
Applying Model Transformation By-Example on
Business Process Modeling Languages�

Michael Strommer1, Marion Murzek2,��, and Manuel Wimmer1

1 Business Informatics Group
Institute of Software Technology and Interactive Systems

Vienna University of Technology, Austria
{strommer,wimmer}@big.tuwien.ac.at

2 Womens Postgraduate College of Internet Technologies
Institute for Software and Interactive Systems

Vienna University of Technology, Austria
murzek@wit.tuwien.ac.at

Abstract. Model transformations are playing a vital role in the field of
model engineering. However, for non-trivial transformation issues most
approaches require imperative definitions, which are cumbersome and
error-prone to create. Therefore, Model Transformation By Example
(MTBE) approaches have been proposed as user-friendly alternative that
simplifies the definition of model transformations. Up to now, MTBE ap-
proaches have been applied to structural models, only. In this work we
apply MTBE to the domain of business process modeling languages, i.e.,
Event-driven Process Chains and UML activity diagrams. Compared to
structural languages, business process modeling languages cover static
semantic constraints, which are not specified in the metamodel. As a
consequence, reasoning on the abstract syntax level is not sufficient. The
contribution of this paper is to extend our existing MTBE approach by
new alignment operators on the user level, which further improves the
transparency of model transformation code. Concrete syntax and the
knowledge about mapping operators are to be the only requisite artifacts.

Keywords: Business Process Models, Model Transformation, MTBE.

1 Introduction

With the rise of model engineering, model transformations have been steadily
put in the limelight in the past five years. Growing tool support indicates, that
model transformations are not only attractive for researchers, but also for in-
dustrial parties accommodating to their customers needs. Model transformation

� This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-810806.0.

�� This research has been partly funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

J.-L. Hainaut et al. (Eds.): ER Workshops 2007, LNCS 4802, pp. 116–125, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Applying MTBE on Business Process Modeling Languages 117

scenarios include transformations between different refinement levels of models
(vertical transformations) as well as transformations between different modeling
languages which rely on the same abstraction level (horizontal transformations).
Languages used for defining model transformations are ATL [4], QVT [8], Triple
Graph Grammars [2], XSLT, and even general purpose languages such as Java [1].
Many model transformation languages are hybrid, meaning that besides a declar-
ative style, an imperative style is provided for problems that cannot be solved
by the provided declarative features. Nevertheless, the development of impera-
tive fragments is often a tedious and error-prone task. In contrast, declarative
solutions are compact descriptions but not always intuitive to find. We believe
Model Transformation By-Example (MTBE) can help overcome the difficulties
arising in the production of declarative and imperative transformation code.

Instead of focusing on the domain of structural modeling languages, what has
been done in previous investigations [11], [10], in this paper we concentrate on
behavioral modeling languages. More specifically, we apply MTBE on the do-
main of business process modeling (BPM), which, up to our best knowledge,
has not yet been subject to the MTBE approach. The definition of requirements
for MTBE in the context of business process modeling and the specification of
proper mapping operators comprise the main contribution of this paper. There-
fore, we present main challenges encountered in business process (BP) model
transformations, and how these challenges can be tackled by extending already
proposed MTBE mapping operators. The proposed extensions are explained by
a running example in which two prominent BP modeling languages are used,
namely the UML Activity Diagram and Event Driven Process Chains.

2 Motivation for MTBE

In this section we give a brief outline of our MTBE approach we introduced in
[11]. We have recognized two main issues in conjunction with the task of defin-
ing model transformations. The first one is about the gap between the way a
person thinks about models and the way a computer represents those models
internally. And the second issue is about the way concepts are represented in the
metamodel (MM), i.e., whether one needs to have expert knowledge to identify
those concepts or not. We call the phenomenon of hidden concepts in a meta-
model concept hiding [5]. Having those issues in mind one can easily accept the
fact, that the task of creating model transformation rules is not a user-friendly
one. This is why we have come up with the idea of MTBE, that can be seen
as a semi-automatic approach for the generation of model transformation rules.
One of the main benefits of MTBE is the shift in abstraction. Mostly all of the
proposed model transformation approaches operate on the abstract syntax (AS),
although modelers might not be familiar with the abstract syntax. Therefore,
we intend to make the transformation task more concrete and operate on a level
the modelers or designers are familiar with, i.e, on the concrete syntax (CS).
Hence, with the application of MTBE one does not need any programming lan-
guage experience or knowledge of the underlying metamodel to have some model

118 M. Strommer, M. Murzek, and M. Wimmer

transformation defined and executed. Furthermore we envision MTBE as agile
and iterative process, in which the user can consequently improve the transfor-
mation outcome by adjusting the mappings and mapping operators applied on
the CS.

