
A Survey on Aspect-Oriented Modeling
Approaches

A. Schauerhuber1?, W. Schwinger2,
E. Kapsammer3, W. Retschitzegger3, M. Wimmer1, and G. Kappel1

1 Business Informatics Group
Vienna University of Technology,

Favoritenstrasse 9-11/E188-4, A-1040 Vienna, Austria
{andrea,wimmer,gerti}@big.tuwien.ac.at

2 Department of Telecooperation
Johannes Kepler University Linz,

Altenbergerstrasse 69, A-4040 Linz, Austria
wieland.schwinger@jku.ac.at
3 Information Systems Group

Johannes Kepler University Linz,
Altenbergerstrasse 69, A-4040 Linz, Austria

{ek,werner}@ifs.uni-linz.ac.at

Abstract. Aspect-orientation provides a new way of modularization
by clearly separating crosscutting concerns from non-crosscutting ones.
While aspect-orientation originally has emerged at the programming
level, it now stretches also over other development phases. There are, for
example, already several proposals to Aspect-Oriented Modeling (AOM),
most of them pursuing distinguished goals, providing different concepts
as well as notations, and showing various levels of maturity. Conse-
quently, there is an urgent need for both, academia and practice, to
provide an in-depth survey, clearly identifying commonalities and differ-
ences between current AOM approaches. Existing surveys in this area
focus more on comprehensibility with respect to development phases
or evaluated approaches rather than on comparability at a fine-grained
level.
This paper tries to fill this gap. As a prerequisite for an in-depth eval-
uation, a conceptual reference model is presented, capturing the basic
concepts of AOM and their interrelationships in terms of a UML class
diagram. Based on this conceptual reference model, an evaluation frame-
work has been designed by deriving a detailed and well-defined catalogue
of evaluation criteria. The actual evaluation by means of this criteria cat-
alogue and by employing a running example is done on the basis of a
carefully selected set of eight AOM approaches, each of them having al-
ready reached a certain level of maturity. This per approach evaluation is
complemented with an extensive report on lessons learned, summarizing
the approaches’ strengths and shortcomings.

? This research has been partly funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

1 Introduction

The concept of Separation of Concerns (SoC) can be traced back to Dijkstra [16]
and Parnas [45]. Its key idea is the identification of different concerns in software
development and their separation by encapsulating them in appropriate mod-
ules or parts of the software. Aspect-Oriented Software Development (AOSD),
formerly also called Advanced Separation of Concerns (ASoC), adopts this idea
and further aims at providing new ways of modularization in order to separate
crosscutting concerns from traditional units of decomposition during software
development. In particular, AOSD represents the convergence of different ASoC
approaches, such as Adaptive Programming (AP) [39], Composition Filters (CF)
[1], Subject-Oriented Programming (SOP) [25], Multi-Dimensional Separation of
Concerns (MDSoC) [67], and Aspect-Oriented Programming (AOP) [33]. AOSD,
nevertheless, is a fairly young but rapidly advancing research field.

Aspect-Oriented Modeling. From a software development point of view,
aspect-orientation has originally emerged at the programming level with As-
pectJ1 as one of the most prominent protagonists. Meanwhile, the application
of the aspect-oriented paradigm is no longer restricted to the programming level
but more and more stretches over phases prior to the implementation phase of
the software development life cycle such as requirements engineering, analysis,
and design. This development is also driven by the simultaneous rise of Model-
Driven Engineering (MDE) employing models as the primary artifact in software
development [56]. In the context of this, Aspect-Oriented Modeling (AOM) lan-
guages attract more and more attention.

Diversity of Approaches. As a result, there has already been a consid-
erable number of AOM languages proposed in literature, whereof only a few in
the meanwhile have come of age. Each of those AOM approaches has different
origins, e.g., AOP and SOP, and pursues different goals. AOM approaches, for
example, follow different school of thoughts some adhering to an asymmetric
view supporting the distinction between aspect and base [26], while others have
a symmetric understanding where such a distinction is not made. This entails
not only the problem of different terminologies but also leads to a broad variety
of aspect-oriented concepts, including composition mechanisms used [38], as well
as notations.

Contributions. To cope with this rapid development, there is an urgent need
for both, academia and practice to provide an in-depth survey of existing AOM
approaches. Existing surveys in this area mainly focus on comprehensibility with
respect to development phases or evaluated approaches, thereby getting a first
impression about the state of the art. This paper tries to complement this valu-
able work by focusing on comparability at a fine-grained level, both concerning
the language’s concepts, but also their notations. Thus, a deeper understand-
ing on commonalities and differences between existing AOM approaches can be
established, especially with respect to their specific strengths and shortcomings.

1 http://www.eclipse.org/aspectj/

Structure of the Paper. The structure of the paper is as follows. In
Section 2, the contributions of this survey with respect to other existing surveys
are discussed in detail. Section 3 presents a conceptual reference model in order
to centrally capture the basic concepts of AOM and their interrelationships in
terms of a UML class diagram. On this basis, an evaluation framework is set
up by deriving a detailed and well-defined catalogue of evaluation criteria in
Section 4. Section 5 is dedicated to the actual evaluation of eight selected AOM
approaches by means of this criteria catalogue. To better illustrate especially the
notational peculiarities of the AOM approaches this evaluation is accomplished
with a running example. The findings are finally summarized and lessons learned
are provided, in Section 6, before we make an outlook on future work in the final
Section 7 of this paper.

2 Related Surveys

In an effort to shed light on different approaches to aspect-orientation, some
surveys comparing aspect-oriented approaches at different levels in the software
development life cycle have already been presented. In the following, such related
surveys can be distinguished into ”closely related” surveys particularly empha-
sizing on AOM (cf. Section 2.1) and more ”widely related” ones focusing on
AOP (cf. Section 2.2), which are nevertheless of interest in the context of this
survey. Furthermore, there exists some work aiming at ”unifying” the currently
prevailing diversity of concepts in the aspect-orientation paradigm. The influ-
ence of those on this survey in terms of the CRM is discussed in detail in the
Section 3.

2.1 Aspect-Oriented Modeling Surveys

With respect to closely-related surveys on AOM approaches, the most extensive
work is provided by Chitchyan et al. [5]. This survey’s goal is to ”elicit initial
insights into the roadmap for developing integrated aspect-oriented requirements
engineering, architecture, and design approaches”. Therefore, for each phase of
the software development process a review of prominent contemporary AOSD
as well as non-AOSD approaches is provided. For the design phase, the survey
presents the evaluation results of 22 aspect-oriented design approaches along
with UML as the only non-AOSD approach on the basis of a set of 6 evaluation
criteria.

Similar, but less extensive AOM surveys with respect to both the set of
criteria and the amount of surveyed approaches have been provided by Reina et
al. [52], Blair et al. [4], and Op de beeck et al. [15]. Reina et al. have evaluated 13
approaches with respect to a set of 4 criteria, only. More specifically, the goal of
Reina et al. has been to investigate each approach with respect to its dependency
on particular platforms as well as its dependency on specific concerns, i.e., if the
approach is general-purpose or not.

The major goal in Op de beeck et al. is to investigate 13 existing AOM ap-
proaches within the realm of product-line engineering of large-scale systems and
to position them within the full life cycle of a software development process. In
this respect, the authors have evaluated a subset of approaches already presented
by Chitchyan et al., as well as refined a set of six criteria, which partly have been
presented in Chitchyan et al. In addition, the authors provide a discussion of the
criteria’s impact on certain software quality factors.

Blair et al. provide separate sets of criteria for the phases of aspect-oriented
requirements engineering, specification, and design. Concerning the design phase,
the authors evaluate 5 approaches according to a set of 8 criteria.

With respect to these existing surveys the present one differs in several ways:

Evaluation Granularity. One major difference between this survey and others
concerns the breadth and depth of the evaluation. In particular, the survey
investigating most approaches, i.e., the survey of Chitchyan et al., aims at
providing a broad overview by including all existing aspect-oriented design
approaches as well as not so well-elaborated proposals for such design ap-
proaches. In contrast, this survey tries to provide an in-depth investigation
of selected approaches that have already gained a certain level of maturity
in terms of publications at acknowledged conferences and/or journals as well
as are based on the Unified Modeling Language (UML) [44] as the prevailing
standard in object-oriented modeling. For an in-depth evaluation a catalogue
of criteria is provided which encompasses more than 40 criteria. In contrast,
the other sets of criteria [4], [5], [15], and [52], do not include more than 8
criteria. In literature, 14 mature, UML-based AOM approaches have been
identified, including the approaches already investigated in related surveys.
In this survey, a representative set of 8 UML-based aspect-oriented design
approaches is evaluated, which has been carefully selected from the above
mentioned 14 approaches with respect to maintaining the ratio between the
extension mechanisms used (metamodel vs. profile) as well as the ratio be-
tween symmetric and asymmetric approaches (cf. Section 5).

Methodology. Another important difference of this survey to the aforemen-
tioned ones lies in the applied methodology, which bases on a carefully es-
tablished catalogue of criteria. Great emphasis has been put on the selection
of criteria and their definition in a top-down as well as a bottom-up manner.
A so-called Conceptual Reference Model for AOM (cf. Section 3) has been
proposed, which identifies the basic AOM concepts as well as their inter-
relationships and thus, forms the basis for deriving the set of criteria in a
top-down manner. Furthermore, for all criteria used, a clear definition along
with the specification of the measurement scale is given. At the same time,
this survey aims at complementing the set of criteria in a bottom-up man-
ner by those criteria used in related AOM surveys [4], [5], [15], [52]. More
specifically, criteria found in other surveys have been adopted where appro-
priate or they have been refined where necessary, e.g., with respect to their
definition or in terms of a decomposition into sub-criteria. In the catalogue
of criteria (cf. Section 4), it is indicated which criteria have been adopted

and which have been refined. Nevertheless, 6 criteria proposed in related
surveys have been explicitly excluded from the evaluation framework due
to methodological issues. Specifically, these criteria encompass reusability,
comprehensibility, flexibility, ease of learning/use, parallel development, as
well as change propagation [4], which corresponds to the evolvability crite-
rion [5] and cannot reasonably be measured without empirical studies, e.g.,
user studies and extensive case studies. Thus, the catalogue of criteria sub-
sumes the criteria derived from the CRM and the criteria provided by other
surveys.

Inclusion of Recent Approaches. Furthermore, this survey also considers
recently published approaches, namely [13], [37], not included in the other
surveys. In this way, this survey is complementary to the aforementioned
surveys by considering also very recent developments.

Running Example. Finally, in contrast to all other surveys, the evaluation is
supported by a running example that is realized with each of the surveyed
approaches. This further supports the evaluation in that it first, illustrates
each approach and second, allows to better compare the modeling means of
the approaches and understand their strengths and shortcomings. If at all,
other surveys rely on diverse examples sometimes taken directly from the
respective approach’s publications (cf. [15]).

2.2 Aspect-Oriented Programming Surveys

Less closely related, since focusing on AOP, is the survey of Hanenberg [24] which
presents a set of criteria used to evaluate four AOP languages. Kersten [32] also
provides a comparison of four leading AOP languages having only AspectJ in
common with Hanenberg. In addition, Kersten also investigates the development
environments of these AOP languages.

Although focused on AOP, the evaluation criteria defined in those surveys
are also of interest, since some of the surveyed AOM approaches are aligned to a
certain aspect-oriented programming language. Nevertheless, some of them are
not applicable in the context of this survey, since they are specifically related
programming level issues, only. For example, Hanenberg distinguishes between
”code instrumentation” and ”interpretation weaving techniques” in the context
of AOP weavers. In this survey, some of their criteria have been adopted and
refined such that they can be applied at the modeling level, too. For example,
the idea of evaluating tool support for AOM approaches has been inspired by
Kersten’s criteria on IDE support (e.g., editor, debugger).

3 The Conceptual Reference Model for Aspect-Oriented
Modeling

The major difficulty in comparing AOM approaches is the lack of a common
understanding for the basic ingredients of aspect-oriented modeling. This is on
the one hand due to different concepts introduced by related AOSD approaches

(e.g., AP, CF, SOP, and MDSoC) and on the other hand due to the very spe-
cific meaning of AOP level concepts, particularly those coined by AspectJ [64].
An example for the first issue is the concept of ”aspect”, where similar though
different concepts have been introduced by related AOSD approaches, e.g., ”hy-
perslice” in Hyper/J, ”filter” in CF, and ”adaptive method” in Demeter/DJ
[71]. An example for the second issue are AspectJ’s join points which are defined
as ”points in the execution of the program” including field accesses, method,
and constructor calls [68]. This definition is not comprehensive enough for the
modeling level, however. First, modeling languages unify specific programming
language concepts into more abstract modeling elements to be able to serve
several different programming languages. And second, modeling languages typi-
cally are richer in terms of concepts, i.e., modeling elements, that could serve as
join points. This is also due to different views available at modeling level, e.g.,
structural views and behavioral views.

In the light of different terminologies and a broad variety of aspect-oriented
concepts, for an evaluation of AOM approaches it is essential to first establish
such a common understanding by means of a so-called Conceptual Reference
Model for AOM. The CRM enables to explain the basic ingredients of aspect-
oriented modeling and their interrelationships both in terms of a graphical rep-
resentation as a UML class diagram and in terms of a glossary comprising a
textual definition for each concept introduced in the class diagram. The concep-
tual reference model, for which a previous version has already been proposed
in [55], represents an intermediate step and forms the basis for setting up an
evaluation framework, i.e., inferring concrete criteria as it is done in Section 4.

In AOSD literature, one can already find some proposals for reconciliating
the currently prevailing diversity in the understanding of concepts from the
aspect-orientation paradigm each pursuing a specific focus [38], [69], [71]. In this
paper, they have been used as a basis for establishing the CRM for AOM. Their
particular influence on the CRM is discussed as follows:

– Considering the broader research area of ASoC, one can distinguish between
four composition mechanisms, namely, pointcut-advice, open class, compos-
itor, and traversal [41]. In the CRX model of Kojarski et al. [38] pointcut-
advice, open class, and compositor mechanisms are supported, only, because
the traversal mechanism does not necessarily share properties with the other
mechanisms that can be reasonably generalized [38]. For the CRM, in this
paper, the authors’ idea of first abstracting over the three aspect-oriented
composition mechanisms, which later allows to compare AOM languages at
a higher level, is adopted. Beyond, the CRM shall capture in detail the cor-
responding AOM language concepts for each composition mechanism sepa-
rately. In Section 4, this allows to set up a fine-grained set of criteria for each
composition mechanism and consequently allows AOM languages realizing
the same composition mechanism(s) to be compared in greater detail.

– In van den Berg et al. [69] an attempt towards establishing a common set of
concepts for AOSD has been made. The proposed definitions are intended
to be appropriate for all phases in the software development life cycle. The

AOSD Ontology of van den Berg et al. discusses high level concepts such as
”concern” and ”composition”, which allow abstracting over different compo-
sition mechanisms such as proposed by Kojarski et al. When looking at the
concepts describing the specifics of the different composition mechanisms,
however, one can see that the focus is rather on the pointcut-advice and
open class mechanisms. Concepts for supporting the compositor mechanism
such as ”merge” and ”match method” (cf. Section 3.3) are not discussed
in the proposed glossary. Beyond, a visualization of the glossary and the
concepts’ interrelationships in terms of a conceptual model is missing. The
CRM is based on the AOSD Ontology in that the proposed definitions of
concepts are adopted, i.e., if such definitions are available.

– The ”theory of aspects” of Chavez et al. [71] describes a ”conceptual frame-
work for AOP” in terms of Entity-Relationship diagrams and a textual de-
scription of each entity. The framework, however, explicitly supports aspect-
oriented approaches that follow the pointcut-advice and open class mech-
anisms, only. The framework, e.g., explicitly demands the aspect-base di-
chotomy, meaning the clear distinction between ”aspects” and ”base”. Con-
sequently the ”theory of aspects” does not describe concepts supporting the
compositor mechanism. Nevertheless, the Entity-Relationship diagrams have
served as an input for designing the CRM. The definitions of concepts pro-
posed in the AOSD Ontology [69] have been preferred over those of Chavez
et al. [71], however, since the AOSD Ontology’s terminology is closer to the
original terminology of the pointcut-advice mechanism (e.g., ”enhancement”
in [71] corresponds to ”advice” in [69]).

For those concepts where no definition is available in the discussed litera-
ture, a bottom-up approach is followed, taking into consideration the surveyed
approaches.

In the following, the concepts of the CRM are described along with its four
major building blocks as depicted in Figure 1. The ConcernComposition pack-
age provides a high level view on the concepts of AOM abstracting over different
composition mechanism, while the Language package describes the means un-
derlying the specification of concerns. The specific composition mechanisms are
specialized in separate packages, i.e., the pointcut-advice and open class mech-
anisms are specialized into the AsymmetricConcernComposition package, and
the compositor mechanism is specialized in the SymmetricConcernComposition
package. The concepts’ descriptions possibly contain a reference to the source
definition and an optional discussion in case the definition of a concept has been
refined.

3.1 ConcernComposition

The ConcernComposition package abstracts over the different composition mech-
anisms. It deals first, with the modularization and thus with the separation of
a system’s concerns into appropriate units and second, with their interrelation-
ships, and consequently their composition by means of appropriate rules.

Fig. 1. The Conceptual Reference Model for Aspect-Oriented Modeling

Concern. Along with [69] a concern is defined as an interest which pertains
to the system’s development, its operation or any other matters that are
critical or otherwise important to one or more stakeholders. A concern is
called a crosscutting concern if it cannot be modularly represented within a
language’s decomposition technique, e.g., classes and methods in the object-
oriented paradigm (cf. Figure 1 attribute isCrosscutting). In AOSD litera-
ture, this restriction is called the tyranny of the dominant decomposition
[67]. The elements of a crosscutting concern are then said to be scattered
over other concerns and tangled within other concerns of a specific system
[69]. In AOSD, logging is often seen as the prime example for a crosscutting
concern.

ConcernModule. One concern typically is realized by one or more concern
modules. The term concern module is reused from Kojarski et al. [38] and
encompasses a set of concern elements that together realize a concern or
part of a concern (cf. role concernElement in Figure 1). Thus, it forms a
representation of concerns in a formalized language (e.g., a package in UML
or in Java). Some approaches have introduced the concept ”aspect” [69] for
modularizing otherwise crosscutting concerns, while existing units of modu-

larization formalizing non-crosscutting concerns have been called ”base” [26].
This distinction has been used to categorize aspect-oriented approaches into
asymmetric approaches to concern composition that support this aspect-base
dichotomy and symmetric ones that do not [26]. Today, this distinction has
begun to diminish and is being replaced by the more general understanding
that the difference between concern modules is in how they are used during
composition (cf. ConcernCompositionRule) [38]. In this paper, this view is
adopted and consequently in the CRM only the concern module concept,
which subsumes the notions of aspect and base, is considered.

