The Model Morphing Approach - Horizontal
Transformations between Business Process
Models *

Marion Murzek! and Gerhard Kramler?

! Women’s Postgraduate College for Internet Technologies (WIT),
Institute for Software Technology and Interactive Systems
Vienna University of Technology, Austria
murzek@wit.tuwien.ac.at
2 Business Informatics Group (BIG),

Institute for Software Technology and Interactive Systems
Vienna University of Technology, Austria
kramler@big.tuwien.ac.at

Abstract. Due to company mergers, acquisition and business to busi-
ness interoperability, there is a need for model transformations in the
area of business process modeling to facilitate scenarios like model trans-
lation, integration and synchronization. Thus this paper concentrates on
transformations of models between different business process modeling
languages. As current transformation languages provide general solutions
and do not support the special properties of business process models, it
is still a challenge defining such transformations. To tackle this problem
we introduce the model morphing approach. Our main idea is to create
an integrated metamodel containing all concepts of the languages of a
given domain. Based on this integration the model transformation can
be defined in terms of morphing steps. Our approach is demonstrated
by model transformation in the area of business process modeling but
is generally suitable for domains in which a variety of languages is used
that express similar concepts.

1 Introduction

Since companies discovered the value of modeling their business processes, many
languages for this purpose have been developed. Some are theoretically funded
specifications, for example UML 2.1 Activity Diagrams [20], Event-driven Pro-
cess Chains [13] or the Business Process Modeling Notation [19], but the bulk of
the existing languages evolved from consulting projects in industry, for example
ADONIS® Standard Modeling Language [5]. Consequentially nowadays we are
faced with a proliferation of business process modeling languages that are used
to model real world processes.

* This research has partly been funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

Changes concerning business process modeling languages due to company
mergers, acquisitions or software changes often require transforming models com-
plying to one modeling language into models complying to another modeling lan-
guage. Thus this work concentrates on providing and supporting solutions for
the problems occurring during the definition of business process model transfor-
mation. After analyzing the issues arising at transforming process models [17],
the first step was to inspect state-of-the-art transformation languages for solving
these problems.

Inspired by the vision of MDA [16] current techniques or specifications used
for defining model transformations, such as ATL [4] or QVT [18], operate nearly
exclusively at the level of metamodel elements. From this it follows that direct
1:1 mappings between metamodels are supported very well. But for the trans-
formation requirements in a specific domain, in our case BPM, these techniques
are not sufficient [17]. On the other hand, using pure Java for defining model
transformation makes it possible to define everything needed, but it does not
support the infrastructure that model transformation languages provide.

This motivated us to provide the Generic Model Morphing Framework that
supports a software architecture which combines the use of an existing model
transformation language, and a programming language. ATL is used for the
definition of ”simple” 1:1 correspondences between the different metamodels.
Java is used to implement the special transformation issues of a specific domain,
in our case the the BPM domain.

Accordingly, the contribution of this work is threefold:

1. The transformation mappings between four selected business process lan-
guages.

2. The model morphing approach and also the architecture is defined domain-
independently and thus can be specialized for any distinct domain.

3. The architecture of the model morphing approach supports reuse. On the one
hand concerning existing technologies used (in our case ATL and Java) and
on the other hand concerning the morphing methods which are encapsulated
solutions for non-trivial transformation requirements that can be applied to
different transformation scenarios within a given area.

The reminder of this work is structured as follows. The next section intro-
duces the model morphing approach. In Section 3 the framework for business
process model transformations is presented. Section 4 demonstrates the approach
in the business process modeling domain. Furthermore it outlines the reuse po-
tential of the morphing methods in in this domain. Section 5 puts our work into
context of related work. The conclusion in section 6 summarizes this work and
gives an insight into ongoing work.

2 Model Morphing

Model morphing is a new approach to tackle model transformations in a specific
domain. This approach represents a software architecture for model transfor-

mation, that enables the reuse of model transformation definitions and allows
the embedding of different technologies. Model morphing operates mainly on
the differences between the languages dedicated to a specific application do-
main, whereas the similarities of the languages can be treated by using simple
declarative 1:1 transformations.

