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Kurzfassung

Eine Konfiguration beschreibt die Anordnung funktionaler Einheiten nach deren Natur,
Anzahl und Schlüsseleigenschaften. Dabei sind unter funktionalen Einheiten Software-
oder Hardwarekomponenten wie Computerprogramme, elektronische Schaltkreise, oder
Module eines Rechners zu verstehen. Der Begriff

”
Configuration Management“ bezeich-

net dabei die Spezifikation von zulässigen Anordnungen in für den Benutzer möglichst
einfacher Form und die Anordnung der spezifizierten Elemente nach bestimmten Op-
timalitätskriterien. Dazu gehören etwa die Erfüllbarkeit von Spezifikationen oder die
Minimalität der berechneten Konfigurationen. Die Überprüfung und Berechnung von
Konfigurationen erfordert effiziente Methoden, da die Bearbeitung der immer größer
werdenden Konfigurationen zunehmend in Echtzeit erfolgen soll.

Die
”
Unified Modeling Language“ ist ein industrieweit anerkannter Standard geworden

und stellt Sprachelemente zur Verfügung, wie sie in realen Anwendungen des
”
Configu-

ration Management“ benötigt werden. Hinzu kommt, dass sehr viele Software Entwickler
bereits mit UML vertraut sind. Deshalb verwenden wir UML als Basis für unsere Be-
trachtungen, wozu wir für UML eine formale Semantik entwickeln und darauf aufbauend
die Begriffe der Konsistenz und Minimalität definieren. Es werden Methoden zur effizi-
enten Berechnung zur Konsistenzprüfung von UML Klassendiagrammen als auch zum
Finden von minimalen Lösungen von UML Konfigurationen vorgestellt. Dabei werden so-
wohl binäre Verbindungstypen als auch Verbindungstypen höherer Stelligkeit betrachtet,
wobei letztere aufgrund der speziellen UML Semantik eine Sonderbehandlung brauchen.
Zusätzlich wird die inkrementelle Erweiterbarkeit von UML Konfigurationen andisku-
tiert.
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Abstract

The concept of a configuration describes the arrangement of functional units accord-
ing to their nature, number, and chief characteristics. Functional units may be soft-
ware or hardware components like computer programs, electronic circuits, or parts of a
machine. Configuration management is concerned with the specification of admissible
arrangements in a natural way and with setting them up according to certain criteria
of optimality. Typical problems to solve are the satisfiability of specifications and the
minimality of computed configurations. The steady increase in the size of specifications
and the demand for real-time computations require efficient methods to attack these
problems.

The Unified Modeling Language has become a widely accepted standard in industry
and offers features capable of modelling real-world situations in configuration manage-
ment. Many (software) engineers are already acquainted with UML. Therefore we use
UML as basis for our considerations and define a formal semantics and the notions of
consistency and minimality. We present efficient methods for checking the consistency
of UML class diagram specifications and for finding minimal solutions of UML config-
urations. We discuss both binary association types with uniqueness constraints and
association types of higher arity which need special treatment due to the special UML
semantics. We also discuss the problem of updating UML configurations incrementally.
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1. Introduction

Quantum Mechanics is a lovely introduction to Hilbert Spaces!

Overheard at last year’s Archimedeans’ Garden Party

The Unified Modelling Language (Uml) [Object Management Group, 2005] has gained
wide acceptance in software engineering as a universal formalism for object-oriented
modelling, offering notations for describing class relationships, component systems, pro-
cesses, use cases, and more. Additional constraints can easily be imposed with the
help of the Object Constraint Language (Ocl) [Object Management Group, 2006]. In
the past decade Uml and Ocl have been also considered for specifying configura-
tions [Felfernig et al., 2002b,a].

The term configuration as used in this thesis refers to an arrangement of functional
units according to their nature, number, and chief characteristics in accordance to defi-
nitions given by The Alliance for Telecommunications Industry Solutions [2000]. Func-
tional units may be software or hardware components like computer programs, electronic
circuits, or parts of a machine. A major issue is to specify admissible arrangements in
a natural way and to set them up according to certain criteria of optimality. These
activities are called configuration management.

Uml class diagrams offer multiplicities to restrict the number of relations between
objects. This formalism is already expressive enough to specify relevant configuration
problems like railway interlocking systems [Schenner and Falkner, 2002]. Compared to
logic-oriented approaches, Uml diagrams have the advantage that (software) engineers
are acquainted with the formalism and that many tools exist for composing and manip-
ulating Uml specifications.

Using Uml for configuration management brings about some problems that usually
do not bother software engineers in object-oriented modelling. Most notably, the exten-
sive use of multiplicities may lead to inconsistent diagrams that admit only the trivial
configuration (no objects per class). Therefore algorithms are needed for detecting in-
consistencies. Moreover, one usually wants to find small (or even minimal) configura-
tions satisfying the specification. In short, configuration management requires formal
reasoning about configurations.

One approach is to translate Uml diagrams to some logic. E.g., description logic
(Dl) leads to concise specifications with a clear, mathematically defined semantics.
Berardi et al. [2001, 2005] show how a wide range of Uml/Ocl elements can be trans-
lated to Dl formulas. Other approaches (see e.g. Schenner and Fleischanderl [2003]) use
sub-classes of first-order logic. These logics are well-developed and one can build on the
results of many decades of research. Furthermore, they are very expressive and can easily
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integrate additional information from other sources within a uniform framework. On the
negative side, the expressiveness leads to a high complexity of the reasoning tasks (NP-
hard or worse). E.g., consistency checking using the description logic of Berardi et al.
[2005], called ALUQI, is ExpTime-complete [Baader et al., 2003].

Calvanese and Lenzerini [1994] investigate is-a and cardinality ratio constraints in En-
tity Relationship (Er) schemata. They solve the satisfiability problem with disequations
and so-called expansion mechanisms, and show that this task is decidable in ExpTime.
Calvanese et al. [1994] discuss a framework for class-based representation formalisms
like Er diagrams. They use the description logic ALUNI as representation language
and show how to integrate several formalisms into this framework. They do not cover
Uml diagrams, but tackle the problem of finite model reasoning by disequations and
expansions. Their formalism is expressive, but leads to ExpTime completeness.

In this thesis we choose a different approach. We encode Uml class diagrams as in-
equations over non-negative integers and show that consistency can be checked in poly-
nomial time. Moreover, we give an algorithm to compute minimal configurations. Using
inequations is not entirely new: Lenzerini and Nobili [1990] use them to check the satis-
fiability (consistency) of dependency constraints in Er schemata. Engel and Hartmann
[1995] compute minimal solutions for semantic Er schemata with the Ford-Bellman al-
gorithm. Since Uml class diagrams are derived from Er schemata, these results can
be reused: Binary Uml-associations marked with the attribute ‘unique’ correspond to
binary Er-relations. Differences surface when it comes to non-unique and n-ary asso-
ciations. Associations with the attribute ‘non-unique’ were not considered by the Er
community but are part of the Uml standard. This new attribute requires special treat-
ment, in particular when computing admissible configurations. Concerning n-ary asso-
ciations, Er schemata offer two semantics: the look-across approach going back to Chen
[1976] and the look-here approach introduced with Merise [Rochfeld, 1986]. Lenzerini
and Nobili adhere to the latter view, while Uml prescribes the former.

The novel contributions in this thesis are the definition of a particular formal semantics
for Uml class diagrams with multiplicities and uniqueness constraints, the transforma-
tion of Uml class diagrams to systems of Diophantine inequations and their efficient
solution such that properties like satisfiability of specifications and minimality of config-
urations can be easily computed, the generalisation of our approach to n-ary associations
under the look-across semantics, and a discussion on updating configurations incremen-
tally.

Chapter 2 reviews existing approaches in the Er literature followed by an overview of
Uml class diagrams in Chapter 3. In Chapter 4 we define a formal semantics for Uml
class diagrams which we will use as basis for our investigations regarding consistency
and minimality. We discuss both properties and present efficient algorithms for binary
(Chapter 5) and n-ary associations (Chapter 6). Finally, Chapter 7 gives an outlook on
incremental updates of configurations.
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2. ER Diagrams and Their Satisfiability

Computer, n.:

An electronic entity which performs sequences of useful steps in a

totally understandable, rigorously logical manner. If you believe

this, see me about a bridge I have for sale in Manhattan.

In this chapter we review the Er literature related to our work. We start by describing
Er diagrams and give a formalisation of them. Further we investigate strategies for
checking their consistency and for computing minimal elements in the Er context.

2.1. Entity Relationship Diagrams

One of the most used diagram types in computer science are Entity Relationship Dia-
grams [Chen, 1976] (Er diagrams). Er diagrams use the concepts of entities, relation-
ships, roles, and mappings.

Entities: an (Er-)entity captures the type of objects to be modelled. In modern termi-
nology (like in object oriented programming languages, or Uml) entities would be
called classes. Entities are visualised by rectangular boxes. Instances of entities
are called objects.

Relationships model associations or connections between two or more entities, i.e., n-
ary associations can be specified in Er. Relationships are visualised by diamond-
shaped boxes. An instance of a relationship is called relation.

Roles name parts of relationships to identify ends. Roles are often neglected if the
situation is clear from context.

Mappings impose constraints on the relations between objects. Chen distinguishes 1 :
N , M : N and 1 : 1 mappings corresponding to one-many, many-many, and one-one
relations between objects. Originally, M and N did not specify concrete values but
only indicated relationship types. In the following development of Er diagrams,
generalisations interpreted M,N ∈ N and introduced ranges, like, 1 : M..N .

Chen proposed to use a look-across style for how to read relationships and mappings.
This means for an n-ary association that n − 1 entities are instantiated. This set of
instantiated relationships is now restricted by the relationship’s stated number at the
side of the remaining object. Thus in the binary case one can read the number of allowed
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Figure 2.1.: An Er diagram modelling a relationship between employees and projects

partner objects for a single object by looking across the relationship. For the n-ary case
this definition leads to different interpretations—we will discuss this issue in detail in
Section 3.2.

Figure 2.1 depicts an example entity relationship diagram (modelled after an example
of Chen [1976, page 19]). The two entities Employee and Project are drawn within
rectangular boxes, whereas the relationship Project-Worker is drawn within a diamond
box. Worker and Project identify roles, M and N define a M : N mapping.

A Formal Definition of ER Diagrams

Lenzerini and Nobili [1990] present a formal definition for Er diagrams which is useful in
many ways. First, it unveils a way of formalising modelling instruments, second it proves
useful when we talk about certain properties (like satisfiability) in an exact manner, and
third, it shows us the differences between this and our formalisation of Uml which will
be found later in this thesis.

They use the (natural language) definitions as already given in this section as basis
but go into more detail for specific notions: a relationship instance r, written as

r = {〈e1, U1〉, 〈e2, U2〉, . . . , 〈en, Un〉} ,

connects n element instances e1, . . . , en through roles U1, . . . , Un.
A semantic entity-relationship model (SERM) schema consists of a set of entities, a

set of relationships, a set of roles and a set of cardinality ratio constraints. An instance
of a SERM schema are objects and relations satisfying following constraints:

• the relations are well-typed, i.e., each instance of a relationship has to contain the
roles of the relationship with objects instantiating the corresponding entities,

• the roles are unique, and

• relations are uniquely characterised by the sets of their role-object pairs, i.e., in-
stances with the same set are identical.

13
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Figure 2.2.: A SERM schema which is not strongly satisfiable [Lenzerini and Nobili,
1990, page 456]

2.2. Constraint Satisfiability in ER Diagrams

Since Er diagrams share several properties with Uml diagrams by their definition,
consistency results for Er constraints are of interest to our work.

A major contribution in the analysis of consistency and satisfiability of constraints in
entity relationship schemata goes back to Lenzerini and Nobili [1990]. They investigate
the satisfiability of so-called dependency constraints in Er SERM schemata.

Let R be an Er relationship and let E be an Er entity. A cardinality ratio constraint
is of the form

E(U)
(M,N)
−−−→ R .

It expresses that entity E must be connected to relationship R via role U with at least
M (M ≥ 0) links and at most N (M ≤ N ≤ ∞) links.

Note that this definition corresponds to the look-here semantics for associations (see
the discussion in Section 3.2). This implies that certain results by Lenzerini and Nobili
[1990] cannot be directly used in the Uml context due to its look-across association
semantics (confer its definition in Section 3.1). This applies especially to n-ary associa-
tions, n ≥ 3, where look-here and look-across semantics significantly differ.

Besides considering classical satisfiability—a schema is said to be satisfiable if some in-
stance of a schema exists which satisfies all integrity constraints, i.e., inherent constraints
as mentioned in the previous section and explicit cardinality ratio constraints—they also
cope with strong satisfiability. This is especially useful in class based modelling mecha-
nisms since strong satisfiability requires for each class C in an Er schema S the existence
of an instance of S such that the set of instances for C is not empty. Strong satisfiability
forbids classes which never get instantiated (and hence are useless in many scenarios).