CompositionPlan. The integration of concern modules is specified by a com-
position plan [38], which consists of a set of rules. The weaving plan concept
of Kojarski et al. [38] has been renamed in favor of the more general term
composition, which yields the integration of multiple modular artifacts into
a coherent whole [69]. The ”execution” of a composition plan results in a
composed model of the overall system. During this process one distinguishes
two phases, namely detection and composition. While detection is necessary
to identify the concern elements that have to be integrated in the composed
model, composition means the actual integration of them. For the purposes
of this survey, furthermore a distinction between two ways of composing con-
cern modules is made, namely static and dynamic (cf. attribute isDynamic).
Thereby static indicates that the composed model is produced and thus is
available to the modeler at design time analogously to compile-time weaving
at programming level. Dynamic composition integrates the concern modules
virtually during run-time, i.e., while executing the models. At the modeling
level this requires the run-time semantics of the language’s metamodel to
be specified [19] (which, considering, e.g., UML, is only the case for parts of
the language like state machines). This is similar to a run-time weaving that
happens at programming level.

ConcernCompositionRule. The composition plan consists of a set of concern
composition rules whereby one rule defines in detail how the various concern
elements are to be composed. The general concept of concern composition
rule is specialized into sub-classes according to the composition mechanism
used. Following Kojarski et al. [38], the CRM foresees three composition
mechanisms. Two asymmetric composition mechanisms exist in the form
of pointcut-advice for introducing aspectual behavioral (e.g., intercepting
method calls) and open class for introducing aspectual structure (e.g., in-
troducing additional attributes to a class) [38]. At the modeling level, in
any case augmentations or constraints need to be introduced with respect
to model elements, whether they are behavioral elements or structural ele-
ments. Consequently, the asymmetric composition rule serves to realize both
composition mechanisms. The compositor mechanism is provided by the sub-
class SymmetricCompositionRule.

Module Interaction. Concern modules might be defined in a way such that
they interact with each other. Kienzle et al. [35] present a classification
of interaction into ”orthogonal” concern modules, ”uni-directional preserv-
ing” concern modules based on other concern modules without modifying

them, and ”uni-directional modifying” concern modules that change other
concern modules. Another classification of Sanen et al. [54] distinguishes be-
tween ”mutual exclusive” concern modules, concern modules ”depending”
on each other, concern modules positively ”reinforcing” each other, and con-
cern modules ”conflicting” with each other. Accordingly, the abstract class
ModuleInteraction can be specialized to represent the specific interaction
types. In case of a conflict, additional resolution strategies may need to be
employed.

RuleInteraction. Analogously to module interaction, also concern composi-
tion rules may interact with each other. Again a rule interaction can be
refined accordingly to support different kinds of rule interactions. For exam-
ple, concern composition rules on the one hand may reinforce each other but
on the other hand may also conflict with each other. Consequently, conflict
resolution strategies need to be employed. In the context of UML, e.g., a
relative or absolute ordering of rules could by realized with dependencies.

Effect. The effect specified with the concern composition rule describes what
effect the integration of concern elements have. A concern composition rule
may have an enhancement effect, a replacement effect, or a deletion effect
(cf. EffectKind in Figure 1). This distinction resembles a differentiation pro-
posed by Hanenberg [24] in terms of constructive (cf. enhancement), and
destructive (cf. replacement and deletion) effects. There exists, however, an
inherent relationship between the effect and the respective concern elements
used in a particular rule. For example in case of a pointcut-advice rule, the
relative positions before, and after may lead to an enhancement, whereas in
case of around the effect may resemble an enhancement, a replacement (i.e.,
deleting the join point with the advice), or a deletion (i.e., deleting the join
point with an empty advice).

3.2 AsymmetricConcernComposition

In the asymmetric concern composition the concern composition rule is special-
ized for covering the pointcut-advice and open class composition mechanisms
[38]. The package is organized into two sub-packages, namely AspectualSubject
and AspectualKind , due to the two distinct roles concern elements play in asym-
metric composition.

AsymmetricCompositionRule. Asymmetric composition rules are part of a
particular composition plan and provide support for the pointcut-advice and
the open class composition mechanisms. An asymmetric composition rule
consists of a pointcut (cf. Pointcut) together with an optional relative po-
sition (cf. RelativePosition) describing where to augment or constrain other
concern modules as well as the advice (cf. Advice) describing how to aug-
ment or constrain other concern modules. The consists-of relationships have
been modeled using weak aggregations, since advice, pointcut, and relative
position might be reused in other asymmetric composition rules as well.

AspectualSubject The aspectual subject describes the concepts required for
identifying where to augment or constrain other concern modules.

JoinPoint. According to [18] a join point is a well-defined place in the structure
or execution flow of a program where additional behavior can be attached.
In contrast, at modeling level the join point represents a well-defined place
in a model represented by a concern module, which specifies where an ad-
vice (cf. Advice) can be introduced. Thus, a join point represents a concern
element, i.e., an identifiable element of the language used to capture a con-
cern. It has to be noted that in recent works [38], [41] the notion of join
point has changed. It has been described as being a concept of the result
domain, meaning it represents the composed element through which two or
more concerns may be integrated. Nevertheless, the original concept of join
point is essential to the pointcut-advice composition mechanism and may
also be used in the open class composition mechanism [38]. Consequently,
the CRM adheres to the original notion of join point for describing the con-
cepts participating in asymmetric concern composition.
According to Hanenberg [24], join points can be distinguished along two or-
thogonal dimensions, namely abstraction and dynamicity. In this paper, this
categorization is applied to the modeling level while adhering to UML termi-
nology [44] through the use of the term ”feature” instead of ”abstraction”.
Consequently, join points can be structural (cf. StructuralJoinPoint) or be-
havioral (cf. BehavioralJoinPoint), while at the same time, they are also
modeling level representations of static or dynamic elements (cf. attribute
isDynamic) in a software system. While static join points are elements of
a language that can be identified based on information available at design
time (e.g., class and method call), dynamic join points are elements of a
language that cannot be identified before run-time (e.g., object and method
execution).

StructuralJoinPoint. Structural join points represent structural elements of
a language where an advice can be introduced. In addition, structural join
points can be either static or dynamic (cf. isDynamic attribute). Exempli-
fying those two categories by means of UML modeling elements, structural-
static join points would be classes and structural-dynamic join points would
be objects.

BehavioralJoinPoint. Analogous, behavioral join points represent behavioral
elements of a language where an advice can be introduced. Additionally, a
distinction is made between behavioral-static join points (e.g., activity) and
behavioral-dynamic join points (e.g., method execution). Admittedly, not all
languages may offer elements which allow for dynamic join points as is the
case with UML together with OCL.

JoinPointModel. The join point model defines the kinds of join points avail-
able [69]. It comprises all elements of a certain language where it is allowed
to introduce an advice (cf. Advice), i.e., where the representedAs association
connects the element with JoinPoint. For example, some approaches might

want to restrict their join point model to a specific set of language elements,
e.g., classifiers in UML.

Pointcut. A pointcut describes a set of join points [69], i.e., the concern ele-
ments selected for the purpose of introducing certain augmentations or con-
straints (cf. Advice). The selection of join points can be done by means
of quantified statements over concern modules and their concern elements
(cf. SimplePointcut and QuantificationMethod). A pointcut specification is
implemented by either a SimplePointcut or a CompositePointcut.

SimplePointcut. A simple pointcut represents a set of join points of a certain
kind (e.g., structural-static), which are selected according to a certain quan-
tification method (cf. QuantificationMethod). It thus, represents a means for
selecting several concern elements as join points. For this survey, the com-
bination of simple pointcut and quantification method correspond to the
definition of pointcut in [69].

CompositePointcut. For reuse purposes, pointcuts can be composed of other
pointcuts by means of logical Operators, e.g., AND, OR, NOT, to form com-
posite pointcuts. Thereby, all children of a composite pointcut, i.e., all se-
lected join points, refer to the same join point model.

QuantificationMethod. The quantification method concept describes a mech-
anism, e.g., a predicate for selecting from the potential join points of the join
point model those that should be available for introducing an advice (cf. Ad-
vice). The quantification method corresponds to what is termed a pointcut
designator in AspectJ, i.e., its quantification mechanism according to [18].

RelativePosition. A relative position may provide further information as to
where aspectual features (cf. Advice) are to be introduced. It represents
some kind of location specification. This additional information is necessary
in some cases when selecting join points by pointcuts only is not enough.
Such aspectual features can be introduced for example before or after a
certain join point. Still, in some other cases such as for the open class com-
position mechanism a relative positioning is not necessary, e.g., when a new
attribute is introduced into a class the order of the attributes is insignificant
(cf. multiplicity 0..1). While the relative position typically is specified with
the advice such as in AspectJ, in the CRM it is modeled separately from
the advice. The ”wrapping” technique presented in [18] corresponds to the
definition of relative position but in contrast is described for behavioral join
points only.

AspectualKind. The AspectualKind package comprises the concepts necessary
to describe how to augment or constrain other concern modules.

Advice. An advice specifies how to augment or constrain other concerns at join
points matched by a pointcut [69]. An advice is realized by either a structural
advice (cf. StructuralAdvice), a behavioral advice (cf.BehavioralAdvice), or
both, i.e., by a composite advice (cf. CompositeAdvice). Historically, struc-
tural advice has been called ”introduction”, while behavioral advice has been

termed ”advice”. Recently, the advice concept is more and more used as an
inclusive term for both and consequently has been employed herein.

StructuralAdvice. A structural advice comprises a language’s structural ele-
ments for advising other concerns. For example, adding a new attribute to
a class’s structure represents a structural advice.

BehavioralAdvice. Likewise, a behavioral advice comprises a language’s be-
havioral elements for advising other concerns. In the context of UML, adding
a method call, i.e., a message in a sequence diagram represents a behavioral
advice.

CompositeAdvice. For reuse purposes, an advice can be composed of a co-
herent set of both, structural and/or behavioral advice, to form a composite
advice, i.e., the composite needs to be free of conflicts. For example, an
attribute and an operation represent two simple advice. If composed, the
composite advice includes the attribute as well as the operation. In this re-
spect, the advice concept extends the general understanding of the advice
concept described in [69].

3.3 SymmetricConcernComposition

In the symmetric concern composition the concern composition rule is specialized
according the compositor composition mechanism [38].

SymmetricCompositionRule. A symmetric composition rule comprises first,
a specification of the elements to be composed (cf. ComposableElement), sec-
ond, the match method to apply upon them describing which elements to
compose (cf. MatchMethod), and third, the integration strategy to be applied
describing how to proceed on those matched elements (cf. IntegrationStrat-
egy). For example in the context of UML such a symmetric composition
rule could specify that classes of two packages having identical names shall
be matched and their class bodies shall be combined, similarly to the UML
”package-merge” operator. Again, for reuse purposes the consists-of rela-
tionships have been modeled using weak aggregations.

ComposableElement. Composable elements of a symmetric composition rule
refer to the elements allowed to be composed [7]. Composable elements can be
made up by any element of the underlying language. Therefore, a distinction
is made also between composable structural elements (cf. ComposableStruc-
turalElement) and composable behavioral elements (cf. ComposableBehav-
ioralElement). In the course of a symmetric composition rule more than two
of such elements can be integrated.

ComposableStructuralElement. A composable structural element comprises
a language’s structural elements (cf. StructualElement) and can be composed
with other composable elements identified in a symmetric composition rule.
Examples for composable structural elements with respect to UML are Com-
ponents, Classes, but also more fine-grained concepts such as Properties.

ComposableBehavioralElement. Likewise, a composable behavioral element
comprises a language’s behavioral elements (cf. BehavioralElement) and can

be composed with other composable elements identified in a symmetric com-
position rule. With respect to UML, examples for composable behavioral
elements are Activities and Actions as well as State machines and States.

MatchMethod. The match method applied in the detection phase of a com-
position identifies which concrete elements to match given as input the com-
posable elements for the composition. It supports the specification of match
criteria for composable elements and their components, e.g., a class’s at-
tributes. Examples for match methods found in literature [7], [50] comprise
match-by-name, match-by-signature, no-match.

IntegrationStrategy. The integration strategy details how to proceed during
composition with the matched elements. The general concept of integration
strategy is specialized into the sub-classes merge, bind, and override [7], [50].

Merge. With the merge integration strategy two or more corresponding com-
posable elements are merged. This set of corresponding composable elements
has been identified by the applied match method.

Override. In contrast to the merge integration strategy, for applying the over-
ride integration strategy the overriding as well as the overridden elements
have to be specified from the set of corresponding composable elements iden-
tified by the applied match method.

Bind. The bind integration strategy typically represents a strategy where some
composable elements are treated as template parameters that need to be
bound to concrete values, i.e., other composable elements. It is applied in
the context of parameterizable concern modules which are often used to
realize crosscutting concerns.

3.4 Language

Finally, the concepts which are part of the Language package describe the means
underlying the specification of concerns.

Language. Concern modules are formalized using the language elements of a
certain language, i.e., a modeling language like UML. Depending on the
composition mechanism used, some aspect-oriented approaches have distin-
guished between different languages for formalizing crosscutting and non-
crosscutting concerns [38].

Element. A language comprises a set of elements, like e.g., class, relation, pack-
age which allow the modeler to express certain concepts. Typically a lan-
guage’s elements can be distinguished into structural (cf. StructuralElement)
and behavioral elements (cf. BehavioralElement). Depending on the composi-
tion mechanism, the elements of a language are used differently. With respect
to asymmetric approaches, elements serve two distinct purposes. First, they
may represent join points and thus in the role of join points specify where to
introduce an advice. Second, elements of a language are used for formulating
the advice itself. In the case of symmetric approaches such a distinction is
not made.

StructuralElement. Structural elements of a language are used to specify a
system’s structure. Natural examples for such elements in the case of UML
are classes, packages, and components.

BehavioralElement. Likewise to structural elements, behavioral elements of a
language are used to specify a system’s behavior. Behavior is expressed in
UML through behavioral elements like actions, states, and messages.

4 Evaluation Set-Up

4.1 Methodology

Selection of Approaches. There already exists a considerable amount of pro-
posals for AOM languages each of them having different origins and pursuing
different goals dealing with the unique characteristics of aspect-orientation. Only
few of them have come of age and have been presented at acknowledged con-
ferences and journals, however. Since aspect-orientation is often considered an
extension to object-orientation, it seems almost natural to use and/or extend
the standard for object-oriented modeling, i.e., the Unified Modeling Language
(UML), for AOM. To the best of our knowledge, there are only a few AOM pro-
posals that do not base their concepts on UML [65], [66] compared to the amount
of approaches that do. Thus, this survey focuses on UML-based approaches to
aspect-oriented modeling, only.

In literature, fourteen such well-published, UML-based, design-level AOM
approaches have been identified, namely: [8], [12], [13], [17], [21], [23], [27], [30],
[31], [37], [47], [50], [60], and [70]. In this survey, the results of evaluating a rep-
resentative set of eight AOM approaches are presented, including in the set first
of all those two approaches that have not been investigated in existing surveys,
namely: [13] and [37]. As indicated before, the rationale behind choosing the
remaining six [8], [17], [30], [47], [50], [60] out of the identified, is to assort a
representative mix of approaches. In this respect, the goal has been to maintain
the ratio between approaches based on metamodel extensions and those rely-
ing on UML Profiles as well as the ratio between symmetric and asymmetric
approaches.

Deriving Criteria from the Conceptual Reference Model. In the fol-
lowing, a catalogue of criteria for a structured evaluation of AOM approaches is
proposed. The focus in designing this catalogue of criteria was to provide a fine-
grained catalogue of criteria which constitutes the prerequisite for an in-depth
evaluation of existing approaches and thus allows to compare different AOM ap-
proaches in greater detail than in previous surveys [4], [5], [15], [52]. The criteria
of the evaluation framework have been derived in a top-down manner from the
CRM (cf. Section 3) as well as in a bottom-up manner considering related AOM
surveys:

The CRM presented in the previous section sketches the concepts that have
been identified to be important for the AOM domain. This has been done both
at an abstract level, i.e., abstracting from different composition mechanisms, and
at a detailed level, i.e., looking at the specific characteristics of each composition

mechanism. Corresponding criteria in the catalogue operationalize the CRM with
respect to allowing a comparison of approaches. In particular, for each concept
of the CRM one or more criteria have been derived. This implies that either a
concept of the CRM maps onto one-to-many criteria in the catalogue or one-to-
many concepts of the CRM map onto one criterion in the catalogue. A concept
that is represented as an abstract class, however, does not necessarily need a
corresponding criterion in the catalogue, since it is implicitly evaluated by its
sub-concepts and their criteria.

Collecting Criteria from other Surveys. Following a bottom-up ap-
proach, the goal was to complement the set of criteria by those used in related
AOM surveys [4], [5], [15], [52]. More specifically, criteria definitions found in
other surveys have been adopted or refined. In this respect, a refinement for
instance has been the provision of a measurement scale, e.g., the UML version
used for the Language criterion (cf. Section 4.2), or the decomposition of a cri-
terion into several sub-criteria, e.g., the composability criterion of [5] has been
refined for each composition mechanism in this survey.

Excluding Non-Measurable Criteria. From the catalogue of criteria a
few criteria proposed in related surveys have been explicitly excluded, since they
cannot be measured without user studies or extensive case studies. These include
the following criteria of the survey of Blair et al. [4], i.e., reusability, comprehen-
sibility, flexibility, ease of learning/use, parallel development, as well as change
propagation, which corresponds to the evolvability criterion of Chitchyan et al.
[5].

Establishing a Schema for Criteria Definition. Furthermore, the goal
was to avoid blurred criteria by working out, as far as possible, unambiguous
definitions and the criteria’s values that are also measurable. Thus, each criterion
is described by a set of properties:

1. a name along with an abbreviation allowing to reference the criteria during
evaluation of the approaches in Section 5,

2. a reference to the source in case a criterion has been adopted or refined from
another survey as well as an explanation of how such a refinement has been
accomplished,

3. a definition specifying the criterion as unambiguously as possible along with
an optional discussion on difficulties in defining the criterion,

4. an appropriate means of measurement, such as a list of possible values or
a measurement scale, including not applicable as a default value for each
criterion.

Categorizing the Selected Criteria. The criteria of the catalogue have
been grouped into six categories (see Figure 2) with four out of them being
specifically inferred from corresponding parts in the conceptual reference model
(cf. Section 3) and the general categories Maturity and Tool Support providing
mainly descriptive criteria.

The Language category provides criteria for evaluating some basic character-
istics of AOM languages (e.g., the modeling language, the extension mechanism
used, and traceability). Beyond, it also provides a criterion for checking the

Fig. 2. Categorization of Criteria

availability of a design process. In the ConcernComposition category, the repre-
sentation of the concern module concept and the composition mechanisms used
is considered amongst others. With respect to symmetric concern composition in
the SymmetricConcernComposition category, the kind of composable elements
and provided integration strategies are investigated. In contrast, the Asymmet-
ricConcernComposition category subsumes criteria for the join point and its
sub-concepts (cf. AspectualSubject sub-category) as well as criteria evaluating
the modeling support of advice (cf. AspectualKind sub-category). The Maturity
of an approach is discussed along the criteria of provided modeling examples,
real-world applications, and available information. And finally, in the Tool Sup-
port category the availability of tools for modeling and composing concern mod-
ules as well es for code generation is evaluated. Since a thorough evaluation of
Tool Support for AOM would go beyond the scope of this survey, tool support is
evaluated on the basis of the available literature, only. Following, each categories’
criteria are presented.

