Integrating Ontologies with CAR Mappings*

Manuel Wimmer', Horst Kargl', Martina Seidl', Michael Strommer’, and
Thomas Reiter?

! Business Informatics Group
Institute of Software Technology and Interactive Systems
Vienna University of Technology, Austria
{wimmer |kargl|seidl|strommer}@big.tuwien.ac.at
2 Information Systems Group
Johannes Kepler University Linz, Austria
reiter@ifs.uni-linz.ac.at

Abstract. CAR is a declarative language which can be used to map
between different schemas in general and which allows the integration of
ontologies in special. CAR provides mapping operators whose expressiv-
ity exceeds the possibilities of simple equivalence mappings by far. Due
to the declarative nature of this approach, CAR which we implemented
in a graphical mapping framework, offers a very user-friendly way to
overcome schematic heterogenities.

Furthermore, the mappings can be executed on Colored Petri Nets, and
therefore they can be easily simulated and debugged in a framework for
representing schemas and mapping models as Transformation Nets which
can be applied to transform concrete instances of schemas expressed as
tokens.

1 Introduction

The integration of heterogenous information resources has a long history in com-
puter science. The problem of finding correspondences between distinct data
sources arises in very different fields, e.g. in database research [4,7,8], in the
XML area [5] and in object-oriented refactoring [1].

Nowadays ontologies are often used as schemas for semantic web applications.
Ontologies are often directly generated from database schemas or XML schemas.
Unfortunately, heterogeneities between schemas are not eliminated when ontolo-
gies are generated and also quite common between manually defined ontologies
due to different modeling styles. Furthermore, the different modeling styles do
seldom result in models with just trivial differences like distinct names. Thus,
for the integration of ontologies simple equivalence mappings are not enough.

Consequently, common integration solutions use imperative or hybrid (declar-
ative and imperativ) languages [3] to define the complex mappings which are

* This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-810806.0

then hidden in global variables, lookup operations, and user-defined trace mod-
els. This solution has two main drawbacks, first, the definition of imperative
code is a tedious and error-prone task and second, the actual mappings are hard
to discover and to understand. Therefore, we propose a declarative and bidirec-
tional mapping language named CAR, which can be used for the core concepts
of object-oriented modeling languages such can be found in UML or OWL.

The paper focuses on the basic mapping operators and how they are used. We
consider schematic heterogenities (i.e., the two schemas which will be mapped
are in the same language and have (almost) the same semantics but they differ
in their structure). We present some mapping problems of concrete ontologies,
which are not possible to be solved with simple equivalent mappings. Then we
show how they can be mapped with our CAR mapping language. Furthermore,
we discuss the interpretation of the mappings in context of translation scenarios
and report how the mappings are actually executed with Colored Petri Nets. Our
approach yields multiple benefits: (1) an easy to use mapping language, which
has a graphical syntax and (2) the execution model based on Colored Petri Nets
allows a user-friendly simulation and debugging of the mappings.

2 DMotivating Examples

Sometimes simple equivalence mappings (like mapping a class to a class, mapping
a relation to a relation, and mapping an attribute to an attribute) are not suffi-
cient to resolve the heterogenties between two ontologies. Consider the examples
shown in Figure 1. For the sake of readability we use the UML-class-diagram
notation.

Example 1. The first example contains a well-known problem from the
database community [4]: a Person has a firstName and lastName. In an alter-
native modeling approach the person’s family could be modeled explicitly by
introducing a class Family which now contains the lastName (under the as-
sumption that all members of a family have the same last name and that the
last name of a family is unique). So suddenly we have two classes instead of one.
Nevertheless, both approaches express almost the same.

Example 2. The second example is similar to Example 1 but instead of
aggregation it deals with inheritance. It illustrates a typical refactoring pattern
from object-oriented programming [1], namely the way how an inheritance hier-
archy can be flattened. In the context of a university, Scientific Employees and
Non-Scientific Employees specialize Employees. Alternatively, an enumeration
datatype Employment with the values ”SE” and "NSE” could be introduced.
Finally, the type of employment of an employee can be expressed by adding an
attribute of the enumeration type to the class Employee.

Example 3. The third example is about inverse relationships. When a family
is modeled this can be done by saying ”2 persons are the parents of arbitrary
many children” or alternatively ” a person has 2 persons as parents”. So here we
do not have any additional classes but the relationship is interpreted differently
in the two models.