The satisfiability check is based on a transformation of the Er system with its car-
dinality ratio constraints to a system of inequations with a variable Ê for each entity
E and a variable R̂ for each relationship R. The system of inequations is as follows

14



[Lenzerini and Nobili, 1990, page 456]:

R̂ ≥M · Ê

R̂ ≤ N · Ê

for each cardinality ratio constraint E(U)
(M,N)
−−−→ R,

Ê > 0

for each entity E, and
R̂ > 0

for each relationship R.
Each solution of the system of inequations corresponds to an instance of the Er

diagram: Ê gives the number of objects and R̂ gives the number of relations. The proof
gives an algorithm for connecting objects with relations.

A further important aspect in their paper is a method for analysing unsatisfiable
schemata. The method is based on the construction of a weighted directed multigraph
(V,A), where

• the vertices V match the set of classes, and

• the arcs A are built by introducing an arc from the node corresponding to E to the
node corresponding to R labelled with N , and an arc from the node corresponding
to R to the node corresponding to E labelled with 1/M (∞ if M = 0), for each
connection in the schema between E and R with its cardinality ratio constraint

E(U)
(M,N)
−−−→ R.

Since multiplying the values on a path π in this graph simulates the transitive closure
of cardinality ratio constraints, a necessary and sufficient criterion for identifying incon-
sistent schemata is the non-existence of a so-called correct assignment for each cycle in
the graph. An assignment ϕ, mapping nodes to positive real numbers, is correct if and
only if

ϕ(nf)

ϕ(ns)
≤

∏

a∈π

l(a)

holds for each arc in the graph, where a denotes the arcs in the path π with starting
node ns and final node nf , and l(a) denotes the label of arc a.

Finally, Figure 2.2 shows us a SERM schema as originally found in the discussed
paper of Lenzerini and Nobili [1990]. A and B drawn in boxes denote entities, R and
Q drawn in diamonds denote relationships, respectively. U , V , W , and Z denote roles
with mappings in parentheses. We have the cardinality ratio constraints

A(U)
(1,∞)
−−−→ R B(V )

(1,1)
−−→ R

A(Q)
(0,1)
−−→ Q B(Z)

(2,∞)
−−−→ Q .

15



��
��

A

��
��

B

��
��

R ��
��

Q

�1

?

�
1
2

��
6

� -

�
�

�
��
∞

@
@

@
@I

∞

�1

6

�
1

-

�
�

�
�	

∞

@
@

@
@R

1

Figure 2.3.: The weighted directed graph to Figure 2.2

We immediately see that the schema is not strongly satisfiable since one A needs exactly
one B enforced by role R but role Q prescribes at least 2 Bs for the entity A. Formally
we check the satisfiability by generating following inequations

A > 0 R > 0

B > 0 Q > 0

and

R̂ ≥ 1 · Â R̂ ≤ ∞ · Â

R̂ ≥ 1 · B̂ R̂ ≤ 1 · B̂

Q̂ ≥ 0 · Â Q̂ ≤ 1 · Â

Q̂ ≥ 2 · B̂ Q̂ ≤ ∞ · B̂ .

Within this system of inequations we can derive 2 · B̂ ≤ B̂ with B̂ > 0. This proves our
initial claim that the schema is not strongly satisfiable.

Figure 2.3 visualises the weighted digraph belonging to the SERM schema as con-
structed by the above algorithm, i.e., vertices are introduced for the set of entities and
relationships, and the arcs are labelled as described above. Since the corresponding
schema is not strongly satisfiable we cannot find a correct assignment for each path in
the digraph. W.l.o.g., assume A = 1. This enforces R = 1 and B = 1 on the path
A → R → B as otherwise it would be an incorrect assignment. Simultaneously, A = 1
only permits Q = 1 and B = 2 to be a correct assignment on the path A → Q → B.
The two assignments are incompatible, i.e., we see that the existence of an incorrect
assignment shows up for graphs representing not strongly satisfiable SERM schemata.
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2.3. Minimal SERM Solutions

Based on the work of Lenzerini and Nobili [1990], Engel and Hartmann [1995] present
an algorithm for constructing minimal instances for given SERM schemata (also called
SER scheme).

They start by assigning a bipartite digraph to a given SER scheme. This allows them
to use results from graph theory directly which will show to be very useful in their
investigations. Formally:

A SER scheme is a bipartite graph G = (V,A) such that

V = E ∪ R

A ⊆ E ×R

with the functions

αS : A 7→ N ∪ 0

βS : A 7→ N ∪∞

such that αS(a) ≤ βS(a) for all a ∈ A holds. [Engel and Hartmann, 1995, page 2]
As usual E represent entities, R relationships, and A associations, respectively. The

two functions αS and βS model the multiplicities for the given SER scheme S and any
arc a in the graph.

A solution to a SER scheme in graph form is called a realizer.
A realizer is a bipartite digraph R = (V R, AR) with the two mappings

ϕ : V R 7→ V

ψ : AR 7→ A

such that

ψ(aR) = (ϕ(eR), ϕ(rR)) for all aR = (eR, rR) ∈ AR (2.1)

ϕ−1(v) 6= ∅ for all v ∈ V (2.2)

|ϕ−1(v) ∪N(rR)| = 1 for all a = (e, r) ∈ A and rR ∈ ϕ−1(r) (2.3)

αS(a) ≤ |ϕ−1(r) ∪N(eR)| ≤ βS(a) for all a = (e, r) ∈ A and eR ∈ ϕ−1(e) (2.4)

hold. [Engel and Hartmann, 1995, page 3]
Note that N(v) denotes the neighbourhood of a vertex v, i.e., all those vertices directly

connected to v.
Condition 2.1 requires that there must be an homomorphism between the realizer and

the SER scheme. Condition 2.2 states that every class and relation must have some
instantiation. This is necessary for strong satisfiability. Condition 2.3 guarantees that
no direct cycles occur whereas the last one, 2.4, assures that the multiplicities are within
range.

As we see these definitions also adhere to the look-here approach common to the Er
literature, see e.g., Lenzerini and Nobili [1990]. This means we will have to find similar
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conditions for the Uml case. Anyhow, the presented equations give a good overview how
a well-defined formal definition could look like. Further, they unveil the exact differences
between their approach in the Er case and our methodology for the look-across style
with additional Uml features.

Based on Equations 2.1–2.4 Engel and Hartmann [1995] develop an algorithm similar
to the method presented by Lenzerini and Nobili [1990] for generating a solution to their
system of inequations. The main difference is that they take the logarithm of the path
weights in the graph such that they obtain a so-called potential function. For potential
functions several results are known, e.g., that a potential function always exists for a
strongly connected digraph. Note that the digraph constructed from a SER scheme is
always strongly connected if the SER scheme is connected. If not the method can be
applied separately to all components of the SER scheme. Another advantage is that
the Ford-Bellman [Bellmann, 1958] algorithm can be applied to their formulation. Thus
solutions can be computed with a well known procedure.

Further they show that all realizers form a distributive lattice. This means a minimal
element always exists. This is what they finally show: they present a slight modification
of their Ford-Bellman style algorithm which computes the minimal element.
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3. UML Class Diagrams

Mine is better!

I have many charts and diagrams!

This chapter describes some aspects of the Unified Modeling Language. We concen-
trate on Uml class diagrams which are useful for modelling in configuration management.
We discuss its semantics and deal with its semantic behaviour in particular cases (e.g.,
with n-ary associations).

3.1. Unified Modeling Language

The Unified Modeling Language [Object Management Group, 2005] (Uml 2.0) is a stan-
dardised specification and modelling language. It was designed to cover a broad range of
application areas, and has become the first choice for specification and modelling in soft-
ware engineering and configuration management. Uml is defined using the meta-object
facility [Object Management Group, 2002] model and consists of thirteen diagram types
listed in Figure 3.1.

Each diagram type covers a distinct usage pattern for specific modelling demands.
Figure 3.1 displays their relation in a hierarchical way, where abstract classes are typeset
in italics and class diagrams are highlighted in bold face. For an overview see Fowler
[2003] and Hitz and Kappel [2003].

For our purposes—i.e., a specification language for components—we are actually in-
terested in features provided by subsets of Uml class diagrams. Class diagrams describe
classes, their attributes and methods, and associations between classes in a static con-
text.

Classes: a class is the conceptual representation for an entity to be modelled. It can
have attributes and operations. Objects of a given class will be called its instances.

Attributes: each class can have several attributes holding information. Their visibility
status can be set to public, protected and private, restricting their access from
foreign classes.

Methods: a set of operations may be defined for each class. Typically attribute slots
are accessed and modified.

Associations: relations between classes can be modelled by so-called associations. Uml
defines the concept of associations, aggregations, compositions and generalisations.
Instances of associations are called links.
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A Activity Diagram
B Behavior Diagram
CD Component Diagram
CL Class Diagram

CM Communication Diagram
CS Composite Structure Diagram
D Diagram
DD Deployment Diagram
I Interaction Diagram

IO Interaction Overview Diagram
O Object Diagram
P Package Diagram
S Structure Diagram
SM State Machine Diagram
SQ Sequence Diagram
T Timing Diagram
UC Use Case Diagram

Figure 3.1.: A hierarchy for Uml 2.0 diagram types [Object Management Group, 2005,
Annex A, page 660]
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Many specifications in software engineering and configuration management (e.g., by
Falkner and Fleischanderl [2001]) do not use most features available in Uml class dia-
grams. We have found out that class diagrams without attributes and methods restricted
to simple associations cover most scenarios in configuration management. This matches
those features originally present in Er diagrams for modelling entities and relations.

Thus we will concentrate our work on diagrams consisting of classes with associations
between them. A n-ary association links n classes, n ≥ 2, and has certain properties.
At each end is a multiplicity and a uniqueness constraint. A multiplicity a..b means
that the number of partner objects has to be in the interval [a, b]. Moreover, each end of
an association is marked with the property unique (“uniq”, the default) or non-unique
(“nuniq”). Objects at unique ends are counted only once even if they are connected to
a particular object several times. At non-unique ends every connection is counted, even
if several of them lead to the same object. Note that the semantics of associations is
defined in natural language:

“An association declares that there can be links between instances of the
associated types. A link is a tuple with one value for each end of the associ-
ation, where each value is an instance of the type of the end.

When one or more ends of the association have isUnique=false, it is possible
to have several links associating the same set of instances. In such a case,
links carry an additional identifier apart from their end values.

[. . . ]

For an association with N ends, choose any N-1 ends and associate specific
instances with those ends. Then the collection of links of the association
that refer to these specific instances will identify a collection of instances at
the other end. The multiplicity of the association end constrains the size of
this collection. [. . . ] If the end is marked as unique, this collection is a set;
otherwise it allows duplicate elements.” [Object Management Group, 2005,
page 37]

Thus it will be necessary to formalise Uml’s semantics in a mathematical way in order
to prove properties against its definition. This is done in Section 4.1.

Besides the Uml infrastructure there exists a formalism for introducing constraints
like pre- or post-conditions, or invariants on diagrams: the Object Constraint Lan-
guage [Object Management Group, 2006] (Ocl). Amongst others it is designed for
the following purposes [Object Management Group, 2006, page 5]:

• description of pre- or post-conditions for methods,

• specification of class invariants,

• specification of constraints on operations, and

• usage as query language.
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Figure 3.2.: Example of a Uml class diagram

We will use Ocl only as a supplement for specifying simple constraints on Uml class
diagrams. This avoids imprecise natural language constraints. In particular we will
impose lower bounds on the number of objects that instantiate a given class.

A typical Ocl constraint consists of a context directive and its constraint corpus
(i.e., Ocl expression):

context ClassName inv: OCLExpression .

The context for the Ocl expression is set to ClassName and one of the stereotypes
inv, pre or post defines the constraint type to be an invariant, a precondition or a
postcondition, respectively.

Ocl expressions typically describe simple Boolean conditions that may contain logical
operators and several predefined functions (e.g., ClassName.allInstances() returns
all instantiated objects of ClassName, or size() applied to a set returns the number of
elements). The keyword self refers to an instance of ClassName.

As an example consider the diagram in Figure 3.2. It shows a Uml diagram typical of
configuration specifications. It specifies that every object of class A needs to have 3 or
4 links to objects of class B, where several B-objects may in fact be the same. On the
other hand, every object of class B must have one or two (different) partners of class A.

In addition we might want to specify a lower bound of 4 instantiated objects of class A.
This can be easily done via an Ocl constraint:

context A inv: A.allInstances()->size() > 3 .

Ocl is a very powerful constraint language with a wide variety of specification mech-
anisms. Most of its features are not used in common modelling specifications. Therefore
we will not discuss it in more detail. Refer to the official Ocl specification for details.

3.2. Semantics of Multiary Associations

In the last section we saw that Uml lacks a clear formal definition for its semantics. The
situation gets especially problematic when dealing with unusual modelling scenarios or
exotic association types. In this context n-ary associations play a special role: on the
one hand they are hardly used or only used with trivial multiplicities (i.e., 0..*), on
the other hand they would be very useful in many modelling situations. Such situations
could be described far more easily and naturally with n-ary associations than with binary
ones.
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Figure 3.3.: A 4-ary association

Thus n-ary associations could be useful in conceptual modelling with a formal well-
defined semantics. There exist two common interpretations in the context of Er and
Uml associations:

look-across: Chen [1976] used this concept when introducing Er diagrams. Under
this interpretation the multiplicity at the end of an association end restrains the
number of links for any valid combination of the remaining n− 1 partner objects.
For Figure 3.3 this means that for any combination of particular objects a, b and
c (of classes A, B and C, respectively) the number of links to objects of class D
must be between one and three. In other words this interpretation states a global
condition for an association by strongly relating all participating classes.

look-here: This interpretation goes back to Rochfeld [1986] and Rochfeld and Tardieu
[1983]. A multiplicity at one end of an association restricts the number of links
to a single instance typed with the class at this association end. For Figure 3.3
this means that for a given object d of class D at least one link and at most three
links of association type a must exist. In contrast to the look-across notation this
interpretation can be seen as local constraint at each association end.

