A UML Profile for Core Components and their Transformation to XSD

Christian Huemer
Institute of Software Technology
Vienna University of Technology

Favoritenstr. 9-11/188, 1040 Vienna, Austria

huemer @big.tuwien.ac.at

Abstract

In business-to-business e-commerce, traditional elec-
tronic data interchange (EDI) approaches such as
UN/EDIFACT have been superseded by approaches like
web services and ebXML. Nevertheless, a precise and com-
mon semantic definition of business documents exchanged
is needed. In order to become independent from a trans-
fer syntax, we prefer defining the documents as platform
independent models. An approach that follows this idea is
the UN/CEFACT'’s core component standard. Core compo-
nents are reusable semantic building blocks which can be
combined in various ways to create shared libraries of in-
teroperable business documents. In order to use standard
UML modeling tools we have developed a UML profile for
the core components standard. Furthermore, we adapt the
UN/CEFACT naming and design rules for the UML profile
in order to derive XML schemas for business document ex-
changes. The overall approach is demonstrated by using a
specific example from the field of e-commerce.

1 Motivation

The idea of harmonizing data exchanged between two
business partners is not new and was adopted by a set
of standardization bodies. It became known as electronic
data interchange (EDI). Probably the best known stan-
dard is UN/EDIFACT [11], maintained by the United Na-
tions Centre for Trade Facilitation and Electronic Business
(UN/CEFACT). In the late 1990ies XML became the de-
facto standard for exchanging data over the Internet. As a
result, various standards organizations developed standard
business document types based on XML. An overview of
different XML-based business document standards is pre-
sented by Li [5].

Although an XML-based approach seemed to be very
promising at first sight, it soon became clear that the move
to XML will not solve all the interoperability problems in

1-4244-0832-6/07/%$20.00 ©2007 IEEE.

Philipp Liegl
Research Studios Austria
Austrian Research Centers GmbH - ARC
Thurngasse 8/20, 1090 Vienna, Austria
pliegl @researchstudio.at

business document exchanges. First of all, a multitude of
different and competing XML-based document standards
were developed that had no common ontological base. As
a consequence, one had to implement either many different
standards or to stick to a limited user base. Furthermore,
the standardization approach of XML-based standards was
similar to the one used in EDL. It is the attempt to include
every possible element that may be required in any part-
nership, even knowing that it is not used in most of the
partnerships. This results in overloaded and highly op-
tional document structures of which only about 3% are used
in a particular partnership. Accordingly, partners have to
agree on a message implementation guideline cutting down
the standard to their own needs before implementing the
inter-organizational system. When XML appeared, another
drawback was realized by designers and implementers of
UN/EDIFACT: the uncertainty of future developments. If
the semantics of a business document type do not change,
it is ineffective to start the standardization effort for each
transfer syntax again.

Knowing these limitations UN/CEFACT - which we are
a member of - had the idea to develop an ontological base
of re-useable building blocks for creating shared libraries
of interoperable business documents. This base is built
upon the most complete business ontology that exists to-
day, i.e. the United Nations Trade Data Element Dictio-
nary (UN/TDED). The UN/CEFACT effort became known
as core components. It was initially started as part of the
ebXML standards suite [9]. The current version of the core
components standard released by UN/CEFACT is 2.1 [13]
with 3.0 under development. Today, core components are
not seen as an approach limited to ebXML. Rather they are
a platform independent data modeling approach for busi-
ness documents. Naming and design rules will be used to
transform the models to a specific transfer syntax. In this
paper we demonstrate an implementation of the core com-
ponents UML profile in the UML modeling tool Enterprise
Architect. Furthermore a tool-supported transformation of
UML based core component definitions to XML schemas

298

is presented. The generated schemas [16] may be used in
ebXML as well as Web Service platforms

The core components standard is based on its own meta-
model. This resulted in some serious drawbacks for practi-
cal use. Tool support for core components modeling is very
limited and there is no format defined to register and ex-
change core components. Accordingly, the standardization
and harmonization process of core component instances is
based on spread sheets. In order to overcome these limita-
tions we started a project within UN/CEFACT developing
a UML profile for core components. Thereby, we hope to
gain better tool support and to use XMI for registering and
exchanging core components. It follows that the transfor-
mation to XML schemas is started from UML class dia-
grams. Today we know many different approaches to map
UML to XML, e.g. [1], [2], [3], [4], [10], [6]. Our approach
differs from these ones by being based on the ontological
basis of core components, by a well-defined mechanism to
generate schemas from different business libraries and by
incorporating the UN/CEFACT naming and design rules.

The remainder of the paper is structured as follows: Sec-
tion 2 gives an overview of the core components standard.
The UML profile for core components which we have de-
veloped is presented in Section 3. Section 4 describes
the production process of XML schemas when applying
UN/CEFACT naming and design rules to our UML profile.
Section 5 describes future work and concludes the paper.

2 The core components technical specifica-
tion

Core components are the central building blocks of the
CCTS standard. The CCTS standard distinguishes between
three different types of core components namely basic core
components (BCC), aggregate core components (ACC) and
association core components (ASCC). Basic core compo-
nents are atomic values such as street or postal code. They
are consolidated in so called aggregate core components.
An aggregate core component consists of several basic core
components (e.g. an address). In order to model dependen-
cies between different aggregate core components so called
association core components can be used. Such a depen-
dency could for instance exist between a person and an ad-
dress. In order to give a first impression about how core
components are represented in UML, we use a simple ex-
ample as depicted in figure 1. In UML aggregate core com-
ponents are represented by classes, basic core components
by class attributes and association core components by as-
sociations and compositions respectively.