4.2 Language Criteria

This category contains general criteria describing the modeling language and
design process. A separate criteria for evaluating the element concept described
in the CRM (cf. Section 3) is not considered, since it is implicitly evaluated with
several other criteria that investigate the corresponding CRM’s AO concepts
with respect to their modeling representation.

Aspect Generality (M.AG) Besides being a general-purpose modeling lan-
guage with respect to the application domain, an AOM approach also may
be general-purpose with respect to aspects. The following two forms of aspect
generality can be distinguished: A general-purpose AOM language supports
modeling of all kinds of aspects, whereas an aspect-specific modeling lan-
guage considers one specific aspect, only. Theoretically, there could be mod-
eling languages that support two, three or more specific aspects. Still, these
are not considered to be aspect-specific, since in that case, the definition
for general-purpose modeling languages gets blurred. The aspect generality
criterion has been adopted from the ”purpose” criterion in Reina et al. [52].
In this survey, the focus is on general-purpose AOM languages, thus, also
the aspect generality criterion is used for selection purposes, only.

Modeling Language (M.L) With respect to the modeling language used, UML-
based AOM approaches are considered, only. Therefore, a distinction be-
tween the underlying UML version, i.e., version 1.x 2, and version 2.0 [44] is
made.

Extension Mechanism (M.E) Although UML is very expressive, its model-
ing mechanisms do not provide for aspect-oriented concepts. Thus, AOM
proposals tend to use one out of two UML extension mechanisms to cater
for the necessary modeling mechanisms. First, by what is called heavy-weight
extension, the UML metamodel itself is extended through inheritance and
redefinition of metamodel elements. Second, UML profiles, grouping user-
defined extensions to metamodel elements in terms of stereotypes [53], rep-
resent UML’s built-in light-weight extension mechanism, which permits only
extensions that do not change the metamodel. This way a new dialect of
UML can be defined in order to better support specific platforms or domains
[44]. The light-weight extension mechanism fosters tool inter-operability [53],
since they are designed in a way that tools can store and manipulate the ex-
tensions without understanding their full semantics. This criterion has been
inspired by Chitchyan et al. [5], where this kind of information has been
provided but an explicit criterion has not been defined therein.

Influences (M.I) Originally, the intention was to use ”platform dependency”
as a criterion for this catalogue. Still, in literature, no clear definitions of
platform or platform (in)dependence, e.g., in the context of OMG’s Model
Driven Architecture (MDA) [43], have been available. For example, there
may be many abstraction levels between MDA’s Platform Independent Mod-
els (PIM) and Platform Specific Models (PSM). Consequently, what defines
platform and platform-independence is a matter of objectives and has to be
determined in the context of one’s own work. In this survey, a common de-
finition of platform for the evaluated approaches is not attempted. Instead,
the ”inspired by” criterion of Reina et al. [52] is resumed, according to which
many of the AOM approaches have been inspired by concepts expressed in a
specific aspect-oriented programming language. In contrast to [52], this cri-
terion is not restricted to AOP platforms but lists research areas (e.g., SOP,

2 http://www.omg.org/technology/documents/vault.htm#modeling

MDSoC, and CF) and platforms in general that have ”influenced” a particu-
lar approach. In addition, platforms are also listed if models can be mapped
onto them, provided that proof is given through a mapping definition or at
least appropriate examples.

Diagrams (M.D) The emphasis in modeling concern modules can be its struc-
ture and/or its behavior. In this respect, the kinds of supported struc-
tural and/or behavioral diagrams to specify aspect-orientation are evaluated.
Hence, this property lists all UML diagram types and possibly proprietary di-
agram types that have been used to support on the one hand structural and
on the other hand behavioral modeling of concern modules. This criterion
also has been inspired by Chitchyan et al. [5], where this kind of information
has been provided but an explicit criterion has not been defined.

Design Process (M.DP) A design process describes a well-defined, step-wise
approach to modeling. This criterion has been adopted from Op de beeck
et al. [15] and evaluates if the surveyed AOM approach provides explicit
support for a design process or if some implicit design process support is
available, e.g., in terms of guidelines, only.

Traceability (M.T) The traceability criterion is defined as a property of a re-
lationship between two models where one model is a refinement of another,
and has been adopted from the work of Chitchyan et al. [5]. More specifi-
cally, the criterion distinguishes between external and internal traceability.
The external traceability measure focuses at aspect-oriented design models
in relation to the full software development life cycle, i.e., requirements (R),
analysis (A), design (D), and implementation (I). Possible values are combi-
nations such as R → D → I, which means traceability from a requirements
specification over design to the implementation level. The internal traceabil-
ity measure deals with traceability between models belonging to one phase
in the software development life cycle. In this survey, AOM approaches are
investigated if during design more abstract design models are refined into
more detailed design models. This sub-criterion evaluates to supported or
not supported, respectively.

Scalability (M.S) Scalability, which is defined as the ability to cope with small
as well as large modeling projects, is investigated with respect to first, which
high-level modeling elements of an approach support scalability, e.g., UML
packages, and/or high-level diagram types, and second, if scalability has been
proven or not proven in real-world projects or by modeling examples that go
beyond the composition of two concern modules. This definition of scalability
has been refined from Chitchyan et al. [5] with respect to its measurement
scales.

Refinement Mapping (M.R) The refinement mapping criterion is adopted
from Op de beeck et al. [15]. It describes how the refinement of an initial ab-
stract design model into a more detailed one is achieved. One can distinguish
the extending step-wise refinement from the creating step-wise refinement.
The difference between these two possibilities is that for the latter a new
instance of the model is created with every step in the refinement process.

Alignment to Phase (M.A) Design is just a phase embedded in the overall
software development life cycle. An AOM approach therefore may be more
aligned to certain phases in the software development than to others. Ideally,
an approach is balanced between the abstraction available from the require-
ments phase and the abstraction needed for the implementation phase. An
AOM approach can thus be aligned to requirements and/or the implementa-
tion phases but also to none of the phases. This criterion has been adopted
from Op de beeck et al. [15].

4.3 ConcernComposition Criteria

This category considers criteria derived from the corresponding package in the
CRM, amongst others, the representation of the concern module concept, the
composition mechanisms used as well as the approaches symmetry.

Composition Mechanism (CC.M) The concepts described in the CRM sup-
port the pointcut-advice (PA), open class (OC), and compositor (CMP)
composition mechanisms. This criterion therefore allows to evaluate which
of the three composition mechanism is realized by the AOM approaches. It
is also possible to support more than one composition mechanism.

Concern Module (CC.CM) This criterion investigates the concern modules’s
representation in the modeling language in terms of a UML meta-class or a
stereotype definition and, if provided, the notational element used.

Element Symmetry (CC.ES) Two possible ways of concern decomposition
can be distinguished, namely, symmetric and asymmetric concern decompo-
sition. In the asymmetric paradigm one distinguishes between concern mod-
ules of different structure, i.e., between ”aspects” and ”base”. As an example
some AOM approaches, introduce a new stereotype �aspect� derived from
UML meta-class Class to distinguish ”aspects” from normal ”base” classes.
In the symmetric paradigm no such distinction is made. In fact, the sym-
metric paradigm treats all concerns, both crosscutting and non-crosscutting,
as ”first-class, co-equal building-blocks of identical structure” [26].

Rule Symmetry (CC.RS) The rules for composing concern modules can be
specified in a symmetric or in an asymmetric way [26]. In particular, the
symmetry is determined by the placement of the concern composition rules.
Rule asymmetry defines the concern composition rules within one of the con-
cern modules that are to be composed (e.g., in AspectJ the rules are captured
within the aspect in terms of pointcut-advice combinations), whereas rule
symmetry defines them in neither of the concern modules. Please note, that
rule symmetry corresponds to relationship symmetry in [26].

Composition Symmetry (CC.CS) This criterion has been adopted from the
work of Op de beeck et al. [15] and investigates which concern modules are
allowed to be composed with each other. While in the asymmetric case com-
position happens between ”aspects” and ”bases” only, i.e., ”aspects” are
woven into ”bases”, in the symmetric case all concern modules can be com-
posed with each other. For those approaches supporting element asymmetry

and thus distinguishing between ”aspects” and ”bases”, symmetric composi-
tion is only supported if the following combinations are allowed: aspect-base,
aspect-aspect, base-base. Approaches supporting element symmetry accord-
ingly also support composition symmetry.

Effect (CC.E) This criterion evaluates if the approaches provide means for
modeling the effect of the integration of concern elements via concern com-
position rules. The criterion’s possible values are supported or not supported.

Composition Semantics (CC.S) The composition semantics criterion has pa-
rtly been inspired by the survey of Chitchyan et al. [5], though not explicitly
defined therein. This criterion evaluates if the composition semantics have
been defined or not defined for both the detection of the elements to be
composed as well as for their actual composition into a composed element.

Composition (CC.C) A distinction between composing concern modules sta-
tically or dynamically, i.e., by executing the models, is made. Nonetheless,
a specific approach might neither support static nor dynamic composition
at modeling level but defer weaving to later phases in the software devel-
opment process, e.g., by separately generating code from concern modules,
which are finally composed by a dedicated mechanism of the underlying AOP
language. The advantages of approaches that support model composition are
first, at code level non aspect-oriented platforms can be used and second,
the composite results can be validated prior to implementation. However,
once composed, the concern modules cannot be recovered at later stages
thus causing traceability problems.

Composed Module (CC.CP) This criterion evaluates the resulting composed
module in terms of its modeling representation. In particular, this criterion
distinguishes between composed modules represented with standard UML
and composed modules represented based on the extensions made to the
UML. The composed module criterion has been adopted from the ”compos-
ability” criterion of Chitchyan et al. [5].

Interaction (CC.I) An AOM approach may offer ways to specify interactions
between concern modules on the one hand but also between concern com-
position rules on the other hand. This criterion evaluates for both concepts,
what kind of interactions can be modeled and the modeling representations
thereof, e.g., UML meta-class or stereotype.

Conflict Resolution (CC.CR) In accordance with [4], conflict resolution may
be based on a mechanism to avoid conflicts in advance or to detect conflicts
and then resolve them manually. While conflict avoidance might be a pos-
sible solution to cope with conflicting aspects, one still might need ways to
detect and resolve conflicts that could not be captured by conflict avoidance
in advance. In case no conflict resolution has been specified, this criterion
evaluates to not supported.

4.4 AsymmetricConcernComposition Criteria

This category subsumes criteria for evaluating approaches following an asym-
metric way to concern composition which are categorized into two sub-categories
AspectualSubject and AspectualKind.
AspectualSubject Criteria. The AspectualSubject sub-category provides cri-
teria for evaluating concepts used to describe where to augment or constrain
other concern modules, e.g., the join point and its sub-concepts.

Structural Join Point (AS.SJP) This criterion evaluates if structural join
points are supported. More specifically, the focus is on what kind - with
respect to dynamicity - of structural join point are considered in the ap-
proaches, i.e., structural-static join points like classes or structural-dynamic
join points like objects.

Behavioral Join Point (AS.BJP) Likewise, the behavioral join point crite-
rion evaluates if behavioral join points are supported by the surveyed AOM
approaches. In this respect, examples for a behavioral-static join point are
UML activities and messages. Behavioral-dynamic join points typically de-
pend on certain conditions evaluated at run-time. Specifying such conditions
can be done for example with OCL.

Join Point Model (AS.JPM) This criterion distinguishes between two pos-
sible ways of specifying a join point model. First, the join point model can
be made explicit by identifying a language’s model elements as join points.
This can be achieved for example by enhancing the language’s metamodel
in a way that certain model elements inherit from a join point meta-class or
by at least identifying and declaring the join points of a language in ”nat-
ural language” such as in [62] or [68]. Second, the join point model can be
defined implicitly by the AOM language’s join point selection mechanism,
thus, comprising all join points that the join point selection mechanism is
able to select.

Pointcut (AS.P) Although the pointcut concept is represented as an abstract
class in the CRM (cf. Section 3), a separate criterion is foreseen for evaluating
the commonalities of the concrete pointcut sub-classes. In particular, the
criterion evaluates if the pointcut mechanism has been realized based on a
standard (e.g., AspectJ code, UML, OCL) or on a proprietary language.

Simple Pointcut (AS.SP) This criterion evaluates how simple pointcuts are
represented by concepts of the modeling language or extensions thereof and
particularly distinguishes between graphical and textual representations of
simple pointcuts.

Composite Pointcut (AS.CP) Furthermore, the composite pointcut crite-
rion evaluates if at all and how composite pointcuts are represented in the
modeling approach. Again, a distinction is made between graphical and tex-
tual representations of composite pointcuts.

Quantification Method (AS.SM) This criterion evaluates which quantifica-
tion methods are employed to select join points in a certain approach. The
selection of join points can be specified declaratively, imperatively, or simply
by enumeration.

Relative Position(AS.RP) This criterion investigates the general support of
specifying a relative position with respect to join points and, if provided, lists
the different possibilities of relative position specification, i.e., after, before,
and around, supported by the approaches.

Abstraction (AS.A) This criterion is refined from the definition given in Chit-
chyan et al. [5]. In contrast, in the context of asymmetric concern composi-
tion, two dimensions of abstraction are considered, namely abstraction with
respect to the aspectual subjects (AS.A) and abstraction concerning the as-
pectual kind (AK.A) (cf. Section 4.4). With respect to the aspectual subjects,
a high level of abstraction means that the join points might not have been
identified yet, i.e., the model only specifies the fact that a certain concern
module affects others, but not exactly where. On the contrary, modeling lan-
guages providing a low level of abstraction allow specifying the exact points
where advice take effect.

AspectualKind Criteria. The AspectualKind sub-category subsumes criteria
for evaluating concepts used to describe how to augment or constrain other con-
cern modules, e.g., the advice, as well as the abstraction level at which modeling
of the advice is possible.

Structural Advice (AK.SA) This criterion evaluates if AOM approaches pro-
vide ways of specifying structural augmentations and/or constraints. Fur-
thermore, the concepts or extensions of the modeling language as well as the
notational elements used for representation are investigated.

Behavioral Advice (AK.BA) Likewise to structural advice, this criterion eval-
uates if AOM approaches provide ways of specifying behavioral advice and
in particular what concepts or extensions of the modeling language and what
notational elements have been used for representation.

Composite Advice (AK.CA) In addition to evaluating structural and be-
havioral advice support, the focus is on how the approaches provide ways
of composing multiple pieces of advice to form a more complex advice in
terms of concepts or extensions of the modeling language and appropriate
notational elements.

Abstraction (AK.A) This criterion has been refined from the definition given
in [5] for the asymmetric concern composition. It is decomposed into the
criteria abstraction with respect to the aspectual subjects (AS.A) (cf. Section
4.4) and abstraction concerning the aspectual kind (AK.A). Analogously to
(AS.A), it specializes the criterion given in [5] for the aspectual kind and, as
already mentioned, contributes to the overall evaluation of the abstraction of
an approach. Since models at a high level of abstraction might be incomplete
with respect to providing a specification for code generation, a high level of
abstraction with respect to the aspectual kind means that it might not yet be
clear how the specific concern module(s) should be advised, i.e., the model
only specifies that a certain concern module exists, but not the actual advice
it provides. In contrast, low -level models of aspectual kind refer to models
that provide detailed information on how the concern module’s internals
(i.e., the actual advice and auxiliary functionality) look like.

4.5 SymmetricConcernComposition Criteria

This category subsumes criteria for evaluating approaches following a symmetric
way to concern composition, i.e., the necessary concepts identified in the CRM
as well as the level of abstraction at which modeling is supported.

Structural Composable Element (S.SCE) This criterion evaluates if and
what structural composable elements are supported by an AOM approach.
It lists the UML meta-classes representing structural concepts that in a sym-
metric concern composition approach can be composed.

Behavioral Composable Element (S.BCE) Likewise, the behavioral com-
posable element criterion evaluates if and what behavioral composable el-
ements are supported by an AOM approach. This criterion therefore lists
the UML meta-classes representing behavioral concepts that in a symmetric
concern composition approach can be composed.

Match Method (S.MM) This criterion evaluates which method(s) to identify
the matching elements out of the set of composable elements are foreseen
by an approach. It distinguishes between three possible methods, namely
match-by-name, match-by-signature, and no-match.

Merge (S.M) This criterion investigates if AOM approaches supporting the
symmetric concern composition provide ways of defining the specific inte-
gration strategy merge. In particular, it investigates what concepts or ex-
tensions of the modeling language as well as what notational elements have
been used for representation.

Override (S.O) Similarly, this criterion checks if an AOM approach allows for
modeling symmetric concern composition rules with an override integra-
tion strategy. Again, it also investigates what concepts or extensions of the
modeling language as well as what notational elements have been used for
representation.

Bind (S.B) Like the previous two, the bind criterion evaluates possible ex-
tensions of the modeling language to support such a binding and provides
information on the notational elements used.

Abstraction (S.A) Analogous to the abstraction criteria for the asymmetric
concern composition, this criterion has been refined from the definition given
in [5]. In this context, however, the level of abstraction is defined with respect
to the composable elements used in a symmetric composition rule. A high
level of abstraction is supported if the symmetric composition rule is used to
compose two or more higher-level or composite modeling elements, such as
UML packages, of which their internals have not been specified. A low level of
abstraction is provided, if these composite modeling elements can be detailed,
e.g., a class diagram for a UML package, and if symmetric composition rules
can also be specified for more fine-grained modeling elements such as UML
attributes.

4.6 Maturity Criteria

The criteria in this section intend to evaluate the approaches’ maturity in gen-
eral. It has to be noted that in [4] the criterion maturity was used to evaluate

whether an approach has been used in real world examples, only, whereas in this
survey maturity is evaluated with a set of sub-criteria described in the following.

Modeling Examples (Ma.E) Besides evaluating the breadth of modeling ex-
amples, it is also interesting to investigate the modeling examples’ depth in
terms of how many different concern modules are integrated within the ex-
amples. Thus, the criterion is supported by two values, namely, the number
of provided modeling examples by each approach as well as the maximum
number of concern modules integrated in one example.

Application in Real-World Projects (Ma.A) The successful deployment of
the AOM approach in the design of a real-world application proves its ap-
plicability and consequently indicates a high level of maturity of the modeling
concepts. Possible values are yes, and no.

Topicality (Ma.T) The topicality criterion presents for each approach when
the most recent piece of work in terms of the year of publication has been
published to indicate the approach’s topicality and thus, gives an indication
whether the approach might still evolve or not. This criterion has been refined
from the ”year” criterion of Reina et al. [52]

Available Information (Ma.I) Another measure of the approaches’ maturity
is the available amount of manuals, papers and books. Although, admittedly,
the amount of publications does not necessarily correlate with an approach’s
quality. The values for this criterion provide the number of different resources
of information.