The main assumption is, that the languages of a specific domain are all used
to express similar concepts characterizing this domain. This makes it possible
to create a common integrated metamodel which covers all concepts found in
the participating languages. Conceptually this integrated metamodel represents
a union of all concepts found in the languages belonging to a given area.

Through this integration it is possible to map models complying to specific
metamodels directly to the integrated metamodel. The corresponding transfor-
mations can be easily developed using an existing model transformation ap-
proach, for example ATL.

The core transformation is performed by using so-called model morphing
methods. These methods are derived from the differences between the specific
languages and are defined based on the integrated language (IntL). They are
applied step by step on the source model which has already been translated to
the IntL until it fits to the structure of the target language. In the last step the
model is translated from the IntL into the target language.

This approach responds to the non-trivial transformation issues occurring
when defining transformations between models in a distinct area. The incremen-
tal nature of the model morphing approach makes it possible developing the
transformation step-by-step. This supports a transformation definition where
the result could be inspected after every step.

As this approach strongly singles out the particularities of a specific area in
form of the morphing methods it makes it possible for the domain specialists to
define model transformations by only the use of their expert knowledge and also
without programming skills.

2.1 The Generic Model Morphing Framework

To realize the model morphing approach a so called Generic Model Morphing
(GeMM) framework has been developed. This framework consists of four main
components, the Integrated Metamodel connected by the Adapter Layer with the
Specific Metamodel Layer and the Method Repository which makes use of the
graph and the patterns operating on the graph (see Fig. 1).

To develop the GeMM framework we have used the Eclipse Modeling Frame-
work (EMF) [8], [6] because it provides an environment to develop metamodels
very fast and easily. Furthermore EMF has implemented an automatic (java)
code generation mechanism for such metamodels. Moreover this java code pro-
vides the basis for the morphing methods. As we wanted to use a metamodel-
oriented transformation language for the adapter layer we found that ATL is a
good solution because it offers a declarative way to define metamodel correspon-
dences and moreover it operates on EMF metamodels.

Patterns

Method Repository Graph

Adapter #

Integrated Metamodel

Adapter Layer #

Specific Metamodel Layer

Fig. 1. The Generic Model Morphing Framework

The integrated metamodel has been defined under the consideration that
every graphical model when reduced to the minimum is a graph consisting of
nodes and edges. Consequentially the core of the integrated metamodel could
be defined as a model having nodes and edges. Therefore the fix parts of the
integrated metamodel are the class Integrated Model and the abstract classes
Node and Edge each containing two attributes, name and description (see Fig. 2,
the three classes in the dashed rectangle). The core of the integrated metamodel
is the starting point for connecting further classes needed for the integrated
metamodel of a distinct domain. Note that during the use of a specialization of
this framework, for example when attaching another language to the framework,
further classes or attributes can be added easily.

The method repository consists of templates for methods and mechanisms
which are needed to construct the concrete methods for a distinct area. These
methods make use of the generated code from the integrated metamodel imple-
mented in EMF. The graph component is realized according to the theory of
well-known graph algorithms as for example characterized in [21], [14]. At the
moment the basic patterns which are defined in this graph are structural pat-
terns on directed graphs. As the core of the integrated metamodel always stays
the same the graph and the pattern implementation can be reused in different
domains without changes.

The specific language layer has to be defined newly for every domain. For
the metamodels of the specific languages, we also used EMF to be able to use
ATL for the adapter layer.

The adapter layer between the specific metamodel layer and the integrated
metamodel is designed to achieve a 1-to-1 mapping from the metamodel of a
specific language to the integrated metamodel. In our case this means that each
element of a languages metamodel is mapped to one element of the integrated
metamodel. In case this is not possible, the integrated metamodel has to be
extended with adequate concepts (classes or attributes) until the adapters can
be written by using only 1-to-1 mappings.

The next section demonstrates for the business process modeling domain,
how the GeMM framework can be specialized for a distinct area.