3 Models for Business Processes

Business process models are in use for quite a long time and continue to gain
importance as support from the software engineering field is improving signifi-
cantly. Particularly model engineering fosters research in the area of BPM. There
exist several metamodels for existing languages in order to raise their acceptance
and tool interoperability. Due to this growing interest in BPM and proper tool
support, we believe MTBE can be advantageous for specifying model transfor-
mations between BP models. As real world scenario consider the case in which
two companies , that use different BPM techniques, merge and have to integrate
their BP models. In this work we use the two BPM languages UML 2.1 AD [9]
and EPC [6] shown in Figure 1 for our running examples.

Activity

name:string
i i

1references

Activity Node Activity Edge

version:string

outgoing source

1 0..*

0..*0..*

11

1references

incoming target
1 0..

1 0..*

Call Behaviour Action Opaque Action Control Node Control Flow

guard:stringguard:string

Merge NodeFork Node Join Node Initial Node Decision NodeFinal Node

Activity Final Node Flow Final Node

OpaqueAction Activity Final Initial Node Flow FinalDecision/
Merge Node

Join/
Fork Node

CallBehaviour
Action

EPC Business Process

name:string
version:string

outgoing source
0..*0..*

11

1references

Process Flow Objects Control Flow
incoming

outgoing

target

source

*..01

*..01

lE tFunction Logical OperatorEvent

Basic FunctionComplex Function XOR OR AND

Basic FunctionEvent AND OR XORComplex
Function

XORAND OR

C
S

A
S

UML Activity Diagram EPC

Fig. 1. Parts of the UML 2.1 AD and EPC meta models and their concrete syntax

4 Mapping Operators for MTBE in the Light of BPM

During our investigation of BP models we discovered, that there are consider-
able differences compared to structural models concerning the requirements for
MTBE. To transform structural models, one has to be familiar with the notation
and hidden concepts in the metamodels, especially when dealing with UML dia-
grams. Resulting ambiguities on the metamodel layer have to be solved either by
reasoning algorithms or user input, as we described in detail in [11]. Now, with
the task of transforming BP models we have to deal with quite different issues,
in order to apply our MTBE approach. A lot of interesting aspects concerning
the heterogeneity of BP models have been identified by Murzek et al. in [7]. The

Applying MTBE on Business Process Modeling Languages 119

U M L A ctivity D iag ram

C S

M erge
E lem ent m iss ing

A S

M erge N ode
Jo in N ode

Fork N ode

C S

A S

U M L A ctivity D iag ram

C S

A S

B
C

U M L A ctivity D iag ram

C ontro l F low

D ecis ion N ode

M erge N ode

... E qu iva len t E lem ent… S im ple M app ing

C S C oncept
O verload ing

E P C

AND AND

A nd

A S

C S

C S C oncept
O verload ing

C S A lternative
R epresenta tions

C S Im plic it
E lem ents

(a) (b) (c) (d)

Legend:

...

...

Fig. 2. Overview of BP models heterogeneities

heterogeneities shown in Figure 2 are partly based on their work. One of the
special requirements coming along with BP models has its root in the mapping
from concrete to abstract syntax layer (notation) and the number of modeling
elements involved on each layer. As we now allow for zero or more elements on
each layer in the CS-AS mapping, the notation can be now defined as

Triple :=< as E∗, cs E∗, const(as E)? > (1)

Note that the original definition of the notation defined in [11] has been extended
in this work. In UML AD we have for example the notation:

< {MergeNode, ControlF low, DecisionNode} , {DecisionMergeFigure} , {} >

as is illustrated in Figure 2 c for the CS modeling element on the very top. Note
that the used modeling construct is here just an abbreviation on the CS layer
and could be equivalently expressed by the following pattern of notation triples:

< {DecisionNode} , {DecisionFigure} , {} >

< {ControlF low} , {ConnectionFigure} , {} >

< {MergeNode} , {MergeFigure} , {} >

We also observed several heterogeneities between modeling languages, which
pose further requirements for MTBE. Figure 2 gives four examples for the pecu-
liarities we found in the two BP modeling languages we introduced in Section 3.
Examples a and b in Figure 2 depict the case of so called CS overloading in UML
AD and EPC. In example a we encounter no problems because with the help of
the notation we can distinguish between the two concepts join and fork despite
the CS overloading. In example b CS overloading represents a real challenge for
MTBE as two equal CS elements, but in fact featuring two different meanings,
are mapped to the same AS element.

