The Web Services-BusinessA ctivity—Initiator (WS-BA-I) Protocol: an
Extension to the Web Services-BusinessActivity Specification

Hannes Erven*, Georg Hicker*, Christian Huemer* and Marco Zaptletal®

* Business Informatics Group, ° Electronic Commerce Group
Institute of Software Technology and Interactive Systems, Vienna University of Technology, Austria
hannes@erven.at, georg.hicker @reflex.at, huemer@big.tuwien.ac.at, marco@ec.tuwien.ac.at

Abstract

The Web Services Transaction protocol family
includes the WS-AtomicTransaction and the WS-
BusinessActivity specifications in order to carry out
distributed transactions in a Web Services (WS) environ-
ment. The WS-AtomicTransaction specification defines
all necessary interfaces to carry out transactional work.
In contrary, the WS-BusinessActivity specification
for long-running transactions intentionally left the
interface between initiator and coordinator undefined.
This allows vendors to integrate WS-BusinessActivi-
ty coordinators into their business process engines.
However, it requires proprietary protocols between
initiator and coordinator. We propose an extension
protocol to the WS-BusinessActivity specification
that explicitly defines this interface between initiator
and coordinator. This extension allows coordinators
and initiators from different vendors to interoperate
transparently. Accordingly, participants no longer need
to trust an initiator-selected and likely initiator-run
coordination service, but may use commonly trusted,
third-party coordination services.

1. Introduction

The WS-BusinessActivity specification [1] was
created to enable web services to participate in long-
running, loosely coupled transactions. This type of
transaction is commonly used when modelling business
processes, as for example in workflow systems where
the workflow execution engine is responsible for coor-
dinating the participants as defined by the rules of the
business processes.

At present, hardly any web service consuming soft-
ware is backed by a workflow engine that provides WS-
BusinessActivity coordination services. Hence there is

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

Business
Logic

(&)
S

Particigant 1

Business
Logic
Co < Coordinator

Business
Particigant 2 $ © O Logic

Particigant n

defined by WS-BA .
Business

Logic

(a)

Business
Logic

Business o
Logic .
Participant 1
>
=)
Initiator Cogrdinator Participant 2 s Business
Logic

defined by WS-BA

defined by WS-BA- .
efinecby W Business

Logic

(b)

Figure 1. WS-BusinessActivity and WS-Busi-
nessActivity—Initiator overview

a need for independent, easy to use third party tools re-
alizing business activity coordination services. These
will enable environments without workflow engines to
create, coordinate and participate in long-running trans-
actions.

The WS-BusinessActivity specification leaves the
choice of the coordination service to the application.
This is depicted in Figure 1a. The lack of a well-defined
interface between application and coordinator requires
a coordination service that is either built into the appli-
cation or tightly coupled to it. In other words, the busi-
ness logic is tightly coupled to the coordination service.
A participant has to trust this proprietary coordination
service.

A “trusted third party” model, similar to the one
used for PKI certificate authorities, adds transaction

COMPUTER

SOCIETY

security to participants and initiators. However, this
model requires a common protocol between initiator
and coordination service. In such a model, a coordina-
tion service records all state changes and notifications.
This means that a transaction’s progress is always reli-
ably recorded by an independent party.

In this paper we introduce the WS-BusinessActivi-
ty—Initiator protocol to be implemented between an ini-
tiator and a coordination service. In Figure 1b we illus-
trate how WS-BusinessActivity—Initiator and WS-Busi-
nessActivity work together. The WS-BusinessActivity—
Initiator specification proposes a protocol that enables
an initiator to enlist participants, to check on their cur-
rent state and to inform the coordination service about
decisions it has made. The current proposal is designed
as a “pull” protocol. Accordingly, the initiator is a sim-
ple client that does not offer any services to the trans-
action coordinator or participants. This enables even
applications that do not run in web service containers
and/or are behind firewalls or on NAT networks to cre-
ate and control WS-BusinessActivity transactions. The
approach we present in this paper has been implemented
and contributed to the Apache Kandula project [2]. A
WSDL description specifying the operations required
by the WS-BusinessActivity—Initiator protocol is found
at [3].