2.1 Core Components

The left hand side of figure 1 shows two sample core
components (CC) Person and Address, both of type ag-
gregate core component (ACC). An aggregate core com-
ponent can contain a set of information fields, so called
basic core components (BCC) associated with certain data
types. In the aggregate core component Person the BCC
DateofBirth is of type Date and FirstName is of type Text.
Hence, aggregate core components can be regarded as a col-
lection of related pieces of business information, forming
a distinct business meaning. The aggregate core compo-
nent Person has two association core components (ASCC)
namely Private and Work, both of type Address. Similar
to the concept pursued in object orientation, the two asso-
ciation core components Work and Private will become at-
tributes of the aggregate core component Person once the
model is transferred into code. Association core compo-
nents therefore are nothing more than basic core compo-
nents representing a complex type - in this case Address.
The aggregate core component Person shown on the left
hand side of figure 1 will therefore result in the following
set of core components: Person (ACC), Person.DateofBirth
(BCC), Person.FirstName (BCC), Person.Private.Address
(ASCC), Person.Work.Address (ASCC).

The data types used for basic core components are so
called core data types (CDT) representing the full range of
values that shall be used for the representation of a partic-
ular property. By definition, core data types do not have a
business semantic.

«ACC» «ABIE»
Person basedOn US_Person

«BCC» «BBIE»
+ DateofBirth: Date + DateofBirth: Date

+ FirstName: Text ascor 7 FEREweE Ve «ASBIE»

basedOn

+Private +US_Work

«ASCC» «ACC» CASBIE» «ABIE»
A Address US_Address

+Work

«BCC» «BBIE»

+ Country: CountryCode +US_Private| + PostalCode: Text
+ PostalCode: Text basedOn + Street: Text

+ Street: Text

basedOn

Figure 1. Dependency between Core Compo-
nents and Business Information Entities

2.2 Business Information Entities

By introducing the business context, we can qualify and
refine core components according to the needs of a specific
industry or domain. Refined core components, used in a
specific context are referred to as business information enti-
ties. Context in this case can for instance be travel industry

299

or chemical industry. An address in the first context for
instance differs from an address in second context - hence
a core component address cannot be used in both context.
However, by deriving business information entities from the
core component address the user has the possibility to use a
tailored core component address for every specific context.
Therefore a business information entity (BIE) is a restricted
core component and represents a piece or a set of business
data having a unique business semantic meaning.

The CCTS standard distinguishes between three differ-
ent business information entities, namely basic business
information entities (BBIE), aggregate business informa-
tion entities (ABIE) and association business information
entities (ASBIE). Akin to core components there are depen-
dencies between the different business information entity
types as well. Basic business information entities represent
atomic values and are consolidated in aggregate business
information entities. The dependencies between different
aggregate business information entities are modeled by
using association business information entities. The right
hand side of figure 1 shows two sample aggregate business
information entities US_Person and US_Address. Aggregate
business information entities are a collection of related
basic business information entities, conveying a certain
business meaning in a specific business context. A basic
business information entity represents a simple business
information. The aggregate business information entity
US_Address has two BBIEs namely PostalCode and Street.
Like a basic core component, a basic business information
entity has a certain data type. The data type of a basic
business information entity can either be a core data type
(CDT) or a qualified data type (QDT). Data types will be
explained in detail in section 3. Similar to the concept
of association core components, association business
information entities are attributes of an aggregation busi-
ness information entity, representing another aggregation
business information entity. In figure 1 the aggregate
business information entity US_Person has two associ-
ation business information entities namely US_Private
and US_Work. When the business information entities
are transferred into code, the ASBIEs US_Private and
US_Work will become attributes of the ABIE US_Person
and are of type US_Address. The business information
entity US_Person will therefore result in the following
set of business information entities: US_Person (ABIE),
US_Person.DateofBirth (BBIE), US_Person.FirstName
(BBIE), US_Person.US_Private.US_Address (ASBIE),
US_Person.US_Work.US_Address (ASBIE).

2.3 The Core Component Meta Model

The interdependencies between core components and
business information entities are specified in the core com-

ponents meta model. As already mentioned, we distin-
guish between a core context and a business specific context
whereas the elements of the business context depend on the
underlying core elements. Figure 2 shows the dependencies
between the used model elements.

Core Business

Core Component
Type

A

Core Data Type Qualified Data Type
(coT) (QDT)

A A

Basic Business
Information Entity (BBIE)

Basic Core
Component (BCC)

Association Business

Association Core
Component (ASCC) Information Entity
(ASBIE]

b)

Aggregate Core Aggregate Busil
Component (ACC) Information Entity (ABIE)

&

Message kK>—

Assembly

Figure 2. The core components meta model

For the sake of simplicity the generic terms core compo-
nent and business information entity are used instead of the
specific terms. Where semantic differentiation prescribes it,
the specific term will be used.