When we have to deal with alternative representations in the CS, see Fig-
ure 2c, we can use the notation in MTBE to find them. The challenge arises not
until we have to map two languages, where one consists of such variation points
in the CS. Example d in Figure 2 shows the possibility in UML AD to merge

120 M. Strommer, M. Murzek, and M. Wimmer

N ota tionO pera tor
S im p le M app ing

S tring
M an ipu la tion

C om pound
M app ing

X O R

XOR

A nchor

… S om e m odeling e lem ent … S om e string attribu te … For illustra tion purposes on ly

O
LD

N
EW

E xam ple

Start

C Cc

c

C

C
BODY

EXP PART [0][0].toLow erC ase

Start End

X O R

C Cc

(a)

(b)

(c)

(d)

(e)

Legend:

Fig. 3. Overview of MTBE Mapping Operators

parallel flows implicitly by omitting a merge/join node, i.e., we have no mapping
from the AS to the CS.

In the following we present new mapping operators, which resolve hetero-
geneities, as expressed in the examples a, b, and c, in Figure 2. Unfortunately, up
to now we are not able to cope in MTBE with implicit elements as shown in ex-
ample d. The problem here is twofold. First we have to address the question how
to map these implicit elements on the concrete syntax layer. And second we have
to adjust the code generation process accordingly. One could now argue, that an
enrichment of the presented metamodels could avoid a lot heterogeneities. But
there exist amounts of legacy systems with legacy models, that can not be easily
adopted to cooperate with new adjusted metamodels.

So far our MTBE approach as presented in [11] has only dealt with simple
1:1 mappings on the concrete syntax, see Figure 3 a. In case of BP model trans-
formations it is necessary to introduce new kinds of mapping operators. Based
on the specialties and problems stated above we developed new operators. In
the following we describe the semantics of these new operators to provide a no-
tion of how they can be used. However, we still have to develop some formal
specification for these operators.

The first new operator is the compound mapping operator (cf. Figure 3 b).
This mapping operator allows for n:m mappings on the CS layer. Although we
encountered only 1:n mappings so far, we want the user to have the feature of
n:m mappings. With this mapping operator we intended to support the mapping

Applying MTBE on Business Process Modeling Languages 121

of common work flow patterns, such as the one we show in the corresponding
example for this operator. The basic idea of our compound mapping operator is
however to support pattern matching on the object graphs.

Along with the compound mapping operator comes a string manipulation op-
erator, that works in the context of compound mappings but is not restricted to
them. A first notation approach is shown in Figure 3 c together with an exam-
ple. Note, that this operator is used for Attributes specified in the metamodel,
which are represented as labels in the model. This operator consists of two main
components, i.e., a body and an expression part, each separated into left and
right hand side. The two body parts consist of a list containing references to At-
tributes, that are going to be mapped. Furthermore each Attribute of the body
manages a list containing the unidirectional mappings from itself to some other
Attributes. During the transformation rule generation from one language to the
other only one list of mappings is of interest. In the expression part one can use
some simple string operations or regular expression. In the example given in the
Figure above we apply a toLowerCase operation on the first mapping of the first
Attribute on the right hand side.

For the XOR operator depicted in Figure 3 d there are two ways to use it, i.e.,
in an explicit way or in an implicit way. In Figure 3 we only illustrated the explicit
use of this operator. In general an XOR mapping shall indicate that only one
element should be created although one CS element in one language is mapped to
more than one element in the other language. Omitting the XOR in the example
in Figure 3 d would lead to the creation of an Initial and an Activity Final Node
for every Event that is matched by the corresponding transformation rule. When
using the XOR operator in an implicit way the whole issue is hidden from the
user. Instead all XOR mappings are derived automatically in the metamodel as
will be shown in Section 5. The drawback of this approach is that one looses the
possibility of multiple object creations as mentioned before.

At last we introduce the anchor operator. The notation and an example are
given in Figure 3 e. The anchor operator marks the element, which the transfor-
mation rule shall use as single source pattern element. It is thus always used in
conjunction with the compound mapping operator, which usually leads to the
creation of multiple source pattern elements in the rules.

5 MTBE with UML AD and EPC By-Example

Our MTBE approach for the domain of Business Process modeling can be best
explained in a by-example manner. Therefore, we use the two BP languages EPC
and UML AD described in Section 3. Although the example given in Figure 4 is
rather simple, it still covers a lot of interesting aspects for MTBE.