3 The Model Morphing Framework for Business Process
Model Transformation

Having the ability to design an integrated metamodel (IMM) for the domain
of business process modeling it is necessary to understand the concepts [23]
and aspects [24], [11], [3] used in this domain. Furthermore it is required
to get familiar with the syntactical and semantical expressions of the concepts
and aspects in each of the participating business process modeling languages
(BPMLs).

Due to the lack of space we have decided to present the GeMM framework by
means of the control flow aspect [3] which is the main aspect of business process
modeling. This should be sufficient to understand how the construction of such
a framework has to be done.

Four BPMLs, ADONIS® Standard Modeling Language (ADONIS®) [5],
Business Process Modeling Notation (BPMN) [19], Event-driven Process Chains
(EPC) [13] and UML 2.0 Activity Diagrams (AD) [20] have been selected to
participate in our example.

In the following the concepts which characterize the control flow aspect of
the business process modeling domain are described.

3.1 The Business Process Modeling Domain

Process modeling languages for describing the behavioral aspect in the domain
of Business Processes are used to model the flow of work which has to be done to
reach a certain aim. Illustrating such processes in form of a directed graph on a
two-dimensional drawing area it is necessary to create syntactic elements which
are representatives of the concepts used in reality. The connection between an
element and its corresponding concept clarify the semantics of the element. In
the following the concepts and the modeling elements are described.

The main concept of a business process is a working step, represented by
the task element. Such a working step lasts a distinct period of time, is done
by somebody using some resources and converts some input into some output.
This integral concept could be found in each of the participating BPMLs, for
example a task in BPMN or an activity in ADONIS® . To support the clear
arrangement of a process model a concept for structuring processes into main
and sub processes is provided, represented as Sub-Process element. Every partic-
ipating BPML provides an element for this concept. Some languages provide an
explicit element - event - to model the actual state of a process whereas others
do not model states explicitly.

Beside these integral concepts like working step, sub process and event some
concepts in form of logical operators to model the behavioral aspect of a process
are needed. They are used to depict the begin and the end(s) and different kinds
of pathes a process could run. Some kind of start element is used to depict the
begin and some kind of end element is used to illustrate the end of a process.
In the course of a business process decisions lead to different continuations of a

process. This is realized in the form of elements expressing alternative paths. In
most cases a finer differentiation is given by exclusive and inclusive alternatives.
As some working steps could be done concurrently there are elements like parallel
forks for modeling such circumstances.

As glue between and within the integral and the behavioral elements the flow
of control itself is depicted by using arrows with some kind of arrowhead.

The concepts which are used to describe the integral and behavioral aspect
of a business process model could be found more or less in every participating
language (see Table 1).

3.2 Analyzing the Languages
Table 1 provides the result of an analysis regarding the similarities and differ-

ences between the BPMLs we use. Note that the terminology of the integrated
language (IntL) has been chosen freely.

Table 1. Comparison of the elements in the participating BPMLs

1L [ADONIS® [BPMN EPC AD |
Task Activity Task Basic Opaque
Function Action
Sub-Process Subprocess Sub-Process Complex Call Behavior
Function Action
Event n/a n/a Event n/a
Start Start Start Event Event Initial Node
Multiple n/a yes yes yes
Starts XOR XOR AND
End (local) End (local) End Event Event Flow Final
Node
End (global) |End (global) [n/a n/a Activity Final
Node
AND (split) Parallel Split |Parallel Fork AND Fork Node
AND (join) Parallel Join |Parallel Join AND Join Node
OR (split) Decision Inclusive (OR) |OR Fork Node +
Conditions
OR (join) implicit Inclusive (OR) |OR n/a
XOR (split) |Decision + Exclusive XOR Decision Node
Conditions (XOR)
XOR (join) implicit Exclusive (XOR) |XOR Merge Node
Control Flow |Successor Sequence Flow |Control Flow |Control Flow

After analyzing the participating BPMLs four types of differences can be

observed:

(1)

Context-dependent semantics of elements.