The remainder of this paper is structured as follows:
section 2 elaborates related work. In section 3 we briefly
introduce the most important concepts of the WS-Busi-
nessActivity standard. Afterwards, section 4 motivates
the need for a standardized protocol between initiator
and coordinator. In section 5 we introduce this protocol
in detail and illustrate it by a simple example. A short
summary in section 6 concludes the paper.

2. Related work

For many years transaction processing has attracted
a lot of attention. There exist various implementations
of the basic concepts and techniques as described by
Gray and Reuter [4]. Transaction processing is not only
of great importance in database systems, but also in dis-
tributed systems. The Object Management Group has
released a specification that provides transaction syn-
chronization across the elements of a distributed clien-
t/server application [5]. In this paper, we focus on the
transaction processing of a certain type of client/server
applications, i.e. Web Services.

The WS-BusinessActivity specifcation [1] together
with the WS-AtomicTransaction [6] and the WS-Coordi-
nation specifications [7] forms the WS-Transaction fam-
ily, which is also referred to as the Web Services Trans-
action Framework (WSTF). Within this set of specifica-

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

tions, WS-Coordination provides the foundation for im-
plementing transactional web service interactions. It de-
fines the coordination context of a transaction and proto-
cols for registrating services therein. WS-AtomicTrans-
action and WS-BusinessActivity build on WS-Coordina-
tion by specifying differing types of transactional behav-
ior. WS-AtomicTransaction focuses on transactions ac-
cording to the ACID principle: Atomicity, Consistency,
Isolation, and Durability. It implements the two-phase
commit protocol. WS-BusinessActivity, on the other
hand, focuses on long-running transactions allowing hu-
man interactions and mixed outcomes.

This differentiation corresponds to the two kinds of
business transactions for e-business applications as pro-
posed in [8] and [9]. Atomic business transactions, on
the one hand, are small scale interactions that are com-
posed of services that agree on enforcing a common out-
come. This means, that either all services commit or all
services roll-back ensuring an atomic outcome. Long-
running business transactions, on the other hand, aggre-
gate several atomic transactions. They feature the same
behavior as open nested transactions by allowing their
sub-transactions to commit independently [10]. The su-
perimposed business logic is then in charge of deciding
on the overall outcome of the long-running transaction.

In [11], Papazoglu stresses the importance of trans-
actional capabilities in terms of collaborative business
processes. He proposes a business transaction frame-
work (BTF) orchestrating loosely coupled web services
into a single business transaction backed by transac-
tional support. The BTF is responsible for coordinat-
ing distributed autonomous business functionality and
guarantees coordinated and predictable outcome for
the participating business partners. The work details
the functional criteria and the required components of
a BTF and compares standards such as the Business
Process Execution Language (BPEL) [12], WS-Atomic-
Transaction, WS-Coordination, the Business Transac-
tion Protocol (BTP) [13] and the ebXML Business Pro-
cess Specification Schema (BPSS) [14] against it.

The Business Transaction Protocol (BTP), stan-
dardized by OASIS, is an analog initiative for coordi-
nating service interactions. It aims at defining a proto-
col for representing and seamlessly managing complex,
multi-step business-to-business (B2B) transactions over
the Internet. The BTP is not restricted to the web
service environment, but might be layered over other
frameworks like RosettaNet [15] or ebXML [16]. How-
ever, in the web services world, the WSTF currently
seems to be better supported than BTP.

Vogt et al. outline in [17] that WS-Coordina-
tion and WS-BusinessActivity violate the SOA paradigm
by making assumptions about the internal structures of

COMPUTER

SOCIETY

the participants. They underpin their assertion by an
analysis based on a proof-of-concept implementation of
WS-Coordination and WS-BusinessActivity . As a result
of this analysis they discover a tight-coupling between
the entities participating in the transaction (coordinator,
initiator, and participant). Their approach introduces
a transactional middleware that separates the client’s
business logic from the coordination logic. However,
the middleware is still required to deal with business
messages which prohibits a complete seperation of con-
cerns. It follows, that their approach does not allow for a
third-party coordinator service as proposed in our work.