The natural language definition of multiplicities of Uml adheres to the look-across in-
terpretation and has been investigated in detail by several authors. Génova et al. [2002]
discuss the meaning of multiplicity of n-ary associations in Uml, in particular the se-
mantics of minimum multiplicities in ternary associations, as presented in Section 3.2.2.
Stevens [2002] concentrates on the interpretation of binary associations in Uml. He
focuses on different notions for static and dynamic associations and explores definition
ambiguities. He suggests improvements and clarifications to tackle misunderstandings.
Diskin and Dingel [2006] present approaches towards formal semantics for associations
in Uml. They introduce a formal framework, based on sets and mappings, to capture
the different interpretations under structural and operational views of Uml associa-
tions. As we will see on the next few pages, the look-across interpretation introduces
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Figure 3.4.: A ternary association interpreted under look-here semantics

several difficulties which prevent the extension of simple mechanisms from binary to
n-ary associations.

One of our main considerations will be to deal with consistency and minimality issues
in the context of n-ary associations since we believe that n-ary associations can be useful
for many purposes. We will define formal semantics based on the informal definition in
the Uml-standard (see Section 4.1) and present techniques for consistency checks and
minimality (see Chapter 6) on this formal groundwork.

3.2.1. Reduction of Multiary to Binary Associations

In the last section we noticed that the look-across and the look-here semantic interpre-
tations imply quite different consequences regarding what multiplicities mean. To avoid
problems in the complex n-ary case a promising idea is to transform n-ary associations
into binary associations via some reduction.

From the definition of multiplicities in the look-here approach it seems quite obvious
how to perform the reduction, since we do not need to care about other participating ends
of the association. This means the multiplicities are checked at each end independently
of each other, providing a way for modularisation. This idea results in a decomposition,
where the n-ary association is replaced by a class which is in turn connected to all
original participating entities via binary associations. In other words the new class
serves as an intermediary connection mechanism. As an example, Figure 3.4 shows a
ternary association. Under the look-here interpretation it can be decomposed into binary
associations using a mediator class (Figure 3.5).

Problems arise if we operate under the look-across semantics as used for Uml asso-
ciations. Hartmann [2003] investigates this situation and shows how and why different
transformations fail. The above reduction does not work for the look-across interpre-
tation as the multiplicities state a global condition: they require to fix n − 1 partner
objects and to restrict the number of links to the remaining object(s).

Another possible decomposition is presented in the Figure 3.6. The main disadvantage
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Figure 3.7.: A ternary Uml association with generic minimal multiplicities

of this reduction is that the decomposition is not equivalent in general. E.g, consider
the tuples

(a1, b1, c2)
(a1, b2, c1)
(a2, b2, c1)
(a2, b2, c2)

representing links instantiating the association in Diagram 3.4. Then a decomposition
into pairwise binary associations yields

(a1, b1)
(a1, b2)
(a2, b2)

(b1, c2)
(b2, c1)
(b2, c2)

(a1, c1)
(a1, c2)
(a2, c1)
(a2, c2)

The tuple (a1, b2, c2) can be obtained by joining and recomposing the decomposed tuples.
But this tuple is not among the original four.

It turns out that a simple reduction from n-ary associations to binary ones under the
look-across interpretation is not possible. Only under certain restrictions which were
investigated by Jones and Song [2000] and Jones and Song [1996] some reductions are
possible. These results rule out a straight-forward generalisation of algorithms for binary
Uml associations to n-ary ones.

3.2.2. Semantics of Minimum Multiplicity in Ternary UML

Associations

Génova et al. [2001] discuss an interesting aspect of n-ary associations which is relevant
to a formalisation of Uml semantics: the semantics of the minimum multiplicity in
ternary associations in Uml. At first glance this seems to be a trivial issue since one
would expect the Uml standard to specify an unambiguous semantics. But it turns out
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that three interpretations are compatible with the Uml standard. Consider Figure 3.7
which depicts a ternary association with generic (i.e., variable) minimal multiplicities
L(A), L(B), and L(C). We compare how these variables are restricted under the different
interpretations:

1. Actual tuples [Génova et al., 2001, page 334]:

Under this interpretation only actually existing tuples are considered. In other
words a solution consists of several instances of ternary associations of the form

(a1, b1, c1)
(a2, b2, c2)

...

Note that under this interpretation an instance of a ternary association must have
three components (of the three participating classes). As a consequence,

L(A) 6= 0 ∧ L(B) 6= 0 ∧ L(C) 6= 0

must hold, also called zero-forbidden effect. This means that this interpretation is
unsuitable for practical purposes since most examples in the literature with ternary
association use 0..* multiplicities.

2. Potential tuples [Génova et al., 2001, page 335]:

The zero-forbidden effect vanishes if the multiplicities are required to hold for all
possible tuples, i.e., potential tuples. Non-existing tuples represent cases where
one or more components are zero.

A possible problem might be that all potential tuples must get instantiated if one
of the minimum multiplicities equals one. E.g., let L(C) = 1: this means that any
potential pair of instances (a, b) must be connected with exactly one c. Hence we
obtain an instantiation of all potential tuples:

(a1, b2, c1)
(a2, b1, c1)

...
(am, bn, c1)

Nevertheless we think this interpretation is preferable since it coincides with the
informal (i.e., in natural language described) definition given by the Uml specifi-
cation in Section 3.1.

3. Limping links [Génova et al., 2001, page 335]:

A further interpretation considers the case where an instance of a ternary associa-
tion is not forced to consist of three elements. Instead we could think of allowing
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instances with just two classes and one limping link. Thus we would have links of
the form

(a1, b1, )
(a2, , c2)

...

The main disadvantage is that it is unclear and undefined what a missing element
exactly means. Further it remains ambiguous how many limping links are allowed,
e.g., whether

( , b1, )

is a valid tuple or not.

Therefore this approach keeps to be an academic approach until either practitioners
come up with convincing examples or a well-defined semantics is established.
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4. A Formal Semantics for UML Class

Diagrams

The nice thing about standards is that

there are so many of them to choose from.

Andrew S. Tanenbaum

4.1. Configurations and Specifications

To prove the correctness and completeness of our transformation from class diagrams to
inequations we need a precise definition of the meaning of Uml specifications as well as
of configurations satisfying them. Let I denote the set of intervals over the non-negative
integers, i.e.,

I = {[a, b] | a, b ∈ N, a ≤ b} ∪ {[a,∞] | a ∈ N} ∪ {[ ]} ,

where

[a, b] = {i | a ≤ i ≤ b}

[a,∞] = {i | i ≥ a}

and [ ] is synonymous for the empty set (∅). Moreover, let Cl be a finite set of classes
and R be a finite set of roles.

Definition 1 A specification is a tuple 〈A,mult , uniq , lb〉, where:

• A ⊆ 2R×Cl is the set of associations with the restriction that each role occurs at
most once in A and that each association contains at least two elements. Thus,
an association a ∈ A is a finite set of role-class pairs. It is called n-ary if |a| = n.
Role-class pairs (r, c) are written as r : c.

• The function mult : R 7→ I associates an interval, called multiplicity, with every
role.

• The function uniq : R 7→ {uniq, nuniq} fixes the attribute unique/non-unique for
every role.

• The function lb : Cl 7→ N assigns a non-negative integer to each class giving the
lower bound for the number of instantiations.

29



The specification is called symmetric if for every association {r1 : c1, . . . , rn : cn} in A
we have uniq(r1) = · · · = uniq(rn).

An association can be viewed as a hyper-edge connecting several classes via arcs
labelled with roles. Alternatively, (Cl ∪A,R) can be viewed as a bi-partite graph, where
roles connect reified associations with classes.

Given an association a = {r1 : c, r2 : d}, the situation

mult(r1) = [n1, n2]

mult(r2) = [m1, m2]
and

uniq(r1) = v

uniq(r2) = u

is depicted as

c d�
��

@
@@

@
@@

�
��

a
n1..n2 u

v m1..m2

Binary associations are usually depicted as

c d
n1..n2 u

v m1..m2

that means the association is implicit in the graphical representation of a binary associ-
ation.

Definition 2 A configuration is a tuple 〈O,L, class, ass, obj 〉, where:

• O is a set of objects.

• L is a set of links.

• The function class : O 7→ Cl maps each object to its class; we say that object o is
of class c if class(o) = c.

• The function ass : L 7→ A maps each link to its association.

• The function obj : L 7→ 2R×O maps each link to the objects it connects via partic-
ular roles such that

|ass(l)| = |obj (l)| and ass(l) = {r1 : class(o1), . . . , rn : class(on)}

holds for all links l ∈ L, where obj (l) = {r1 : o1, . . . , rn : on}.
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Note that an association is uniquely identified by the set {r1 : c1, . . . , rn : cn} (or,
in fact, by any single role occurring in it), whereas we may have different links l1, l2
instantiating the same association and connecting the same objects, i.e., we may have
obj (l1) = obj (l2) but l1 6= l2.

Let C = 〈O,L, class, ass, obj 〉 be a configuration. The cardinality |c|C of a class c is
|class−1(c)|, i.e., the number of objects in the configuration that are of class c. If C is
clear from context we omit the subscript. A configuration C is smaller than or equal to
a configuration D, written as C ≤ D, if |c|C ≤ |c|D for all c ∈ Cl .

Let x denote a partial link, i.e., x = {r1 : o1, . . . , rk : ok}, typically with k being
n− 1. We use δ(x) to denote the number of links connecting the objects in x, and γr(x)
to denote the number of different objects occupying role r in the links containing x.
Formally:

δ(x) = |{l ∈ L | x ⊆ obj (l)}| ,

γr(x) = |{o ∈ O | x ∪ {r : o} ⊆ obj (l) for some l ∈ L}| .

Moreover, let aO denote the set of potential links connecting objects in O that are well-
typed with respect to a single association a = {r1 : c1, . . . , rn : cn}, and let AO denote
the potential links well-typed with respect to some association in A:

{r1 : c1, . . . , rn : cn}
O = {{r1 : o1, . . . , rn : on} | oi ∈ O, class(oi) = ci for i = 1, .., n}

AO =
⋃

a∈A

aO

Definition 3 A configuration 〈O,L, class, ass , obj 〉 is said to satisfy a specification
〈A,mult , uniq , lb〉 if for all classes c ∈ Cl

• |c| ≥ lb(c)

holds and for all roles r ∈ R and all potential links p ∈ AO such that r : o occurs in p
(for some object o) the following conditions hold:

• δ(p \ {r : o}) ∈ mult(r) if uniq(r) = nuniq, and

• γr(p \ {r : o}) ∈ mult(r) if uniq(r) = uniq.

A specification is weakly consistent if it is satisfied by some configuration, and is strongly
consistent if for each class c there exists a configuration such that |c| > 0. If a specifi-
cation is not weakly consistent it is called inconsistent .

Note that strong consistency implies weak consistency. If all lower bounds are zero then
a specification is trivially weakly consistent, since it is satisfied by the configuration
containing no objects.
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Figure 4.1.: Uml specification that is weakly but not strongly consistent

Example 4 Figure 4.1 shows a symmetric specification that is weakly but not strongly
consistent: Every object of class A requires two objects of class B, each of which is
uniquely associated with an object of class C, which in turn correspond to exactly one
object of class A. But each of these two As requires two objects of class B, and so
on. Hence the only configuration satisfying the specification is the trivial one. If we
additionally impose the constraint that there has to be at least one object, it becomes
inconsistent.

Example 5 Let S be the asymmetric specification depicted in Figure 3.2 with the
assumption lb(A) = lb(B) = 0. According to the mapping between the graphical rep-
resentation of Uml diagrams and their formal description on page 30 we obtain an
association a = {r1 : A, r2 : B} with

mult(r1) = [1, 2]

mult(r2) = [3, 4]

and

uniq(r1) = uniq

uniq(r2) = nuniq .

Furthermore, let C = 〈O,L, class, ass , obj 〉 be the configuration defined by

O = {o1, o2}

L = {l1, l2, l3}

class(o1) = A

class(o2) = B

ass(l1) = ass(l2) = ass(l3) = a

obj (l1) = obj (l2) = obj (l3) = {r1 : o1, r2 : o2} .
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C satisfies S, since we have

γr1
({r2 : o2}) = |{o1}| = 1 ∈ [1, 2] = mult(r1) and

δ({r1 : o1}) = |{l1, l2, l3}| = 3 ∈ [3, 4] = mult(r2) .

If all ends of an association have the attribute uniq, then multiple links (links with
the same obj -value) between the corresponding objects can be treated as a single one
since they cannot be distinguished. One link is as good as many: the multiplicities
restrict only the number of different objects. Therefore we concentrate on normalised
configurations which contain no multiple links for associations where all roles are tagged
as unique.