2.3.1 Deriving business information entities

ABIEs are exclusively derived from ACCs by restriction.
The two ABIEs US_Address and US_Person as shown in fig-
ure 1 are based on the core components Person and Address.
This is denoted by the basedOn dependency. Please note
that US_Address is missing the attribute Country, hence the
core component Address was restricted in order to create
the new business information entity US_Address. Associa-
tion core components and association business information
entities are related in the same manner as ACCs and ABIEs
- ASBIEs depend on ASCCs. In figure 1 this relationship is
also denoted by a basedOn dependency. The specific busi-
ness context of an ABIE and an ASBIE is shown by adding
an optional prefix to the name of the underlying core com-
ponent. In figure 1 the prefix US_ is used.

3 A UML profile for core components

For the rest of the paper the model depicted in figure 4
will serve as a reference for the explanations given. The

300

left hand side of figure 4 shows a so called tree view, where
all the packages located in the model are shown. For seven
specific packages the relevant diagrams are shown on the
right hand side of figure 4. Compelled by space limitations,
some elements are shown in the tree view, but not in the
corresponding diagram. Due to the transfer syntax indepen-
dence of core components, basically any format of repre-
sentation can be used. In order to allow the modeling of
core components with an appropriate UML tool, it was nec-
essary to describe the core components meta model using a
UML profile. The UML profile for core components defines
a set of stereotypes, tagged values and OCL constraints and
has exemplarily been implemented as a toolbar for the UML
modeling tool Enterprise Architect.

In 2005 we started the work on the UML Profile for Core
Components based on CCTS 2.01 within the TMG group
of UN/CEFACT. In October 2006 the Candidate for version
1.0 was released [14]. Figure 3 gives an overview about the
different stereotypes used in the profile. The profile con-

DataTypes Management |_ Common |_
+ BIELibrary + ABIE
+ BusinessLibrary +ACC
+ CClLibrary + ASBIE
E E + CDTLibrary E +ASCC
= EN DOClLibrary B+ basedOn
g E + ENUMLibrary E + BBIE

EN PRIMLibrary =i BCC

E + QDTLibrary g +BIE

E +CC

Figure 3. A UML profile for core components

sists of eight libraries located in the Management package,
six data types located in the DataTypes package and nine
stereotypes located in the Common package used to model
core components, business information entities and their re-
lationships.

The stereotypes in the Common package are to be read
according to the abbreviations given in section 2.1 and 2.2.

The data types used are located in the DataTypes pack-
age. A core data type (CDT) is a complex data type ac-
cording to the approved Core Component Types listed in the
CCTS standard [13] e.g. DateTime. Core data types con-
sist of exactly one attribute stereotyped as CON and zero
or more attributes stereotyped as SUP. CON refers to con-
tent component and SUP to supplementary component. The
content component element carries the actual content of the
core data type whereas the supplementary components pro-
vide additional meaning to the content component. In pack-
age 4 on the left hand side of figure 4 four core data types
are shown namely Code, Identifier, Text and Name. Due to
space limitations only Code is shown in detail in the dia-
gram of package 4. As shown in package 4, the core data
type Code has exactly one content component named Con-

tent. Its data type is String. Additionally Code has four sup-
plementary components describing the content component.
The four supplementary components are CodeListAgName,
CodeListName, CodeListSchemeURI and Languageldenti-
fier. Hence, supplementary components can be regarded as
meta information about the content component.

Like business information entities are created from core
components, qualified data types (QDT) are created from
core data types by restriction. The relationship between
a core data type and a qualified data type is shown by a
dependency stereotyped as basedOn. In package 3 of fig-
ure 4 the qualified data types CountryType and CouncilType
are shown. Both are derived from the core data type Code
which is indicated by the basedOn dependency between the
types. The core data type Code is originally defined in pack-
age 4 and has only been drawn in package 3 to show the
dependency between CDT and QDT.

A qualified data type can contain supplementary com-
ponents and must contain exactly one content component.
The supplementary components of a qualified data type are
derived from the supplementary components of the under-
lying core data type by restriction. As depicted in the dia-
gram of package 3, the core data type Code contains four
supplementary components. However, only the supplemen-
tary component CodeListName is actually used in the qual-
ified data types CountryType and CouncilType derived from
Code due to the derivation-by-restriction mechanism.

One important aspect of a qualified data type is the type
of the content component and the supplementary compo-
nents. Content component and supplementary components
of a qualified data type can be restricted to a specific set of
values by assigning an enumeration type (ENUM) to it. The
content components of the two qualified data types Coun-
tryType and CouncilType shown in package 3 of figure 4
are restricted by enumerations. The content component of
CountryType is of type CountryType_Code and the content
component of CouncilType is of type CouncilType_Code.
ENUM elements are defined in so called ENUMLibraries.
Package 6 of figure 4 shows two enumeration types Coun-
cilType_Code and CountryType_Code.

A primitive type (PRIM) represents one of the primitive
types as defined in the CCTS standard e.g. Integer. In pack-
age 7 of figure 4 three primitive types are depicted.

Within the Management package of the UML profile for
core components shown in figure 3, the different containers
for the data types are defined. Each library contains a spe-
cific data type as described in the DataType package. The
libraries are used to logically group the different element
types and facilitate their reuse in the model.