(a) Local context is needed - adjacent elements. This type of difference can
be observed in the case of the concept XOR-Split in ADONIS® where
the same element Decision is used for the OR and the XOR-Split. The
distinction can only be made by inspecting the conditions of the outgoing
Successors. Similarly the OR-Split in AD is realized by using a Fork Node
and entering or-conditions into the attribute condition on the outgoing
Control Flows. Furthermore AD provides the possibility to model the
AND-split and the AND-join implicitly instead of using the fork and
join node.

(b) Global context is needed - structure of a part of the process. The OR-
join and the XOR-join can only be modeled explicitly in BPMN and
EPC. In ADONIS® this element can only be depicted implicitly by two
or more Successors leading into the following element (this is also the
case for the XOR-join in ADONIS®).

Missing possibility to represent a concept - no element provided.

In row 3 in table 1 it can be seen, that the concept Event, which is a process
state in a distinct point of time, is only provided in the EPC language. In
BPMN and EPC there is no possibility to depict a global end. And in case
of AD there has not been found any valid solution for the OR-join in the
UML 2.1 language specification [20].

Elements are provided for a distinct concept (same syntax), but they have
different semantics.

There is a concept for modeling the start of a process in every language. But
one language (ADONIS®) only allows one start element for each process
model, whereas the other three allow more than one. Furthermore there is
a difference between the semantics of the BPMLs which allow more than
one start elements. In BPMN and EPC it is enough if one of multiple start
elements is activated to trigger the process, whereas in AD it is required that
all of the used start elements are activated to run the process.

3.3 An Integrated Metamodel

As

a result of this analysis we have built the integrated business process

metamodel (IBPMM) depicted in Figure 2. The IBPMM is built upon the core
of the integrated metamodel as described in Section 2.1.

The Task, the Subprocess and the Event are implemented as simple

classes. As a subprocess has to be linked to a another process the association
refProcess has been established between the class Subprocess and the class
Integrated Model.

The grouping of the Logical Operators has been made to provide a general
access to these structuring elements of a model. To keep the number of classes
small there is only one class for each of the logical operators AND, XOR and OR.
The differentiation between a split and a join/merge operator is indicated by the
attribute kind which is of type LogicalOperationKind. This design decision
was made to make changes to a model during incremental transformation easy,
only attributes must be changed instead of replacing whole elements.

Fmmmmmmmm e m e mm———— - - - 1
1
: = Integrated Model I
. ; - 1
= LOK/ndi IrefProcess £ name:string '
— none] 3 description:string 1
1
- spiit ' ? 1 Y 1 |
= join 1 . . 1
! | 0.% | 0. |
= StartSync : B vode outgoing source B cage :
- XOR '/ 03 name:string 1 0-* | 3 name:string '
- AND : 3 description:string |_incoming target | 03 description:string|
Al ___r______ A------ !
= KindOfend I T T |]
- local ESubprocei‘ E Tasl:‘ E EvenL‘ glog/'ca/ Operator E control Flow
= global 1 condition:string
‘ ‘ ‘ 2 ‘
B start B End B or B xor B awp

3 multipleStarts:StartSync | | 3 kind:KindOfEnd | | C3 kind:LOKind|| = kind:LOKind| | =3 kind:LOKind

Fig. 2. The integrated business process metamodel

As most of the BPMLs provide an element for explicitly marking the start
and the end of a process the class Start and End has been implemented.

In case of the class Start the attribute multipleStarts has been introduced
to differ between the different semantics of multiple start elements. The type of
this attribute is the enumeration StartSynchronisation which could have the
value XOR for exclusive alternative or AND for synchronisation semantics.

In case of the class End a distinction has to be made between a global or
a local kind of end. This is also realized by an attribute namely kind of the
enumeration type KindOfEnd.

The ControlFlow summarizes the concept of a flow of control which connects
all other elements and thus is the linking element within a model. The attribute
condition contained by the class ControlFlow is needed to indicate conditions
after decisions. The generalization of the Control Flow to Edge seems a bit
unnecessary at the moment but as the IBPMM is dedicated to grow this was a
preparation for further extensions of edges.

