipt
+ do/checkAckReceipt
AckReceiptValid after(timeToAckProcessing)
IsendTimeOutException(TimeOutException)
waitForAckProcessing_Incoming and decreaseRetryCount
AckReceiptFailure
AckPr ing)
AckProcessingFailure
) checkAckProcessing
ure . after(timeToRespond)
+ do / checkAckProcessing /sendTimeOutException(TimeOutException)
and decreaseRetryCount
AckProcessingValid
waitFor Doc \
/~ sendFai ontrol_O |
+ do / sendFailedBusinessControl(Failure)))
T
. . receiveResBusinessDoc(ResBusinessDoc)
receiveResBusinessDoc(ResBusinessDoc) [IntelligibleCheckNotRequired]
GrammerCheckFailed OR [IntelligibleCheckRequired]
SequenceCheckFailed OR Soc \
SchemaCheckFailed
+ do/ validateGrammar
+ GrammarValid / validateSequence
+ SequenceValid / validateSchema
ValidateContentCheckFailed
ChecksSuccessful \l/
/ ontentO Doc \I/ AckReceiptSent / sendAckReceipt_Outgoing \
f
k do/ validateContent + do / sendAckReceipt(AckReceipt)
\l/ ContentValid ResBusinessDocDeliveredToBA
/ inter i i icati \ / sendAckProcessing_Outgoing \
kdo/giveResBusinessDocToBA(ResBusinessDoc) J '+ do / sendAckProcessing(AckProcessing))
Iwhen(currentTime==
(ResBusinessDocReceivedFirstTime +
timeToAckProcessing)) Success

T
BusinessTransactionSucceeded

Success

Fig. 2.

system issues a notification of failed business control to the
partner’s system and exists the transaction with a failure.

If retries are left, a signal event RetryLeft fires the transition
to state sendBusinessDocument_Outgoing. Within this state the
initiator transmits the requesting business document by invok-
ing the operation sendReqBusinessDoc(ReqBusinessDoc).

After sending the document we reach the state wait-
ForAckReceipt_Incoming. In this state the initiator expects
that the responder acknowledges the receipt of the requesting
business document sent before. The system remains there
until either of the following two events occurs: (1) If the
initiator receives no acknowledgement within the agreed
time to acknowledge receipt, a time event specified by af-
ter(timeToAcknowledgeReceipt) eventuates and executes an

BusinessTransactionFailed

receiveFailedBusinessControl(Failure)

Failure

State machine showing the initiator’s part of a commercial transaction

activity that issues a time-out exception and decreases the
available retries. The transition activated by the time event re-
enters the composite state of the business transaction, which
begins again with checkRetryCount. (2) The initiator receives
the acknowledgement of receipt. This results in the call event
receiveAckReceipt(AckReceipt).

If the acknowledgement of receipt is picked up, the initiator
enters state checkAckReceipt. The activity checkAckReceipt
checks the acknowledgement’s content. A failure yields to
an AckReceiptFailure event and the system transitions to
sendFailedBusinessControl_Outgoing. Otherwise, a successful
check produces an AckReceiptValid event that leads to wait-
ForAckProcessing _Incoming.

This state works like the state waitForAckReceipt_Incoming

60

described above, except that the business partner interface
waits for an acknowledgement of processing. Again, if the
initiator’s system does not receive the acknowledgement in
the agreed time, a time-out exception is issued, the available
retries are decreased, and the composite state is re-entered to
check the retries. If the acknowledgement is received and the
applied checks are successful the initiator enters the state wait-
ForRespondingBusinessDocument_Incoming. Otherwise, if the
checks fail an AckProcessingFailure is actuated and the system
switches to sendFailedBusinessControl_Outgoing.

In this step of the business transaction, the initiator waits
for the responding business document. Not receiving the
responding business document within the agreed time (i.e.,
time to respond) causes the initiator to issue a time-out
exception, to decrease the available retries, and to re-enter
the composite state to check the retries. Otherwise, receiving
the responding business document actuates the call event
receiveResBusinessDoc(ResBusinessDoc).