4.7 Tool Support Criteria

Tool Support improves the adoption of an approach an developer productivity
as well as ensures syntactical correctness of the model. While the criterion dis-
tinguishes between support for modeling, composition and code generation, the
latter are both dependent on modeling support.

Modeling Support (T.M) Modeling support is defined as providing the means
to use the modeling language’s notation and furthermore of validating the
created aspect-oriented models for syntactical and semantical correctness. If
the modeling language is realized in terms of a UML profile, modeling sup-
port should be portable to any UML modeling tool. This criterion evaluates
to supported, possibly providing further information on modeling support,
or not supported.

Composition Support (T.C) This criterion specifies if composition of con-
cern modules is also supported or not supported by a tool an thus allows to
view and/or simulate the composed model.

Code Generation (T.G) In line with the concepts of MDE, code generation
facilities should be provided, thus requiring a mapping between the notation
and the supported implementation language. This criterion evaluates if code
generation, in principle, is possible. Beyond, this criterion also evaluates if
there is a more sophisticated mechanism to code generation such as the

OMG’s MDA [43] (i.e., existence of platform-independent models, platform
definition models and their transformation into platform-specific models by
using a mapping mechanism). Thus, possible values for this criterion are
supported or not supported. Additional information is provided in case of a
more sophisticated code generation mechanism.

4.8 Modeling Example: The Observer Pattern Applied to a Library
Management System

Motivation. As an appropriate running example of a crosscutting concern to
be applied to a system, in this evaluation, the well-known observer pattern [22]
is adopted, a prominent example not only in AOSD literature (cf. [11], [48], [60])
but also in software engineering literature. In the running example, the observer
pattern is applied as a crosscutting concern to a library management system, of
which an overview along with the underlying model is given in the following. It
has to be emphasized that on the basis of this rather simple example it is not (and
cannot be) the intention to illustrate each and every concept of the approaches
but rather to foster their overall understandability and comparability.

Fig. 3. The Library Management System with Observer Aspect.

An Example Library Management System. In Figure 3, the Library
package models the structure for managing books of a library in a library man-

agement system based on [11]. Of course, it only depicts a small excerpt of such
a system, primarily containing those parts of the system that are crosscut by
the observer concern.

A BookManager manages a list of Books (cf. addBook(Book) and remove-
Book(Book)) allowing users to search (cf. searchBook(Book)) the list and access
provided information for each book (e.g., authors). A library may offer several
copies of each Book, i.e., the physical entities (cf. BookCopy), which need to be
managed accordingly. BookCopies might get lost or be stolen. Still, a Book does
not have to be removed from the BookManager ’s list until new BookCopies are
obtained. The BookManager associates BookCopies with their Books as they
are bought (cf. buyBook(BookCopy) and addCopy(BookCopy)) and likewise, dis-
associates them as they are discarded (cf. discardBook(BookCopy) and remove-
Copy(BookCopy)). Books, in particular their copies, have a Location on a certain
shelf in a certain room of the library. The status of each BookCopy, i.e., its avail-
ability, should be kept up-to-date. Thus, each time a BookCopy is borrowed
or returned by a Customer (cf. borrow(Customer) and return(Customer)), the
BookManager has to be notified. This notification functionality is not provided
by the library management system, but is applied using the observer pattern as
depicted in Figure 3.

The Observer Pattern. The observer pattern [22] as depicted in the Ob-
server package in Figure 3 defines a one-to-many dependency between objects
in a way that whenever a Subject (i.e., a BookCopy) changes its state, all
its dependent Observers (i.e., instances of BookManager) are notified (cf. no-
tify()) by using their provided update interface (cf. update(Subject)). While
Observers can register and unregister with their Subjects of interest using the
methods start(Subject) and stop(Subject), a Subject keeps a list of Observers (cf.
add(Observer) and remove(Observer)), which are interested in changes of the
Subject ’s state.

In Figure 3, thus, the Subject and Observer roles are adopted by BookCopy
and BookManager, respectively. Applying the observer pattern, however, affects
the library management system’s modularity. In particular, the abstract meth-
ods getState() and update(Subject) have to be implemented by BookCopy and
BookManager, respectively. Additional code modifications are necessary to call
start(Subject)/stop(Subject) whenever a BookCopy is bought/discarded and to
call notify() whenever a BookCopy is borrowed or returned. Therefore, the ob-
server functionality can be regarded as crosscutting concern and, thus, be real-
ized with the concepts of various AOM approaches.

Limitations of the Running Example. The observer pattern is a well-
known example for a crosscutting concern and actually has been used in three of
the surveyed approaches (cf. [7], [20], [60]). One might argue that the use of an
example which has already been used by some of the analyzed approaches might
lead to a bias in the evaluation. Since the running example is used to only visu-
alize the respective approach to the reader and to have a side by side comparison
of the approaches, any biased influence on the survey itself is negligible. Still,
some approaches do not allow for fully operationalizing the running example,

which is due to their particular focus. For instance, the approach of Klein et al.
[37] does not allow to model crosscutting structure, since the approach’s focus is
rather on a weaving algorithm for (non-)crosscutting behavior. Nevertheless, the
application of one running example for all approaches generated some insight
into the differences of each individual approach. Of course all AOM approaches
should be tested in a real world setting or at least in a non-trivial example,
which encompasses more than two concerns as well as all concepts described in
the conceptual reference model, e.g., the AO Challenge [34]. Such an example
would allow for testing the approaches’ means for capturing interactions and re-
solving conflicts, which in this survey, can only be described textually. Still, the
obvious advantages of a small and easy to understand running example would
be lost.

5 Comparison of Approaches

This survey is based on a literature study, including modeling examples, provided
by the individual AOM approaches. For each surveyed approach, additional in-
formation and discussion is provided in the following. The evaluation of each
approach follows the order of categories of the criteria catalogue presented in
Section 4. Moreover, a running example (cf. Section 4.8) that is modeled by
means of the concepts of each AOM approach is provided. This further enhances
the evaluation in that it first, provides an insight into each approach and second,
allows to easier compare the modeling means of the approaches.

In the following, the modeling means of each surveyed AOM approach is pre-
sented by means of this running example. Basically, the approaches realizing the
pointcut-advice and open class composition mechanisms are presented first and
then those realizing the compositor composition mechanism are elaborate on. In
particular, the first two approaches of Stein et al. (cf. Section 5.1), Pawlak et al.
(cf. Section 5.2), are similar, since they have been specifically designed as model-
ing languages for two aspect-oriented programming platforms, i.e., AspectJ and
the JAC Framework3 respectively. The commonalities of the third approach of
Jacobson et al. (cf. Section 5.3) and the approach of Pawlak et al. are that they
do not envisage composition of concerns at modeling level but defer composition
to the implementation phase. The next two approaches, are both very recent
proposals to AOM focusing on composing behavioral diagrams. In this respect,
the approach of Klein et al. (cf. Section 5.4) presents an algorithm for first, de-
tecting the model elements to be composed and second, composing them. The
approach of Cottenier et al. (cf. Section 5.5) also supports composition of mod-
els and, in contrast to all others, already comes with tool support for modeling,
composition and code generation. The last group of three approaches supports
the compositor composition mechanism. While the approach of Aldawud et al.
(cf. Section 5.6) focuses on the composition of state machines, the approaches of
Clarke et al. (cf. Section 5.7) and France et al. (cf. Section 5.8) originally have
considered the composition of class diagrams. Lately, the approach of France et
3 http://jac.objectweb.org/

al. also realizes the pointcut-advice composition mechanism through the com-
position of sequence diagrams. The results of the comparison are discussed and
illustrated in Section 6 Lessons Learned at a glance (cf. Table 1 to 7).

5.1 The Aspect-Oriented Design Model of Stein et al.

Language. The Aspect-Oriented Design Model (AODM) of Stein et al. [60], [61],
[62] has been developed as a design notation for AspectJ (L.I) and thus is aligned
to implementation (L.A) as well as allows for external traceability from design
to implementation (L.T). Internal traceability is not applicable (L.T), since a
refinement of models models is not forseen in AODM (L.R). For this approach,
both AspectJ and UML have been studied in order to find corresponding parts
for AspectJ’s concepts in UML and extend it to support AspectJ’s concepts if
necessary as well as identify where UML’s concepts used in AODM are more ex-
pressive than actually necessary, e.g., the destruction of an instance is not part of
AspectJ’s join point model [60]. AODM is basically specified using the UML 1.x
light-weight extension mechanism (L.L), (L.E), though extensions of the meta-
model have also been necessary. For example, the UML extend relationship from
which the �crosscut� stereotype has been derived originally can be specified
between use cases, only [61]. Structural and behavioral modeling is achieved by
employing class diagrams, UML 1.x collaborations, and sequence diagrams. In
addition, sequence diagrams are used for visualizing join points, e.g., messages,
while use case diagrams and collaborations demonstrate AspectJ’s composition
semantics (L.D). In the AODM thus, UML is used such that scalability in terms
of high-level modeling elements is not supported and no other proof in terms
of non-trivial modeling examples is available (L.S). The approach furthermore
does not outline a design process or provide guidelines (L.DP).

ConcernComposition. AODM represents a notation designed for AspectJ
and consequently supports the pointcut-advice and open class composition mech-
anisms (CC.M) as well as follows the asymmetric school of thought (CC.ES),
(CC.CS), (CC.RS). A distinct concern module for crosscutting concerns has been
introduced in AODM and is represented by a stereotype �aspect� (cf. Subject-
ObserverProtcolImpl in Figure 44), which is derived from the UML meta-class
Class (CC.CM). In addition, several meta-attributes capture the peculiarities of
AspectJ’s aspects, e.g., the instantiation clause. The composition actually is de-
ferred until the implementation phase (CC.C). Nevertheless the composition se-
mantics of AspectJ have been redefined for the modeling level to a limited extent,
e.g., in terms of UML use case diagrams and collaborations (CC.S), (CC.CP)
[60]. The only way for modeling interactions (CC.I) is to manually specify the or-
der for composing�aspects� in terms of a stereotyped dependency relationship
between �aspects�, i.e., �dominates� for conflict resolution (CC.CR) [61].
A means for explicitly specifying the effects of the concern composition rules or
rather of the advice in models, however, is not addressed in AODM (CC.E).

4 Please note that, in AspectJ the Observer functionality is realized using interfaces
instead of abstract classes.

Fig. 4. The Observer Aspect Modeled Using the Aspect-oriented Design Model.

AsymmetricConcernComposition.

AspectualSubject. Though AODM has been specifically designed as a
modeling language for AspectJ, Stein et al. [62] extend their notion of a join
point model (AS.JPM): UML Classifiers are identified as structural-static hooks
(AS.SJP). Besides, UML 1.x Links represent behavioral-static join points. Be-
havioral-static join points are depicted by highlighted messages in sequence di-
agrams (see [60]) (AS.BJP). For those join points where no such messages exist

(e.g., field reference, field assignment, initialization, execution) pseudo operations
and special stereotypes have been provided. Using a �crosscut� dependency
relationship, the subjects of structural advice are specified at a high level of
abstraction (AS.A). The pointcuts in AODM are similar to AspectJ’s point-
cuts (AS.P). Selections of behavioral-static join points and behavioral-dynamic
join points (AS.BJP) are represented by �pointcut� stereotyped UML Opera-
tions that are implemented by special �ContainsWeavingInstructions� stereo-
typed UML Methods. A meta-attribute ”base” introduced for this �Contains-
WeavingInstructions� stereotype then holds the pointcut in the form of As-
pectJ code (AS.P), (AS.QM). This allows first, the specification of compos-
ite pointcuts (AS.SP), (AS.CP), and second, the specification of the aspectual
subjects at a low level of abstraction (AS.A). In addition, a second stereotype
�ContainsWeavingInstructions� at this time derived from the UML meta-class
TemplateParameter5 is used to specify the pointcuts for structural advice (e.g.,
�introduction� Subject in Figure 4). The new meta-attribute ”base” intro-
duced for the�ContainsWeavingInstructions� stereotype specifies the pointcut
in the form of AspectJ’s type patterns. AspectJ’s - and consequently AODM ’s -
means for specifying a pointcut is following a specific conceptual model. Recently,
the authors have been working on a more expressive pointcut mechanism sup-
porting different conceptual models [63], which is independent from the AODM
approach, however. Concerning the declaration of a relative position, AODM
supports the relative positions before, after, and around for behavioral-dynamic
join points, only, and depicts them in an AspectJ-like manner as a keyword in
the signature of behavioral advice (AS.RP).

AspectualKind. In a class diagram, behavioral advice are depicted in the
operation compartment of a class consisting of the operation’s signature as well
as a base tag containing the pointcut’s signature. Behavioral advice in AODM
are represented by stereotyped UML Operations, i.e., �advice�. These are
implemented by special �ContainsWeavingInstructions� Methods, which con-
tain the actual behavior in the method’s ”body” meta-attribute and reference a
pointcut in the introduced ”base” meta-attribute (AK.BA). Additionally, behav-
ioral advice are specified in terms of sequence diagrams. Thus, behavioral advice
are modeled at a high as well as a low level of abstraction (AK.A) likewise
structural advice are modeled at a high and low level of abstraction: Structural
advice are realized as parameterized collaboration templates with the stereotype
�introduction�. The parameters are of type�ContainsWeavingInstructions�,
which specify the subjects of advice in the form of AspectJ’s type patterns
(AK.SA). The details of the collaboration templates are shown in Figure 5.
Composite advice, since not a concept available in AspectJ, are not addressed
by AODM (AK.CA).

Maturity. AODM has been described in some publications (M.I). While the
approach has not been tested in a real-world application (M.A), some modeling
examples have been provided, e.g., timing and billing aspects for a system in the
area of telecommunication [68] and the realization of the observer pattern (M.E).

5 Stein et al. apparently have used the same name for two different stereotypes.

Fig. 5. Structural Advice in the Aspect-Oriented Design Model Notation

Today, the authors have moved on and specifically focus on research towards
graphical ways to select join points in UML . For this they have introduced join
point designation diagrams (JPDD) [63], which basically are UML diagrams
(i.e., class and object diagrams, as well as, state charts, sequence, and activity
diagrams) enriched with e.g., name and signature patterns, and wildcards. They
represent an independent pointcut mechanism that can be applied to any UML-
based AOM language, allows to select all kinds of join points (i.e., structural-
static, structural-dynamic, behavioral-static, and behavioral-dynamic) as well as
supports composite pointcuts (M.T).

Tool Support. The approach claims rapid modeling support by a wide vari-
ety of CASE tools [61], which is due to using UML’s light-weight extension mech-
anism. This is, however, questionable, since the authors also extended UML’s
metamodel (T.M). Both composition support and code generation support are
currently not considered (T.C), (T.G).

5.2 The JAC Design Notation of Pawlak et al.

Language. The JAC Design Notation proposed by Pawlak et al. [46], [47] is
mainly designed for the JAC Framework, i.e., an open source framework which
includes a complete IDE with modeling support and serves as a middleware layer
for aspectual components (L.I). Thus similar to the AODM approach of Stein
et al., the JAC Design Notation represents an approach aligned to implementa-
tion as well as supporting external traceability from design to implementation
(L.A), (L.T). Internal traceability is not applicable, since models typically are

not refined in the approach (L.R), (L.T). The approach is based on light-weight
UML extensions. Since it has been developed out of a pragmatic need to express
crosscutting concerns in the JAC Framework, the authors do not claim full com-
pliance with UML but aim at keeping it intuitive and simple (L.E). The authors
provide no information on the UML version used. The extended UML meta-
model in [47], however, indicates the usage of a UML version prior to version 2.0
(L.L). The approach relies on class diagrams, only (L.D). Consequently, scalabil-
ity is not supported by the JAC Design Notation (L.S). Beyond, the approach
provides neither a description of a design process nor guidelines (L.DP).

ConcernComposition. The JAC Design Notation realizes the pointcut-
advice composition mechanism (CC.M). The stereotype �aspect� which is de-
rived from the UML meta-class Class is used to represent crosscutting concern
modules (CC.CM) (cf. Observer in Figure 6). Consequently, the approach follows
the asymmetric approach with respect to elements (CC.ES). Since �aspects�
are composed with normal classes only, the JAC Design Notation also supports
composition asymmetry (CC.CS). With respect to concern composition rules
(CC.RS), the design notation represents a symmetric approach using a UML
Association stereotyped with �pointcut� (cf. AspectualSubject). Composition
is not available at modeling level but deferred until implementation (CC.C) and
therefore no composed model is available either (CC.CP). Consequently, the
composition semantics are those of the JAC framework (CC.S). Both modeling
of interactions (CC.I) as well as conflict resolution (CC.CR) are not addressed at
all by the approach. There are five stereotypes derived from the UML meta-class
Operation (cf. AspectualKind) which specify advice. The specification of effects
is partly considered by one of them, i.e., the stereotype �replace� which pro-
vides for either a replacement or a deletion. All other stereotypes are considered
to have an enhancement effect (CC.E).

AsymmetricConcernComposition.

AspectualSubject. A join point model is explicitly defined in natural lan-
guage, only [47] (AS.JPM) and join points are limited to method calls thus
supporting behavioral-static join points, only (AS.BJP). Nevertheless, struct-
ural-dynamic join points are also supported via the �role� stereotype (cf.
AspectualKind) (AS.SJP). The additional concept of ”pointcut relation” cor-
responds to the asymmetric composition rule concept defined in the CRM (cf.
Section 3). It is an association stereotyped with �pointcut�. The association
has a name and an optional tag to allow for adding extra semantics (cf. state-
Changed in Figure 6). The rule connects the actual pointcut definition with the
advice, i.e., the association ends contain information about the pointcut defini-
tion and the advice, respectively. Pointcuts are defined using a proprietary, tex-
tual language based on regular expressions and/or keywords (AS.P), (AS.QM),
e.g., !BookCopy.MODIFIERS in Figure 6 selects as join points all method in-
vocations (denoted with ’ !’) of methods from class BookCopy that modify the
object state (AS.BJP). Thus, the notation provides a low level of abstraction,
while a high level of abstraction is not addressed (AS.A). The provided pointcut
mechanism also allows composing simple pointcuts using operators, e.g., AND,

OR, etc. (AS.SP), (AS.CP). Furthermore, the approach introduces the ”group”
concept supporting the design of distributed applications. �group� is depicted
as a stereotyped class but is derived from UML meta-class ModelElement and
subsumes arbitrary and probably distributed classes that might need the same
set of advice. It is, thus, part of the pointcut mechanism. For example in the
observer aspect, subjects, i.e., arbitrary ”base” classes that have to be observed,
might be distributed and can be abstracted within a �group� named Subject.
In the library management system such subjects might represent other resources
than books such as journals, CDs, etc. The relative position is specified for behav-
ioral advice, only, by three out of the five stereotypes for advice, i.e., �before�,
�after�, and �around� (S.RP).

Fig. 6. The Observer Aspect Depicted Using the JAC Design Notation.