Denoted by package 1 in figure 4 a DOCLibrary is
shown. DOCLibraries contain association business infor-
mation entities imported from other packages which are
assembled to a new business document. Literally spoken,

301

a DOCLibrary therefore represents a final business docu-
ment. In package 1 of figure 4 a DOCLibrary named Hoard-
ingPermit is shown. In addition to its BBIEs, Hoarding-
Permit has four ASBIEs namely Included (leading to Atz-
tachment), Current (leading to Application), Billing (lead-
ing to Person_Identification) and Included (leading to Reg-
istration). In the DOCLibrary itself two aggregate business
information entities are defined, namely HoardingDetails
and HoardingPermit. The latter one is not used in the actual
diagram. The association business information entities are
all coming from different BIELibraries and are assembled
to the business document HoardingPermit in the DOCLi-
brary.

As an example the BIELibrary CommonAggregates is
shown in package 2. It defines four different aggregate busi-
ness information entities namely Person_Identification, Sig-
nature, Address and Application. As already explained, an
aggregate business information entity is derived from an ag-
gregate core component by restriction. The aggregate busi-
ness information entity Application is based on the aggre-
gate core component Application defined in the CCLibrary
depicted in package 5. Of the initially eleven basic core
components of the aggregate core component Application,
only two are actually used as basic business information en-
tities (CreatedDate and Type) in the aggregate business in-
formation entity Application, the others are omitted due to
the derivation-by-restriction mechanism. The only purpose
of a BIELibrary is to define the interdependencies between
business information entities and provide them for reuse in
the DOClLibraries. In package 2 of figure 4 the basic busi-
ness information entity CountryName of the aggregate busi-
ness information entity Address is of type CountryType - a
qualified data type.

Package 3 shows the QDTLibrary CommonDataTypes
and its two qualified data types CountryType and Coun-
cilType. Both data types are based on the same core data
type Code and both content components are restricted by
enumerations. The CDTLibrary in which the core data type
Code is located is shown in package 4. Due to space lim-
itations the three other core data types Identifier, Text and
Name are not shown in the diagram.

In package 6 an ENUMLibrary is presented, containing
the enumerations used in the qualified data types Country-
Type and CouncilType. Package 7 shows a PRIMLibrary
containing three primitive types String, Boolean and Inte-
ger.

Different libraries containing data types are aggregated
into so called business libraries. As shown on the left hand
side of figure 4, a core components model can contain mul-
tiple business libraries.

4 Deriving XSD schemas

The generation of XML schemas from a core compo-
nents model is shown on the basis of the model described in
figure 4.

With the use of the UML profile, a unique and unambigu-
ous representation mechanism is available for core compo-
nents. As already explained, the basic idea of core com-
ponents is to assemble business documents from predefined
building blocks. A UML diagram of core components, how-
ever, is only defining the business document on an abstract
and conceptual level. What is needed, is the transfer to a
normative document such as an XML schema, which can
then be used to validate document instances against it. In
our example we have chosen to derive XML schemas from
the core components model. The schemas are then used to
validate XML messages exchanged during a business pro-
cess. Nevertheless the generation is not necessarily limited
to XML schema and future extensions could include the
generation of RELAX NG [8] or RDF schemas [15] as well.

Due to the huge amount of core components, business
information entities etc. in a large model, a manual trans-
formation to a schema is unmanageable. Therefore we have
developed an automatic solution and implemented it in our
UMM Add-In [7] of the UML modeling tool Enterprise Ar-
chitect.

Additionally to the release of the CCTS [13] so called
Naming and Design Rules (NDR) [12] have been released
by the Applied Technology Group (ATG) of UN/CEFACT.
The recommendations given in the NDR are reflected in our
implementation.

4.1 A sample generation

Il Generate XSD from DOC

Selected Busi

=10l %]

formationfiew — 1 Settings —

| ata:d —B005 3 Bl | | M Annotate the elements

Please choose root element

|Hoar\:|\ngPerm'

“Status
INFO: {Package: data draft:EBD0S-HoardingPermit:0.4) Starting DOC schema -
creation. Please watt.

'WARN: {(Package: data:draft: EBO0S-HoardingPermit:0.4) Unable to detemine
comect datatype for attibute IsClosedFootpath in element HoardingPemit. Taking
xsd string instead

Progress

Figure 5. The XSD generator

302

AustralianGovernmentDataModel

«Core Component Model» EasyBiz Common Data Model
BY Package Overview

= [:| «BusinessLibrary: urn:au:gov:vicieasybiz:

(el

H
H

=l

CoLLL |

DoDD

=] «DocCLibrarys data:draft:EB005-HoardingPermit:0. 4

73
(1)

EB005-HoardingPermit
«ABIE* HoardingDetails
«ABIE » HoardingPermit

[«BIELibrary» data:draft:CommonAggregates: 0. 1

o CommonAgaregates

«ABIE= Address

«ABIE= Application

B «ABIE» Attachment

«ABIE=» Person_Identification
=«ABIE» Signature

] «BIELibrary= data:draft:LocallawAggregates:0. 1
-] «QDTLibrarys types:draft: CommonDataTypes:0. 1

0 CommonDataTypes
- B «QDTs CoundiType
- B «QDT# CountryType

] «CDTLibrary» types:draft:coredatatypes: 1.0
'-?_'E types:draft:coredatatypes: 1.0
[+