This call event is specified for two outgoing transitions with
mutually exclusive guards concerning an intelligible check of
the document. If an intelligible check is required the system
enters state checkResBusinessDoc. In this state the document
has to pass through a grammar, sequence and schema vali-
dation prior to issuing a proper acknowledgement of receipt.
The grammar validation secures that the document’s syntax
is processable by the system. The sequence validation assures
that the document is received in the proper position in terms
of the document order. Finally, the schema validation checks
the received document against its associated schema(s). If any
of the above mentioned checks fails the initiator’s system goes
immediately to state sendFailedBusinessControl_Outgoing. If
all checks are passed or if the intelligible checks were not
necessary, the system switches to sendAckReceipt_Outgoing.
Being there, the initiator confirms the proper pick up of
the responding business document by sending an acknowl-
edgement of receipt as indicated by the activity (sendAckRe-
ceipt(AckReceipt)).

Afterwards, in the state validateContentOfBusinessDocu-
ment the business partner interface validates the content of the
responding business document (validateContent activity). If
validation of the business document’s content fails, the system
changes its state to sendFailedBusinessControl_Outgoing. Oth-
erwise, in the case of success, we reach the state interactWith-
BusinessApplication in order to pass the responding business
document to the application. Once this has been completed,
we enter the state sendAckProcessing_Outgoing and send an
acknowledgement of processing to indicate the successful
content validation. After executing this action, the initiator’s
business partner interface has to keep the business transaction
alive until no failure messages may be received anymore. This
time ends when the time to acknowledge processing has passed
after sending the responding business document. Until this
time the responder may still signal a time-out exception or
a failed business control.

Both failure messages may not only be received after
sending the acknowledgement of processing, but anytime the

business partner interface is in the composite state of the
business transaction. A time-out exception is a signal by the
responder that he has not received a message within the
expected time. This requires to re-initiate the business trans-
action. Accordingly, if the call event receivelimeOutExcep-
tion(TimeOutException) occurs, the business partner interface
decreases the retry count and re-enters the composite state of
the business transaction. A failed business control is received
if the responder is not able to process a message correctly.
Thus, the call event receiveFailedBusinessControl(Failure) ter-
minates the business transaction with a failure.

B. The responders’s part

The responder’s state machine representing a business trans-
action must be complementary to the initiator’s one. The
resulting state machine is depicted in Figure 3. The concepts
used in this state machine are very much similiar to the ones of
the initiator’s one. However, the order of now receiving and
then sending a business document is reversed including the
handling of acknowledgements. Due to similarity and space
limitations, we do not explain all the states in detail.

The major difference is that the retry count is not controlled
by the responder. This means after not receiving an acknowl-
edgement of receipt or processing a time-out exception is
issued and the composite state is re-entered, but no retry
counter is decreased. By re-entering the composite state,
the responder’s business partner interface is waiting for a
requesting business document. The responder does not need
to care about the retry count. If no retry is left, no requesting
business document will be received. However, the inintiator
must issue a failed business control message, which causes
the call event receiveFailedBusinessControl(Failure) on the
responder’s side. This exits the composite state and terminates
the transaction by leading to the failure end state.

C. Composing multiple Business Transactions

The state machines described before serve as patterns in
order to define state-based descriptions for more concrete busi-
ness transactions (e.g., place order). Defining such concrete
state machines according to the presented patterns includes
more or less changing state, event, and function names and
substituting time variables with concrete values.

A complex business collaboration consists of multiple busi-
ness transactions. In UMM, a business collaboration protocol
is used to specify the flow of business transactions. In order to
derive a business partner interface the business collaboration
protocol is transformed to a state machine. Each business
transaction activity of the business collaboration protocol is
transformed to a state of this state machine. It must be decided
whether the business partner is the initiator or responder
in the corresponding business transaction, and the state is
modeled according to the concrete realization of our patterns.
The flow between the business transaction activities must
be transformed to corresponding state transitions guarded by
the business entity states that are reached in the business
transactions.