For symmetric specifications and normalised configurations the satisfiability conditions
can be simplified.

Proposition 6 A normalised configuration satisfies a symmetric specification if and
only if for all classes c ∈ Cl

• |c| ≥ lb(c)

holds and for all roles r ∈ R and all potential links p ∈ AO such that r : o occurs in p
(for some object o) the following conditions hold:

• δ(p \ {r : o}) ∈ mult(r) and

• if uniq(r) = uniq then for all role-object tuples x, y and all links l1, l2 such that
obj (l1) = {r : o, x} and obj (l2) = {r : o, y}, l1 6= l2 implies x 6= y.

By this proposition we may treat all associations as if being labelled nuniq; we have
only to make sure that any two objects instantiating uniq-uniq associated classes are
connected by at most one link.

Example 7 This uniform view of uniq/nuniq does not work for asymmetric specifica-
tions. Consider the specification and configuration of Example 5, where uniq(r1) = uniq
but uniq(r2) = nuniq. Let

r : o = r2 : o2

x = y = r1 : o1 .

Then we have

obj (l1) = {r : o, x}

obj (l2) = {r : o, y}

and l1 6= l2 but x = y. Note that we need all three links; removing any of the multiple
links would lead to a configuration not satisfying the specification anymore.
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5. UML Class Specifications with

Binary Associations

White dwarf seeks red giant for binary relationship.

sci.astro newsgroup

In this chapter we will show a translation from Uml specifications to linear Diophan-
tine inequations. We will present an approach based on weighted directed graphs to
solve these inequations efficiently and show a way to compute the minimal solutions.

5.1. From Specifications to Linear Diophantine

Inequations

In this section we translate specifications containing binary associations (symmetric or
mixed) to certain inequations and show that a specification is consistent if and only if
the corresponding inequations are solvable. Moreover, the solutions of the inequations
describe all satisfying configurations.

For each class c ∈ Cl , let xc be a variable ranging over the non-negative integers. Let
{r1 : c, r2 : d} be an association with mult(r2) = [m1, m2] and mult(r1) = [n1, n2]. We
define the following abbreviations:

ϕlb(c) := xc ≥ lb(c)

ϕmult(r1:c, r2:d) := m2 · xc ≥ n1 · xd

ϕuniq min(r1:c, r2:d) := (xd > 0 =⇒ xc ≥ n1)

ϕuniq max(r1:c, r2:d) := (m1 > 0 =⇒ n2 · xd ≥ xc)

where =⇒ denotes logical implication. Next we define formulas corresponding to the
three types of binary associations, namely nuniq/nuniq, uniq/uniq and uniq/nuniq:

ψnn(x, y) := ϕmult(x, y) ∧ ϕmult(y, x)

ψuu(x, y) := ϕmult(x, y) ∧ ϕuniq min(x, y) ∧

ϕmult(y, x) ∧ ϕuniq min(y, x)

ψun(x, y) := ϕmult(x, y) ∧ ϕuniq min(x, y) ∧ ϕuniq max(x, y)
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Figure 5.1.: Uml specification for Example 9

Definition 8 The satisfiability condition (sat-condition) for a specification S, denoted
by sc(S), is the formula

∧

c∈Cl

ϕlb(c) ∧
∧

{r1:c,r2:d}∈A
uniq(r1)=nuniq
uniq(r2)=nuniq

ψnn(r1:c, r2:d) ∧
∧

{r1:c,r2:d}∈A
uniq(r1)=uniq
uniq(r2)=uniq

ψuu(r1:c, r2:d) ∧
∧

{r1:c,r2:d}∈A
uniq(r1)=uniq
uniq(r2)=nuniq

ψun(r1:c, r2:d)

An interpretation for the formula sc(S) is a mapping assigning a non-negative inte-
ger to each variable in sc(S). A solution of sc(S) is an interpretation satisfying the
formula sc(S).

For interpretations σ we will also write σ(c) instead of σ(xc) since there is a one-to-
one mapping between classes and variables. Note that the formulas corresponding to
symmetric associations occur twice in sc(S), since we have

ψnn(r1:c, r2:d) = ψnn(r2:d, r1:c)

ψuu(r1:c, r2:d) = ψuu(r2:d, r1:c) .

Example 9 Let S be the specification 〈A,mult , uniq , lb〉 where

A = {{r1 : c, r2 : d}}

mult(r1) = [1, 2]

mult(r2) = [3, 4]

uniq(r1) = uniq

uniq(r2) = uniq

lb(c) = 1

lb(d) = 0 .

Figure 5.1 depicts this situation.
Then the sat-condition sc(S) is the conjunction of

xc ≥ 1
xd ≥ 0

2 · xd ≥ 3 · xc

4 · xc ≥ 1 · xd

xc > 0 =⇒ xd ≥ 3
xd > 0 =⇒ xc ≥ 1 .

Remark 10 For each pair of classes c and d of a symmetric association, the sat-
condition contains the constraints ϕmult, which express that the intervals [m1, m2] · xc
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and [n1, n2] · xd overlap, i.e., they are satisfied if and only if there is a number k such
that

m1 · xc ≤ k ≤ m2 · xc

n1 · xd ≤ k ≤ n2 · xd

hold.

Example 11 Consider the specification in Example 5. The sat-condition sc(S) is the
conjunction of

xc ≥ 0
xd ≥ 0

2 · xd ≥ xc

4 · xc ≥ 1 · xd

xd > 0 =⇒ xc ≥ 1 .

Remark 12 For each pair of classes c and d of an asymmetric association (w.l.o.g.
assume uniq(r1) = uniq), the sat-condition contains the constraints

m2 · xc ≥ n1 · xd

n2 · xd ≥ xc ,

which express that the intervals [1, m2] ·xc and [n1, n2] ·xd overlap, i.e., they are satisfied
if and only if there is a number k such that

xc ≤ k ≤ m2 · xc

n1 · xd ≤ k ≤ n2 · xd

hold.

Theorem 13 A specification S is weakly consistent if and only if the formula sc(S) is
solvable.

Proof We prove the two directions separately.

(=⇒) Let the specification S = 〈A,mult , uniq , lb〉 be weakly consistent, and let C =
〈O,L, class, ass , obj 〉 be a configuration satisfying S. W.l.o.g. we assume that C is
normalised, i.e., that it does not contain multiple links corresponding to uniq-uniq as-
sociations. We show that the mapping σ defined by σ(xc) = |c| for all classes c satisfies
the specification S.

The lower bound constraints xc ≥ lb(c) hold since we have |c| ≥ lb(c) for all classes c.
For the symmetric case (i.e., uniq(r1) = uniq(r2)) now consider two classes c and d

connected by an association {r1 : c, r2 : d}. Let k be the number of all links connecting
objects of class c with objects of class d. Because of

δ({r1 : o}) ∈ mult(r2) = [m1, m2]

δ({r2 : p}) ∈ mult(r1) = [n1, n2]
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for all objects o of type c and objects p of type d, we have

m1 · xc ≤ k ≤ m2 · xc

n1 · xd ≤ k ≤ n2 · xd .

By Remark 10, the existence of such a number k is expressed by the constraints ϕmult.
Finally, if uniq(r2) = uniq (similar argumentation for uniq(r1)) holds then any object o
of class c has to be connected to at least m1 different objects of class d, i.e., if the number
of c-objects is greater than zero, then the number of d-objects has to be greater than
m1:

xc > 0 =⇒ xd ≥ m1 .

For the asymmetric case (w.l.o.g. assume uniq(r1) = uniq) let k denote the number
of allowed links between all objects of class c and all objects of class d. Because of

δ({r1 : o}) ∈ mult(r2) = [m1, m2]

γr1
({r2 : p}) ∈ mult(r1) = [n1, n2]

for all objects o of type c and objects p of type d, following conditions hold:

m2 · xc ≥ n1 · xd

n2 · xd ≥ xc

xd > 0 =⇒ xc ≥ n1 .

Note that it is essential for mixed associations to handle multiple links also for uniq ends
(i.e., there is no normalisation between mixed associations), as explained in Example 7.
The first line models the constraint for the nuniq end, similar to one of the ϕmult equations
in the symmetric case. The second line enforces that there are not more objects of class c
than the maximal amount of links from objects of class d to objects of class c permits.
The third equation models the minimum for the number of different objects of class c,
similar to the symmetric case.

(⇐=) Given a specification S and a solution σ of the sat-condition sc(S) we construct
a configuration C = 〈O,L, class, ass, obj 〉 that satisfies S.

For all classes c ∈ Cl , we define O and class such that O contains exactly σ(c) objects
of class c. We construct L and obj according to Algorithm 1. By Remark 10 and
Remark 12, the number k chosen in lines 5–11 exists since the intersection is non-empty.
The while-loop distributes the k links sequentially in a uniform manner, i.e., before
inserting the link we have

δ({rc : o}) = ⌊k′/σ(c)⌋

δ({rd : p}) = ⌊k′/σ(d)⌋ .

Note that if line 16 for the unique-unique case gets triggered we have

δ({rc : o}) = δ({rc : o′}) = k′/σ(c)
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for all objects o, o′ of class c. As the links are filled up uniformly between objects, this
guarantees that no link between oi, p(j+1) mod b already exists. Thus for the unique-unique
case we obtain that for all objects o1, o2 of class c and all links l1, l2 such that

obj (l1) = {rc : o, rd : o1}

obj (l2) = {rc : o, rd : o2}

l1 6= l2 implies rd : o1 6= rd : o2.
Therefore at the end of the loop the condition

⌊k/σ(c)⌋ ≤ δ(rc : o) ≤ ⌈k/σ(c)⌉

holds. By the choice of k in the symmetric case we have

σ(c) ·m1 ≤ k ≤ σ(c) ·m2 ,

i.e.,
m1 ≤ ⌊k/σ(c)⌋ ≤ k/σ(c) ≤ ⌈k/σ(c)⌉ ≤ m2 .

Combining the two chains of inequations we obtain

m1 ≤ δ({rc : o}) ≤ m2 ,

i.e.,
δ({rc : o}) ∈ mult(rd) .

By a dual argument we derive

δ({rd : p}) ∈ mult(rc)

and its uniq constraints.
For the asymmetric case line 16 never gets triggered. Thus the links are filled up

completely uniformly and we have

⌊k/σ(d)⌋ ≤ δ(rd : p) ≤ ⌈k/σ(d)⌉ .

By the choice of k the inequation n1 ≤ k/σ(d) holds. Combining both inequations we
obtain

n1 ≤ δ({rd : p}) .

As xd > 0 =⇒ xc ≥ n1 holds since σ must also satisfy this constraint, we know that
there are at least n1 distinct objects of class c. By the strictly uniform distribution of
links we obtain

n1 ≤ γrc
({rd : p}) ,

i.e., the lower bound of mult(rc). For proving the upper bound we note that each of the
σ(d) objects of class d is connected (due to uniformity) with

⌊k/σ(c)⌋ ≤ lc ≤ ⌈k/σ(c)⌉
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links to objects of class c. Further there are

⌊k/σ(d)⌋ ≤ ld ≤ ⌈k/σ(d)⌉

links outgoing from object p. Thus the number of different objects connected to p by
role rd (which in fact is δ({rd : p})) is ld/lc, i.e.,

k/σ(d)

k/σ(c)
=
σ(c)

σ(d)
.

By constraint ϕuniq max, i.e., n2 ·xd ≥ xc, this ratio is smaller than n2, which is the upper
bound. So we have

γrc
({rd : p}) ∈ mult(rc) = [n1, n2] .