«C0T# Code

«CDT= Identifier

=(C0T= Text

«C0Tx= MName

«CDTLibrary= types:draft:othercoredatatypes: 1.0
«QDTLibrary= types:draft:BuildingAndPlanningDataTypes:0. 1

class CommonAggregates J

«ABIE»
Signature

«ABIE»

«BBIE»

+ Date: DateTime [0..1]
+ PersonName: Text[0..1] +
+ SignatureData: BinaryObject[0..1]

+Personal
«ASBIE»

Person_ldentification

«BBIE»
Designation: Identifier

«ASBIE»

+Assigned R
« »

«ABIE»
Address

Application

«BBIE»

+ CountryName: CountryType [0..1]

«BBIE»
+ CreatedDate: Date [0..1]

class CommonDataTypes /

«PRIM»
String

class types:draf priﬂ

«PRIM»
Boolean

«PRIM»
Integer

«Q0TLibrary: types:draft:FoodAndHealthDataTypes:0.1

class types:draﬂ:coredalatypes:tl)/ A

+ Type: Code [0..1]

«CDT»
types:draft:coredatatypes:1.0::Code

«SUP»

+ CodeListAgName: String

+ CodeListName: String

+ CodelistSchemeURI: String

+ Languageldentifier: String [0..1]
«CON»

+ Content: String

7 T
«basedOn» «basedOn»
«QDT» «QDT»
CountryType CouncilType

«SUP» «SUP»

+ CodeListName: String [0..1] ||+ CodeListName: String [0..1]
«CON» «CON»

+ Content: CountryType_Code ||+ Content: CouncilType_Code

«JDTLibrary= types:draft:LocallawDataTypes:0. 1
«CCLibrary= data:draft:CandidateCoreComponents: 0. 1

«CDT»
Code

T2 CandidateCoreCompanents

2 ErumerationTypes
«EMUM: CounciType_Code

)

=l . . «SUP»

%ﬂCC»Aplecahon + CodeListAgName: String

= W + CodeListName: String

«ACC Attad1ment + CodelListSchemeURI: String
[«EMUMLibrarys codes:draft:CommonCodes:0, 1 + Languageldentifier. String [0..1]

«CON»

Content: String

<ENUM= CountryType_Code

«EMUMLibrary: codes:draft:BuildingAndPlanningCodes: 0.1
«EMUMLibrary= codes:draft:FoodAndHealthCodes:0. 1
«EMUMLibrary= codes:draft:LocallawCodes:0.1
«PRIMLibrary types:draft:primitiveTypes

'-?_'E types:draft:primitive Types

«PRIM= Boolean

«PRIM= Integer

«PRIM: String

[+ [:I sBusinessLibrary= urn:au:gov:xmins:

class EB005-HoardingPermit)
ABIE «ABIE»
da«ta'dra»ft' HoardingPermit
CommonAggregates: +Included «BBIE»
attachment 0.* «ASBIE» + ClosureReason: Text[0..1]
«BBIE» + IsClosedFootpath: Indicator_Code [0..1]]
+ Description: Text[0..1] + IsClosedRoad: Indicator_Code [0..1]
- - - | + SafetyPrecaution: Text[0..1]
«ASBIE» «ASBIE» «ASBIE»
N
+Current 0.1 +Billing|0..1 +Included
«ABIE» «ABIE» «ABIE»
gg! 1: ft: ggreg data:draft:LocalLawAggregates:0.1::
Application 0.1::Person_ldentification Registration
«BBIE» «BBIE» «BBIE»
+ CreatedDate: Date [0..1] + Designation: Identifier + Type: RegistrationType_Code [0..1]
+ Type: Code [0..1]

Figure

4. A CCTS example

303

class CandidateCoreComponents /

(5]

«ACC» «ACC»
Application Attachment

«BCC» «BCC»
+ CreatedDate: Date + Description: Text[0..1]
+ Fee: Amount + File: BinaryObject[0..1]
+ Justification: Text + Location: Text[0..1]
+ LastUpdatedDate: Date + Size: Measure [0..1]
+ LocalReferenceNumber: Text
+ NationalReferenceNumber: Identifier
+ Reference: Text
+ RelatedReference: Text
+ Result: Code
+ Status: Code
+ Type: Code

«ASCC»

+Applicant|1
«ACC»

components:draft:
nameaddress:1.0::Party

«BCC»

+ Description: Text[0..1]
+ Role: Text[0..1]

+ Type: Code [0..1]

class EnumerationTypes /

«ENUM»
CouncilType_Code

kingston: String = Kingston City C.

String = Momington Peni...
northemgrampians: String = Northern Grampi
portphillip: String = Port Phillip Ci.

pyrenees: String = Pyrenees Shire

P

«ENUM»
CountryType_Code

+ USA: String = United Stateso...
AUT: String = Austria
+ AUS: String = Australia

T

Schemas can be generated separately for every sub-
library described in the Management package of figure 2.
Using a simple right-click on the library the user can open a
generator dialog. In most of the cases the user may want to
generate a schema from a DOCLibrary. Figure 5 shows the
dialog window for a DOCLibrary schema generator. Be-
cause a DOCLibrary can contain many aggregate business
information entities, the user must first select a root ele-
ment for the schema. After pressing Generate Schema the
user is presented a dialog for choosing the folder the gener-
ated schemas will be saved in. During the generation of the
schema, status messages are passed back to the user inter-
face. In case the UML model is erroneous, the generation
aborts and the user is presented an error message.