AspectualKind. Both behavioral and structural advice are represented as
methods of �aspect� classes. The kind of advice is indicated by the stereo-
type of the advice operation. The stereotypes�before�,�after�,�around�,
and �replace� indicate behavioral advice, e.g., �after� update() in Figure 6
(AK.BA), whereas �role�, i.e., the fifth stereotype for advice, represents a
structural one (AK.SA). In the JAC Design Notation, structural advice which
are implemented by �role� methods are not really added to the structure of
the base class but can be invoked on the objects that are extended by the as-
pect, e.g., �role� addObserver(BookManager) can be invoked on BookCopy
(cf. Figure 6). Moreover, these methods can access the extended class attributes
and the attributes of the �aspect�. Role methods therefore are similar to the
”introduction” concept of AspectJ. Composite advice, in principle are possible
within the JAC Framework through method composition. The JAC Design No-
tation, however, provides no means for explicitly modeling such composite advice
(AK.CA). With respect to abstraction, the notation of Pawlak et al. represents
predominantly a low level modeling approach, also with respect to advice, i.e.,
it shows aspect internals (AK.A).

Maturity. The JAC Design Notation has already been well described (M.T),
(M.I) and has been applied to several well-known aspects like caching, authen-
tication, tracing, and session in the context of a simple client-server application
but not in combination with each other. These examples generally do not greatly
differ from each other and follow the same simple principals but show the ap-
plicability of the notation to any aspect in general (M.E). It has been tested in
real industrial projects like an online courses intranet site, an incident reporting
web site, and a business management intranet tool (M.A).

Tool Support. The JAC Framework includes a complete IDE with modeling
support. The provided modeling tools allow for designing base and aspect classes
as well as their relations using the proposed UML notation (T.M). The IDE also
supports code generation (i.e., Java) for the JAC framework (T.G). Weaving is
supported at runtime (T.C) but not at design time.

5.3 Aspect-Oriented Software Development with Use Cases,
Jacobson et al.

Language. The approach of Jacobson et al. [30] represents a use case driven
software development method that has been realized by extending the UML 2.0
metamodel (L.L), (L.E). Aspect-Oriented Software Development with Use Cases
(AOSD/UC) comes with a systematic process that focuses on the separation of
concerns throughout the software development life cycle, i.e., from requirements
engineering with use cases down to the implementation phase (L.DP). Since the
approach covers the whole software development life cycle, it is aligned to both
the requirements and the implementation phase (L.A). Furthermore, the ap-
proach fosters external traceability between all phases through explicit�trace�
dependencies between models (L.T). During the whole software development life
cycle the approach makes use of different UML diagrams including use case di-
agrams in the requirements phase as well as class diagrams and communication
diagrams in the analysis phase. For the design phase, component diagrams can
be refined into class diagrams (L.T), (L.R), while sequence diagrams are used to
model behavioral features (L.D). The language extensions reflect the influence
by the Hyper/J and AspectJ languages (L.I). Scalability of the approach is sup-
ported with high-level modeling elements (i.e., �use case slice�) and has been
demonstrated with a non-trivial example (L.S).

ConcernComposition. Concerns are modeled with the �use case slice�
stereotype, which is derived from the UML meta-class Package (CC.CM). At
this level, the approach of Jacobson et al. supports element symmetry (CC.ES).
Taking a closer look, however, the �use case slice� - inspired by the Hyper/J
language - encapsulates modeling artifacts of one phase in the software devel-
opment life cycle, i.e., concerns are kept separately until the implementation
phase. In this evaluation, the focus is on slices produced during design, where
the artifacts include classes, sequence diagrams and �aspect� classifiers as de-
picted in Figure 7. Consequently, at this level of abstraction the approach follows
element asymmetry (CC.ES). Although, at first sight it seems that AOSD/UC
supports the compositor composition mechanism on the basis of UML package

merge, the internals of �use case slice� are such that they actually support
the pointcut-advice and open class mechanisms (CC.M). In fact, composition is
deferred until implementation (CC.C) thus, a composed module is not available
at modeling level (CC.CP). Furthermore, the composition semantics seem to
be those of AspectJ (CC.S), (CC.RS), (CC.CS). Since concerns are modeled as
�use case slice�, which represent use cases in the design phase, they inherit the
relationships of use cases, i.e., inheritance, �extend� and �include� (CC.I).
With respect to conflicting interactions, the approach follows a strategy that
avoids conflicts through refactoring actions performed on models (CC.CR). The
effects of composition are not modeled in AOSD/UC (CC.E).

Fig. 7. The Observer Aspect Modeled Using the Notation of Jacobson et al.

AsymmetricConcernComposition.
AspectualSubject. The join point model of the approach is similar to that

of AspectJ and is implicitly defined by the pointcut mechanism used (AS.JPM).

UML Classifiers are used as structural-static join points (AS.SJP), while behav-
ioral-static and behavioral-dynamic join points are identified with the AspectJ
pointcut language (AS.BJP), (AS.P). Consequently, the approach supports sim-
ple as well as complex pointcuts (AS.SP), (AS.CP). Pointcuts are specified in
a separate ”pointcuts” compartment of an �aspect� classifier. If specified as
abstract, pointcuts need to be defined in a concrete aspect such as depicted in
Figure 7 with �aspect� ConcreteAspect. The pointcut then is specified with
AspectJ code allowing for usage of name patterns, type patterns and wildcards
(AS.QM), e.g., pointcut stateChange represents a complex pointcut quantify-
ing behavioral-static join points and the pointcut Subject represents a simple
pointcut quantifying a structural-static join point. The aspectual subject is thus
modeled at a detailed level but also can be modeled at a higher level of ab-
straction, i.e., with component interfaces in component diagrams (AS.A). As an
alternative, placeholders such as <Subject> and <stateChange> can be used for
parameterizing the use case slice, similarly to the template-based approaches of
Clarke et al. (cf. Section 5.7) and France et al. (cf. Section 5.8). As it is done
in AspectJ, the relative position (i.e., before, after, or around) is specified with
the advice. In Figure 7 the <Subject> classifier is extended with an operation
which is to be executed after the pointcut <stateChange> matches a join point
(AS.RP).

AspectualKind. Advice are modeled at a low level of abstraction, only
(AK.A) and are detailed as ”class extensions” in a separate compartment of
the �aspect� stereotype (cf. Figure 7 �aspect� Observer). As an example,
for structural advice, the <Subject> classifier is extended with an attribute ob-
servers and an operation declaring the aspectual advice (cf. Figure 7). The fact,
that the <Subject> classifier needs to implement the �interface� Subject is
represented with a UML realization dependency (AK.SA). The behavioral ad-
vice is further detailed within sequence diagrams. So called ”frames” are used to
insert aspectual behavior and are labelled with the signature of corresponding
operations, such as {after (<stateChange>) notify} in Figure 7 (AK.BA). There
is no way for modeling composite aspectual features (AK.CA).

Maturity. The approach of Jacobson et al. has been recently elaborated in
detail in three publications [30], although some of the ideas can be traced back
to earlier works of the authors (M.I), (M.T). A hotel management system has
been used as a comprehensive example encompassing several different concerns.
The example is used to illustrate each phase in the software development life
cycle (M.E). Still, no information of applications in real-world projects could be
identified (M.A).

Tool Support. The AOSD/UC approach does not come with tool support.
Since composition is deferred to the implementation phase, composition support
within a tool is not the authors’ focus (T.C). Nevertheless, modeling the exten-
sions made to the UML metamodel currently are not supported within a tool
(T.M), neither is it possible to generate code for a specific AO platform (T.G).

5.4 Behavioral Aspect Weaving with the Approach of Klein et al.

Language. The approach of Klein et al. [37] is originally based on Message
Sequence Charts (MSC) a scenario language standardized by the ITU [57]. UML
2.0 sequence diagrams have been largely inspired by MSCs. Thus, the approach
can be applied to sequence diagrams as is shown in the KerTheme proposal
[29] (L.L). No extensions to the UML sequence diagrams (or MSCs) have been
made in this respect (L.E). Klein et al. have designed a ”weaving algorithm”
for composing behaviors, i.e., scenarios modeled with UML sequence diagrams
(or MSCs) (L.D). The composition is specified at modeling level regardless of
any implementation platform (L.I). The approach does neither outline a design
process nor guidelines (L.DP), since the goal is rather on complementing existing
AOM approaches with a weaving mechanism for aspect behavior. The approach
is thus not aligned to other phases in the software development life cycle either
(L.A), nor are sequence diagrams further refined in the process of modeling
(L.R). Consequently, the approach does neither provide means for supporting
traceability (L.T) nor scalability (L.S)

ConcernComposition. The approach of Klein et al. supports the pointcut-
advice composition mechanism (CC.M). Modeling all behavior is achieved by
means of sequence diagrams (CC.ES). Nevertheless, an aspect consists of two
scenarios having distinct roles when used in a composition (CC.CM): one de-
fines a part of behavior, i.e., the pointcut, that should be replaced by another,
i.e., the advice (cf. Figure 8). This replacement is done every time the behavior
defined by the pointcut appears in the semantics of the base scenario. In this
respect the approach follows rule asymmetry (CC.RS). Concerning composition
symmetry, however, the approach is symmetric, since behavior that once has
served as advice or pointcut could serve as base behavior some other time or
vice versa (CC.CS). The composition semantics are clearly defined by the two-
phase weaving algorithm. In the first phase, join points are detected in the base
behavior according to the pattern specified in the pointcut. In the second phase,
the base behavior then is composed with the behavior specified in the advice
(CC.S). Currently, models are composed statically, the implementation of the
algorithm is, however, subject to future work (CC.C) The composition results
again in a sequence diagram (CC.CP) as depicted in Figure 9. The effect in
the approach is always replacement by definition, since the behavior detected
via pointcuts is replaced by the advice behavior. Consequently, with the current
weaving algorithm there is no need for specifying an effect (CC.E). A means
for specifying interactions (CC.I) and/or handling conflicts currently is not ad-
dressed but stated to be subject to future work (CC.CR).

AsymmetricConcernComposition.
AspectualSubject. Join points in the approach of Klein et al. are sub-

MSCs or a sequence of messages in a sequence diagram (AS.JPM) that match
the sub-MSC or sequence diagram defined by the pointcut as is depicted in Fig-
ure 8 (AS.P), (AS.QM). Consequently, the approach’s join point model supports
behavioral-static join points, only (AS.BJP), (AS.SJP). The pointcuts are mod-
eled at a detailed level, only (AS.A) and in principle can be composed using

Fig. 8. The Observer Aspect Depicted Using the Approach of Klein et al.

the sequential composition operator of basic MSCs [37], although no explicit
concept for composite pointcut is available (AS.SP), (AS.CP). There is no need
for specifying a relative position, since the behavior detected via pointcuts is
always replaced by the advice behavior and this basically simulates the around
relative position kind (AS.RP). It has to be noted that the pointcut used in the
running example cannot fully illustrate the expressiveness of the weaving algo-
rithm’s join point detection mechanism. The algorithm allows to detect much
more complex patterns [37]. For instance, it is easy to express a pointcut as a
sequence of messages.

AspectualKind. Like pointcuts, aspectual behavior is modeled as MSCs
thus only supporting behavioral advice (AK.BA), (AK.SA). In principle, they
also can be composed using the sequential composition operator of basic MSCs,
although no explicit concept for composite advice is available (AK.CA). Aspec-
tual features in the approach are modeled at a detailed level, only (AK.A). The
advice illustrated in Figure 8, shows the observer behavior being inserted after
the BookCopy b1 is borrowed by the Customer. As already pointed out above,
the behavior specified by the pointcut, i.e., the borrow(customer) message, has
to be modeled within the advice if it is to appear in the composed behavior (cf.
Figure 9).

Maturity. The approach of Klein et al. has been described in several appli-
cations (M.I), where similar examples have been used, i.e., a login process. The
focus has been on demonstrating the weaving algorithm’s join point detection
mechanism on the basis of complex behaviors, i.e., pointcuts, to be detected in
the base behavior (M.E). In order to allow for testing aspect-oriented models, the

Fig. 9. The Observer Aspect Depicted Using the Approach of Klein et al.

approach recently has been combined with the Theme/UML approach of Clark
et al. [29] (M.T). So far, the approach has not been employed in a real-world
application (M.A).

Tool Support. Modeling of scenarios is possible with tools either supporting
MSC or UML 2.0 sequence diagrams (T.M). The authors are currently working
on an implementation of the weaving algorithm within KerMeta [42] (T.C). Still,
code generation currently seems not to be the authors’ focus. Since weaving is
supported at modeling level, existing code generation facilities could be reused
(T.G).

5.5 The Motorola Weavr Approach of Cottenier et al.

Language. The Motorola Weavr approach [13], [14] and tool has been devel-
oped in an industrial setting, i.e., the telecom infrastructure software industry.
The modeling language of choice in this domain is the Specification and De-
cription Language (SDL) ITU recommendation [58] of which features such as
composite structure diagrams and transition-oriented state machines have been
adopted in UML 2.0. The Motorola Weavr approach consequently is based on
UML 2.0 and a light-weight profile that completes the UML specification to-
wards the SDL and AOM concepts (L.L), (L.E). Besides class diagrams the
approach makes heavily use of composite structure diagrams as a refinement of
class diagrams (L.R), (L.T). The behavioral features of concerns are modeled
using transition-oriented state machines (cf. Figure 10 (c), (e), (f)) and the SDL
action language as well as sequence diagrams which are used as test cases. A spe-
cial ”deployment diagram” is used to direct the composition of concern modules
(L.D), (L.S). Although targeted at telecommunications domain, the approach is
platform-independent. Indeed, platform-specific details are encapsulated within
several code generators and code optimizers that prohibit round-trip engineer-
ing (L.T). Consequently, the approach rather aims at composing concerns at

the modeling level than drawing mappings onto platform-specific models (L.I).
Nevertheless, the approach is aligned to the implementation phase (L.A). Fur-
thermore, since Motorola uses the approach in production, one can infer that the
approach supports scalability, which has already been proven with appropriate
modeling examples (L.S). A design process for the approach has not yet been
described, however. Likewise no guidelines are given (L.DP).

ConcernComposition. The Motorola Weavr approach supports the point-
cut-advice composition mechanism (CC.M). Aspects are represented by the
stereotype�Aspect� which is derived from the UML meta-class Class (CC.CM),
(CC.ES). The approach puts forward rule asymmetry (CC.RS), since pointcuts
and the binding to advices are modeled as parts of the aspect (cf. Figure 10 (d)).
Furthermore, the approach also supports composition asymmetry, i.e., aspects
can be woven into the base but not the other way round (CC.CS). The deploy-
ment of aspects to multiple base models as well as aspects can be modeled using
the �crosscuts� stereotype derived from the UML meta-class Dependency. In
order to resolve possible conflicts, the approach allows to define precedence re-
lationships between aspects using a stereotype �follows�, also derived from
the UML meta-class Dependency. It has to be further noted, that precedence
can also be defined at the level of concern composition rules again using the
stereotype �follows� (CC.CR). Beyond, the approach defines two further de-
pendency stereotypes for specifying interactions at concern module level, namely
�hidden by� and �dependent on� [72] (CC.I). These relationships are usu-
ally depicted in a separate diagram called ”deployment diagram” (cf. Figure 10
(a)). The approach, however, does not offer a way to specify effects (CC.E).
The Motorola Weavr tool supports the static weaving of aspects into base mod-
els. The composition semantics consequently is clearly defined. More specifically,
the approach distinguishes between a phase of detection (i.e., ”connector instan-
tiation”) and of composition (i.e., ”connector instance binding”) (CC.S). The
approach/tool, however, does not show the results of composition which are in-
ternally available in standard UML in a composed model (CC.CP). Instead, the
modeler can simulate the composed model and view the specific base or aspect
parts during execution (CC.C).

AsymmetricConcernComposition.

AspectualSubject. The join point model consists of action join points in-
cluding call expression actions, output actions, create expression actions, and
timer (re)set actions as well as transition join points including start transi-
tions, initialization transitions, termination transitions, and triggered transitions
(AS.JPM). Consequently, the approach’s join point model supports behavioral-
static join points (AS.BJP). Object instances represent structural-dynamic join
points (AS.SJP). Pointcuts are defined using a stereotype which is derived from
the UML meta-class Operation (AS.P), e.g., the pointcut�operation,Pointcut�
stateChange in Figure 10 (d). The implementation of a pointcut is modeled
as a transition-oriented state machine, which can be specified using wildcards
(AS.QM) (cf. Figure 10 (b)). Consequently, the approach’s pointcuts are mod-
eled at a high level of abstraction where only the pointcuts’ parameters are

known and at a detailed level using state machines (AS.A). Beyond, pointcuts
can be composed to form more complex pointcuts by means of AND and OR
logical composition operators [13] (AS.SP), (AS.CP). The relative position kind
cannot be modeled but the approach supports the around relative position kind:
Join points are always replaced by the advice behavior but can be called using
an AspectJ-like proceed() action such as is depicted in Figure 10 (c) (AS.RP).

Fig. 10. The Observer Aspect Depicted Using the Approach of Cottenier et al.

AspectualKind. Like pointcuts, behavioral advice are modeled using a
stereotype derived from the UML meta-class Operation, e.g., the �Connector�
notify() in Figure 10(d). A connector corresponds to AspectJ’s advice and like
pointcuts in the Motorola Weavr approach is implemented as a transition-
oriented state machine (cf. Figure 10 (c))(AK.BA). Thus, advice in the approach
are modeled both at a high and a low level of abstraction (AK.A). The connec-
tors are bound to the pointcuts to which they shall be applied using a �bind�
stereotype which is derived from the UML meta-class Dependency (cf. Figure
10 (d)). It has to be further noted that precedence can also be defined for con-
nectors again using the stereotype �follows�. Structural advice are modeled
via interfaces, only (AK.SA). In the running example, the �Aspect� Observer
introduces two interfaces Subject and Observer, which are bound to pointcuts
of the aspect using the �bind� dependency (cf. Figure 10 (d)). The seman-

tics of this relationship is that the interfaces are bound to the object instances
that contain joinpoints for the specified pointcuts [13], which is similar to the
approach of Pawlak et al. (cf. Section 5.2). Consequently, the Subject interface
is bound to the stateChange pointcut, while the Observer interface is bound to
the other pointcuts. To the best of our knowledge, there exists no means for
modeling composite advice (AK.CA).

Maturity. The approach of Cottenier et al. represents one of the most re-
cent approaches to AOM and has already been illustrated in several publications
(M.I), (M.T). Besides a set of simple modeling examples, aspects covering ex-
ception handling, recovery, atomicity, and a two-phase commit protocol have
been applied to a server-based communication system [13] (M.E). The Motorola
Weavr approach and tool is already being used in production (M.A) and is made
available to academia under a free of charge license.

Tool Support. The Motorola Weavr is designed as an add-in for the Tele-
logic TAU MDA tool6 (T.M) and allows composing aspect models with base
models as well as verification of the composed model via simulation (T.C).
Starting from the composed model, existing code generation facilities such as
the Motorola Mousetrap code generator [3] can be used (T.G). The Motorola
Weavr tool is already being deployed in production at Motorola, in the network
infrastructure business unit [13].