For the non-unique end, the condition

δ({rc : o}) ∈ mult(rd)

is derived as in the symmetric case. By dual arguments we obtain

γrd
({rc : o}) ∈ mult(rd)

and
δ({rd : p}) ∈ mult(rc)

for the dual non-unique–unique case.
We conclude that the configuration C satisfies the specification S. 2

5.2. Solving Linear Diophantine Inequations

Several algorithms have been proposed for solving linear inequations over non-negative
integers. Based on the results on the solution of linear Diophantine equations by
Clausen and Fortenbacher [1989] and Contejean and Devie [1994], an algorithm with-
out slack variables is presented by Ajili and Contejean [1997]. With small modifications
this algorithm can be used to solve the inequations obtained in the last section. Unfor-
tunately, it has exponential run time in general. This complexity is partly intrinsic to
the problem: Lagarias [1985] shows that the problem 2-IP (integer programming with
two variables) is NP-complete. More precisely, 2-IP is defined as follows: Given a finite
set of integer triples

{(a1,k, a2,k, a3,k) | 1 ≤ k ≤M}

and two functions

σ : {1, 2, . . . ,M} → {1, 2, . . . , N}

τ : {1, 2, . . . ,M} → {1, 2, . . . , N}
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Algorithm 1 Constructing the links of a configuration

1: let L = ∅
2: for all sets {c, d} ∈ 2Cl with {rc : c, rd : d} ∈ A do

3: let [m1, m2] = mult(rd) and [n1, n2] = mult(rc)
4: let o0, . . . , oa−1 be the objects of class c
5: let p0, . . . , pb−1 be the objects of class d
6: if uniq(rc) = uniq 6= uniq(rd) then

7: choose a number k ∈ [σ(c), σ(c) ·m2] ∩ [σ(d) · n1, σ(d) · n2]
8: else if uniq(rc) = nuniq 6= uniq(rd) then

9: choose a number k ∈ [σ(c) ·m1, σ(c) ·m2] ∩ [σ(d), σ(d) · n2]
10: else

11: choose a number k ∈ [σ(c) ·m1, σ(c) ·m2] ∩ [σ(d) · n1, σ(d) · n2]
12: end if

13: k′ ← 0
14: i← 0
15: j ← 0
16: while k′ < k do

17: if uniq(rc) = uniq(rd) = uniq
and there is a link l ∈ L such that obj (l) = {rc : oi, rd : pj} then

18: j ← (j + 1) mod b
19: end if

20: add a link l with obj (l) = {rc : oi, rd : pj} to L
21: k′ ← k′ + 1
22: i← (i+ 1) mod a
23: j ← (j + 1) mod b
24: end while

25: end for

26: return L
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the problem consists in determining whether the integer program

a1,k · xσ(k) + a2,k · xτ(k) ≤ a3,k

for 1 ≤ k ≤ M has an integer solution {xi | 1 ≤ i ≤ N} satisfying all inequations.
Thus the algorithm presented by Ajili and Contejean [1997] cannot be polynomial in

the worst case. In fact, the algorithm has the high pruning bound of

mB(q +mB − r)

(
Σi,j |aij|+ Σi,j |bij |+mB

r

)2r

,

where mB denotes the number of lines for the matrix B that describes the input in-
equations, q is the number of unknowns in the system of m constraints, r is the rank of
matrix

(
A 0
B I

)
, where A describes the input equations, and aij and bij are the entries of

A and B, respectively.
However, our class of inequations has a specific property: we need no upper bounds,

i.e., no inequation is of the form c ≥ ax + by or c ≥ ax. We show in the following that
in this case solvability can be checked in polynomial time. Moreover, the solutions are
closed under the minimum operation and under linear combinations; hence the minimal
solution is unique.

Definition 14 A Uml-constraint is either

• an inequation of the form b · y ≥ a · x,

• an inequation y ≥ a,

• an implication of the form a > 0 =⇒ b · y ≥ x or

• an implication of the form x > 0 =⇒ y ≥ a,

where a and b are positive integers and x and y are variables. A Uml-formula is a
conjunction of Uml-constraints.

Note that an inequation
a1 > 0 =⇒ b · y ≥ x

can be transformed to
b · y ≥ a2 · x

(in this special case with a2 = 1) by testing whether the constant a1 is positive. This
simplification can be done in a preprocessing step since the premise of the implication
contains no variable.

Example 15 Consider the sat-condition of Example 11. Each inequation in it is a
Uml-constraint, since

xc ≥ 0

xd ≥ 0
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are of the form y ≥ a,
2 · xd ≥ xc

is of the form a > 0 =⇒ b · y ≥ x (after simplification),

4 · xc ≥ 1 · xd

is of the form b · y ≥ a · x, and finally

xd > 0 =⇒ xc ≥ 1

is of the form x > 0 =⇒ y ≥ a.

Let σ and τ be interpretations for a Uml-formula ϕ, i.e., σ and τ map the variables in ϕ
to non-negative integers, and let a be a non-negative integer. We define the minimum,
sum, and scalar product of interpretations for all variables x occurring in ϕ as follows:

min(σ, τ)(x) = min(σ(x), τ(x))

(σ + τ)(x) = σ(x) + τ(x)

(aσ)(x) = aσ(x)

Moreover, we define σ ≤ τ as σ(x) ≤ τ(x) for all variables x.

Proposition 16 Let ϕ be a Uml-formula, and let σ and τ be solutions of ϕ. Then
min(σ, τ), σ + τ and aσ are also solutions of ϕ.

Corollary 17 The minimal solution of a Uml-formula is unique.

Corollary 18 If a Uml-formula has a non-trivial solution, then it has infinitely many
solutions.

We now present our algorithm for checking the consistency of Uml-formulas. We call
a variable x inconsistent if σ(x) = 0 holds for all solutions σ of a formula. The class
corresponding to an inconsistent variable will be empty in all satisfying configurations.

Our algorithm has to pinpoint all inconsistent variables and should provide an expla-
nation for the inconsistencies. The core algorithm operates on a weighted directed graph
constructed from the Uml-formula ϕ. The variables in ϕ form the nodes of the graph.
There is an edge from node x to node y with weight a/b iff ϕ contains an inequation
b · y ≥ a · x:

mx my-a/b

Theorem 19 Let I be a set of inequations of the form b · y ≥ a · x, and let V be the set
of variables occurring in I. Algorithm 2 determines the path with the maximal weight
for each pair of nodes in the graph representation of I in time O(|I| · |V |2).

42



Algorithm 2 Compute paths with maximal weights

1: Let I be a set of input inequations b · y ≥ a · x
2: Let V be the set of variables occurring in I
3: Let W be a |V |× |V | matrix of non-negative rational numbers, initially set to zero.
4: Let P be a |V | × |V | matrix of strings of variables, initially set to the empty strings.

5: for all inequations b · y ≥ a · x in I do

6: w ← a/b
7: if w > W [x, y] then

8: W [x, y]← w
9: P [x, y]← y

10: end if

11: for all variables u in V such that u 6= x do

12: w ←W [u, x] · a/b
13: if w > W [u, y] and y /∈ P [u, x] then

14: W [u, y]← w
15: P [u, y]← P [u, x].y
16: end if

17: end for

18: for all variables v in V such that v 6= y do

19: w ← a/b ·W [y, v]
20: if w > W [x, v] and y /∈ P [y, v] then

21: W [x, v]← w
22: P [x, v]← y.P [y, v]
23: end if

24: end for

25: for all variables u, v in V such that u 6= x and v 6= y do

26: w ←W [u, x] · a/b ·W [y, v]
27: if w > W [u, v] and the strings P [u, x], y, and P [y, v] are pairwise disjoint then

28: W [u, v]← w
29: P [u, v]← P [u, x].y.P [y, v]
30: end if

31: end for

32: end for

33: return (W,P )
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Proof Algorithm 2 processes the inequations incrementally and saves the maximal
weight and path between variables at each step. Lines 6–10 update the weight ma-
trix W and path matrix P concerning the two directly involved variables.

In lines 11–17 all variables u with a path to y are checked whether there is a heavier
path from u to y via x. Note that we need not check variables more often, as we save
the maximal weights in the weight matrix W . Further we avoid intermediate cycles by
requiring y /∈ P [u, x]. If the new path weight is greater, update both W and P . In a
dual manner the lines 18–24 update the weights for paths from x to v via y.

mu
mx my-a/b

��������1
W [u, x] · a/b

�
��W [u, x]

mx my
mv

-a/b

@
@R
W [y, v]

PPPPPPPPq
a/b ·W [y, v]

Finally in lines 25–32 all paths from u to v are updated, if there is a new, heavier path
using the edge from x to y.

mu
mx my

mv
-a/b

@
@R
W [y, v]

-
W [u, x] · a/b ·W [y, v]

�
��W [u, x]

The algorithm obviously terminates because all loops are bounded. Counting the itera-
tions we obtain as time complexity O(|I| · (1+ |V |+ |V |+ |V | · |V |)), i.e. O(|I| · |V |2). 2

Theorem 20 Let W be the weight matrix returned by Algorithm 2. A variable x is
inconsistent if and only if there is a node y such that W [x, y] > 0 and W [y, y] > 1 both
hold.

Proof W [x, y] > 0 and W [y, y] > 0 mean that the inequalities

y ≥W [y, y] · y ≥W [x, y] · x

are contained in the transitive closure of I. Because of W [y, y] > 1 the first one can only
be satisfied by setting y to zero. This implies that x has to be zero, too. 2

For a given specification we can check its sat-condition by Theorem 20. Note that the
constraints ϕlb and ϕuniq min do not affect strong consistency since they only fix lower
bounds, which can always be satisfied by a configuration provided the corresponding
variable is consistent.

Example 21 Have a look at the specification S depicted in Figure 4.1. It has three
associations

aAB = {rAB : A, rBA : B}

aBC = {rBC : B, rCB : C}

aAC = {rAC : A, rCA : C}
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with the multiplicities

mult(rAB) = [1, 1] mult(rCB) = [1, 1]

mult(rBA) = [2, 2] mult(rAC) = [1, 1]

mult(rBC) = [1, 1] mult(rCA) = [1, 1] ,

and the uniqueness constraints uniq(r) = uniq for all roles r. Further assume that

lb(A) = 1

lb(B) = 0

lb(C) = 0

holds. We obtain the following sat-condition sc(S)

xA ≥ 1
xB ≥ 0
xC ≥ 0

1 · xB ≥ 2 · xA

2 · xA ≥ 1 · xB

1 · xC ≥ 1 · xB

1 · xB ≥ 1 · xC

1 · xC ≥ 1 · xA

1 · xA ≥ 1 · xC

xA > 0 =⇒ xB ≥ 2
xB > 0 =⇒ xA ≥ 1
xB > 0 =⇒ xC ≥ 1
xC > 0 =⇒ xB ≥ 1
xA > 0 =⇒ xC ≥ 1
xC > 0 =⇒ xA ≥ 1 .

Let us now check the specification for consistency as described in the proof of Theorem 20
using Algorithm 2. At the beginning we have

W =





0 0 0
0 0 0
0 0 0



 mA mB
mC

-H
HHHHY������

� - �
?

������HHHHHHY P =





. . .

. . .

. . .





After two iterations for the inequations 1 · xB ≥ 2 · xA and 2 · xA ≥ 1 · xB we obtain

W =





0 2 0
1/2 0 0
0 0 0



 mA mB
mC

-2 HHHHHY������

� - �
?

������
1/2

HHHHHHY P =





. B .
A . .
. . .





After processing 1 · xC ≥ 1 · xB and 1 · xB ≥ 1 · xC the procedure yields

W =





0 2 2
1/2 0 1
1/2 1 0



 mA mB
mC

-2 HHHHHY
1

������

� - �1

?

������
1/2

HHHHHHY P =





. B B.C
A . C
B.A B .
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Finally, after processing 1 · xC ≥ 1 · xA and 1 · xA ≥ 1 · xC we obtain

W =





2 2 2
1 2 1
1 2 2



 mA mB
mC

-2 HHHHHY
1

������
1

�
1

- �1

?

������
1/2

HHHHHHY P =





B.C.A B B.C
C.A C.A.B C
A A.B A.B.C





Since some diagonal elements of the first matrix W are greater than one we know that
this specification is inconsistent. Moreover, we can identify inconsistent variables and
can construct a counter-model: All three variables xA, xB, xC are inconsistent because
W [xA, xA], W [xB, xB] and W [xC , xC ] are greater than one, respectively. Furthermore,
the corresponding elements in matrix P serve as an explanation for the inconsistency.
E.g., the path B.C.A starting from A is a witness for the inconsistency of variable xA.

Thus we have formally shown the inconsistency which we already have observed and
discussed informally in Example 4.

Theorem 22 Given a set I of consistent input inequations, ϕlb conditions and ϕuniq min

conditions, i.e.,

a · x ≤ b · y

n ≤ x

x > 0 =⇒ n ≤ y

Algorithm 3 computes the minimal rational solution for all variables x, y in the graph
representation of I.

Proof In step 4 by initialising σ with zero we already obtain a solution if we do not
consider ϕlb and ϕuniq min conditions. Thus we need to consider each ϕlb condition:

If a ϕlb condition enforces a minimal number of instances we set it, if it is not already
fulfilled (steps 5–8). Then we have to update all other variable solutions (steps 9–13).
Note that we cannot have update cycles, as we have consistent inequations as input.
Thus we propagate values through the graph over maximal weight paths.

Finally we take into account ϕuniq min conditions in steps 14–19. Observe that ϕuniq min

conditions are triggered by ϕlb conditions. Hence if a ϕuniq min condition becomes active,
we add it to the considered ϕlb conditions (step 17). 2

The time complexity of Algorithm 3 is O((|L|+ |U |) · (|V |+ |U |)).

Example 23 Let S be the specification 〈A,mult , uniq , lb〉 depicted in Figure 5.2 con-
sisting of the associations

aAB = {rAB : A, rBA : B}

aBC = {rBC : B, rCB : C}

aAC = {rAC : A, rCA : C}
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Algorithm 3 Compute a minimal rational solution

Require: Let I be a set of input inequations a · x ≤ b · y, L the set of ϕlb conditions
n ≤ x and U the set of ϕuniq min conditions x > 0 =⇒ n ≤ y

1: Let V be the set of variables occurring in I
2: Let W be the output |V | × |V | matrix from Algorithm 2 on I
3: Let P be the output |V | × |V | matrix from Algorithm 2 on I
4: Let σ be a mapping from V to the natural numbers, initially mapping all variables

to zero
5: for all ϕlb conditions n ≤ x in L do

6: if n > σ(x) then

7: σ(x)← n
8: end if

9: for all variables y in V such that x 6= y do

10: if σ(x) ·W [x, y] > σ(y) then

11: σ(y)← σ(x) ·W [x, y]
12: end if

13: end for

14: for all ϕuniq min conditions x > 0 =⇒ n ≤ y in U do

15: if σ(x) > 0 then

16: U ← U \ {x > 0 =⇒ n ≤ y}
17: L← L ∪ {m ≤ y}
18: end if

19: end for

20: end for

21: return σ
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Figure 5.2.: Uml specification (nuniq constraints omitted)

with the multiplicities

mult(rAB) = [1, 2] mult(rCB) = [1, 4]

mult(rBA) = [3, 4] mult(rAC) = [2, 4]

mult(rBC) = [2, 3] mult(rCA) = [3, 6] ,

the lower bounds

lb(A) = 1

lb(B) = 0

lb(C) = 0 ,

and the uniqueness constraints

uniq(rAB) = nuniq uniq(rCB) = nuniq

uniq(rBA) = nuniq uniq(rAC) = nuniq

uniq(rBC) = nuniq uniq(rCA) = nuniq .