For the case study we assume that on the concrete syntax layer in EPC’s
Events and Basic Functions to always occur pairwise connected through a Con-
trol Flow edge. Furthermore, in UML AD modeling it could be possible to omit
a Join node and therefore model joins implicitly. However, in our first MTBE
approach for BPM we do not jet cope with implicit joins or merges.

122 M. Strommer, M. Murzek, and M. Wimmer

Start End

b

c

ANDANDA
B

C

A

B

C

C
S

A
S

U
M
L_
A
D

E
P
C

Control Flow Event Basic Function AND

Opaque ActionControl Flow

guard:string

Fork NodeJoin NodeInitial Node Activity Final Node

U
M
L_
A
D

E
P
C

XOR

AND

XOR
XOR

a dcb fe g
b

B
B

Exp Exp

XOR

XOR

h

Fig. 4. Mapping EPC and UML Activity diagram - CS + AS perspectives

5.1 Model and Metamodel Mappings

As a first step one has to define manual mappings between two languages, which
the transformation model shall be derived from. In the example in Figure 4 we
specified eight mappings that capture all concepts being used in the two sample
models. Mappings a,b,c,d,f, and g are of type simple mapping.

Mapping e is of type compound mapping with multiplicity 1:3. Consequently,
whenever the pattern Event, Control Flow, Basic Function is matched this corre-
sponds to a single Opaque Action. We also marked the Basic Function C in our
compound mapping as anchor element, which has implications specific to trans-
formation code generation. In our case the ATL code generator would use this
Basic Functions metamodel element as single source pattern element instead of
using multiple source pattern elements. During our implementation attempts we
realized, that an anchor feature can be desirable in some transformation scenarios.

Mapping h in our example takes care of the labels used in Events, Basic
Functions and Opaque Actions. To maintain usability this string manipulation
operator is used in a separate modeling element and references the involved la-
bels. To define string equivalences one can use only unidirectional mappings,
which will be applied transforming from one set of labels to another. An op-
tional expression allows us for example in mapping h to apply a toLowerCase()
operation on the first mapping of the right hand side set of labels.

In EPC’s there are no distinct metamodel elements nor distinct concrete syn-
tax elements for start and end nodes, although these concepts are used in the

Applying MTBE on Business Process Modeling Languages 123

modeling language implicitly. In UML AD we do have explicit concepts for start
and end nodes both, in the model and the metamodel. If a transformation from
EPC2UML AD has to be performed the transformation model must know how
to distinguish between start and end nodes even without having these concepts
specified in EPC.

To keep our illustration in Figure 4 transparent and clear we omitted the
mappings between CS and AS. Also these mappings are quite straightforward
to define, as there are no constraints specified in the notation.

At last the mappings between the two metamodels can be derived from the
user mappings and the notation. To highlight the existence of a compound map-
ping in the metamodel we marked the three involved mappings with an and
operator. On the metamodel mapping level we now make use of our new XOR
operator we introduced in Section 4. To keep the mapping task user-friendly the
XOR between mappings can be reasoned automatically based on information in
the metamodels. Whenever a meta class contains at least two outgoing mapping
edges, an XOR relation can be set in an implicit way.

5.2 How to Make Mappings Executable

As the automatic generation of transformation rules is a difficult task, we do not
claim to support fully automatic rule generation. Instead we believe in a semi-
automatic approach. To face the new domain of business process models we
implemented a paradigm, which can be best compared to Architecture-Centric
MDSD. First of all we have implemented correct ATL transformation code, which
acts as reference implementation. Thereby we have avoided imperative code
sections and concentrate on coding in a declarative fashion.

In the next step we have developed the mapping operators described in Sec-
tion 4. During this step we have turned our attention to the user-friendliness.

Next we have looked at the example models, the user mappings and the meta-
models and tried to deduce the reference implementation. Code segments that
could not be deduced automatically then lead to further refinement of the un-
derlying heuristics. After refinement we tried again to deduce the reference im-
plementation. This process can be seen as an iterative way to deduce heuristics
on how to generate ATL transformation rules from a given set of models, meta-
models and user mappings. The aim of this process is to optimize the relation
between user-friendly mapping operators and the ability to generate executable
transformation rules.

6 Related Work

To our best knowledge, there exists no approach for finding semantic correspon-
dences between business process models so far. However, there exists general
approaches that allow the definition of semantic correspondences between two
(meta)models, which have been applied in the area of structural models. The
first approach is a model-based approach from Varró, while the second approach

124 M. Strommer, M. Murzek, and M. Wimmer

from Fabro et al is metamodel-based which allows automatically finding corre-
spondences directly between metamodels.