The work by Sauter and Melzer [18] focuses on a
comparison of WS-BusinessActivity and BPEL with re-
spect to long-running transactions. They show the dif-
ferences as well as the similarities between these stan-
dards and discuss that they are not contradicting ap-
proaches as sometimes argued. Furthermore, their work
proposes to integrate WS-BusinessActivity into BPEL to
allow for distributed coordination. Therefore, BPEL’s
compensation handler is replaced by a coordination han-
dler that coordinates nested scopes via SOAP messages.

3. The WS-BusinessActivity protocol

The WS-BusinessActivity standard [1] specifies the
coordination type business activity as defined in the ex-
tendable WS-Coordination framework [7]. This coor-
dination type defines long running transactions which
could consist of several atomic transactions. In this co-
ordination type processing of requests could take some
time, since human interaction or the assembly of parts
could be necessary. This means an un-do cannot be real-
ized by a roll-back function. Instead an un-do requires a
sophisticated compensation mechanism involving busi-
ness logic. For example the cancelation of a booking
requires a compensation mechanism that may include
the billing of cancelation fees.

The following attributes characterize transactions
of the business activity coordination type [1]:

e All state changes made during a transaction are
recorded. Especially application state and coordi-
nation metadata are collected to enable later com-
pensation.

e Messages have to be acknowledged so that coordi-
nator and participant have the same perception of
state.

e Each message has to be transmitted individually.
This means that it is not allowed to combine mes-
sages.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

The WS-BusinessActivity specification allows nest-
ing business activities. Consequently, a business activ-
ity may be included in another one. Nested transactions
allow intercepting and handling errors that should not
lead to a failure of the parent transaction. A popular
example for a nested structure is the supply of prod-
uct components. Consider, components are urgently
needed. A nested transaction is initiated to contact the
contractor delivering at the lowest price. If the contrac-
tor is not able to deliver in time, the nested transaction
does not necessarily fail, since another contractor may
be able to supply the components in time.

WS-AtomicTransaction is based on the classic
ACID properties. In contrast, WS-BusinessActivity had
to soften this classical transaction paradigm. It sup-
ports so-called long running transactions that do not
lock datasets. This allows e.g. waiting for user input or
assembly of parts. In all these cases locks are not possi-
ble because they would block other business processes.
Therefore results and changes during business activities
are immediately visible to the outside of a transaction.
Locks on datasets are held as short as possible or, better,
are not held at all. Since locks are sometimes critical
to the overall system, WS-BusinessActivity may be com-
bined with nested atomic transactions.

WS-BusinessActivity specifies two coordination
types: (AtomicOutcome and MixedOutcome. Each of
them may be use in the two coordination protocols de-
scribed in the following subsections.

3.1. BusinessAgreementWithParticipantCom-
pletion protocol (BAwPC)

We depict the lifecycle of a transaction for the
BAWPC protocol in Figure 2 [1]. It shows the states
of the transaction and the messages that lead to state
changes. A participant registered for this protocol de-
cides when he has done all work for an activity. The
participant informs the coordinator about finishing his
work by means of a Completed message.

The coordinator may reply with a Close or with a
Compensate message upon receipt of a Completed mes-
sage. A Close message signals to the participant that
the transaction is ended in a positive way. In case the
coordinator wants to undo work and to restore the ini-
tial original conditions of data, he sends a Compensate
message.

A problem concerning the message order is the fact
that the coordinator may receive a message which is not
effective to the already reached state. In this case the
coordinator has to revert to its prior state and handle
the received message accordingly. Moreover a party, re-
gardless whether coordinator or participant, has to be

COMPUTER

SOCIETY

prepared to receive duplicate protocol messages and has
to react according to the specification. The party has to
either resend a prior message or ignore the duplicate as
defined in Appendix A of the specification [1].

The participant signals an error by sending a Fault
message to the coordinator. The coordinator acknowl-
edges this message by a Faulted message. After send-
ing this message the protocol instance is terminated and
no more messages can be exchanged.

Cancel Canceling }-=-------——__ Canceled. _

i Compensate Compensate

\ _ S
\ -
AN Compensating

~~ Fault_

TR e . Faulting

coordinator sent—p

— — — -participant sent- — — b

Figure 2. Lifecycle of the BusinessAgreement-
WithParticipantCompletion protocol

The coordinator can end a transaction by sending a
Cancel message while the transaction is in Active state.
However the specification does not illustrate how the
coordinator should decide to end the business activity.
This task has to be handled by the business logic. In
any case, the participant has to answer with a Canceled
message.