Example 1: Aggregation Person

firstName : String
Person

firstName : String 1., isMemberOf
lastName : String Family
lastName : String

Example 2: Hierarchy vs. Collapsed Hierarchy

Employee
name : String

Zﬁ < > Employee
I | name : String
kind : {SE, NSE}

Scientific- Non-Scientific-
Empl. Empl.

Example 3: Inverse Relationships

Person a <:> Person !
parents

children

LHS RHS

Fig. 1. Heterogenities in ontologies which cannot be resolved with simple mappings

In all of the three examples, it is impossible to integrate the ontology parts
on the left-hand side with the ontology excerpts on the right-hand side by simply
applying equivalence mappings because classes are added, classes are eliminated,
and relations are inverted. So more powerful operators are necessary which we
present in the following.

3 Overview of CAR Mapping Language

The CAR mapping language is based on the combination of the core concepts
of structural object-oriented modeling languages, i.e., classes, attributes, and re-
lationships. The combination of these three concepts results in a 3x3 matrix of
mapping operations (MOP) which is shown in Figure 2. These MOPs can be
classified in three distinct categories. The first one is called Copier and consists
of MOPs which copy elements from the left-hand side (LHS) into elements of
the same kind at the right-hand side (RHS). This category comprises class-
to-class (C2C), attribute-to-attribute (A24), and relationship-to-relationship

(R2R) mapping operators. The second category is called ObjectCreator, which
consists of operators for creating new objects on the RHS out of attribute values
and links at the LHS. This category comprises two operators, namely attribute-
to-class (A2C) for creating objects out of values and relationship-to-class (R2C)
for creating objects out of links. The last category is called Relationer. MOPs
from this category are R2A, C2A, C2R, and A2R. They have in common the
creation of links between objects (C2R and A2R) or for defining which attribute
value is contained by which object (C2A and R2A).

These basic MOPs can be combined to more complex patterns for solv-
ing more tricky problems. Complex patterns which are build from MOPs are
called compound MOPs (CMOP) in the remainder of the paper. In the follow-
ing, we first discuss the main properties of MOPs and afterwards we explain
some CMOPs which provides mapping solutions to frequently occurring map-
ping problems.

superClasses |, x

Class
isAbstract : Boolean L
type

"

| Attribute | |Re|ationship|

Attribute Relationship Legend
C2A C2R
: [Copier
Attribute 1. Object Creator
Relationship R2C ... Relationer

Fig. 2. Possible combinations of modeling constructs

Copier Category. Operators from this category copies elements from the
LHS to the the RHS. These operators can be used in both directions without
any additional information and are therefore bidirectional.

— (C2C: The C2C MOP can be used to map one class on the LHS to another
class on the RHS (cf. Figure 3a). The interpretation of this mapping operator
is, that the object identity is copied from the LHS to the RHS. C2C MOPs
can inherit form each other which means that the sub-mappings inherit the
contained property mappings of super-mappings. Furthermore, we allow the
definition of abstract C2C mappings, typically for defining mappings between
abstract classes.

— A2A: The A2A MOP copies attribute values of the LHS to attribute values
on the RHS (cf. Figure 3b). Attributes are always in the context of a class,

hence an context relationship to an additional C2C MOP is needed to find
the right context for the attribute at the RHS.

— R2R: The R2R MOP copies one link from the LHS to a link on the RHS (cf.
Figure 3c). A relationship is contained in one object and refers to another
one, hence R2R MOPs need two classes at the RHS. To derive these two
classes, two additional C2C MOPs are required to set the two ends of the
relationship to the proper classes at the RHS. To express these requirements,
the R2R is in the context of two C2Cs. One context points to the C2C MOP
where the reference belongs to. The other one belongs to the C2C where the
reference points to.

Object Creator Category. The operators of the second category create
new objects at the RHS from attributes or references on the LHS. These MOPs
without any additional information can only be treated as one way operations.
We only discuss the direction from left to right in Figure 3d and 3e. To make
these operations bidirectional, additional information must be provided. The
inversion of A2C and R2C, namely C2A and C2R representing Relationer MOPs
are described in the next category description. Furthermore, the next category
description also explains how the A2C and R2C are extended to bidirectional
mapping operators.