3.4 The Adapters

To be able to specify the necessary adapters all metamodels of the participating
BPMLs have to be realized as EMF metamodels. Based on these metamodels
the adapters have to be implemented between all of the participating BPMLs

and the IntL in both directions. As the IntL contains all concepts found in each
of the participating BPML the relations between each element of each BPML
to the elements of the IntL are 1:1. For implementing these correspondences we
used ATL.

3.5 Model Morphing by Example

The morphing methods implemented in the Method Repository (MR) reflect
the differences between the participating BPMLs (see Table 1). That means
that they are derived from these differences. Furthermore the methods provide
the possibility to overcome these differences at transformation time and thus
make the main contribution to the transformation. In the following the methods
and their mode of operation within the GeMM framework are described by
means of an example business process model transformation.

Problem Description

The ADONIS® source model (see Fig. 3) should be transformed into the se-
mantically equivalent target model (see Fig. 4) conforming to the EPC language.

Activity Start Parallel Split

Decision End Parallel Join
S o P

Review paper fast
g m)
Well-known - -
A\~
Review paper Paper
Paper Download and carefully reviewed
assigned print paper -

Update own CV
"Reviewed Papers”

Fig. 3. "Review Paper” Process Model in ADONIS®

According to the model transformation issues described in [17] this model
transformation poses the following difficulties:

— Decision (Un)Ambiguity. In ADONIS® the decision element is used to ex-
press inclusive and exclusive alternatives. Whereas EPCs provide one distinct
element for each of the two concepts, namely OR and XOR.

— Inwisible Merger. In ADONIS® the merge of a decision is implicitly modeled
by two or more successors leading into an object. In EPCs there are explicit
elements for illustrating such mergers, namely XOR and OR.

— Mandatory Events. In EPCs events are mandatory. Furthermore it is manda-
tory that event and function elements are alternating during the flow of the
process model. There is no corresponding element in ADONIS® .

Event Basic Function

C> D Well-known ReV|ew paper
[‘> author? - yes 1

AND OR XOR

r Well-known Review paper _T 1
author? -no /= carefully
Paper Download and | __ _} nger
asslgned print paper reviewed
Download an Update own
pr‘mt paper - % =lcv "ReVIg)Aled

done Papers

Fig. 4. "Review Paper” Process Model in EPC

Furthermore the Start and End elements of the ADONIS® model have to
be transformed into Event elements in EPC.

Solution Description

The first step is to transform the ADONIS® model via the ADONIS® to IntL
adapter to a model conforming the integrated metamodel, the resulting model is
illustrated in Fig. 5. Note that this is an 1:1 translation so only the abstract and
concrete syntax has changed. The further transformation definition is realized

Task Start XOR OR

DOASQ

Event End AND

< O

no Review
paper fast

Well-known
author?

Review paper

Paper
carefully

reviewed

Paper ~ Download and
assigned print paper

Update own CV
"Reviewed Papers”

Fig. 5. "Review Paper” Process Model in the IntL

by using the following methods:

1. The convertStartToEvent () method substitutes the start with an event
element.

2. The convertEndToEvent () method changes the end to an event element.

3. The makeLOsUnambig() method operates on a heuristic making use of
antonyms. It checks if the values of condition attributes of the outgoing
control flows of the OR element are antonyms and converts them to XOR
elements if necessary.

4. The makeJoinsExplict() method uses the graph and the pattern compo-
nent to find out, if there is an implicit merge. If so an explicit merge element

(OR or XOR depending on the branch element) and necessary control flows
are created and integrated into the model.

After applying the methods 1-4 the model looks as shown in Fig. 6.

@’ @ Review paper Pane
Download and carefully reviewed

assigned print paper (o

__J
Update own CV
"Reviewed Papers”

Fig. 6. "Review Paper” Model after four morphing steps

Review
paper fast

Well-known

- @ author?
Paper Download and

assigned Assigned — done. print paper

Review paper
author? - no carefully

N~
Do and Update own CV

print paper —done. "Reviewed Papers”

Paper
reviewed

Fig. 7. "Review Paper” Model after applying the insertEvents() method

5. Finally the events which are mandatory in EPCs have to be inserted. The
method insertEvents() inserts an event in front of each function. This
could lead (as in this case) to an unnecessary event if there is no preceding
event (see Fig. 7 Event ”Paper Assigned - done”). This event is redundant
and makes the model invalid concerning the syntax of EPCs where events
and functions must alter during the process model. Therefore the method
insertEvents() calls a helper method which searches for such interfering
events and deletes them. The name of a newly inserted event is generated
depending on the preceding node and edge. In case the preceding edge has a
name value it will be added to the name of the preceding node, like ” Well-
known author - yes”, if not, then the fix term ”- done” is added to the
preceding node name.