3.2. BusinessAgreementWithCoordinatorCom-
pletion protocol (BAwWCC)

In the BAwWPC decribed before the participant does
decide when the activity is terminated. The coordinator
makes this decision in the BAWCC. This difference be-
comes obvious in Figure 3 which depicts the lifecycle
of a transaction in the BAwCC protocol [1]. In this pro-
tocol the coordinator sends a Complete message which
is followed by a Completed message of the participant.
As a consequence, an additional state Completing is re-
quired between the states Active and Completed. Once
having reached the state Completed the rest of the life-
cycle is the same as for the BAWPC protocol described
before.

4. Motivation for the WS-BusinessActivity—
Initiator protocol

The WS-BusinessActivity protocol specification
concentrates on the interaction between the coordinator
and the participant roles. It does intentionally not spec-
ify how the transaction can actually be managed by the

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

Cancel e ‘Canceled. _
Cancél ~<
Completed Close R Closed
- Completed Closing ———

Compensate

\ \ -
\ \
N \ Compensatin:
o~ AN Fautted

— — — -participant sent — —

Figure 3. Lifecycle of the BusinessAgreement-
WithCoordinatorCompletion protocol

corresponding business logic. The authors of the WS-
BusinessActivity specification expect workflow engines
to provide proprietary interfaces for workflows to man-
age their tasks with WS-BusinessActivity. While WS-
AtomicTransaction’s CompletionProtocol also defines
an interface between the initiator and coordinator roles,
it does not have an equivalent in WS-BusinessActivity.

The tight coupling between coordinator and initia-
tor violates common software architecture principles,
since distinct roles always should have an explicit com-
munications protocol defined between them. A clear
separation of concerns vastly enhances software modu-
larity and reuseability.

The WS-BusinessActivity protocol also does not
specify how the initiator’s business logic may map busi-
ness partners to transaction participants. Hence, the ini-
tiator is not able to assess the meaning of a transaction’s
state to the business task he is performing.

As a solution, we propose the WS-BusinessActivity—
Initiator protocol that defines the additional interface. It
is designed as a “pull” based protocol where the initia-
tor frequently polls the coordinator for the context’s and
his participants states. The protocol design offers the
following advantages:

Firstly, it relieves the business logic’s container of
providing a web service interface to participants and/or
the coordinator. Accordingly, even environments that
cannot provide SOAP endpoints may take on the initia-
tor role.

Secondly, it does no more require that coordinator
and/or participants are able to actively contact the entity
containing the business logic. The business logic may
sit on a restricted, NAT- or firewalled network or even
be temporarily disconnected.

Thirdly, it requires that every participant of a trans-
action is individually “invited” by the business logic.
Thereby it maintains a business-partner to transaction-
participant relationship.

Fourthly, it allows independent, third parties to of-
fer coordination-only services. The third party could

COMPUTER

SOCIETY

also reliably record the transaction’s progress for later
assessment.

In a nutshell, one could say the protocol “brings
WS-BusinessActivity to the desktop” since it allows cre-
ating desktop applications that manage WS-BusinessAct-
ivity transaction contexts.

In order to coordinate the transaction’s progress,
the initiator role needs to be able to perform the fol-
lowing tasks: (i) notify the coordinator when inviting
new participants; (ii) decide whether the context’s over-
all goals can be achieved by querying the participants’
states; (iii) send the Complete and Cancel commands to
individual participants; (iv) in mixed outcome contexts,
direct each participant to either Close or Compensate;
and (v), in atomic outcome contexts, decide whether to
Close or to Cancel/Compensate all work.

The WS-BusinessActivity—Initiator protocol de-
fines the interface that allows a business logic imple-
mentation to perform those tasks by sending its deci-
sions to the coordinator service. The coordinator ser-
vice actually executes these decisions by sending the
appropriate messages to the participants.