61

t Initial

receiveTimeOutException(TimeOutException)

/ T 2Way-WithAck \
Doc
waitFor i Doc_| i
receiveReqBusinessDoc(ReqBusinessDoc), + do/ validateGrammar
Initial + GrammarValid / validateSequence
{ SequenceValid / validateSchema /
GrammerCheckFailed OR ChecksSuccesful
SequenceCheckFailed OR
SchemaCheckFailed
/ sendFailedBusinessControl_Outgoing \ sendAckReceipt_Outgoing \
+ do/sendFailedBusinessControl(Failure) + do/ sendAckReceipt(AckReceipt)
Failure
ValidateContentCheckFailed
AckReceiptSent
lidateCi Dy
/ sendAckProcessing_Outgoing \ ContentValid ﬂn \date nr\
& do / sendAckProcessing(AckProcessing) l+ do/ validateContent
AckReceiptFailure
ContentValid
\ Doc_Outgoing \

DocF|

omBA(ResBusinessDoc)

9
k do / giveReqBusinessDocToBA(ReqBusinessDoc)

checkAckReceipt

+ do/ checkAckReceipt

receiveAckReceipt(AckReceipt)

+ do/sendResBusinessDoc(ResBusinessDoc)

ResBusinessDocSent

AckReceiptValid

after(TimeToAcknowledgeReceipt)

-

/sendTimeOL \(TimeO ion)
AckProcessingFailure
waitForAckProcessing_Incoming \
. . . checkAckProcessing

rocessing(AckP |

+ do/ checkAckProcessing I/when(currentTime== ﬂ@

(ResBusinessDocReceivedFirstTime +>UcCess

timeToAckProcessing))

 —

after(TimeToAcknowledgeProcessing)
/sendTimeOutException(TimeOutException)

Fig. 3.

IV. CONCLUSION

The current UMM Foundation Module leads to a global
choreography of business document exchanges. Realizing the
resulting business collaboration requires to implement a de-
rived local choreography supported by a business partner
interface on each side of the collaboration. UMM does neither
specify how to derive the local choreography, nor does it guide
the message handling within the business partner interface. In
this paper, we used UMM business transactions and showed
how to derive compliant state machines for implementing the
message handling within the business partner interfaces of the
initiator and of the responder. It becomes obvious that the
rather simple patterns of UMM business transactions require a
complex message handling mechanism. Business transactions,
which are easy to understand for business persons, are trans-
formed to system specifications that are useful to the software
engineer.

REFERENCES

[1] MDA Guide Version 1.0.1, OMG, June 2003, omg/2003-06-01. [Online].
Available: http://www.omg.org/docs/omg/03-06-01.pdf

T
BusinessTransactionFailed
BusinessTransactionSucceeded
receiveFailedBusinessControl(Failure)

Success Failure

State machine showing the responders’s part of a commercial transaction

[2] Open-edi Reference Model, 1SO, 2004, ISO/IEC JTC 1/SC30 ISO
Standard 14662, Second Edition.

[3] A.-W. Scheer, Aris - Business Process Modeling.
2000.

[4] W. van der Aalst, J. Desel, and A. Oberweis, Business Process Man-
agement. Berlin: Springer, 2000.

[5] M. Hammer and J. Champy, Reengineering the Corporation: A Mani-
festo for Business Revolution. New York (NY): HarperBusiness, 2001.

Berlin: Springer,

[6] UN/CEFACT’s Modeling Methodology (UMM), UMM
Meta Model - Foundation Module, UN/CEFACT,
Oct. 2006, Technical Specification Version 1.0,

http://www.unece.org/cefact/umm/UMM _Foundation_Module.pdf.

[71 B. Hofreiter, C. Huemer, and J.-H. Kim, “Choreography of ebXML busi-
ness collaborations,” Information Systems and e-Business Management
(ISeB), June 2006.

[8] M. Chessell, C. Ferreira, C. Griffin, P. Henderson, D. Vines, and
M. Butler, “Extending the concept of transaction compensation,” IBM
SYSTEMS JOURNAL,, vol. 41, no. 4, June 2006.

[91 RosettaNet Implementation Framework: Core Specification, RosettaNet,
Dec. 2002, v02.00.01. [Online]. Available: http://www.rosettanet.org/rnif

[10] Core Components Technical Specification - Part 8 of the ebXML
Framework, UN/CEFACT, Nov. 2003, version 2.01.

62