After applying these methods the ”Review Paper” process model is ready to
be transformed into the target BPML, in this case EPCs. This is done by using
the IntL to EPC adapter.

3.6 Morphing Methods Overview

The table 2 shows the methods needed in the possible transformation scenar-
ios using the four BPMLs, ADONIS® | EPC, AD, BPMN. It provides a good
overview and makes the reuse of each method visible.

Table 2. The use of methods in the different model transformation scenarios. In this
table the abbreviations are as follows: EP = EPC, AD = AD, BP = BPMN, AO =
ADONIS® .

Method /| Source Language ADONIS® EPC AD BPMN
Target Language| EP|[AD|BP|AO|AD|BP|AO|EP|BP|AO[EP[AD

convertStartToEvent() x X X

convertEndToEvent() b'e X X

makeLOsUnambig() x| x| x x| x| x

insertEvents() X X x

makeSplitsExplict() x| x|x

makeJoinsEzxplict() X| x| x X | x|x

removeEvents() X | x|x

makeLOKindExplicit() x| x|x

makeL OsImplicit() x X | x x x X

annotateGlobalEnds() X X x| x

convertEventToStart() X | x|x

convertEventToEnd() x| x|x

mergeMultipleStarts() X | x x| x| x|x x

The first four of the eleven methods implemented in the GeMM framework
for the participating BPMLs have directly been introduced during the example.
So let us have a look at the remaining seven.

The method makeSplitsExplicit() works similar to
makeJoinsExplicit(). Also the graph and pattern component is used to
detect the implicit split element and then a new explicit split element is created
and integrated. To remove events from a model the method removeEvents ()
can be used. The method makeLOKindExplicit() is used to be able to differ
between an splitting and a merging logical operator. To make logical operators

implicit, in case of transforming in the direction of ADONIS® the method
makeLOsImplicit() has to be used. This method can be seen as reverse method
to makeJoinsExplict (). The method annotateGlobalEnds() is used to avoid
loss of information regarding the different kinds of ends. As some BPMLs do not
support the concept of global end, this method annotates the string ”+ global”
to the description attribute of an end. In case of transforming from EPCs it is
necessary to convert the start and end events to start and end elements, this is
reflected in the methods convertEventToStart() and convertEventToEnd().
The method mergeMultipleStarts() is used for different purposes. In the case
of transforming models of BPMLs which have an AND semantics for multiple
starts to a BPML which allows only one start element or has an XOR semantics
for multiple start elements, the multiple start elements must be reduced to
one start element and an AND-Split must be added after this element to
connect it with the remaining process paths. A similar situation where the start
elements in the source models have an XOR semantics can also be handled
with this method. In this case the multiple start elements must be reduced
to one start element and an XOR-Split must be added after this element to
connect it with the remaining process paths. Note that nothing has to be done
in case of transforming models from a BPML which allows only one start element.

The overview in Table 2 makes obvious, that the reuse of the most morph-
ing methods depends on the BPML used as source or target language. The
methods removeEvents(), makeLOKindExplicit(), convertEventToStart ()
and convertEventToEnd () for example are only used if EPCs is the source lan-
guage. Whereas the methods convertStartToEvent (), convertEndToEvent ()
and insertEvents() are used when transforming to EPCs.

The degree of dissimilarity of the participating BPMLs regarding their sup-
port of the concepts of the domain is another observation that can be derived
when looking at the numbers of methods needed for a transformation defini-
tion between two languages. The more different methods have to be applied, the
higher are the differences.