— A2C'": The A2C MOP creates a new object on the RHS for an attribute value
on the LHS. An example application of A2C is shown in Figure 3d, where
the attribute Al is mapped to the class C2.

— R2C: The R2C MOP creates a new object on the RHS for a link on the
LHS. Figure 3e illustrates such a mapping, namely relationship R1 on the
LHS is mapped to class C4 on the RHS.

Relationer Category. The operators of the third category relates attribute
values to objects and links objects based on the defined relationships correctly.
Furthermore, we discuss how the mapping operators explained in the object
creator category can be extended to bidirectional operators by proposing combi-
nations of MOPs to CMOPs. In the following, we present C2A and C2R explicitly
(we focus on the mapping from right to left in Figure3d and Figure3e); R2A and
A2R are explained in the context of the C2A, because they only make sense in
combination with C2A.

— (C2A: (1) The C2A mapping in Figure 3d has no corresponding attribute
value for the attribute Al on the LHS, hence, the C2A needs an A2A to
transfer the attribute value from the RHS to the LHS. (2) To find the right
context of the attribute value on the LHS, the A2A mapping is in the context
of the A2C mapping. (3.1) To derive the trace from C2A to C1 at the LHS,
an additional C2C MOP is needed. (3.2)The R2A mapping is used to create
a link between the class which is created with the A2C (C2 at the RHS) and
the class where the attribute on the LHS belongs to and which is transfered
with the C2C (C1 at the LHS to C1 on the RHS). The A2R needs the C2C
and the A2C as a context for its two references to the classes on the RHS.

Class2Class (€2C) Relationship2Relationship (R2R) Attribute2Attribute (A2A)

0O
w
,i_
D <€--

Fig. 3. CAR mapping operations

With this pattern of MOPs, the A2C from the ObjectCreator category is
extended to a CMOP resulting in a bidirectional operator. The operator takes
as input the attribute from the LHS and uses the A2R, A2A, A2C MOPs to
create three outputs on the RHS, hence the resulting CMOP is called A2CAR.
As mentioned before, A2R and R2A are only helper MOPs to make A2C and
R2C MOPs bidirectional.

— C2R: (1) The C2R mapping operator is similar to C2A. To create a relation-
ship (cf. relationship R1 in Figure 3e) out of a class at the RHS (cf. class
C4 in Figure 3e), two classes on the LHS, namely C1 and C2 have to be
mapped to the RHS with C2C mappings. (2) Now the class C4 on the RHS
needs two references to the classes C3 and C5, which are transformed with
the two C2C MOPs. This is done with two R2R MOPs. Each of them has
two contexts, one to the class the reference belongs to and one to the class
the reference points to.

The resulting mapping pattern gets a reference as an input from the LHS
and uses the R2R, R2C, and R2R MOPs to create the outputs on the RHS,
hence, the bidirectional version of R2C is a CMOP and called R2RCR.

Example 1: Aggregation

— —@ Person
HEfirstName : String

Person

firstName : String
lastName : String

14, isMemberOf
Family

lastName : String

1

1

1 A2A

1

| A2CAR
{AGG-=true}

Example 2: Hierarchy vs. Collapsed Hierarchy

Employee 5
name : String

Scientific- ¥ Non-Scientific-9
Empl. Empl.

Example 3: Inverse Relationships

{Inverse=true}

—

. — Ny € I
_erson = 3 Person

2 parents ’

LHS RHS

children

Fig. 4. By CAR-mappings resolved heterogenities

4 Application of CAR Mapping Language

With the previously introduced MOPs we are now able to resolve the hetero-
genities of the examples shown in Figure 1 and to integrate the ontology parts
as follows (cf. Figure 4).

Example 1. First of all, we apply two BMOPs from the Copier category,
namely we map Person to Person by C2C and we map the attribute firstName to
the attribute firstName by A2A in Example 1. For the mapping of the lastName,
we need additionally to the A2A the ObjectCreator operator A2C and the A2R
operator from the Relationer category. The combination of those three BMOPs
results in the CMOP A2CAR. Because of this structure of this mapping, we
obtain bidirectionality. Note that it is necessary to aggregate on the last name
when the mapping is implemented in order to avoid families with identical names.