Generating from a DOCLibrary

In a selected DOCLibrary the Add-In starts at the se-
lected root element and pursues every outgoing aggregation
and composition connector. Interdependencies to other li-
braries are evaluated and the necessary schemas are gen-
erated. Figure 6 shows the XSD schema which has been
created for the DOCLibrary HoardingPermit depicted in
package 1 of figure 4. In line 1 of figure 6 the necessary
namespaces for the imported schemas are defined. Relevant
schemas are automatically generated and imported for ev-
ery element defined in a different package and used in the
DOCLibrary. The schema imports are shown in the lines
2 - 5. Four different schemas are generated and imported.
In line 2 a schema defining the core data types used by the
ABIEs in the DOCLibrary is imported. Line 3 imports a
schema defining the qualified data types used by the ABIEs
in the DOCLibrary. And finally line 4 and 5 import two
BIELibraries in which the additional ABIEs are defined for
the use in the DOCLibrary. For the selected root element
HoardingPermit exactly one element is defined in line 18.
The root element is of type doc:HoardingPermitType de-
fined in line 6.

For every aggregate business information entity a com-
plexType is defined which is named after the business entity
plus a Type postfix. A complexType for an aggregate busi-
ness information entity is defined by a sequence consisting
of the basic business information entities and association
business information entities the ABIE contains. As de-
picted in line 6, first the elements for the BBIEs are defined.
The data types and the multiplicities are taken according to
the definition in the UML model and transferred into the
XML schema. The data type of the BBIEs ClosureReason
and SafteyPrecaution defined in line 8 and 11 of figure 6 is
of type core data type. This can easily be seen by examin-
ing the namespace assigned to the prefix cdt/. Hence the
type definition of the XML element points to the right ele-
ment in the imported schema. Per contra the data types of
the BBIEs IsClosedFootpath and IsClosedRoad are of type
qualified data type. Analogically to core data types, the type

definitions of the two elements point to the right elements
in the imported qualified data type schema, identified by the
namespace-prefix gdtl.

After the BBIEs of an ABIE are evaluated, the XML
generator processes the ASBIEs emanating from this ABIE.
Line 12 - 15 show the definitions for the four ASBIEs em-
anating from HoardingPermit. Whereas the name of an
BBIE is simply determined by taking the name specified by
the attribute in the UML class diagram, ASBIEs are treated
differently. The name of an ASIBE is determined by the
role name of the ASBIE aggregation plus the name of the
target ABIE, the ASBIE aggregation points to. The com-
pound names of the four ASBIEs of HoardingPermit are In-
cludedAttachement, CurrentApplication, IncludedRegistra-
tion and BillingPerson_ldentification. Multiplicities for AS-
BIEs are taken from the aggregation definition in the UML
model. The type of an ASBIE is determined by the type
of the ABIE, the aggregation points to. In the lines 12 -
14 the types are defined in a schema identified by the pre-
fix commonAggregates which has been generated from the
BIELibrary CommonAggregates shown in package 2 of fig-
ure 4.

Generating from a BIELibrary

The generation of a schema from a BIELibrary fol-
lows the same principle as the generation of a DOCLibrary
schema. A BIELibrary itself can contain ABIEs from other
BIELibraries, hence schemas of other BIELibraries are im-
ported into the generated schema if necessary. In package
2 of figure 4 the BIELibrary CommonAggregates is shown.
The ABIE Person_ldentification has two ASBIEs emanat-
ing from it namely Signature and Address. One particularity
is, that Address is connected by an aggregation while all the
ABIE connections we saw so far were compositions. If an
ASBIE is connected by a composition the ASBIE is first de-
clared globally and then referenced in the ABIE it belongs
to. Figure 7 shows a part of the schema generated for the
BIELibrary CommonAggregates. In line 21 the ASBIE As-
signedAddress is first declared globally and then referenced
in line 26. This mechanism can also be applied in DOCLI-
braries.

20 [.]

21 <xsd:element name="AssignedAddress" type="commonAggregates:AddressType"/>

22 <xsd:complexType name="Person_IdentificationType">

23 <xsd:sequence>

24 <xsd:element name="Designation" type="udt2:IdentifierType"/>

25 <xsd:element name="PersonalSignature" type="commonAggregates:SignatureType"/>
26 <xsd:element ref="commonAggregates:AssignedAddress"/>

27 </xsd:sequence>

28 </xsd:complexType>
.|

Figure 7. Compositions - defining the ASBIE
globally

Generating from a CDTLibrary
Figure 8 shows a fraction of the schema, created for the