4 Related Work

To the best of our knowledge there is no directly comparable approach to model
morphing, which specifically supports horizontal model transformations in a dis-
tinct domain. Therefore we have decided to relate model morphing to existing
general purpose model transformation approaches based on the work of Czar-
necki and Helsen [7]. According to the feature model introduced in [7] the main
characteristics of the model morphing approach are as follows.

— The integrated metamodel, the morphing methods and the adapters form
the transformation definition part.

— Two kinds of transformation rules are used. Relational rules within the
adapters implement exogenous transformation and the morphing methods
implement endogenous transformations based on the integrated metamodel.

— In the transformation approaches considered in [7] intermediate data struc-
tures are playing a secondary role compared to the transformation rules. In
contrast, the integrated metamodel plays the central role in the model mor-
phing approach, whereas the morphing methods are defined based on the
integrated metamodel.

— Traceability is not required in case of the model morphing approach. But
it is implicitly covered in the morphing methods and could be extracted if
necessary for a distinct application scenario.

— Hybrid approaches as characterized in [7] combine different transformation
techniques within one transformation language. Whereas model morphing
is a technology spanning and at the same time technology independent
approach. That means the advantages of different transformation techniques
can be combined. In our realization we used the relational approach and
direct manipulation.

In the following we discuss related work regarding the integrated metamodel
and the reuse of the methods.

The definition of an integrated metamodel is not a particular new approach,
much work has been done in the 90s in the area of integrated metamodels.
However the focus of this work is different. COMan [12] for example integrates
an object-oriented application and a relational database, providing persistence
for complex objects and object-oriented manipulation of relational data. This
approach is dedicated to support business reengineering. In [9] an integrated
environment for method engineering has been introduced. The aim of this work
was to integrate different design notations to support metamodeling. Another
relation can be observed to the area of schema integration. In case of schema
integration, local data source are integrated to one global view as for example
in [10] or [22]. This global view can then be used as a unified representation of
the local data sources. This makes it possible sending one query to the global
view instead of sending many queries to each local schema. In contrary to the
different works stated above, our integrated metamodel specially focuses on the
support of the transformation process, thus is an important component of our
framework rather than a stand-alone product.

In the INTEROP [1] project the Unified Enterprise Modelling Language
(UEML) has been developed [2]. The UEML provides core modeling method-
ology elements and is intended for exchanging information between enterprise
modeling tools. UEML provides common semantic definitions - an intersection -
of modeling constructs defined in an abstract UEML meta-metamodel. This is in
contrast to our integrated metamodel that forms an aggregation of all concrete
metamodel elements of all participating BPMLs.

Regarding modularization and reuse, the work in [15] analyzes rule based
transformation languages for the support of creating modular transformation
definitions. Assuming that transformations are built on the base of source and
target metamodels, modularization of the transformation is derived from the
modularization of these metamodels. The authors conclude that existing rule

based languages provide support for modularization and integration mechanisms,
i.e., rule inheritance and rule calls. However, this does not meet the requirements
for reusability and adaptability of transformation definitions. Modularization in
the our approach is achieved by decomposing the transformation into adapters
and morphing methods. The modularization of the morphing methods does not
depend on any modularization of the metamodels, rather morphing methods en-
capsulate the solution algorithms for non-trivial model transformation problems.
Due to fact that there are many similar transformation scenarios between the
languages belonging to a specific domain, this kind of modularization facilitates
exploiting the reuse potential.

5 Conclusion and Outlook

In this paper we presented model morphing - a new approach to tackle model
transformation issues which we found to be difficult using existing model
transformation techniques. We used this approach for defining transformations
between different BPM languages. It should be noted, that model morphing
is generally intended to define horizontal model transformations in a given
domain where many different modeling languages are used to capture the same
or similar concepts.

Inverse to the presentation in this paper the development of the approach
started with the implementation of the transformation in the area of business
process modeling domain. From that it has been generalized to the generic model
morphing framework and further abstracted to the model morphing approach.

Thus, future work includes the application of the approach and the framework
to a different domain to validate our hypothesis regarding the applicability of the
model morphing approach to different domains. The framework will be further
elaborated regarding the treatment of attributes, bi-directionality in form of
inverse morphing methods and test mechanisms for validation. Furthermore an
evaluation regarding the use of other transformation languages than ATL for the
adapter layer has to be done.