Example 2. In Example 2 we flatten the inheritance hierarchy by mapping
the subclasses ScientificEmployee and Non-ScientificEmployee of the abstract

class Employee on the LHS to the attribute kind of the now concrete class
Employee. Fach concrete subclass of Employee at the LHS is mapped with a
C2C to the concrete Employee on the RHS. The different kind of Employees on
the LHS are represented as an attribute on the RHS, hence, the C2C has to
set the attribute to the correct value of the enumeration datatype. To map the
attribute name of the abstract class Employee on the LHS an additional abstract
C2C between the abstract and the concrete class Employee is necessary. The
concrete C2C operators between the concrete classes needs all the properties of
the abstract BMOP, so they inherit from the abstract C2C.

Example 3. In the third example the main problem is to map two relation-
ships which are inverse. This can be achieved by a R2R MOP with the inverse
flag set to true. As described in the previous section a R2R needs a context to
a C2C where it belongs to and one where it points to, hence, an additional C2C
between the classes Person on the LHS and RHS is needed.

5 Mapping Execution and Tool Support

The first part of this section provides a description on how the declarative map-
pings are actually executed, which means how the instances are transformed
between source and target schemas. Subsequently, the second part of this sec-
tion describes the tool support for the mapping and transformation process. In
particular, we present our mapping framework CARMEN (CAR Mapping EN-
vironment) and our transformation framework TROPIC (TRansformation On
Petri nets In Color).

5.1 How to execute the mappings

For transforming instances between source and target schemas, executable trans-
formation definitions must be provided. Therefore, we propose a transformation
of CAR mapping models into a special kind of Colored Petri Nets [2] called
Transformation Nets. In order to provide a mechanism to derive Transformation
Nets from CAR mapping models, each CAR mapping operator has a corre-
sponding Transformation Net component. In addition, this component defines
the actual operational semantics of the CAR mapping operator.

In the following, we briefly present how instances, schemas and CAR mapping
models are transformed into an executable transformation net. The interested
reader is referred to [6] for detailed information on the notion of transformation
nets and how they are actually executed.

— Schemas: Source schema elements are mapped into initial places and target
schema elements into final places of the transformation net. A place is created
for every class, attribute and reference of the schemas.

— CAR mapping models: Mappings are transformed into places and transitions
between initial and final places being capable of reading tokens from the
initial places and populate tokens in the final places.

— Instances: Instances are transformed into a certain marking of the initial
places of transformation nets. For every model element that is an instance
of a certain class, a one colored token is added to the place that corresponds
to that class. The color of that token represents a unique object id. For
every value of an attribute, a two colored token is added to the place which
corresponds to that attribute. The two colors correspond to the object id of
the owning element as well as the denoted value itself. For every link of a
reference, a two colored token in the place corresponding to that reference
is created. The colors correspond to the object ids of the linked objects.

The UML activity diagram in Figure 5 gives an overview of the complete pro-
cess, which consists of two sub-processes, namely, mapping and transformation.
In particular, the UML activity diagram depicts the tasks, input and output arti-
facts, as well as tool support involved in the two sub-processes. In the following
subsection we discuss first our mapping framework CARMEN and afterwards
our transformation framework TROPIC.

. CARMEN
Model Model

Source/Targe
Schema %]

i errors?
Mapping Model
Validation

——

: TROPIC N Mapping Model 2 no
' TransformationNet N
; TransformationNet

nitial Tokens TransformationNet Final Tokens

N

Tokens 2
Instances

Target Instances

Source Instances
2 Tokens

Source Instances

PetriNet-Tool:
ExSpect

Fig. 5. Overview of the integration process

5.2 Tool Support
Mapping Framework CARMEN?

For providing a graphical mapping environment we developed a prototypical
implementation of an GMF%-based editor, which is able to load two different
schemas in UML class diagram notation. When the schemas are loaded, the user
can build a graphical mapping model in between. The mapping model consists
of the aforementioned CAR mapping operators. In addition, the mapping editor
provides the validation of the mapping model that facilitates finding errors in the
mappings. This possibility is applicable for situations in that mapping models
are subsequently automatically processed as is the case in our approach.

Transformation Framework TROPIC?