304

1 <xsd:schema xmlIns:doc="urn:au:gov:vic:easybiz:data:draft:EB005-HoardingPermit" xmIns:commonAggregates="
urn:au:gov:vic:easybiz:data:draft: CommonAggregates" xmlIns:qdt1="urn:au:gov:vic:easybiz:types:draft:QualifiedDataTypes"
xmlns:ccts="urn:un:unece:uncefact:documentation:standard:CoreComponentsTechnicalSpecification:2" xmIns:bie2="
urn:au:gov:vic:easybiz:data:draft:LocalLawAggregates" xmins:cdt1="un:unece:uncefact:data:standard:CDTLibrary:1.0"
attributeFormDefault="unqualified" elementFormDefault="qualified" targetNamespace="
urn:au:gov:vic:easybiz:data:draft: EBO05-HoardingPermit" version="0.2" xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

2 <xsd:import schemalocation="../urn_au_gov_vic_easybiz_/types_draft_coredatatypes_1.0.xsd" namespace="

un:unece:uncefact:data:standard:CDTLibrary:1.0" />

3 <xsd:import schemalocation="../urn_au_gov_vic_easybiz_/types_draft_BuildingAndPlanningDataTypes_0.1.xsd"
namespace="urn:au:gov:vic:easybiz:types:draft:QualifiedDataTypes" />
4 <xsd:import schemal.ocation="../urn_au_gov_vic_easybiz_/data_draft. CommonAggregates_0.1.xsd" namespace="

urn:au:gov:vic:easybiz:data:draft: CommonAggregates" />

5 <xsd:import schemalocation="../urn_au_gov_vic_easybiz_/data_draft_LocalLawAggregates_0.1.xsd" namespace="
urn:au:gov:vic:easybiz:data:draft:LocalLawAggregates" />
6 <xsd:complexType name="HoardingPermitType">
7 <xsd:sequence>
8 <xsd:element minOccurs="0" name="ClosureReason" type="cdt1:TextType" />
9 <xsd:element minOccurs="0" name="IsClosedFootpath" type="cdt1:Indicator_CodeType" />
10 <xsd:element minOccurs="0" name="IsClosedRoad" type="qdt1:Indicator_CodeType" />
11 <xsd:element minOccurs="0" name="SafetyPrecaution" type="cdt1:TextType" />
12 <xsd:element minOccurs="0" maxOccurs="unbounded" name="IncludedAttachment" type="
commonAggregates:AttachmentType" />
13 <xsd:element minOccurs="0" name="CurrentApplication" type="commonAggregates:ApplicationType" />
14 <xsd:element name="IncludedRegistration" type="bie2:RegistrationType" />
15 <xsd:element minOccurs="0" name="BillingPerson_ldentification" type="commonAggregates:Person_I|dentificationType"

/>
16 </xsd:sequence>
17 </xsd:complexType>

18 <xsd:element name="HoardingPermit" type="doc:HoardingPermitType" />

19 </xsd:schema>

Figure 6. XSD schema for the HoardingPermit DOCLibrary

CDTLibrary depicted in package 4 of figure 4. The frac-
tion shows the type definition for the CDT Code. Similar
to an ABIE, a core data type is defined as complexType in
XML. However, it does not contain a sequence of elements
but a simpleContent element whose extension base is the
data type specified in the content component of the core
data type. In our case the data type is String and hence

30 [.]

31 <xsd:complexType name="CodeType">

32 <xsd:simpleContent>

33 <xsd:extension base="xsd:string">

34 <xsd:attribute name="Languageldentifier" type="xsd:string" use="optional"/>
35 <xsd:attribute name="CodeListAgName" type="xsd:string" use="required"/>
36 <xsd:attribute name="CodeListName" type="xsd:string" use="required"/>

37 <xsd:attribute name="CodeListSchemeURI" type="xsd:string" use="required"/>
38 </xsd:extension>

39 </xsd:simpleContent>

40 </xsd:complexType>

41 [.]

Figure 8. XSD schema fraction for CDTLibrary

the build-in data type of the XML schema specification is
taken. The supplementary components are defined as at-
tributes of the complexType. The data type of an attribute
and its multiplicity is again retrieved from the definition in
the UML model.

Generating from a QDTLibrary

A schema generated from a QDTLibrary looks very sim-
ilar to a schema generated from a CDTLibrary. Again, the
data type specified in the content component determines the
base for the extension. If an enumeration is used to restrict
the possible values for the content component, the complex-
Type of the enumeration is used for the restriction. In case

the content component has no enumeration assigned to it,
the complexType of the underlying core data type is used
for the restriction.

Generating from ENUMLibray and PRIMLibrary

For every element stereotyped as ENUM in an ENUM-
Library a simpleType is created. The simpleType contains
a restriction with base xsd:foken. The values are then de-
fined in enumeration tags. For PRIMLibraries currently
no schema generation mechanism is implemented. Where
primitive types are needed (String, Integer ...) the build-in
types of the XSD schema are taken.

For the generation of the XML schemas, UML tagged
values play an important role. Every library package within
a business library has several tagged values, steering the
generation process. The namespace of a specific schema
for instance, is determined by the tagged value baseURN.

Apart from the namespace also the namespace prefix can
be set by the user through tagged values. Line 12, 13 and 15
of figure 6 show the usage of a user specific prefix common-
Aggregates. The user specific namespace has been defined
as a tagged value NamespacePrefix in the BIELibrary Com-
monAggregates. In case no user specific namespace prefix
is set, a standard namespace prefix is taken. Line 14 shows
the usage of a standard prefix for a BIELibrary namely bie2.
The number contained in the prefix is generated automati-
cally to distinguish between multiple BIELibrary schemas
imported into a DOCLibrary schema.