As the construction of the framework requires a lot of expert knowledge
and implementation skills it is not efficient to use the framework with only a
small number of languages (2-3 languages). Therefore we have to evaluate the
minimum number of participating languages where the construction of such a
framework pays off.

References

1. INTEROP Project. http://interop-noe.org, (Last accessed: 2007-08-28), 2007.

2. UEML 2.1 - Unified Enterprise Modelling Language. http://www.ueml.org/, (Last
accessed: 2007-08-28), 2007.

3. B. Axenath, E. Kindler, and V. Rubin. An Open and Formalism Independent
Meta-Model for Business Processes. In Proceedings of the Workshop on Business
Process Reference Models 2005 (BPRM 2005), Nancy, France, pages 45-59, 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J. Bézivin, F. Jouault, and D. Touzet. An Introduction to the ATLAS Model
Management Architecture. Technical report, LINA, 2005.

. BOC. ADONIS 3.7 - User Manual III: ADONIS Standard Modeling Method. BOC

Ltd., 2005.

. F. Budinsky, S. A. Brodsky, and E. Merks. FEclipse Modeling Framework. Pearson

Education, 2003.

. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-

proaches. IBM Systems Journal, pages 621-645, 2006.

. I. Eclipse Foundation. Eclipse Modeling ~ Framework (EMF).

http://www.eclipse.org/modeling/emf/?project=emf.

. J. C. Grundy and J. R. Venable. Towards an integrated environment for method

engineering. In Proceedings of the IFIP TC8, WG8.1/8.2 working conference on
method engineering on Method engineering : principles of method construction and
tool support, pages 45-62, London, UK, UK, 1996. Chapman & Hall, Ltd.

G. Hu. Global schema as an inversed view of local schemas for integration. sera,
0:206—212, 2006.

S. Jablonski, M. Boehm, and W. Schulze. Workflow-Management. Entwicklung
von Anwendungen und Systemen. dpunkt.verlag, 1999.

G. Kappel, S. Preishuber, E. Proell, S. Rausch-Schott, W. Retschitzegger, R. Wag-
ner, and C. Gierlinger”. COMan - coexistence of object-oriented and relational
technology. In International Conference on Conceptual Modeling / the Entity Re-
lationship Approach, pages 259-277, 1994.

G. Keller, M. Niittgens, and A.-W. Scheer. Semantische Prozemodellierung auf
der Grundlage ”Ereignisgesteuerter ProzeBketten (EPK)”. Technical report, Insti-
tut flir Wirtschaftsinformatik Universitdt Saarbriicken.

W. Kocay and D. L. Kreher. Graphs, Algorithms and Optimization. Chapman &
Hall/CRC, 2004.

I. Kurtev, K. van den Berg, and F. Jouault. Evaluation of rule-based modular-
ization in model transformation languages illustrated with atl. In 21st Annual
ACM Symposium on Applied Computing (SAC2006), Bourgogne University, Di-
jon, France, pages 1202-1209. ACM, April 2006.

J. Miller and J. Mukerji. MDA Guide. Object Management Group, version 1.0.1
(omg/03-06-01) edition.

M. Murzek and G. Kramler. Business process model transformation issues. In
Proceedings of the 9th International Conference on Enterprise Information Systems
ICEIS 2007, 2007.

OMG. MOF QVT Final Adopted Specification. Object Management Group.
OMG. Business Process Modeling Notation Specification. Object Management
Group, http://www.bpmn.org/, February 2006.

OMG. UML 2.1 Superstructure Specification. Object Management Group,
http://www.omg.org/docs/ptc/06-04-02.pdf, April 2006.

R. Sedgewick and M. Schidlowsky. Algorithms in Java, Part 5: Graph Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

S. Sundaresan and G. Hu. Schema integration of distributed databases using hyper-
graph data model. In IRI, pages 548-553, 2005.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases.

W. M. P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. The MIT Press, January 2002.