The sat-condition sc(S) is the conjunction of

xA ≥ 1
xB ≥ 0
xC ≥ 0

2 · xB ≥ 3 · xA

4 · xA ≥ 1 · xB

3 · xC ≥ 1 · xB

4 · xB ≥ 2 · xC

4 · xC ≥ 3 · xA

6 · xA ≥ 2 · xC .

With the maximal-weight-path-algorithm 2 the sat-condition sc(S) gives rise to the
following weighted graph
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and to following weight matrix

W =











3/8 3/2 3/4

1/4 3/8 1/3

1/3 1/2 1/4











As all values in the diagonal of W are strictly smaller than 1 we know that the specifi-
cation is weakly consistent.

At start of Algorithm 3 we have

σ(A) = 0 σ(B) = 0 σ(C) = 0 .

We process the first lower bound xA ≥ 1 and obtain

σ(A) = 1 σ(B) =
3

2
σ(C) =

3

4
.

Since all other lower bounds are zero there is no need for the algorithm to consider
further cases. I.e., we finish with the minimal rational solution

σ =





1
3/2
3/4



 .

An integer solution for any variable v can be built by multiplying σ(v) by

lcm{bx | x occurs in I}

where bx denotes the non-negative integer b in each inequation a · x ≤ b · y. This is a
valid operation by Theorem 24.

Theorem 24 Let I be a system of inequations of the from

a · x ≤ b · y ,

and let v be some variable. I has a rational solution assigning v a value greater zero if
and only if I has a solution over the non-negative integers assigning v a value greater
zero.

Proof We show both directions:
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(=⇒) Trivial, since every solution over the non-negative integers is also a rational solu-
tion.

(⇐=) Let σ be a rational solution such that σ(v) > 0. Since σ(x) is rational for all
variables x, σ(x) can be written as ax/bx for non-negative integers ax, bx. Let
n = lcm{bx | x occurs in I}. Then n · σ(x) is an integer. Moreover, every multiple
of a solution is again a solution, hence n ·σ is a non-negative integer solution of I.
Since σ(v) > 0 we also have n · σ(v) > 0.

2

Example 25 Reconsider the minimal rational solution for the specification in Exam-
ple 23:

σ =





1
3/2
3/4



 .

For this specification S we will see that the integer solution derived from the rational
solution by multiplying with lcm{bx | x occurs in I}, where bx denotes the non-negative
integer b in each inequation a · x ≤ b · y, is not necessarily minimal.

Multiplying this rational solution σ with lcm(1, 2, 4) = 4 (this is even a smaller lcm
than the general one with the original equation coefficients) yields the solution

τ = 4 ·





1
3/2
3/4



 =





4
6
3



 .

But now we note that the minimal integer solution π is strictly smaller than τ :

π =





1
2
1



 <





4
6
3



 = τ .

We obtain similar results in this example for the case that we assume all roles to be
unique in Figure 5.2, i.e., if

uniq(rAB) = uniq uniq(rCB) = uniq

uniq(rBA) = uniq uniq(rAC) = uniq

uniq(rBC) = uniq uniq(rCA) = uniq

would hold. This would give rise to following additional conditions

xA > 0 =⇒ xB ≥ 3

xB > 0 =⇒ xA ≥ 1

xB > 0 =⇒ xC ≥ 1

xC > 0 =⇒ xB ≥ 2

xA > 0 =⇒ xC ≥ 3

xC > 0 =⇒ xA ≥ 2 .
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Then the minimal integer solution ρ in this case is

ρ =





2
3
3



 .

So note that in general the lcm solution is not minimal for the unique case either.

Theorem 26 Given a set I of consistent input inequations, ϕlb conditions and ϕuniq min

conditions, i.e.,

a · x ≤ b · y

n ≤ x

x > 0 =⇒ n ≤ y

Algorithm 4 computes the minimal integer solution for all variables x, y in the graph
representation of I.

Proof The argumentation is the same as in the proof for Algorithm 3 except that we
now cannot be sure that update cycles exist. Nevertheless we can guarantee termination
as our input is consistent — thus a solution exists — and the repeat-loop is bounded by
Theorem 24 with lcm{bx | x occurs in I} iterations, where bx denotes the non-negative
integer b in each inequation a · x ≤ b · y. 2

Example 27 Recall the specification from Example 23 on page 46, where we computed
the minimal rational solution for it. Now we will derive the minimal integer solution
with Algorithm 4.

We begin with
σ(A) = 0 σ(B) = 0 σ(C) = 0 .

Similar to the rational case we process the first lower bound xA ≥ 1 and obtain

σ(A) = 1 σ(B) =

⌈
3

2

⌉

= 2 σ(C) =

⌈
3

4

⌉

= 1 .

Again, the other lower bounds do not enforce further investigation, and we are finished
with the minimal integer solution

σ =





1
2
1



 .

We note that in this example no additional loops are necessary due to rounding up the
intermediary rational solutions. Anyway, as we will see, this is not always the case.

In the worst case Algorithm 4 has an exponential time complexity.
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Algorithm 4 Compute a minimal integer solution

Require: Let I be a set of input inequations a · x ≤ b · y, L the set of ϕlb conditions
n ≤ x and U the set of ϕuniq min conditions x > 0 =⇒ n ≤ y

1: Let V be the set of variables occurring in I
2: Let W be the output |V | × |V | matrix from Algorithm 2 on I
3: Let P be the output |V | × |V | matrix from Algorithm 2 on I
4: Let σ be a mapping from |V | variables to natural numbers initialised with zero
5: for all ϕlb conditions n ≤ x in L do

6: if n > σ(x) then

7: σ(x)← n
8: end if

9: repeat

10: if ⌈σ(x) ·W [x, y]⌉ > σ(y) then

11: σ(y)← ⌈σ(x) ·W [x, y]⌉
12: end if

13: until ⌈σ(x) ·W [x, y]⌉ = σ(y) for all variables x, y such that x 6= y
14: for all ϕuniq min conditions x > 0 =⇒ n ≤ y in U do

15: if σ(x) > 0 then

16: U ← U \ {x > 0 =⇒ n ≤ y}
17: L← L ∪ {m ≤ y}
18: end if

19: end for

20: end for

21: return σ
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A B
10 uniq

uniq 9

Figure 5.3.: Uml class diagram leading to long cycles for Algorithm 4

Remark 28 For the minimal-integer-solution-algorithm 4 we see that in lines 9–13 no
iterations build up, if

m1 ≤ n2

n1 ≤ m2

for

W [x, y] =
m1

n2

W [y, x] =
n1

m2

hold (in case the two classes x, y are connected directly in the specification this means
the intervals [m1, m2] and [n1, n2] overlap) because of






















σ(x) ·
m1

n2
︸︷︷︸

≤1









︸ ︷︷ ︸

≤σ(x)

·
n1

m2
︸︷︷︸

≤1














︸ ︷︷ ︸

≤σ(x)

≤ σ(x) .

This means that in this special case Algorithm 4 is polynomial since it behaves similar
to Algorithm 3 in this situation.

Example 29 Figure 5.3 shows the specification 〈A,mult , uniq , lb〉 with A = {{r1 :
A, r2 : B}} such that

mult(r1) = [10, 10]

mult(r2) = [9, 9]

and

uniq(r1) = uniq

uniq(r2) = uniq
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hold. This specification leads to many iterations for Algorithm 4 until stabilisation,
i.e. until the minimal integer solution is found, assuming we want to have a nontrivial
solution (i.e. assume lb(A) = 1). We obtain the weight matrix

W =




1 9/10

10/9 1



 ,

and start iterating with σ(xA) = 1:

σ(xA)

⌈1⌉ = 1
⌈1.1⌉ = 2
⌈2.2⌉ = 3
⌈3.3⌉ = 4
⌈4.4⌉ = 5
⌈5.5⌉ = 6
⌈6.6⌉ = 7
⌈7.7⌉ = 8
⌈8.8⌉ = 9
⌈9.9⌉ = 10

σ(xB)

⌈0.9⌉ = 1
⌈1.8⌉ = 2
⌈2.7⌉ = 3
⌈3.6⌉ = 4
⌈4.5⌉ = 5
⌈5.4⌉ = 6
⌈6.3⌉ = 7
⌈7.2⌉ = 8
⌈8.1⌉ = 9
⌈9⌉ = 9 .

As we see, the simple iterative searching for minimal integer solutions is exponential, as
we can make this example parametric: For the multiplicity 10 use 10k and instead of
the multiplicity 9 use the number built by taking k 9s starting with k = 1, i.e.,

(10, 9)

(100, 99)

(1000, 999)

...

(10k, 9 · · ·9
︸ ︷︷ ︸

k times

)

and so on. Then the iterations are exponential in k.

Example 30 Reconsider the specification from Example 23. In Example 27 we showed
how to compute the minimal integer solution, namely

σ(A) = 1 σ(B) = 2 σ(C) = 1 .

Based upon this result we will now construct a valid configuration with Algorithm 1.
We start with the classes A and B of association {rAB : A, rBA : B} and choose a

number
k ∈ [σ(A) · 3, σ(A) · 4] ∩ [σ(B) · 1, σ(B) · 2] ,
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i.e., k ∈ [3, 4] ∩ [2, 4] = [3, 4]. W.l.o.g., we take k = 3 and obtain following links

(rAB : a1, rBA : b1)

(rAB : a1, rBA : b2)

(rAB : a1, rBA : b1) .

For the classes B and C of association {rBC : B, rCB : C} we choose a number

k ∈ [σ(B) · 1, σ(B) · 4] ∩ [σ(C) · 2, σ(C) · 3] ,

i.e., k ∈ [2, 8] ∩ [2, 3] = [2, 3], e.g., k = 2. We obtain the links

(rBC : b1, rCB : c1)

(rBC : b2, rCB : c1) .

Finally for the classes A and C of association {rAC : B, rCA : C} we choose a number

k ∈ [σ(A) · 3, σ(A) · 6] ∩ [σ(C) · 2, σ(C) · 4] ,

i.e., k ∈ [3, 6] ∩ [2, 4] = [3, 4], e.g., k = 3. Then the algorithm returns the links

(rAC : a1, rCA : c1)

(rAC : a1, rCA : c1)

(rAC : a1, rCA : c1) .

Now the configuration can be easily constructed by using a1, b1, b2 and c1 as objects
and above computed links as connections between the objects.
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6. UML Class Specifications with

Multiary Associations

A biologist, a statistician, a mathematician and a computer scientist are on a photo-safari

in Africa. As they’re driving along the savannah in their jeep,

they stop and scout the horizon with their binoculars.

The biologist: ”Look! A herd of zebras! And there’s a white zebra!

Fantastic! We’ll be famous!”

The statistician: ”Hey, calm down, it’s not significant.

We only know there’s one white zebra.”

The mathematician: ”Actually, we only know there exists a zebra,

which is white on one side.”

The computer scientist: ”Oh, no! A special case!”

In previous chapters we introduced the concepts consistency and minimality of Uml
specifications with binary associations. This approach can be generalised to be used
with n-ary association where n ranges from 2 to any bigger integer value. Thus we will
discuss differences and derive conditions to hold in the generalised framework.

6.1. Extended Linear Diophantine Inequations

We start by describing our observations for a ternary association to get an impression
for the different behaviour of n-ary associations (n ≥ 3) in Uml. This special behaviour
is due to the semantic interpretation of Uml associations in Chen-style (i.e., look-across
notation) — recall the discussion in Section 3.2.

Let a = {r1 : c1, r2 : c2, r3 : c3} be the ternary association depicted in Figure 6.1 with

mult(r1) = [L(c1), U(c1)]

mult(r2) = [L(c2), U(c2)]

mult(r3) = [L(c3), U(c3)] .

As in the previous chapter, for each class c ∈ Cl , let xc be a variable ranging over the
non-negative integers. Following equations hold in the symmetric case (where l denotes
the number of links):

xc1 · xc2 · L(c3) ≤ l ≤ xc1 · xc2 · U(c3)

xc1 · L(c2) · xc3 ≤ l ≤ xc1 · U(c2) · xc3

L(c1) · xc2 · xc3 ≤ l ≤ U(c1) · xc2 · xc3 .
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Figure 6.1.: A Uml specification with a generic ternary association

They simulate that each combination of objects must have between L(c) and U(c) part-
ner objects of class c.

In addition following conditions must always hold:

xc1 ≤ xc2 · xc3 · U(c1)

xc2 ≤ xc1 · xc3 · U(c2)

xc3 ≤ xc1 · xc2 · U(c3) .