As shown in figure 5 the user has the possibility to se-
lect whether the schema should be annotated or not. The

305

CCTS standard prescribes a set of annotations for every el-
ement of the standard. An ABIE for instance, amongst oth-
ers, has two mandatory annotation fields Version and Defi-
nition. The solution approach taken by our XML generator
is again driven by tagged values. The values for the differ-
ent annotation fields are specified in tagged values. During
a generation run the values are retrieved and transferred into
the correct element annotations in the XML schema. For the
sake of brevity annotations have been omitted in the sample
schema, shown in figure 6.

5 Conclusion and Outlook

In this paper we have shown the implementation of a
UML profile for core components and the generation of an
XML schema from a core components model. The current
development is a first step towards a tool supported mod-
eling of core components and the automated generation of
document artifacts. However, the current version provides
only the basic generation and validation features - future
release will gradually implement all features. In order to
enhance the widespread use of core components, the poten-
tial user must be given a possibility to validate the created
model. Even experienced core component modelers often
get lost in a model because the interdependencies between
CDTs, QDTs etc. blur with the increasing complexity of a
model. Current effort is therefore spent on a validation en-
gine, allowing to check the syntactical and semantical cor-
rectness of a core component model. Currently not all OCL
constraints of the standard are evaluated. A future valida-
tion module will incorporate the complete OCL constraints
specified in the standard [14] and be able to check the va-
lidity of the core components model accordingly. A valid
model is also a crucial prerequisite for a model transforma-
tion as performed by the XML transformer. At the moment
the transformer performs a basic model validation allowing
to track and report basic flaws in the model. What is needed
however, is a fine-grained model validation. Apart from the
top priority extension of a model validator, several other
features are also planned. Enterprise Architect only offers
a very basic functionality for generating, moving and up-
dating existing class definitions. The Add-In will therefore
be extended by a core components management console,
allowing the easy maintenance of existing libraries. Other
modeler amenities such as updating all namespaces, setting
one global schema location etc. are also subject to current
development. Apart from tool driven changes we will also
have to consider the changes which are made necessary by
the release of the upcoming CCTS 3.0 standard.

After the implementations for core component modeling
reach their final stage, the user will be given a powerful
tool to model the information exchanged in a B2B business
process.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

306

M. Bernauer, G. Kappel, and G. Kramler. Representing
XML Schema in UML - A Comparison of Approaches. In
Proc. of 4th International Conference on Web Engineering,
ICWE 2004, pages 440-444. Springer LNCS 3140, 2004.
R. Conrad, D. Scheffner, and J. C. Freytag. XML Con-
ceptual Modeling Using UML. In Proc. of the 19th Int’l
Conf. on Conceptual Modeling, ER 2000, pages 558-571.
Springer LNCS 1920, 2000.

E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Zapata.
Evolving XML Schemas and Documents Using UML Class
Diagrams. In 16th Int’l Conf. on Database and Expert Sys-
tems Applications, DEXA 2005, pages 343-352. Springer
LNCS 3588, 2005.

T. Kudrass and T. Krumbein. Rule-Based Generation of
XML DTDs from UML Class Diagrams. In 7th East Eu-
ropean Conference Advances in Databases and Informa-
tion Systems, ADBIS 2003, pages 339-354. Springer LNCS
2798, 2003.

H. Li. XML and Industrial Standards for Electronic Com-
merce. Knowledge and Information Systems, 2(4):487-497,
2000.

Y. Li and A. An. Representing UML Snowflake Diagram
from Integrating XML Data Using XML Schema. In Data
Engineering Issues in E-Commerce, pages 103—-111. IEEE,
2005.

P. Liegl, R. Schuster, and M. Zapletal.
In. University of Vienna, 2006.
http://ummaddin.researchstudio.at.

OASIS. RELAX NG Specification, December 2001. Com-
mittee Specification.

OASIS, UN/CEFACT. ebXML - Technical Architecture
Specification, February 2001. Version 1.4.

N. Routledge, L. Bird, and A. Goodchild. UML and XML
schema. In ADC ’02: Proceedings of the 13th Australasian
database conference, pages 157-166, Darlinghurst, Aus-
tralia, Australia, 2002. Australian Computer Society, Inc.
UN/CEFACT. Electronic Data Interchange, September
2006. D.06A.

UN/CEFACT Applied Technology Group (ATG).
Naming and Design Rules, February 2006. 2.0.
UN/CEFACT TMG. Core Components Technical Specifi-
cation - Part 8 of the ebXML Framework, November 2003.
v2.01.

UN/CEFACT TMG. BCSS - UML Profile for Core Com-
ponents based on CCTS 2.01, October 2006. Candidate for
version 1.0.

W3C. RDF Vocabulary Description Language, February
2004. W3C Recommendation 1.0.

World Wide Web Consortium (W3C). XML Schema, 2004.
Version 1.0.

UMM Add-
Version 0.8.0,

XML

	page01: 298
	page11: 299
	page21: 300
	page31: 301
	page41: 302
	page51: 303
	page61: 304
	page71: 305
	page81: 306
	page02: 1-4244-0832-6/07/$20.00 ©2007 IEEE.