5.6 The AOSD Profile of Aldawud et al.

Language. The AOSD Profile (L.E) of Aldawud et al. [2], [17] is based on
UML version 1.x (L.L) and is aimed at being independent of any particular
AOP language (L.I). While class diagrams are used to express the structural
dependencies, state machines model the behavioral dependencies of concerns
(L.D). The models are continuously refined from class diagrams to state machines
(L.R). In order to do so, a set of guidelines for using the concepts provided by the
AOSD Profile is offered (L.DP), which allows for external traceability from the
requirements phase but not specifically for internal traceability (L.T), (L.A).
The specific usage of state machines and their event propagation mechanism
indicates that the approach does not support scalability and we are not aware
of a modeling example proving the opposite (L.S).

ConcernComposition. In the AOSD Profile, crosscutting concerns have
a separate representation in the form of the stereotype �aspect� (CC.CM),
(CC.ES), which is derived from the UML meta-class Class (cf. Figure 11). Al-
though, it is allowed to relate aspects to other aspects, each aspect has to be
woven into at least one base class and, hence, this actually constitutes an asym-
metric view of composing concerns (CC.CS). An integrated model view where
aspects would already be woven into the base classes is not provided (CC.CP).
Composition is rather deferred to implementation [40] (CC.C). At a more de-
tailed level, one can see that the approach supports the compositor composition
mechanism (CC.M): in the AOSD Profile approach concurrent state machines

6 http://www.telelogic.com/products/tau/g2/

Fig. 11. The Observer Aspect Modeled Using the AOSD Profile.

are used to model both non-crosscutting and crosscutting behavior in orthogonal
regions, meaning element symmetry at the level of state machines (cf. Figure 12).
More specifically, the composition semantics (CC.S) are ”specified” by the event
mechanism used to indicate the flow of crosscutting behavior in state charts
(CC.RS). The state machines thus implicitly express the composition semantics.
The �crosscut� dependencies7 between aspects and base classes as well as as-
pects and aspects dictate the ordering of events propagated in the orthogonal
regions of statecharts (CC.I) (cf. Figure 11). Since the state charts allow for spec-
ifying the temporal sequence in the control flow of crosscutting behavior, i.e., an
ordering of aspects, further conflict resolution is implicitly available (CC.CR).
The effect of adaptations, however, cannot be modeled (CC.E).

SymmetricConcernComposition. Composable elements in the approach
of Aldawud et al. are elements of UML state machine diagrams, in particu-
lar events (S.BCE), whereas structural composable elements are not supported
(S.SCE). Events trigger transitions from one state to another. The approach
of Aldawud et al. makes use of broadcasting events to cause transitions in or-
thogonal regions of the same or other state machines, i.e., to activate other
concerns. For example, the observingBookManager state machine in Figure 12
describes the behavior of the BookManager class. If a new BookCopy is bought
(cf. buyBook()) the transition from state IDLE to state observing is triggered.
This transition, however, triggers the transition from IDLE to the startObserv-
ingSubject state in the observing region. For the observedBookCopy state ma-
chine of the BookCopy class, this means a transition from state notObserved
to state observed, given that the BookCopy has been in the state notObserved.
The event mechanism of state machines allow to ”compose” the behavior of dif-

7 Please note, that the reading direction of the �crosscut� dependencies is different
to the other approaches, e.g., BookCopy is crosscut by the aspect Subject.

Fig. 12. The Observer’s Crosscutting Behavior, Aldawud et al.

ferent concerns represented in orthogonal regions of state machines following a
merge integration strategy (S.M). The corresponding elements, or rather events,
are explicitly defined by using naming patterns. The approach thus supports a
name-based match method, only (S.MM). With respect to the level of abstrac-
tion, the details captured by the state machines suggest a low level but not a
high level of abstraction. Indeed, recently the use of the State pattern [22] has
been used to translate the behavior captured within state machines to code [40]
(S.A).

Maturity. Although the approach is described in several recent publications
(M.I), (M.T), it is illustrated using a single example, the bounded buffer system,
only. Still, it covers various aspects, namely, synchronization, scheduling, and
error handling (M.E). A real-world application of the approach, however, is not
available (M.A).

Tool Support. Due to using the UML profile extension mechanism, mod-
eling support within the approach is available through existing UML modeling
tools (T.M). Nevertheless, neither composition (T.C) nor code generation sup-
port have yet been addressed (T.G).

5.7 The Theme/UML Approach of Clarke et al.

Language. The Theme approach of Clarke et al. [8] provides means for AOSD
in the analysis phase with Theme/Doc, which assists in identifying crosscutting
concerns in requirements documents, and in the design phase with Theme/UML.
In this survey, the focus is on Theme/UML, which is used in producing sepa-
rate design models for each ”theme” from the requirements phase (L.T), (L.A),

i.e., the encapsulation of a concern representing some kind of functionality in
a system [8]. Theme/UML is based on a heavy-weight extension of the UML
metamodel version 1.3 (L.L), (L.E). It is designed as a platform-independent
AOM approach, which originated from SOP [9], and evolved from the composi-
tion patterns approach of Clarke [6], [7] as well as provides mappings to AspectJ,
AspectWerkz, and Hyper/J (L.I), (L.T), (L.A). Basically, Theme/UML poses no
restrictions on what UML diagrams might be used for modeling. Nevertheless,
particularly package and class diagrams are used for modeling structure and se-
quence diagrams are used for behavioral modeling (L.D). Theme/UML allows
every concern to be refined separately and then to be composed into a new
model (L.R). Scalability of the approach is supported by using UML packages
for modeling concerns and has been demonstrated with non-trivial examples [8]
(L.S). Beyond, the authors outline a design process for their modeling approach
(L.DP).

Fig. 13. The Observer Aspect Depicted Using Theme/UML.

ConcernComposition. Theme/UML realizes the compositor composition
mechanism (CC.M). Concerns are encapsulated in UML packages denoted with
a stereotype �theme� (cf. Observer and Library in Figure 13). Concern mod-
ules generally are modeled using standard UML notation. Crosscutting concerns,

however, are realized using UML’s modified template mechanism, which allows
instantiating template parameters more than once, thus supporting multiple
bindings (CC.CM), (CC.ES), (CC.CS). The composition semantics are clearly
stated in [6] for both how to detect the corresponding elements to be com-
posed as well as for the actual composition itself (CC.S). A set of themes is
composed statically into a composed �theme� (CC.C) as is shown in Figure
14, i.e., the ObserverLibrary theme is composed of the Observer and Library
themes from Figure 13 (CC.CP). Besides relating two or more themes through
Theme/UML’s ”composition relationships”, i.e., specialization from UML meta-
class Relationship (CC.RS), there is no other way to model interactions between
concern modules (CC.I). The composition relationships can also be used at a
more fine-grained level, e.g., for specifying composition at the level of classes and
attributes. Special attachments or ”tags” to the Theme/UML composition rela-
tionships represent the conflict resolution mechanism. First, the ”prec” tags de-
fine an ordering for theme precedence, with 1 indicating the highest precedence.
Second, in case of a conflict the ”resolve” tag allows specifying default values
for elements of a certain type (e.g., visibility of attributes is private). And third,
for a specific conflict the ”resolve” tag allows defining explicit composition out-
put values. Theme/UML wants developers to first compose all non-crosscutting
themes and then weave crosscutting themes one after the other into the com-
posed model, thus forcing the developer to consider the ordering of crosscutting
themes (CC.CR). The approach, however, does not provide modeling means for
specifying the effects of composition (CC.E).

SymmetricConcernComposition. Composable elements in Theme/UML
are identified with the introduction of the new meta-class ComposableElements
[7]. More specifically, the UML meta-classes Attribute, Interaction, Collabora-
tion (S.BCE), Operation, Association, Classifier, and Package (S.SCE) all inherit
from the new meta-class and thus are allowed to be composed. For identifying
the corresponding elements of two or more themes, the approach allows to tag
the composition relationships with the ”match” tag. Theme/UML, currently
supports two ways of matching composable elements, namely match-by-name
and no-match. The latter states that the composeable elements participating in
the composition relationship do not match (S.MM). Composition is catered for
through three different integration strategies (specialization of UML meta-class
Relationship), ”merge” (S.M) and ”override” (S.O), and ”bind” (S.B), which is
a specialization of merge and allows composing crosscutting themes with non-
crosscutting ones. This binding can be done for several themes. In Figure 13,
the crosscutting �theme� Observer is composed with the Library �theme�
using the bind integration strategy. The template parameters of the crosscutting
theme (i.e., classes, operations, and attributes) placed on the theme package
template within a dotted box need to be bound to concrete modeling elements
of a non-crosscutting theme. The sequence diagram templates in a crosscutting
theme (cf. ObserverPattern StateChange in Figure 13) allow modeling cross-
cutting behavior and when it shall be triggered, e.g., within the control flow
of other operations. In contrast, the class diagram templates of a crosscutting

theme allow modeling crosscutting structure. The concrete binding is specified
by the ”bind” tag placed on the composition relationship between the crosscut-
ting theme and other themes. It binds the template parameters to actual classes,
operations, and attributes possibly using wildcards. This way, the Subject class is
bound to BookCopy, and the stateChange() operation is bound to borrow() and
return() (S.B). Since, Theme/UML’s composition relationships can relate com-
posite elements such as package as well as fine-grained ones such as attributes,
the approach supports both modeling at a high level of abstraction as well as at
a low level (S.A).

Maturity. The Theme/UML approach represents one of the most mature,
and still evolving approaches to AOM (M.I). Lately, first results on the ap-
proach’s extension with the join point designation diagrams of Stein et al. [63]
has been presented [28] as well as an extension with the weaving algorithm
of Klein et al. [37] has been published [29] (M.T). Theme/UML comes with a
plethora of literature and modeling examples such as the synchronization and
observer aspects in a digital library example [11], the logging aspect in an ex-
pression evaluation system example and a course management system example.
The crystal game application presented in [8] consists of more than 15 concern
modules amongst them two crosscutting ones. The composition of some of them
is demonstrated. Furthermore, two similarly sized case studies are presented,
i.e., phone features and usage licensing (M.E). It is not clear, however, if the
approach has been applied in a real world project (M.A).

Tool Support. Besides first proposals in [29] with respect to composition, no
information on a tool for Theme/UML supporting either modeling, composition
or code generation has been provided (T.M), (T.C), (T.G).

5.8 Aspect-Oriented Architecture Models of France et al.

Language. The Aspect-Oriented Architecture Models (AAM) approach of France
et al. [19], [50] is based on UML 2.0 (L.L). The language is designed as a platform-
independent approach with no particular platform in mind (L.I). Concerns are
modeled using template diagrams, i.e., package diagram templates, class dia-
gram templates and communication diagram templates [19] as well as recently
sequence diagram templates [51], [59] (L.D). With respect to using UML tem-
plates, the approach is similar to Theme/UML (cf. Section 5.7). For readability
purposes, however, the authors prefer to provide a notation different to standard
UML templates and in contrast denote template model elements using ’|’. This
notation is based on the Role-Based Metamodeling Language [20], [36], which is
a UML-based pattern language designed as an extension to the UML (L.E). The
use of packages for capturing concerns caters for scalability, although this has not
yet been demonstrated within an example encompassing several concerns (L.S).
The approach is not specifically aligned to the requirements or implementation
phases (L.A) and does not support external traceability (L.T). Nevertheless,
similar to Theme/UML, the different models are continuously refined and at
some point composed (L.T), (L.R). A design process is briefly outlined in terms
of guidelines (L.DP).

Fig. 14. The Composed Model, Clarke et al.

ConcernComposition. The approach of France et al. originally is based on
the compositor composition mechanism similar to the Theme/UML approach.
Recently, specific attention has been paid, however, to the composition of se-
quence diagrams [51], [59], which realizes the pointcut-advice composition mech-
anism (CC.M). France et al. support element symmetry in that all concerns are
modeled as UML packages (CC.CM), (CC.ES). The authors distinguish, how-
ever, between ”primary models” and ”aspect models”, which model crosscutting
concerns. Aspect models are based on template diagrams, which are described
by parameterized packages. These packages include class diagram templates as
in Figure 15 (a), communication diagram templates as in Figure 15 (b)-(d), and
recently sequence diagram templates (cf. Figure 18 (a)). A textual ”binding”
to a certain application instantiates a ”context-specific” aspect model from the

UML template. In the context of the library management system, the following
binding instantiates the aspect model for the observer pattern from Figure 15
and results in the context-specific aspect shown in Figure 16:

(|Subject,BookCopy); (|Observer, BookManager);
(|stateChange(),borrowCopy()); (|doStart(s:|Subject),buyBook());
(|stateChange(),returnCopy()); (|doStop(s:|Subject),discardBook());
(|observers, bookManagers);

Fig. 15. The Observer Aspect Model, France et al.

The context-specific aspect models are finally used for composition with the
base model, suggesting rule and composition symmetry (CC.RS), (CC.CS). How-
ever, the composition of sequence diagrams is somewhat different. The locations
of where to introduce a behavioral advice defined within an aspect sequence dia-
gram template (cf. Figure 18 (a)) are specified using ”tags” in the primary model
(cf. Figure 18 (b)). The aspect sequence diagram template can be composed with
the primary model, only (CC.CS), and the rule information is placed within
the primary model (CC.RS), meaning asymmetric composition and asymmet-
ric placement of rules. Recently, the approaches composition semantics (CC.S)
in terms of a composition metamodel have been operationalized in KerMeta, a
metamodeling language that extends the Essential Meta-Object Facility (EMOF
2.0) with an action language. Thereby, the semantics of detection have also been
operationalized (i.e., the getMatchingElements() operation), which allows for
detecting (syntactical) conflicts (CC.CR). The composition is done statically
yielding standard UML diagrams, i.e., class diagrams, communication diagrams
and sequence diagrams (CC.CP). The composed model is shown in Figure 17 and

Figure 18 (c), respectively (CC.CP) in terms of standard UML. Since KerMeta
allows specifying operations with its action language, dynamic composition of
models is subject to future work (CC.C). The approach also proposes so called
”composition directives” which are intended to refine the concern composition
rules used to compose models. The use of so called ”model composition direc-
tives”, allows specifying the order in which aspect models are composed with
the primary model. These ”precedes” and ”follows” model composition direc-
tives are depicted as stereotyped UML dependencies between aspect models and
represent a conflict resolution mechanism. Other forms of interactions between
modules, however, cannot be modeled (CC.I). So called ”element composition
directives” amongst others allow to add, remove, and replace model elements.
The element composition directives, consequently, also serve as a conflict res-
olution mechanism (CC.CR). The approach does not describe ways to specify
effects (CC.E).

Fig. 16. The Context-Specific Aspect Model, France et al.

SymmetricConcernComposition. The composition of class diagrams is
specified with the composition metamodel defined in [50]. Composable elements
in the composition metamodel are realized with the meta-class Mergeable. Cur-
rently, the composition metamodel has been operationalized for class diagrams
only. In this respect, mergeable elements are Operation, Association, Classifier,
and Model (S.SCE), (S.BCE). Originally, the approach used only name-based
matching method in order to identify the corresponding elements in different
models. In [50], this mechanism has been extended. The authors introduce a

signature-based method, which means that elements are matched according to
their syntactic properties, i.e., an attribute or an association end defined in
the element’s meta-class. This match method is realized with the getMatchin-
gElements() operation of the composition metamodel (S.MM). The approach
basically, supports a merge integration strategy, only (S.M). Support for the
bind integration strategy is realized through the instantiation of aspect models
to context-specific aspect models. The template parameters of the aspect mod-
els denoted using ’|’ need to be bound to concrete modeling elements of the
primary model. For example, the class |Subject (cf. Figure 15 (a)) is bound to
BookCopy and the operation |stateChange() is bound to borrow() and return()
(cf. Figure 15 (b)-(d)). This is done with the textual binding as specified before
and the resulting context-specific aspect model is shown in Figure 16 . While the
class diagram templates model crosscutting structure, the communication dia-
gram templates model crosscutting behavior. The context-specific aspect models
then can be composed with the primary model using the original merge inte-
gration strategy (S.B). Lately, the possibility of overriding model elements has
been introduced with the introduction of composition directives. The ”override”
element composition directive defines an override relationship between two po-
tentially conflicting model elements [50] (S.O). Consequently, with respect to
symmetric concern composition the approach supports both modeling at a high
level of abstraction (e.g., with a high-level model view and model composition
directives) as well as at a low level (e.g., with detailed class and communication
diagrams as well as element composition directives) (S.A)

Fig. 17. The Composed Model, France et al.

AsymmetricConcernComposition. The composition of sequence diagrams
realizes the pointcut-advice composition mechanism.

AspectualSubject. The join point model is implicitly defined (AS.JPM)
as the set of primary sequence model elements, e.g., lifelines and messages to
which the aspect sequence model elements need to be composed, thus supporting
solely behavioral-static join points. (AS.SJP), (AS.BJP) [51]. The locations of
where to apply the advice in the primary sequence diagram are ”tagged” with
special stereotypes (AS.P). Thereby, two stereotypes can be distinguished: A
�simpleAspect� is a stereotyped UML message originating from and targeting
the same lifeline, which is used when the aspectual behavior just needs to be
inserted. A �compositeAspect� is a stereotype for UML’s Combined fragment,
that captures a message or a sequence of messages in the primary model as join
point (AS.SP), (AS.QM). In the running example, the�compositeAspect� Ob-
server is used to tag the primary sequence diagram Borrow (cf Figure 18 (b)).
The �compositeAspect� also includes the binding of the BookCopy and Book-
Manager classes to the corresponding template lifelines of the aspect sequence
diagram template. This pointcut mechanism in terms of tagging a model does
not allow for composed pointcuts (AS.CP). Concerning the aspectual subjects,
thus, models provide information at a detailed level (AS.A). The relative posi-
tion is modeled within the aspect sequence diagram template using stereotyped
combined fragments. Besides the typical before, after, and around relative po-
sition kinds, the approach provides two special stereotypes, namely, �begin�
and�end�. The begin/end combined fragment captures the aspectual behavior
that should preced/follow the messages encompassed in the �compositeAspe-
ct� of the primary model. In contrast, the �after� combined fragment shown
in Figure 18 (a) defines the aspectual behavior that will appear after each mes-
sage encompassed in the �compositeAspect� of the primary model.

AspectualKind. On the basis of sequence diagram templates, the approach
of France et al. provides for behavioral advice, only (AK.BA), (AK.SA). The
approach does not forsee possibilities of combining two or more behavioral ad-
vice to form a more complex one (AK.CA). The running example shows that
behavioral advice are modeled at a detailed level within the approach (AK.A).

Maturity. The approach of France et al. is among the most mature AOM
approaches and has been elaborated on in numerous publications (M.I) providing
examples such as a simple banking system including the authorization aspect,
the replicated repository aspect, the redundant controller aspect, and the trans-
action aspect for controlling money transfers, as well as the buffer aspect which
decouples output producers from the writing device in a system (M.E) Currently,
the approach is further developed with respect to its composition mechanism and
tool support thereof (M.T). Yet, it has not been applied in a real-world project
(M.A).