These inequations express that no more objects of a distinct class are allowed to be
instantiated than possible links can be built by combining all partner objects under full
usage of its multiplicity range.

For the symmetric unique case (i.e., uniq(r1) = uniq(r2) = uniq(r3) = uniq) we must
also ensure that we have enough distinct objects:

xc1 > 0 ∧ xc2 > 0 =⇒ xc3 ≥ L(c3)

xc2 > 0 ∧ xc3 > 0 =⇒ xc1 ≥ L(c1)

xc1 > 0 ∧ xc3 > 0 =⇒ xc2 ≥ L(c2) .

Based upon this insights in the ternary case we can generalise our results from the
previous chapters for n-ary associations with n ≥ 2. Note that we explicitly focus on
symmetric n-ary associations for several reasons:

• Besides the several possible Uml semantic interpretations (which we avoid by
formalising definitions from the Uml specification) the (intended) semantics of
mixed (i.e., asymmetric) n-ary associations remains pretty unclear.

• There is no need for mixed associations in the industry, that means we never
saw any mixed multiary association in use (nor the demand for it as conceptual
modelling instrument).
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• As we will show the efficiency of mixed associations cannot be as optimised as with
symmetric associations within our methodology.

So let {r1 : c1, r2 : c2, . . . , rn : cn} be a n-ary association with

mult(r1) = [L(c1), U(c1)]

mult(r2) = [L(c2), U(c2)]

...

mult(rn) = [L(cn), U(cn)] .

Definition 31 The satisfiability condition (sat-condition) for a specification S, denoted
by sc(S), is the formula consisting of the conjunction of

∧

c∈Cl

xc ≥ lb(c)

expressing the lower bound constraints, and

∧

{...,ri:d,...}∈A













∧

{...,rj :c,...}∈A
c 6=d

xc > 0 ∧ xd = 0







=⇒ L(d) = 0







expressing that a non-instantiated class type can only appear if the lower multiplicity
explicitly allows it, and








∧

{...,ri:c,...}∈A

xc > 0



 =⇒
∧

{...,ri:c,...,rj :d,...}∈A

xc · L(d) ≤ xd · U(c)





expressing the multiplicity constraints similarly to the case with binary associations. In
the unique case following conditions

∧

{...,ri:d,...}∈A













∧

{...,rj :c,...}∈A
c 6=d

xc > 0







=⇒ xd ≥ L(d)







must additionally hold.

These conditions can easily verified by the following lemma stating that our original
observation of

xc1 · xc2 · · ·xcn−1
· L(cn) ≤ l ≤ xc1 · xc2 · · ·xcn−1

· U(cn)
xc1 · xc2 · · ·L(cn−1) · xcn

≤ l ≤ xc1 · xc2 · · ·U(cn−1) · xcn

...
L(c1) · xc2 · · ·xcn−1

· xcn
≤ l ≤ U(c1) · xc2 · · ·xcn−1

· xcn
.

(6.1)

is equal to above conditions.
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Lemma 32 The formula

∃l
∧

d∈Cl






∏

c∈Cl
c 6=d

xc · L(d) ≤ l ≤
∏

c∈Cl
c 6=d

xc · U(d)






is satisfiability-equivalent to

∧

d,d′∈Cl






∏

c∈Cl
c 6=d

xc · L(d) ≤
∏

c∈Cl
c 6=d

xc · U(d′)






which holds if and only if
(

∃d, d′ : d 6= d′ ∧ xd = 0 ∧ xd′ = 0

)

∨

(

∃d : xd = 0 ∧
∧

d6=d′ xd′ > 0 ∧ L(d) ≤ U(d) ∧ L(d) = 0

)

∨

(
∧

c∈Cl xc > 0 ∧
∧

c,d∈Cl xc · L(d) ≤ xd · U(c)

)

holds.

Further we note that the inequations

xc1 ≤ xc2 · · ·xcn
· U(c1)

...

xcn
≤ xc1 · xcn−1

· U(cn)

which we observed in the example are subsumed by Equations 6.1.

An Excursion to Balanced Sequences of Tuples An initial subsequence 〈t1, . . . , tk〉
of a sequence τ = 〈t1, . . . , tk, . . . 〉 is called a prefix of τ . A sequence τ of k elements over
a set T is called evenly distributed w.r.t. T , if every element of T occurs at least ⌊k/|T |⌋
and at most ⌈k/|T |⌉ times in τ .

Let t|j denote the tuple obtained from t = (t1, . . . , tn) by removing the j-th component:

t|j = (t1, . . . , tj−1, tj+1, . . . , tn) .

The operation is extended homomorphically to sets and sequences of tuples:

T |j = {t|j | t ∈ T}

〈t1, t2, t3, . . . 〉|j = 〈t1|j, t2|j, t3|j, . . . 〉 .

We call a sequence τ of n-tuples over a set T balanced w.r.t. T if for all 1 ≤ j ≤ n, the
sequence τ |j is evenly distributed w.r.t. T |j.

Let Zi = {0, . . . , i− 1}.
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Conjecture 33 Let i1, . . . , in be any positive integers. There is a sequence τ enumer-
ating the elements of T = Zi1 ×· · ·×Zin such that every prefix of τ is balanced w.r.t. T .

Example 34 The following enumeration of Z2 × Z2 × Z3 satisfies the conjecture:

(0, 0, 0)
(1, 1, 0)
(0, 1, 2)
(1, 0, 1)
(0, 1, 1)
(0, 0, 2)
(1, 1, 2)
(1, 0, 0)
(0, 0, 1)
(1, 1, 1)
(0, 1, 0)
(1, 0, 2)

Example 35 Let i1, . . . , in be pairwise coprime. The sequence over Zi1 ×· · ·×Zin that
starts with (0, . . . , 0) and continues by adding 1 (modulo ij) simultaneously to every
component of the preceding element, satisfies the conjecture.

Example 36 The following sequences over Z
n
2 satisfy the conjecture:

00
11
01
10

000
110
011
101
001
111
010
100

000
011
101
110
001
010
100
111

0000
1100
0110
1010
0011
1111
0101
1001
0001
1101
0111
1011
0010
1110
0100
1000

0000
0011
0101
0110
1001
1010
1100
1111
0001
0010
0100
0111
1000
1011
1101
1110

Let sc(S) be the conjunction of above constraints for a given specification S.

Theorem 37 A specification S is weakly consistent if and only if the formula sc(S) is
solvable.
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The proof of the theorem assumes the validity of Conjecture 33.

Proof We prove the two directions separately.

(=⇒) Let the specification S = 〈A,mult , uniq , lb〉 be weakly consistent, and let C =
〈O,L, class, ass , obj 〉 be a configuration satisfying S. W.l.o.g. we assume that C is
normalised, i.e., that it does not contain multiple links corresponding to uniq-uniq asso-
ciations.

The lower bound constraints xc ≥ lb(c) hold since we have |c| ≥ lb(c) for all classes c.
For the symmetric case (i.e., uniq(r1) = . . . = uniq(rn)) now consider n classes c1,

c2, . . . , cn connected by a n-ary association {r1 : c1, r2 : c2, . . . , rn : cn}. Let l be the
number of all links connecting n− 1 objects with the remaining object. Because of

δ({r1 : c1, . . . , rn−1 : cn−1}) ∈ mult(rn) = [L(cn), U(cn)]
δ({r1 : c1, . . . , rn−2 : cn−2, rn : cn}) ∈ mult(rn−1) = [L(cn−1), U(cn−1)]

...
δ({r2 : c2, . . . , rn : cn}) ∈ mult(r1) = [L(c1), U(c1)] ,

(6.2)

we obtain for the first condition with n−1 fixed objects of class c1 . . . cn−1 the inequation

L(cn) ≤ lc1...cn−1
≤ U(cn) ,

where lc1...cn−1
denotes the number of links between the tuple of n− 1 fixed objects and

the remaining object of class cn. This generalises to following inequation

xc1 · xc2 · · ·xcn−1
· L(cn) ≤ l ≤ xc1 · xc2 · · ·xcn−1

· U(cn) ,

since it expresses all possible combinations of objects of classes c1 . . . cn−1.
With the same arguments we build constraints for the remaining n− 1 combinations

of Condition 6.2 and obtain

xc1 · xc2 · · ·xcn−1
· L(cn) ≤ l ≤ xc1 · xc2 · · ·xcn−1

· U(cn)
xc1 · xc2 · · ·L(cn−1) · xcn

≤ l ≤ xc1 · xc2 · · ·U(cn−1) · xcn

...
L(c1) · xc2 · · ·xcn−1

· xcn
≤ l ≤ U(c1) · xc2 · · ·xcn−1

· xcn
.

(6.3)

Finally, if uniq(r1) = uniq (similar argumentation for uniq(ri) with i = 2..n) holds
then any n − 1 partner objects of class c2 . . . cn have to be connected to at least L(c1)
different objects of class c1, i.e., if the number of partner objects is greater than zero,
then the number of c1-objects has to be greater than L(c1):

xc2 > 0 ∧ . . . ∧ xcn
> 0 =⇒ xc1 ≥ L(c1) .
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(⇐=) Given a specification S and a solution σ of the sat-condition sc(S) we construct
a configuration C = 〈O,L, class, ass, obj 〉 that satisfies S.

For all classes c ∈ Cl , we define O and class such that O contains exactly σ(c) objects
of class c. We construct L and obj according to Algorithm 5.

The number chosen in line 4 exists by definition of sc(S) and Lemma 32. The sequence
computed in line 5 exists by Conjecture 33. Since the sequence fulfils the condition that
every prefix is balanced w.r.t. T , we know that the links follow a uniform distribution
for n-ary associations. That means we obtain in the non-unique case





l/

∏

d∈Cl
c 6=d

σ(d)





 ≤ δ(obj (e) \ {rc : o}) ≤








l/
∏

d∈Cl
c 6=d

σ(d)








, (6.4)

where obj (e) denotes the components of any edge e. By the choice of l we have

∏

d∈Cl
c 6=d

xd · L(c) ≤ l ≤
∏

d∈Cl
c 6=d

xd · U(c)

and we obtain
L(c) ≤ δ(obj (e) \ {rc : o}) ≤ U(c)

by simple arithmetic.
A similar argumentation holds for the symmetric unique case. Since we may assume a

uniform distribution we can be sure that the links in Equation 6.4 have different partner
objects. Therefore we conclude

L(c) ≤ γrc
(obj (e) \ {rc : o}) ≤ U(c)

with the same rationale as in the non-unique case.
We conclude that the configuration C satisfies the specification S. 2

Example 38 Let a = {r1 : A, r2 : B, r3 : C, r4 : D} be the 4-ary association of the
specification S depicted in Figure 6.2 with

mult(r1) = [1, 2] mult(r2) = [1, 2]

mult(r3) = [2, 4] mult(r4) = [1, 3]

and

uniq(r1) = uniq uniq(r2) = uniq

uniq(r3) = uniq uniq(r4) = uniq .

Further assume

lb(A) = lb(B) = lb(C) = lb(D) = 1 ,
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Algorithm 5 Constructing the links of a configuration with multiary associations

1: let L = ∅
2: let Zij = {0, . . . , i− 1} of the j-th class where j has i instantiations
3: for all sets {c1, . . . , cn} ∈ 2Cl with {r1 : c1, . . . , rn : cn} ∈ A do

4: choose a number l such that

xc1 · xc2 · · ·xcn−1
· L(cn) ≤ l ≤ xc1 · xc2 · · ·xcn−1

· U(cn)
xc1 · xc2 · · ·L(cn−1) · xcn

≤ l ≤ xc1 · xc2 · · ·U(cn−1) · xcn

...
L(c1) · xc2 · · ·xcn−1

· xcn
≤ l ≤ U(c1) · xc2 · · ·xcn−1

· xcn

holds.
5: Compute a sequence τ enumerating the elements of

T = Zi1 × · · · × Zin

(matching the domains of each class) such that every prefix of τ is balanced with
restriction to T

6: Build links with matching roles r1, . . . , rn and objects corresponding with the
indices as proposed by τ

7: Add these links to L
8: end for

9: return L
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Figure 6.2.: A 4-ary association (without drawn uniq constraints)

i.e., we want to avoid the trivial empty solution.
Then the sat-condition sc(S) is the conjunction of

xA ≥ 1 xB ≥ 1

xC ≥ 1 xD ≥ 1

and

xC · 1 ≤ xD · 4 xD · 2 ≤ xC · 3

xB · 1 ≤ xD · 2 xB · 2 ≤ xC · 2

xA · 1 ≤ xD · 2 xA · 2 ≤ xC · 2

and

xD · 0 ≤ xB · 3 xD · 1 ≤ xA · 3

xC · 0 ≤ xB · 4 xC · 1 ≤ xA · 4

xA · 0 ≤ xB · 2 xB · 1 ≤ xA · 2

and

xA ≥ 1 xB ≥ 0

xC ≥ 2 xD ≥ 1 .

Note that some subsumed constraints which evaluate always to true under the other
stated constraints have already been removed in order to simplify the presented output.