5. The WS-BusinessActivity—Initiator proto-
col

In order to create a new transaction context the ini-
tiator contacts the activation service. In our proposed
extension the initiator shall immediately register itself
for the WS-BusinessActivity—Initiator protocol by con-
tacting the registration service associated with the con-
text. The coordinator will only allow one initiator per
context and will reject all further registration requests
for that protocol.

When successfully registered, the initiator uses the
WS-BusinessActivity—Initiator protocol service to com-
municate with the transaction context. It enables the
initiator to perform the tasks necessary to manage the
transaction’s progress. The inititor may request coordi-
nation context data for additional participants. Further-
more, it may also query the current states of the enrolled
participants. It may ask the coordinator to send WS-
BusinessActivity messages to the participants directing
them through the WS-BusinessActivity protocol’s states.
When the initiator is managing a subcontext, it may ask
the coordinator to send messages to its supercontext.
These concepts realized in our WS-BusinessActivity—Ini-
tiator protocol are detailed in the following subsections.

5.1. Registration and Participant Identification

In a business activity, participants are invited by the
initiator to join the transaction by passing a WS-Coordi-

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

nation CoordinationContext object with an application
message to them. The CoordinationContext object in-
cludes the registration service’s endpoint address and
the transaction identifier.

The initiator must be able to map the business-level
partners to transaction-level participants. In order to
facilitate the identification of participants, the method
createCoordinationContext opens a registra-
tion ticket in the context that is bound to an initiator pro-
vided “match code”. Thus, the “match code” extends
the CoordinationContext object as defined in WS-Coor-
dination (see [7]). The initiator passes this object includ-
ing the “match code” on to the business partner, who
in turn registers using the data from the received Coor-
dinationContext object. The registration service auto-
matically associates the registering participant with the
match code. When issuing subsequent commands, the
initiator may now address individual participants with
their match codes.

Although the WS-BusinessActivity specification
does not explicitly define whether a particular “invita-
tion ticket” (CoordinationContext object) may be used
for multiple registrations, this specification restricts reg-
istrations to one single participant per “invitation”. The
“identification” design goal implies that every partici-
pant is assigned to a unique match code, so a partic-
ular CoordinationContext object must not be used for
multiple registrations. Should a business partner listed
as a participant require in turn to enlist multiple partici-
pants to complete his work, he may create a subcontext
(which is presented as one single participant to its super-
context) to manage those participants.

5.2. Transaction State Reporting

The initiator may at any time ask the coordinator
for a complete list of participants enrolled in a trans-
action. Each participant in this list is characterized as
follows:

o the participant’s match code

e the protocol the participant registered for
e the participant’s current state

o the participant’s result state

Based on this information the initiator application
may decide what commands to issue. The “participant
result” offers the initiator information about what out-
come the participant has agreed on. When the partic-
ipant has reached the Ended state, the result is either
Canceling, Closing, Compensating, Faulting, Faulting/-
Canceling or Faulting/Compensating depending on the
previous state the participant visited. When the partic-
ipant has reached the Completed, Closing, Compensat-

COMPUTER

SOCIETY

ing or Faulting/Compensating state, the result is Com-
pleted as the participant has not yet confirmed anything
else. In all other states, the result is Active.

5.3. Commands sent to Participants

The set of available commands depends on the busi-
ness activity’s outcome assertion:

e mixed outcome allows for the independent manage-
ment of the participants.

e atomic outcome mandates that all participants are
directed to an equal target state: either they all
close, or they all Cancel or Compensate. Partici-
pants who leave by sending Exit or Fault are not
considered.!

The following sections describe the protocol com-
mands available in each of the outcome models. Should
the initiator request a message to be sent to a partici-
pant for whom the message is not appropriate in his
current state (e.g. sending Complete to a non-Coordi-
natorCompletion protocol participant) the coordinator
will silently skip this participant. All operations except
getCoordinationContextWithMatchcode re-
turn an updated participant list.