After establishing a CAR mapping model, the actual transformations must be
derived from these mappings. This task can be achieved manually, however, we
believe that automation of this task is possible and preferable due to the formal-
ity of the mapping model. Therefore, we propose a full automatic transformation
approach, so to speak a compilation of CAR mapping models into Transforma-
tion Nets. This compilation is achieved by a model transformation, which takes
source and target schemas as well as CAR mapping models as input and pro-
duces textual petri net definitions readable for the Petri Net tool ExSpect®. In
addition, we provide a second model transformation which is capable of produc-
ing initial tokens from an input model and a third model transformation which
translates the final tokens (after executing the transformation nets) into a target
model.

6 Conclusion and Future Work

Equivalent concepts can be expressed in different syntactical ways in general, and
specifically when object-oriented modelling languages are used. These different
modelling styles hamper the integration of ontologies considerable. In particular,
practical integration issues demonstrate that simple equivalence mappings are
not enough to overcome most of existing heterogeneities. Thus, in this paper we
extended the notion of simple equivalence mapping with CAR mapping operators
for resolving mapping problems due to different modelling styles, i.e., if a concept
is modeled as a class, attribute, or relationship. Furthermore, we briefly presented
the execution model for our CAR mapping language and proper tool support.

Concerning future work, we strive for a collection and categorization of
schema heterogeneities and the evaluation of existing mapping and transfor-
mation languages.

3 CAR Mapping ENvironment

4 http://www.eclipse.org/gmf

® TRansformation On Petri-nets In Color
S http://www.exspect.com

Further research directions are finding on the one hand more compound map-
ping operators and on the other dedicated reasoning algorithms for a set of
mappings. With reasoning algorithms we mean mechanisms for resolving possi-
ble problem cases in the transformation nets, which are automatically derived
from mapping models. Figure 6 illustrates a mapping scenario which needs rea-
soning on the source and target schemas in combination with a set of mappings
to correctly derive the transformation nets. In the LHS schema class A has a
relationship to class B. In the right schema class A has a relationship to the ab-
stract class X. A concrete subclass of X is for example class B. It is assumed that
class A and class B of the RHS schema corresponds to class A and class B of the
LHS schema, respectively. In addition, the user maps the relationship b to the re-
lationship z. From these mappings a correct transformation net for transforming
instances from the LHS to the RHS is derivable without additional processing
steps. However, then going the other direction, namely from RHS to LHS, the
relationship z can contain instances of class C' and D in addition which have no
correspondences in the LHS schema. Therefore, in the transformation process
these instances must be deleted out of the relationship set, because relationship
b can contain instances of class B, only. Providing such reasoning algorithms in
our mapping framework to resolve possible problem cases is subject to ongoing
work.

Fig. 6. Mapping scenario requiring additional reasoning

References

1. M. Fowler. Refactorings. Addison-Wesley, 2003.

2. K. Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Advances in Petri Nets, volume 254 of Lecture Notes in Computer Science, pages
248-299. Springer, 1986.

3. F. Jouault and I. Kurtev. Transforming models with ATL. In J.-M. Bruel, edi-
tor, Satellite Events at the MoDELS 2005 Conference: MoDELS 2005 International
Workshops OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUI, NfC,
MDD, WUsCAM, Montego Bay, Jamaica, October 2-7, 2005, Revised Selected Pa-
pers, LNCS 3844, pages 128—138. Springer Berlin / Heidelberg, 2006.

4. V. Kashyap and A. Sheth. Semantic and schematic similarities between database
objects: a context-based approach. The VLDB Journal, 5(4):276-304, 1996.

. F. Legler and F. Naumann. A classification of schema mappings and analysis of
mapping tools. In Proceedings of the BTW, volume 103 of LNI, pages 449-464. GI,
2007.

. T. Reiter, M. Wimmer, and H. Kargl. Tropic - transformation on petri-nets in color.
Submitted for publication, 2007.

. A. P. Sheth and V. Kashyap. So far (schematically) yet so near (semantically). In
Proceedings of the IFIP WG 2.6 Database Semantics Conference on Interoperable
Database Systems (DS-5), pages 283-312. North-Holland Publishing Co., 1993.

. S. Spaccapietra and C. Parent. Conflicts and correspondence assertions in interop-
erable databases. SIGMOD Rec., 20(4):49-54, 1991.