Tool Support. The implementation of an integrated toolset has been pro-
posed in [50]. This toolset shall provide modeling support (T.M), i.e., for model-
ing aspect model diagram templates built on top of the Eclipse Modeling Frame-
work8 and for instantiating context-specific aspect models from these templates

8 http://www.eclipse.org/emf/

Fig. 18. Weaving Aspectual Behavior With Sequence Diagrams, France et al.

built on top of Rational Rose. In [?], the implementation of the Kompose tool9

for composing structural base and context-specific aspect models which is built
on top of KerMeta is discussed (T.C). A tool supporting composition of behav-
ioral models, i.e., sequence diagrams is currently under development [51], while
a tool for code generation currently is not planned (T.G).

6 Lessons Learned

The results of the evaluation have revealed interesting peculiarities of current
AOM approaches. In the following, the findings are summarized and the results
are illustrated at a glance with tables according to the six categories of criteria
from the criteria catalogue within Sections 6.1 to 6.6. Finally, Section 6.7 presents
the general findings and conclusions concerning the AOM research field and
specifically points out what needs to be done in terms of further development of
AOM approaches.

9 http://www.cs.colostate.edu/puml/kompose2.html

6.1 Language

The summary of the evaluation with respect to the Language category can be
found in Table 1.

Popularity of UML Profiles and UML 2.0. For the design phase, one can
observe that UML is the choice for designing an aspect-oriented design language
with two exceptions [65], [66], only. With respect to the UML version used, there
is quite a balance between UML 1.x and UML 2.0. Typically, recent approaches
already are based on the new UML 2.0 specification. Furthermore, it is advis-
able that existing UML 1.x approaches are updated to also support UML 2.0.
For extending UML with aspect-oriented concepts, UML’s inherent extension
mechanism, i.e., profiles, is popular. In terms of tool support this is beneficial,
since UML profiles are supported by almost any UML tool. Nevertheless, it has
to be noted, that the profile-based approaches of Stein et al. and Aldawud et
al. do not provide a reference implementation of their profiles within a UML
tool. Consequently, designers first are required to manually redefine the profile
specification in their UML tool of choice. With respect to those approaches that
are based on metamodel extensions, i.e., Clark et al., Jacobson et al., and France
et al., almost no modeling support is available. Only France et al. are currently
developing an integrated toolset providing modeling support upon the EMF.

Behavioral Diagrams are Catching up. Except for the approach of Klein
et al. all approaches make extensive use of structural diagrams, i.e., class dia-
grams and package diagrams as well as component diagrams and composite
structure diagrams. The use of behavioral diagrams in order to describe cross-
cutting behavior is more and more emphasized by also composing behavioral
diagrams such as in the approaches of Klein et al., Cottenier et al., and France
et al.

Missing Guidance in the Design Process. Since AOM is still a quite
young research field, the support of design processes has often been disregarded
and thus is rather underdeveloped. Only two surveyed approaches, i.e., Clarke et
al. and Jacobson et al., provide a detailed design process description. Addition-
ally, two approaches have some guidance in designing aspect-oriented models in
terms of guidelines, namely France et al. and Aldawud et al. It is not surpris-
ing, that the two approaches offering a design process have been chosen by the
AOSD Europe Network of Excellence to form the basis for defining a generic
aspect-oriented design process [10].

Missing Full External Traceability. The majority of approaches does
not support external traceability at all or with respect to either prior or later
development phases, only. The approaches of Jacobson et al. and Clarke et al.
are the only ones that do support external traceability from the requirements
engineering phase until implementation. Since traceability is a crucial issue in
any kind of software development, AOM approaches need to take care to support
for traceability.

Moderate Scalability. Half of the approaches provides for scalability by
supporting modeling concepts that allow hiding details from the modeler and
thus, modeling at a high level of abstraction. The modeling examples used,

Table 1. Language

however, are seldom of a size that justifies scalability. Only, the approaches of
Jacobson et al., Cottenier et al., and Clarke et al. have provided proof that
their approaches can cope with the composition of three or more concerns. Due
to this limited interest in proving the applicability of the AOM approaches in
large-scale applications, it will be required in the future to evaluate how scalable
those approaches are in real large-scale applications by means of quantitative
studies.

6.2 ConcernComposition

For the ConcernComposition category, the lessons learned are drawn from Table
2.

Popularity of Asymmetric Concern Composition. The majority of
AOM approaches follows the pointcut-advice mechanism or a combination of
the pointcut-advice and open class mechanisms. The approach of France et al.
seems to be the first that combines the compositor mechanism and the pointcut-
advice mechanism. It is however interesting to note that up to now little interest
has been shown in evaluating when asymmetric and symmetric approaches have
prevailing advantages and shall be employed.

Influence of Composition Mechanism on Element, Composition,
and Rule Symmetry. Generally, one can observe that asymmetric composition
mechanisms usually imply element asymmetry, composition asymmetry as well
as rule asymmetry, although this is not an inherent characteristic of asymmetric
approaches. On the opposite, a symmetric composition continuously achieves
symmetric values. The approach of Klein et al. is one exception to the rule
supporting element and composition symmetry, since the modeling concepts used
for modeling the base behavior, the crosscutting behavior as well as the pointcuts
is done using sequence diagrams, which in different contexts can play different
roles. Other examples are the approaches of Jacobson et al. and Aldawud et
al. which at a higher level do support element symmetry (�use case slice�)
and element asymmetry (�aspect�), respectively. At a lower level, however,
one can observe the reverse: Jacobson et al. model and compose �aspect�
classes with normal classes while Aldawud et al. uses state machine regions to
model (non-)crosscutting concerns. The approach of France et al. that combines
the compositor mechanism and the pointcut-advice mechanism results in rule
symmetry for the compositor mechanism and rule asymmetry for the pointcut-
advice mechanism.

Composition often Deferred to Implementation. Composition at mod-
eling level is only supported by half of the surveyed approaches. The composi-
tion always yields a composed model conforming to standard UML except for
the approach of Clarke et al., where the outcome is represented by a compos-
ite �theme�. The composition semantics of Cottenier et al. and France et al.
have already been implemented within (prototype) tools, while Klein et al. have
defined a weaving algorithm. In contrast to Clarke et al., this operationalization
enables dynamic composition at modeling level. Well-defined semantics already
at the modeling level is a necessary prerequisite for achieving more than models-
as-blue-print. If, as intended in MDE, models shall replace code appropriate
semantics along with composed models to assist the designer will be required.

Moderate Support for Modeling Interactions. Modeling of interac-
tions both at the level of modules and the level of rules is still considered rather
moderately. Typically the means for specifying interactions at the same time
are modeling concepts for resolving conflicts, e.g., an ordering for composing
concern modules or concern composition rules. The approach of Cottenier et al.
represents an exception by proposing �hidden by� and �dependent on� de-
pendencies between aspects. Since it is natural to expect that large-scale systems
might put forward interaction of modules, for an unambiguous specification of
the system it will be necessary to make module interaction explicit.

Conflict Resolution Based on an Ordering for Composition, Only.
A conflict resolution is provided by half of the approaches focusing on resolving
conflicts. The conflict resolution mechanisms in most cases comprise means for
specifying an ordering of how concern modules are composed, some provide
further means, e.g., to resolve naming conflicts. Only one approach’s composition
semantics (France et al.) allows to detect (syntactical) conflicts. The approach
of Jacobson et al. is the only one that explicitly avoids conflicts by continuously

Table 2. ConcernComposition

refactoring models. Consequently, the provision of more sophisticated conflict
resolution mechanisms including the detection of conflicts should be focussed in
future.

Effect Not Considered. Modeling the effect of composition is not consid-
ered at all. Only the JAC design notation of Pawlak et al. provides a stereotype
�replace� for advice which indicates an effect of either a replacement or a
deletion. The possibility of modeling the effect, however, would enhance the
explicitness of models and thus allow for providing better conflict identification.

6.3 AsymmetricConcernComposition

This part of the lessons learned specifically summarizes the results for the ap-
proaches adhering to the pointcut-advice and/or open class composition mech-
anism, i.e., Stein et al., Pawlak et al., Jacobson et al., Klein et al., Cottenier et
al., and France et al.

AspectualSubject The results of evaluating the approaches according to the
criteria encompassed by the AspectualSubject sub-category are shown in Table
3.

Missing Formal Definition of Join Point Models. Half of the surveyed
approaches made the Join Point Model not explicit but defined it ”implicitly” via
their pointcut mechanism. The remaining did provide a Join Point Model but
mostly in terms of a natural language description, only. Consequently, formal
definitions of join point models are missing and shall be considered in future
development of AOM approaches.

Table 3. AspectualSubject

Limited Support for Structural Join Points. Supporting the full spec-
trum of join points in AOM approaches would be beneficial with respect to pos-
sible enhancement, replacements, and deletions made in the form of advice. The
approaches realizing the open class composition mechanism support structural-
static join points. The approaches of Pawlak et al. and Cottenier et al. allow
for structural advice which are introduced at run-time, however, thus requiring
structural-dynamic join points (e.g., object instances). The approaches of Klein
et al. and France et al. do not provide structural join points at all. Neverthe-
less, it has to be noted, that the approach of France et al. compensates the
lack of at least structural-static join points due to also supporting the composi-
tor composition mechanism. All approaches consider either behavioral-static or
behavioral-dynamic join points or both.

Standards-Based Pointcut Mechanism Preferred. All but one of the
approaches provide a standards-based pointcut mechanism. Pawlak et al. pro-
poses the only proprietary pointcut language based on regular expressions and/or
keywords as well as on UML associations. The approaches of Jacobson et al. and

Stein et al. reuse AspectJ’s pointcut language. The rest relies on UML behavioral
diagrams to specify pointcuts, e.g., sequence diagrams (Klein et al.) and com-
bined fragments in sequence diagrams (France et al.), as well as state machines
(Cottenier et al.)

Good Support of Composite Pointcuts. The reuse of simple pointcuts
is fostered by the use of composite pointcuts, for which good support is provided
in almost all the approaches. The textual pointcut mechanism of Stein et al.,
Pawlak et al., and Jacobson et al. provide textual mechanisms that allow for
composing simple pointcuts using logical operators. Cottenier et al. allow com-
posing pointcuts with special logical composition operators. While France et al.
provides no support for modeling composite pointcuts, the approach of Klein et
al. in principle could support composition of sequence diagrams on the basis of
the sequential composition operator.

No Imperative Pointcuts. The approaches exclusively allow to select join
points declaratively and/or by enumeration but not in the form of imperative
pointcuts, which could serve as a more verbose pointcut definition.

Good Support of Relative Position Kinds. Except for the approaches of
Klein et al. and Cottenier et al., which only cater for the around relative position
kind and therefore subsume the before and after kinds, the other approaches
provide full support of relative position kinds. Interestingly, France et al. support
two uncommon positions, namely ”begin” and ”end”. Furthermore, it might be
interesting to discuss how the relative positions shall be interpreted in the light
of model elements, since finally the composition in any case will do concrete
insertions and deletions of metamodel instances.

Modeling Aspectual Subjects at Different Levels of Abstraction. All
approaches allow to apply advices to the base at a low level of abstraction, but
half of the approaches also allows modeling the subjects of adaptation at a higher
level of abstraction. For the applicability of AOM, a high level of abstraction
is beneficial, whereas for code generation purposes as well as an automated
execution of the model a detailed specification at a low level of abstraction is
necessary.

AspectualKind In Table 4, the results for the AspectualKind sub-category are
provided.

Composite Advice Not Considered. While most approaches provide
modeling means for both behavioral and structural advice, composing advice
to form more complex ones and to foster reuse is not considered by any of the
approaches. Nevertheless, the approach of Klein et al. in principle could support
composition of sequence diagrams, i.e., behavioral advice, on the basis of the
sequential composition operator.

Modeling Aspectual Kinds at a Low Level of Abstraction. Again,
as for abstraction with respect to the aspectual subjects all approaches allow
modeling advice at a low level of abstraction. The approach of Cottenier et al.
is the only one supporting modeling also at a high level of abstraction. It would

Table 4. AspectualKind

be beneficial, however, if approaches would provide for high as well as low level
of abstraction.

6.4 SymmetricConcernComposition

This part of the lessons learned specifically summarizes the results for those
approaches supporting the compositor composition mechanism, i.e., Aldawud et
al., Theme et al., and France et al (cf. Table 5).

Equal Support of Structural and Behavioral Composable Elements.
While the approach of Aldawud et al. is based on state machines, the approach
of France et al. allows composing class diagrams. Thus, the supported compos-
able elements are for the first case behavioral and in the second case structural.
Ideally, composition is possible for both kinds, such as in the composition meta-
model of Clarke et al. Nevertheless, for the approach of France et al., it has to be
noted that the lacking support for behavioral composable elements can be seen
as compensated due to supporting the pointcut-advice composition mechanism
for composing sequence diagrams.

Predominance of Matching with Names. Finding corresponding el-
ements on the basis of a name-based match method represents an easy-to-
implement method and in many cases quite an effective way, which is con-
sequently supported by all three approaches. Clarke et al. additionally allow
to explicitly model which elements shall not match by supporting a no-match
method. Recently, France et al. have proposed a more expressive match method
based on the elements signatures. The advantage of such a matching method
lies in the possibility of finding corresponding elements with more fine-grained
matching criteria other than the element name, e.g., the values of meta-class
properties such as the ”isAbstract” meta-attribute of classes, as well as in the
possibility of detecting and resolving conflicts.

Merge Integration as a Default Strategy. With respect to supporting
different integration strategies, merge is supported by all surveyed approaches.

Table 5. SymmetricConcernComposition

The override and bind strategies are also supported by all approaches but Al-
dawud et al. In terms of expressivity, ideally all integration strategies are sup-
ported by an approach.

Modeling at Different Abstraction Levels. The approaches generally
provide good support for modeling at a high and a low level of abstraction.
In particular, the approaches of Clarke et al. and France et al. offer high level
views on the concern modules to be composed in terms of UML packages, while
Aldawud et al. model at a detailed level by means of state machines. A high
level of abstraction is beneficial in terms of an approach’s scalability, whereas
for code generation purposes as well as an automated execution of the model a
low level view such as the one of Aldawud et al. is required. In this respect, state
machines probably represent the most elaborate mechanism for describing an
objects life cycle, and are supported by code generation tools such as Raphsody
and StateMate10.

6.5 Maturity

In Table 6, the measures for the Maturity category are depicted for all surveyed
approaches.

Missing Complex Examples. The majority of the approaches, have demon-
strated their approaches on the basis of rather trivial examples in which not more
than two concerns are composed. In this respect, Jacobson et al., Cottenier et
al., and Clarke et al. set a good example by demonstrating their approaches with
non-trivial modeling problems. It would therefore be beneficial if all AOM ap-
proaches would document their capabilities on bases of more complex examples.

Lack of Application in Real-World Projects. The applicability of AOM
languages has rarely been tested in real-world projects. An exception is the ap-
proach of Pawlak et al., which has already been applied to real industrial projects
10 http://www.ilogix.com/

Table 6. Maturity

like an online courses intranet site, an incident reporting web site, and a busi-
ness management intranet tool. Another exception is the approach of Cottenier
et al., since their Motorola Weavr tool is already being deployed in production
at Motorola.

6.6 Tool Support

Finally, the results concerning the approaches’ Tool Support are summarized in
Table 7.

Missing Tool Support for Composition and Code Generation. While
modeling support in many approaches is implicitly available due to the use of
UML’s profile mechanism, support for code generation and composition is rare.
The approach of Cottenier et al. is the only one that allows for modeling, com-
position, and code generation. On the one hand, for those approaches that defer
composition to the implementation phase, code generation facilities that pro-
duce code for the target AOP platform would be beneficial. For example, the
approach of Pawlak et al. allows for code generation for the JAC Framework.
On the other hand, composition tool support is essential for those approaches,
that have specified the composition semantics for model composition. The ac-
ceptance of an AOM approach will be minimal, if it requires the designers to
first model each concern separately and then to manually compose them. In this
respect, the approaches of France et al. and Cottenier et al. provide appropriate
tool support, while the ”weaving algorithm” of Klein et al. is currently being
implemented.

6.7 General Findings

This section sums up the most important conclusions that are valid for the
academic community as well as for practitioners.

Table 7. Tool Support

No Explicit Winner. From the results obtained in the evaluation, it is not
possible to nominate a winner. The selection of an AOM approach thus has to be
made in the context of a specific project. For instance, if the requirement is en-
abling documentation and communication between partners of an AspectJ-based
project, a design notation for AspectJ programs is needed and the approach of
Stein et al. would be a good solution. On the other hand, one might wish for
separating concerns in different class diagrams at design time and then before
implementation compose the different views. In this respect, both approaches of
Clark et al. as well as France et al. would be possible options. Depending on
when the current prototype implementation of their integrated toolset is made
available, the approach of France et al. might even be preferred for its tool
support. Staying with tool support, the approaches of Pawlak et al. and Cot-
tenier et al. might be of interest. In contrast to the approach of Stein et al.,
the JAC Design Notation of Pawlak et al. has been specifically designed for the
JAC Framework but comes with modeling support as well as a code generation
facility. What might argue in favor of the AODM of Stein et al. is AspectJ’s
maturity. The unique selling point of the Motorola Weavr of Cottenier et al. is
its comprehensive tool support and in particular its composition mechanism for
state machines, for which an academic license can be obtained. Nevertheless, the
approach does not allow composing structural diagrams.

Full Spectrum of UML not Exploited. Interestingly enough, apart of the
approaches of Palawak et al. and Klein et al. the surveyed approaches support
structural as well as behavioral diagrams. Thus, in principle, the approaches al-
low the modeler to consider both structure and behavior through their approach.
Nevertheless, currently no approach addresses the full spectrum of UML in terms
of UML’s structural and behavioral diagrams as well as their composition. It is
comforting that the presumably most often employed UML diagrams have been
addressed by AOM approaches. As can be seen in Table 1, the most important
structural diagram, i.e., class diagram, is supported by all approaches addressing

structural modeling some of them also allowing their composition. Likewise for
modeling behavior the sequence diagram is covered by all approaches addressing
behavior, some of them also supporting their composition. It would therefore be
interesting to investigate how to compose diagram types for which composition
has not yet been specified, e.g., composite structure diagrams. As a consequence,
it would also be interesting how the approaches can be combined in order to gain
from best practises in AOM. In this respect, a first promising attempt has re-
cently been conducted by Clarke et al. and Klein et al. by proposing KerTheme
[29], a combination of their approaches. Furthermore, the Theme/UML approach
of Clarke et al. has also been extended with join point designation [28] diagrams
of Stein et al.

Missing Guidance on When to use Asymmetric vs. Symmetric Ap-
proaches. It might be a natural pre-assumption that approaches either follow
the asymmetric school of thought or the symmetric school of thought. France et
al. is interesting in this respect since it provides for both. The recent extension
made to Theme/UML in the KerTheme proposal also follow this direction of
combining different composition mechanisms. In terms of expressivity, the ad-
vantages of using different composition mechanisms are obvious. Nevertheless,
the question when to best apply an asymmetric or a symmetric approach has
not yet been answered sufficiently.