The following commands are valid for all business
activities:

e listParticipants: retrieve alist of a transac-
tion’s participants (see subsection 5.2).

e completeParticipants: ask the coordinator
to send a Complete message to the specified partic-
ipants. This command only applies to participants
who registered for the CoordinatorCompletion pro-
tocol.

e getCoordinationContextWithMatch-
code: retrieve a new CoordinationContext object
a new participant can use for registration. The
match code specified within the coordination
context is used to identify the participant through-
out the transaction. The coordinator will always
include the match code when information about
a context is given. Furthermore, the coordinator
always expects the match code when referring to
a particular participant. The coordinator must en-
sure that match codes are unique in their contexts
and that each match code must exactly refer either
to one participant or to a pending registration. In

! Although one could argue that Fault should generally drive com-
pensation, handling the faulted participants as if they exited enables
the initiator to invite other business partners who may replace the
failed participant.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

atomic outcome contexts, this method cannot be
called after the initiator made its final decision.

5.3.1. Commands Valid in Business Activities with
Atomic Outcome. This protocol extension allows the
initiator to decide on the transaction’s final outcome and
tell the coordinator to execute the final decision. The
initiator may call only one of the following methods per
transaction.

e closeAllParticipants: decide to commit
all work. This command is only valid when each
participant has reached either the Completed, Ex-
iting or Exited state. The coordinator will tell all
Completed participants to close.

e cancelOrCompensateAllParticipants:
decide that all work shall be aborted. The coor-
dinator will direct participants to either Cancel
or Compensate, depending on their state. There
is a small chance that a participant being in the
Completing state is sent a Cancel command at
the same time as he completes his work and
reports Completed. According to the specification,
the coordinator must discard his last message
sent and accept the participant’s message. To
enforce the already made decision, the coordinator
must immediately issue a Compensate command
to this participant. Should the participant be
unable to compensate and send Fault, the overall
transaction result is undefined and requires human
intervention.

Once the final decision is made, the coordinator
will refuse to register new match codes and will also re-
ject participants who try to register for an already open
match code. Subsequent calls are rejected with an In-
valid_State_Fault.

If the initiator invokes one of those methods while
his preconditions are not met, the coordinator silently
ignores the request and returns the current participant
list.

5.3.2. Commands Valid in Business Activities with
Mixed Outcome. The mixed outcome assertion allows
for the independent management of a transaction’s par-
ticipants. The initiator is required to tell the coordi-
nator what command to give to the participants at any
protocol state where more than one command is appro-
priate or the timing of the message is important (e.g.
Complete). The coordinator will handle simple request-
response type message flows automatically, e.g. upon
receipt of an Exif notification the coordinator automati-
cally replies with Exited.

COMPUTER

SOCIETY

Each of the following commands takes a list of
participant match codes as argument. The coordinator
makes sure that the requested command is valid in the
participant’s current state and silently discards inappro-
priate commands. Once the coordinator has completed
his task, he returns a list of the participants including
their current states.

e cancelParticipants: tells the coordinator
to send Cancel to the specified participants.

e closeParticipants: tells the coordinator to
send Close to the specified participants.

e compensateParticipants: tells the coordi-
nator to send Compensate to the specified partici-
pants.

5.4. Managing Subcontexts

A subcontext encapsulates a whole transaction
scope and presents it as a single participant to its par-
ent transaction. This allows for the separation and par-
allelization of tasks a business activity needs to perform
without loosing transactional semantics or control over
the progress the participants make.

The initiator of a subcontext requires business logic
to translate commands from the supercontext into com-
mands he may issue to his local participants. This spec-
ification proposes that the subcontext coordinator regis-
ters himself for the CoordinatorCompletion protocol®
in the super context and forwards any commands re-
ceived to the subcontext initiator via a pull based query
protocol.

Upon receipt of a valid message from the supercon-
text, the subcoordinator performs the internal state tran-
sition associated with the command and reliably lists
the message for the initiator to query:

e received Complete: store and transist to Complet-
ing

e received Cancel: store and transist to Canceling

o received Close: store and transist to Closing

e received Compensate: store and transist to Com-
pensating

e received Exited: store and transist to Ended

The initiator may instruct the subcoordinator to
send messages to the supercontext. Upon receipt of
such a command, the subcoordinator makes sure it is
allowed in the current state and performs the state tran-
sition associated with the outgoing message.