Example 39 In this example we see that in general our presented conditions cannot
be applied for asymmetric n-ary associations. So let a = {r1 : A, r2 : B, r3 : C} be the
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Figure 6.3.: A Uml specification with an asymmetric ternary association

ternary association of the specification S depicted in Figure 6.3 with

mult(r1) = [1, 2]

mult(r2) = [2, 5]

mult(r3) = [2, 3]

and

uniq(r1) = uniq

uniq(r2) = nuniq

uniq(r3) = nuniq .

Further assume

lb(A) ≥ 1 .

We obtain

xA · xB · 2 ≤ l ≤ xA · xB · 3

xA · 2 · xC ≤ l ≤ xA · 5 · xC

1 · xB · xC ≤ l ≤ 2 · xB · xC

and

xA ≤ xB · xC · 2

xB ≤ xA · xC · 5

xC ≤ xA · xB · 3

and
xA ≥ 1 .
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Now consider the configuration with xA = 1, xB = 2, and xC = 1 consisting of five links:

(a1, b1, c1)

(a1, b1, c1)

(a1, b1, c1)

(a1, b2, c1)

(a1, b2, c1)

This is a valid configuration according to the definition of Uml associations, but our
inequations deny the usage of five links (i.e., l = 5) because

1 · 2 · 1 ≤ 5 6≤ 2 · 2 · 1 .

Even neglecting the relevant constraint, i.e.,

1 · xB · xC ≤ l [≤ 2 · xB · xC ]

does not lead to a valid general approach, since then the configuration

(a1, b1, c1) (a1, b1, c1)

(a1, b2, c1) (a1, b2, c1)

(a2, b1, c1) (a2, b1, c1)

(a2, b2, c1) (a2, b2, c1)

(a3, b1, c1) (a3, b1, c1)

(a3, b2, c1) (a3, b2, c1)

with xA = 3, xB = 2, xC = 1 and l = 12 is accepted by the inequations but does not
form a valid configuration according to the Uml definition.

6.2. Solving Extended Linear Diophantine Inequations

As we already know solving Diophantine inequations without further knowledge about
their structure often leads to runtime performance in NP. Anyway, in the previous chap-
ter we have presented an efficient approach for solving our Diophantine inequations by
taking advantage of their variable arrangements. This led us to a weighted directed graph
which traversal told us valuable information on the system of inequations consistency.

In this section we will discuss the new extended linear Diophantine inequations in the
n-ary case and show that by the reduction stated in Lemma 32 we can use our efficient
methods as presented in the binary case. That means although we originally have up to
n− 1 variables in a single inequation, e.g.,

xc1 · xc2 · · ·xcn−1
· L(cn) ≤ l ≤ xc1 · xc2 · · ·xcn−1

· U(cn) ,

Lemma 32 shows the transformation into inequations with only two variables by pair-
wise combination of all multi-variable inequations. The conditions introduced by this

66



transformation for the special case with the lower multiplicity being zero can also be
easily checked, since they need only be checked once for a given consistency problem,
i.e., whether e.g.,

xc1 > 0 ∧ xc2 > 0 ∧ . . . ∧ xcn
= 0 =⇒ L(cn) = 0 (6.5)

holds. As in the binary case lower bound constraints and uniqueness constraints need
not be considered for consistency since a solution satisfying these constraints can always
be found by multiplication of the checked solution.

In the same manner the algorithms for constructing minimal models hold for our
approach in the extended n-ary case. Since the sc(S) conditions state either only in-
equations with two variables or easily checkable conditions as Equation 6.5 both the
algorithms for finding minimal rational as for finding minimal integer solution can be
used without modification.

Example 40 Have a look at the inequations from Example 38. Although the sc(S)
conditions have to deal with a specification S consisting of a 4-ary associations we
obtain only linear Diophantine inequations with at most two variables, i.e., of the form

xc ≥ n

with n ∈ N and
xc · L(d) ≤ xd · U(c) .

As a result all existing methodology from previous chapters can be fully applied.

Thus a major contribution can be seen in handling consistency checking and mini-
mality computation for symmetric n-ary associations with the same efficiency as with
binary associations under the Uml semantics (i.e., look-across semantics) with its special
behaviour for n-ary associations (see the detailed discussion in Section 3.2). This is an
extension to the results already known in the literature for associations under look-here
semantics.
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7. Incremental Update of UML Class

Configurations

It would be illogical to assume that all conditions remain stable.

Spock, ”The Enterprise Incident”, stardate 5027.3

As a final consideration in this thesis we consider the problem of changing demands
in configuration management. That means we investigate the situation for configura-
tions with changing requirements after we have computed minimal solutions and have
checked consistency. Consider for example a system of network switches which need to
be extended to fulfil higher network performance demands: normally you would like to
add a few switches without restructuring the whole network.

7.1. Different Requirements for Changing

Configurations

In order to formalise incremental configuration updates we need to distinguish different
requirements regarding extensibility. We can identify at least three approaches:

1. The specification changes whereas the configuration stays unchanged. This means
that without new direct configuration-specific requirements the configuration can
easily become inconsistent. Under this circumstance we do not think an incremen-
tal approach is a good solution and prefer to solve the (possibly completely new)
problem with our existing framework presented in the previous chapters.

2. The specification stays unchanged and only new requirements are set regarding
the given valid configuration. We restrict the new requirements to adding new
instances and links (i.e., a real extension) but forbid the reduction of existing
instances. That means new constraints consist only of (higher than existing) lower
bound requirements lb(c) ≥ n for n ∈ N. Further we work under the assumption
that links between instances are cheap. Hence the major minimality criterion is a
class-based minimality argument.

3. The specification stays unchanged and only new requirements are set regarding
the given valid configuration. Similar to the previous approach we only consider
real extensions but under the assumption that links are also an important aspect
for minimality aspects. This means that link creation can be considered as an
expensive operation.
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7.2. Strategies for Handling Incremental Updates

We restrict our considerations to symmetric associations with the same arguments as
for n-ary associations in the previous chapter. Under this assumption we are going to
present strategies for handling the two approaches we identified in the previous section
for extending configurations.

Extending Configurations under Class-Based Minimality

Let us at first consider the situation for symmetric associations in the non-unique
case. Then the following procedures describes a valid strategy for solving the prob-
lem:

1: Let L be an empty set of links
2: Let S = 〈A,mult , uniq , lb〉 be the input specification
3: Let C be the valid configuration to be extended
4: Let lb ′ denote the new lower bound constraints, and let S ′ = 〈A,mult , uniq , lb ′〉
5: Solve sc(S ′) with our existing framework, i.e., we know the number of necessary

instances for each class and the number of maximal necessary links l. Note that
we take the maximum number of allowed links since links are inexpensive and the
maximum guarantees us that no instance will have to few links as long as the input
configuration is valid

6: Insert the existing links from C into the new configuration C ′, i.e., to L
7: Build the remaining l − lold links by choosing the objects with the minimal number

of connected links at each side of the association and add them to L
8: return L

The correctness of the algorithm can be verified since we have proven in previous
chapters that our framework calculates the correct number of links and that we can find
a configuration for the given amount of links. Since the non-unique case does not enforce
any constraints on the link arrangement (e.g., no doubled links) we are done.

When dealing with the unique case the situation gets more problematic. But we take
advantage of the fact that links are (very) cheap (e.g., imagine a component system of
network switches: it is far cheaper and easier to rearrange some cables than buying more
hardware switches than actually necessary):

1: Let L = ∅
2: Let S = 〈A,mult , uniq , lb〉 be the input specification
3: Let C be the valid configuration to be extended
4: Let lb ′ denote the new lower bound constraints, and let S ′ = 〈A,mult , uniq , lb ′〉
5: Solve sc(S ′) with our existing framework
6: If the existing links are not absolutely uniformly distributed and do not exceed the

minimal number of necessary links at each object, simply remove all existing links
7: Perform our existing link algorithms either on the (well-arranged) existing links or

start with the empty graph.
8: Add these created links to L
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A B
2 uniq

uniq 2..3

Figure 7.1.: A Uml specification in the context of extending configurations

9: return L

Since we either start with the empty graph (where everything has been shown in
previous chapters to work) or with well-arranged links (which represent an intermediary
stop within the original algorithm by definition) we are done, too.

Extending Configurations under Class- and Link-Based Minimality

The task of extending configurations when both class instances and link instances should
be kept minimal shows to be a complex undertaking. This results in a numerical opti-
misation problem to be solved:

1: Let L = ∅
2: Let S = 〈A,mult , uniq , lb〉 be the input specification
3: Let C be the valid configuration to be extended
4: Let lb ′ denote the new lower bound constraints, and let S ′ = 〈A,mult , uniq , lb ′〉
5: Solve sc(S ′) with our existing framework, i.e., we know the number of necessary

instances for each class and the number of maximal necessary links l.
6: Compute the solution to the numerical optimisation problem of finding the minimal

number of link relocations such that both the number of instances and of links is
minimal

7: Build these links and add them to L
8: return L

The algorithm is correct by definition of the optimisation problem. The complexity
of this task is at least in NP, naive implementations will show exponential runtime
behaviour due to backtracking of possible link relocation combinations. It seems to be
clear that the non-unique case should be handled much easier in average cases since fewer
constraints are active whereas unique constraints tend do trigger more link deletions
(since doubled links must be avoided as long as other combinations are possible).

Example 41 In this example we can see a simple extension of our existing framework
with systems of linear Diophantine inequations that does in general not suffice to solve
the problem of extending configurations efficiently. Anyway, it presents a possible ap-
proach and shows which solutions become possible due to the interaction between the
existing configuration and the newly created objects and links.

Let S be the specification with the association {r1 : A, r2 : B} depicted in Figure 7.1
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such that

mult(r1) = [2, 2]

mult(r2) = [2, 3]

and

uniq(r1) = uniq

uniq(r2) = uniq

hold. Assume the valid configuration with xA = 3, xB = 4 and l = 8 consisting of the
following links

(r1 : a1, r2 : b1) (r1 : a2, r2 : b1)

(r1 : a1, r2 : b2) (r1 : a2, r2 : b2)

(r1 : a1, r2 : b3) (r1 : a2, r2 : b4)

(r1 : a3, r2 : b3) (r1 : a3, r2 : b4)

is given. Further assume the extension constraint enforces an additional A instance, i.e.,
lb(A) ≥ 4. Then one might have the idea to extend our original inequations to

2 · x′A ≤ l′ ≤ 3 · x′A + 1

2 · x′B ≤ l′ ≤ 2 · x′B ,

where the primed variables denote the number of instances that are needed in addition
to the existing ones and where the coefficients leading to inhomogeneous inequations
denote the number of free links for objects of that class. Then the inequation simplifies
to

2 · x′a ≤ 2 · x′b ≤ 3 · x′a + 1 .

Now consider the solutions for this equation:

x′A x′B
1 1
1 2
2 2
2 3
3 3
3 4
3 5

The last line, i.e., a configuration with 3 new A objects and 5 new B objects is a
case which becomes only possible under the already existing configuration since the one
remaining attachment point at a3 is needed.
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8. Conclusion

Beware of computerized fortune-tellers!

In this thesis we presented efficient methods for configuration management, i.e., meth-
ods for consistency checking or for the construction of minimal solutions for configuration
systems. Due to the wide acceptance of Uml as modelling instrument in industry we
chose to use Uml as our specification language. We started with an overview of existing
approaches especially in the Er literature and described the differences between Er and
Uml semantics under different interpretations. We gave a formal semantic definition for
relevant Uml parts, i.e., class diagrams with selected association types, like binary and
n-ary associations with uniqueness constraints. We presented methods for checking the
consistency of specifications that work in polynomial time. This is done by a transla-
tion of Uml specifications to systems of linear Diophantine inequations. We proposed
algorithms to solve these inequations efficiently and gave strategies for constructing con-
figurations from the solutions to these inequations. For the minimality computations we
introduced algorithms based on weighted directed graphs for which intelligent traversal
returns the minimal rational solution in polynomial time. These results were shown to
hold both for binary associations and for the generalised case with n-ary associations.
We gave an outlook on the situation for incrementally updating given configurations un-
der new constraints. We identified several possible demands in this context of extending
configurations and proposed strategies to solve each of them. Although several impor-
tant problems have been solved in this thesis there is much room for further research in
this area. For example one could investigate the situation for incremental updates more
thoroughly and come up with ideas for more efficient approaches. Another issue might
be the enumeration of all possible solutions, e.g., as linear combination of base vectors,
and not only the minimal solutions.
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A. Resources

Human resources are human first, and resources second.
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sc, see Satisfiability condition
δ, 31
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Configuration, 30
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Entity Relationship Diagram, 12
ER, see Entity Relationship Diagram

Inconsistent, 31
Incremental, 68
Interpretation, 35

Limping links, 27
Look-across, 23
Look-here, 23

Mapping, 12
Method, 19
Minimal integer solution, 51
Minimal rational solution, 46
Multiplicity, 21

Non-unique, 21
Normalised, 33

Object Constraint Language, 21
OCL, see Object Constraint Language

Potential tuples, 27

Realizer, 17
Relationship, 12
Role, 12

Satisfiability, 31
Satisfiability condition, 35
Sequence, 59
SERM schema, 13
Solution, 35
Specification, 29
Strongly consistent, 31
Symmetric, 30

UML, see Unified Modeling Language
UML-constraint, 41
Unified Modeling Language, 19
Unique, 21
Uniqueness constraint, 21
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