Missing Tool Support. Certainly, one of the most vital factors for the
adoption of AOM in practise but also in academia is the provision of appropriate
tools. Basic modeling support is provided for some approaches, i.e., for those
approaches which rely on UML profiles and consequently can rely on existing
UML modeling tools. AOM, however, is also about the composition of various
concerns that have been carefully separated beforehand. This is a complex task to
be understood by the modeler hence, support for model composition is vital. Still,
this is not commonly provided by the AOM approaches and is also hampered
by the fact that not all AOM approaches provide for a well-defined composition
semantics. Finally, code generation, which is an important requirement for MDE,
is least supported by tools. Only the approaches of Pawlak et al. and Cottenier
et al. provide such facilities.

Adoption of Approaches Requires Scalability. For the adoption of
AOM, it would be beneficial if its applicability would be better evaluated with
respect to large scale applications and real-world scenarios. This is currently only
sufficiently addressed by very few approaches, namely, Clarke et al., Jacobson
et al., and Cottenier et al. Nevertheless, scalability is a feature important to
practitioners and has a great impact on the chances of AOM approaches to be
adopted.

7 Conclusion and Outlook

This paper presents the evaluation of eight aspect-oriented modeling approaches.
Since the research field of aspect-oriented modeling is quite young and a common
understanding of concepts has not yet been established, we identified prior to

our survey the important concepts of aspect-oriented modeling in the form of a
conceptual reference model for aspect-oriented modeling. This conceptual refer-
ence model is an intermediate but essential step towards defining an evaluation
framework, i.e., it forms the basis for inferring a set of concrete criteria. The ac-
tual evaluation according to our evaluation framework is furthermore supported
by a running example, which has proven to be very helpful on the one hand, to
explore the applicability of each individual approach and on the other hand, to
allow for a direct comparison of the approaches. The evaluation results reveal
that currently there is no decidedly superior aspect-oriented modeling approach
but that each individual approach has it specific strengths and shortcomings. For
applying aspect-oriented modeling in a project this means selecting an aspect-
oriented modeling approach by matching the projects requirements with the
approach’s features. In this respect, the evaluation results and lessons learned
represent the basis for a well-founded decision.

We are currently working on completing our survey with the evaluation re-
sults of those approaches that could not be presented in this survey due to the
space restrictions, in particular [12], [21], [23], [27], [31], and [70]. Furthermore,
we also plan to evaluate domain-specific approaches to aspect-oriented modeling.

Another research question we would like to investigate concerns the kind of
examples that are needed to fully evaluate aspect-oriented modeling approaches.
While our running example’s obvious advantages are its conciseness and un-
derstandability, it does not allow to investigate each and every concept of the
aspect-oriented modeling approaches, e.g., modeling interactions between con-
cern modules. In this respect, we propose a catalogue of aspect-oriented mod-
eling examples, an initiative that is not new but has successfully been applied
in some disciplines11. A set of common, well-defined problems would provide a
way of comparing approaches and results. Such a catalogue of standard example
problems could serve as a kind of benchmark for the aspect-oriented modeling
domain possibly posing some form of compliance levels for new proposals to
aspect-oriented modeling but also provide for teaching materials.

As a consequence of such a catalogue of aspect-oriented modeling examples,
in a further extension of this survey, each approach could be applied to more
complex problems or within extensive case studies. Ideally, the approaches could
be applied simultaneously in a real world project. On the one hand, this would
provide more insight into already supported criteria of our evaluation framework
such as scalability. On the other hand, such an empirical study is necessary for
otherwise non-measurable criteria such as reusability, evolvability, flexibility, and
ease of learning.

8 Acknowledgements

We would like to thank the authors of the surveyed approaches for providing us
with their feedback on an earlier version of this work.

11 http://www.cs.cmu.edu/M̃odProb/index.html

References

1. Mehmet Akşit, Lodewijk Bergmans, and Sinan Vural. An Object-Oriented
Language-Database Integration Model: The Composition-Filters Approach.
In Proc. of the 6th European Conference on Object-Oriented Programming
(ECOOP’92), Utrecht, The Netherlands, June/July 1992.

2. Omar Aldawud, Tzilla Elrad, and Atef Bader. UML Profile for Aspect-Oriented
Software Development. In Proc. of the 3rd Int. Workshop on Aspect Oriented
Modeling, Boston, Massachusetts, March 2003.

3. Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a Large
Industrial Context - Motorola Case Study. In Proc. of the 8th Int. Conference on
Model Driven Engineering Languages and Systems (MoDELS’05), Montego Bay,
Jamaica, October 2005.

4. Gordon S. Blair, Lynne Blair, Awais Rashid, Ana Moreira, João Araújo, and
Ruzanna Chitchyan. Engineering Aspect-Oriented Systems. In R.E. Filman, T. El-
rad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software Development, pages
379–406. Addison-Wesley, Boston, 2005.

5. Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia, Mónica Pinto
Alarcon, Jethro Bakker, Bedir Tekinerdoğan, Siobhán Clarke, and Andrew Jack-
son. Survey of Aspect-Oriented Analysis and Design Approaches. Technical Report
D11 AOSD-Europe-ULANC-9, AOSD-Europe, May 2005.

6. Siobhán Clarke. Composition of Object-Oriented Software Design Models. PhD
thesis, Dublin City University, January 2001.

7. Siobhán Clarke. Extending Standard UML with Model Composition Semantics.
Science of Computer Programming, 44(1):71–100, July 2002.

8. Siobhán Clarke and Elisa Banaissad. Aspect-Oriented Analysis and Design The
Theme Approach. Addison-Wesley, Upper Saddle River, March 2005.

9. Siobhán Clarke, William Harrison, Harold Ossher, and Peri Tarr. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design and Code. In Proc.
of the 14th Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’99), Denver, Colorado, pages 325–339, November 1999.

10. Siobhán Clarke and Andrew Jackson. Refined AOD Process. Technical Report
D57 AOSD-Europe-TCD-D57, AOSD-Europe, August 2006.

11. Siobhán Clarke and Robert J. Walker. Generic Aspect-Oriented Design with
Theme/UML. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
Oriented Software Development, pages 425–458. Addison-Wesley, Boston, 2005.

12. Wesley Coelho and Gail C. Murphy. Presenting Crosscutting Structure with Active
Models. In Proc. of the 5th Int. Conference on Aspect-Oriented Software Develop-
ment (AOSD’06), Bonn, Germany, March 2006.

13. Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Joinpoint Inference from
Behavioral Specification to Implementation. In Proc. of the 21st Europ. Conf. on
Object-Oriented Programming, Berlin, Germany, to appear July 2007.

14. Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. The Motorola WEAVR:
Model Weaving in a Large Industrial Context. In Proc. of the 6th Int. Conf. on
Aspect-Oriented Software Development (AOSD’07), Vancouver, Canada, March
2007.

15. Steven Op de beeck, Eddy Truyen, Nelis Boucké, Frans Sanen, Maarten Bynens,
and Wouter Joosen. A Study of Aspect-Oriented Design Approaches. Technical
Report CW435, Department of Computer Science, Katholieke Universiteit Leuven,
2006.

16. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

17. Tzilla Elrad, Omar Aldawud, and Atef Bader. Expressing Aspects Using UML
Behavioral and Structural Diagrams. In R.E. Filman, T. Elrad, S. Clarke, and
M. Akşit, editors, Aspect-Oriented Software Development, pages 459–478. Addison-
Wesley, Boston, 2005.

18. Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors.
Aspect-Oriented Software Development. Addison-Wesley, Boston, 2005.

19. Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. Aspect-oriented
Approach to Early Design Modelling. IEE Proceedings Software, 151(4):173– 185,
August 2004.

20. Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A UML-Based
Pattern Specification Technique. IEEE Trans. Software Eng., 30(3):193–206, 2004.

21. Lidia Fuentes, Mónica Pinto, and José M. Troya. Supporting the Development
of CAM/DAOP Applications: An Integrated Development Process. Software -
Practice and Experience, 37(1):21–64, 2007.

22. Erich Gamma, Richard Helm, Ralph Hohnson, and John Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesely, 2004.

23. John Grundy. Multi-Perspective Specification, Design and Implementation of Soft-
ware Components Using Aspects. Int. Journal of Software Engineering and Knowl-
edge Engineering, 20(6), 2000.

24. Stefan Hanenberg. Design Dimensions of Aspect-Oriented Systems. PhD thesis,
University Duisburg-Essen, October 2005.

25. William H. Harrison and Harold L. Ossher. Subject-Oriented Programming - A
Critique of Pure Objects. In Proc. of the 8th Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’93), Washington, DC,
USA, September 1993.

26. William H. Harrison, Harold L. Ossher, and Peri L. Tarr. Asymmetrically vs.
Symmetrically Organized Paradigms for Software Composition. Technical report,
IBM Research Division, Thomas J. Watson Research Center, December 2002.

27. Wai-Ming Ho, Jean-Marc Jézéquel, François Pennaneac’h, and Noël Plouzeau. A
Toolkit for Weaving Aspect Oriented UML Designs. In Proc. of the 1st Int. Confer-
ence on Aspect-oriented Software Development (AOSD’02), Enschede, The Nether-
lands, 2002.

28. Andrew Jackson and Siobhán Clarke. Towards the Integration of Theme/UML
and JPDDs. In Proc. of the 8th Int. Workshop on Aspect-Oriented Modeling at
AOSD’06, Bonn, Germany, March 2006.

29. Andrew Jackson, Jacques Klein, Benoit Baudry, and Siobhán Clarke. KerTheme:
Testing Aspect Oriented Models. In Proc. Workshop on Integration of Model
Driven Development and Model Driven Testing (ECMDA’06), Bilbao, Spain, July
2006.

30. Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use
Cases. Addison-Wesley, 2005.

31. Mika Katara and Shmuel Katz. A Concern Architecture View for Aspect-Oriented
Software Design. Software and System Modeling, 2006.

32. Mik Kersten. AOP Tools Comparison (Part 1 & 2). http://www-
128.ibm.com/developerworks/java/library/j-aopwork1/, March 2005.

33. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proc. of
the 11th Europeen Conference on Object-Oriented Programming, Jyväskylä, Fin-
land, 1997.

34. Jörg Kienzle and Samuel Gélineau. AO Challenge - Implementing the ACID Prop-
erties for Transactional Objects. In Proc. of the 5th Int. Conference on Aspect-
Oriented Software Development (AOSD’06), Bonn, Germany, March.

35. Jörg Kienzle, Yang Yu, and Jie Xiong. On Composition and Reuse of Aspects.
In Proc. of FOAL: Foundations of Aspect-Oriented Languages, Boston, Massa-
chusetts, March 2003.

36. Dae-Kyoo Kim, Robert B. France, and Sudipto Ghosh. A UML-based Language for
Specifying Domain-Specific Patterns. Journal of Visual Languages and Computing,
15(3-4):265–289, 2004.

37. Jacques Klein, Löıc Hélouët, and Jean-Marc Jézéquel. Semantic-Based Weaving
of Scenarios. In Proc. of the 5th Int. Conference on Aspect-Oriented Software
Development (AOSD’06), Bonn, Germany, March 2006.

38. Sergei Kojarski and David H. Lorenz. Modeling Aspect Mechanisms: A Top-Down
Approach. In Proc. of the 28th Int. Conference on Software Engineering (ICSE’06),
Shanghai, China, May 2006.

39. Karl J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.

40. Mark Mahoney, Atef Bader, Omar Aldawud, and Tzilla Elrad. Using Aspects to
Abstract and Modularize Statecharts. In Proc. of the 5th Aspect-Oriented Modeling
Workshop (UML’04), Lisbon, Portugal, October 2004.

41. Hidehiko Masuhara and Gregor Kiczales. Modeling Crosscutting in Aspect-
Oriented Mechanisms. In Proc. of the 17th European Conference on Object-
Oriented Programming (ECOOP’03), Darmstadt, Germany, July 2003.

42. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Executabil-
ity into Object-Oriented Meta-languages. In Proc. of the 8th Int. Conference on
Model Driven Engineering Languages and Systems (MoDELS’05), Montego Bay,
Jamaica, 2005.

43. Object Management Group (OMG). MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, June 2003.

44. Object Management Group (OMG). UML Specification: Superstructure Version
2.0. http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

45. David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Mod-
ules. Comm. ACM, 15(12):1053–1058, December 1972.

46. Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-Aubry, Lionel
Seinturier, and Laurent Martelli. A UML Notation for Aspect-Oriented Software
Design. In Proc. of the 1st Workshop on Aspect-Oriented Modeling with UML
(AOSD’02), Enschede, The Netherlands, March 2002.

47. Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli, Fabrice
Legond-Aubry, and Gérard Florin. Aspect-Oriented Software Development with
Java Aspect Components. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages 343–369. Addison-Wesley,
Boston, 2005.

48. Eduardo Kessler Piveta and Luiz Carlos Zancanella. Observer Pattern using
Aspect-Oriented Programming. In Proc. of the 3rd Latin American Conference
on Pattern Languages of Programming, Porto de Galinhas, PE, Brazil, August
2003.

49. Raghu Reddy, Robert France, and Geri Georg. An Aspect Oriented Approach to
Analyzing Dependability Features. In Proc. of the 6th Int. Workshop on Aspect-
Oriented Modeling (AOSD’05), Chicago, Illinois, March 2005.

50. Raghu Reddy, Sudipto Ghosh, Robert B. Rance, Greg Straw, James M. Bieman,
Eunjee Song, and Geri Georg. Directives for Composing Aspect-Oriented Design
Class Models. In Transactions on Aspect-Oriented Software Development I, LNCS
3880, pages 75 – 105. Springer-Verlag, 2006.

51. Raghu Reddy, Arnor Solberg, Robert France, and Sudipto Ghosh. Composing
Sequence Models using Tags. In Proc. of the 9th Int. Workshop on Aspect-Oriented
Modeling at MoDELS’06, Genova, Italy, October 2006.

52. Antonia M. Reina, Jesus Torres, and Miguel Toro. Separating Concerns by Means
of UML-profiles and Metamodels in PIMs. In Proc. of the 5th Aspect-Oriented
Modeling Workshop (UML’04), Lisbon, Portugal, October 2004.

53. James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified Modeling
Language Reference Guide. Addison-Wesley, Boston, 2005.

54. Frans Sanen, Eddy Truyen, Bart De Win, Wouter Joosen, Neil Loughran, Geoff
Coulson, Awais Rashid, Andronikos Nedos, Andrew Jackson, and Siobhán Clarke.
Study on interaction issues. Technical Report D44 AOSD-Europe-KUL-7, AOSD-
Europe, February 2006.

55. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner
Retschitzegger, and Manuel Wimmer. Towards a Common Reference Architec-
ture for Aspect-Oriented Modeling. In Proc. of the 8th International Workshop on
Aspect-Oriented Modeling at AOSD’06, Bonn, Germany, March 2006.

56. Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE
Computer, 39(2):25–31, 2006.

57. ITU Telecommunication Standardization Sector. ITU-T Recommendation Z.120:
Message Sequence Chart (MSC), Geneva, Switzerland. http://www.itu.int/rec/T-
REC-Z/en.

58. ITU Telecommunication Standardization Sector. ITU-T Recommendation
Z.100: Specification and Description Language (SDL), Geneva, Switzerland.
http://www.itu.int/rec/T-REC-Z/en, August 2002.

59. Arnor Solberg, Devon Simmonds, Raghu Reddy, Sudipto Ghosh, and Robert B.
France. Using Aspect Oriented Techniques to Support Separation of Concerns in
Model Driven Development. In Proc. of the 29th Annual Int. Computer Software
and Applications Conference (COMPSAC 2005), Edinburgh, Scotland, UK, July
2005.

60. Dominik Stein, Stefan Hanenberg, and Rainer Unland. An UML-based Aspect-
Oriented Design Notation. In Proc. of the 1st Int. Conference on Aspect-Oriented
Software Development (AOSD’02), Enschede, The Netherlands, April 2002.

61. Dominik Stein, Stefan Hanenberg, and Rainer Unland. Designing Aspect-Oriented
Crosscutting in UML. In Proc. of the 1st Workshop on Aspect-Oriented Modeling
with UML (AOSD’02), Enschede, The Netherlands, March 2002.

62. Dominik Stein, Stefan Hanenberg, and Rainer Unland. On Representing Join
Points in the UML. In Proc. of the 2nd Int. Workshop on Aspect-Oriented Modeling
with UML (UML’02), September 2002.

63. Dominik Stein, Stefan Hanenberg, and Rainer Unland. Expressing Different Con-
ceptual Models of Join Point Selections in Aspect-Oriented Design. In Proc. of the
5th Int. Conference on Aspect-Oriented Software Development (AOSD’06), Bonn,
Germany, March 2006.

64. Dominik Stein, Jörg Kienzle, and Mohamed Kandé. Report of the 5th Int. Work-
shop on Aspect-Oriented Modeling. In UML Modeling Languages and Applications:
2004 Satellite Activities, Lisbon, Portugal, pages 13–22. Springer-Verlag, October
2004.

65. Stanley M. Sutton, Jr. and Isabelle Rouvellou. Concern Modeling for Aspect-
Oriented Software Development. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages 479–505. Addison-Wesley,
Boston, 2005.

66. Davy Suvée, Wim Vanderperren, Dennis Wagelaar, and Viviane Jonckers. There
are no Aspects. Electronic Notes in Theoretical Computer Science, 114, 2005.

67. Peri L. Tarr, Harold L. Ossher, William H. Harrison, and Stanley M. Sutton, Jr. N
Degrees of Separation: Multi-Dimensional Separation of Concerns. In Proc. of the
21st Int. Conference on Software Engineering (ICSE’99), Los Angeles, California,
May 1999.

68. The AspectJ Team. The AspectJ (TM) Programming Guide.
http://eclipse.org/aspectj/doc/released/progguide/index.html, October 2005.

69. Klaas van den Berg, José M. Conejero, and Ruzanna Chitchyan. AOSD Ontology
1.0 - Public Ontology of Aspect-Orientation. Technical Report D9 AOSD-Europe-
UT-01, AOSD-Europe, May 2005.

70. Christina von Flach Garcia Chavez. A Model-Driven Approach for Aspect-Oriented
Design. PhD thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro, April 2004.

71. Christina von Flach Garcia Chavez and Carlos J. P. de Lucena. A Theory of
Aspects for Aspect-Oriented Software Development. In Proc. of the 7th Brazilian
Symposium on Software Engineering (SBES’2003), 2003.

72. Jing Zhang, Thomas Cottenier, Aswin Van Den Berg, and Jeff Gray. Aspect
Interference and Composition in the Motorola Aspect-Oriented Modeling Weavr.
In Proc. of the 9th Int. Workshop on Aspect-Oriented Modeling (MODELS’06),
Genova, Italy, October 2006.