Model-based : Parallel to our MTBE approach [11] Varró proposed in [10] a similar
approach. The overall aim of Varró’s approach is comparable to ours, but the
concrete realizations differ from each other. Our approach allows the definition of
semantic correspondences on the concrete syntax, from which ATL rules can then
be derived. In contrast, Varró’s approach uses the abstract syntax to define the
mappings between source and target models, only. The definition of the mapping
is done with reference nodes leading to a mapping graph. To transform one model
into the other, graph transformation formalisms [2] are used. Furthermore, there
is no publication on applying Varro’s approach on business process models which
is the general aim of this paper.

Metamodel-based : Orthogonal to MTBE there exists the approach of using
matching transformations combined with weaving models [3] in order to gen-
erate an ATL transformation model. Matching transformations are defined such
that they use common matching algorithms or modifications, and then create
a weaving model from the calculated similarity values. Afterwards these weav-
ing models are taken as input for another transformation, called higher order
transformation (HOT), to produce the desired ATL model describing the trans-
formation rules between two metamodels. Because there will be always some
mappings that can not be matched fully automatically, this approach is also
to be considered semi-automatic. The model transformation generation process
described in [3] currently focuses on using mappings between metamodels and is
therefore based on the abstract syntax, while our approach aims at generating
model transformation code from M1 mappings.

7 Conclusion and Future Work

In this work we have proposed an MTBE approach for the area of business
process modeling languages. We introduced special mapping operators to give
the user more expressivity for defining model mappings. Still, there remain a few
heterogeneity issues we can not target with the introduction of new alignment
operators. These heterogeneity issues will be on the one hand subject to special
reasoning algorithms and on the other hand as seldom as possible to manual
code adjustment done by the user.

Concerning future work, we particularly strive for first, the refinement of the
proposed MTBE approach. We want to experiment with different versions of
mapping models which possess different levels of granularity, size and modeling
patterns. In particular we want to evaluate how much a model can be altered
compared to the original model, which is mapped by-example, and can still be
transformed properly. Therefore, we want to map two models A and B, gener-
ate the transformations, and then alter the models to A’ and B’ and test the
generated transformations with the new versions of the models. Also, we plan to

Applying MTBE on Business Process Modeling Languages 125

conduct student experiments to underpin the benefits coming along with MTBE
in comparison to common model transformation approaches.

References

1. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier,
K.D.: SiTra: Simple Transformations in Java. In: MoDELS/UML 2006. Proceed-
ings of the ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems, Genova, Italy, pp. 351–364 (October 2006)

2. Ehring, H., Engels, G., Kreowsky, H.-J., Rozenberg, G.: Handbook on Graph Gram-
mars and Computing by Graph Transformation, vol. 2. World Scientific, Singapore
(1999)

3. Fabro, M.D.D., Valduriez, P.: Semi-automatic Model Integration using Matching
Transformations and Weaving Models. In: SAC. Proceedings of the 2007 ACM
Symposium on Applied Computing, Seoul, Korea, pp. 963–970. ACM Press, New
York (2007)

4. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

5. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies - A Step to the
Semantic Integration of Modeling Languages. In: MoDELS/UML 2006. Proceed-
ings of the ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems, Genova, Italy (2006)

6. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozeßmodellierung auf der
Grundlage ”Ereignisgesteuerter Prozeßketten (EPK)”. Technical report, Institut
für Wirtschaftsinformatik Universität Saarbrücken

7. Murzek, M., Kramler, G.: Business Process Model Transformation Issues. In: Pro-
ceedings of the 9th International Conference on Enterprise Information Systems,
Madeira, Portugal (2007)

8. OMG. QVT-Merge Group: Revised submission for MOF 2.1 Query/View/Trans-
formation, version 2.0 formal/05-07-04 edition (2005)

9. OMG. UML 2.1 Superstructure Specification. Object Management Group (April
2006), http://www.omg.org/docs/ptc/06-04-02.pdf

10. Varró, D.: Model Transformation By Example. In: MoDELS/UML 2006. Proceed-
ings of the ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems, Genova, Italy (October 2006)

11. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transforma-
tion Generation By-Example. In: HICSS-40 2007. Proceedings of the 40th Hawaii
International International Conference on Systems Science CD-ROM / Abstracts
Proceedings, Big Island, HI, USA, p. 285 (2007)

http://www.omg.org/docs/ptc/06-04-02.pdf

	Introduction
	Motivation for MTBE
	Models for Business Processes
	Mapping Operators for MTBE in the Light of BPM
	MTBE with UML AD and EPC By-Example
	Model and Metamodel Mappings
	How to Make Mappings Executable

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