2The CoordinatorCompletion protocol is a superset of the Partici-
pantCompletion protocol, hence one registration is sufficient.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

report Exit and transist to Exiting
o report Completed and transist to Completed

o report Compensated and transist to Compensated

report Fault and transist to Faulting

In atomic outcome subcontexts, the coordinator au-
tomatically handles the following events:

e when receiving Close from the supercontext, all lo-
cal Completed participants are directed to close.
When all of those participants reported Closed,
also report Closed to the supercontext.

e when receiving Compensate from the supercontext,
all local Completed participants are directed to
compensate. When all participants reported Com-
pensated, also report Compensated to the super-
context; if one or more participants fail, also report
Failed to the supercontext.

e when receiving Cancel from the supercontext
while in state Active, reject new participants and
direct all existing participants to cancel. When
all participants reported Canceled, also report Can-
celed to the supercontext.

In the following we consider special cases for can-
celling and compensation in subcontexts. In the Com-
pleting state, the WS-BusinessActivity protocol allows
both coordinator and participant to initiate a state transi-
tion: the coordinator may send Cancel, and the partici-
pant may send Exit, Completed or Fault. If both parties
send contradicting messages at the same time, the co-
ordinator must discard its own message and accept the
participant’s one.

If the participant reported Completed, it is required
to run compensation, but - unlike cancellation - compen-
sation is allowed to fail. This race condition allows a
situation to occur where the coordinator (from its point
of view) sent a timely Cancel command, but the partic-
ipant completed anyways and later failed on compensa-
tion, leaving the requested work permanently done in-
stead of canceled.

This is especially bad in a subcontext. Because
when the coordinator of the subcontext is told to can-
cel and forwards this command to the local participants,
some may successfully cancel while others already have
completed. It cannot report Completed since some parts
of its work have successfully been canceled, and on
the other hand cannot report Canceled since some work
has actually been performed. The subcoordinator must
hence immediatly try to compensate the Completed par-
ticipants, and if they all successfully Compensated, may
report Canceled to the supercontext. If one single partic-
ipant fails during compensation, the whole subcontext

COMPUTER

SOCIETY

must report Fault to the supercontext to further escalate
the issue.

The WS-BusinessActivity specification does not
specify how subcontexts should handle other situations.
In order to keep the time window for such critical states
at a minimum length, a subcontext should invite Partici-
pantCompletion protocol participants only after receiv-
ing the Complete command from its supercontext. This
ensures that a ParticipantCompletion protocol partici-
pant cannot report Completed when the supercontext
has not told the subcontext to Complete. Registering
for the ParticipantCompletion protocol itself is not an
option for the subcontext, since it must not report Com-
pleted before all required participants themselves reach
Completed.

In most cases an application will not know the pro-
tocol a particular business partner will register for in ad-
vance. In order to be on the safe side, all participants
should be enrolled only after receiving the Complete
message from the supercontext.

This convention keeps the time window for a colli-
sion short, but does not avoid the problem at all. Remov-
ing the possibility to issue a Cancel command in Com-
pleting would be a way to permanently fix the specifica-
tion and better reflect the actual semantics: in general,
a Completing participant will already have some work
done and hence cancelling requires some kind of com-
pensation to be executed. With the Cancel command
removed, the initiator could not tell a Completing par-
ticipant to stop processing. Instead he has to wait until
they finish and then issue Compensate.

5.5. A Sample
tor Transaction

WS-BusinessActivity—Initia-

Figure 4 illustrates a sample transaction with mixed
outcome in which the initiator decides on the outcome.
The initiator-object is instantiated by the application
and creates a CoordinationContext for the transaction.
After having registered for the WS-BA-I protocol, the
initiator is able to send CreateCoordinationContext mes-
sages to the coordinator which contain a different match
code for each participant. It is the applications task to
forward the returned CoordinationContext within an ap-
plication message to its business partners.

After receiving an application message containing
a CoordinationContext the business partner may regis-
ter for the transaction as a participant using the received
CoordinationContext. As shown in Figure 4, the initi-
ating application repeatedly sends listParticipants mes-
sages to the coordinator to learn how many participants
are already enrolled and in which states they currently
are.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

Initiator Coordinator

Participant2

Participant1

] CreateCoordinationContext

r————————»
CreateCoordinationContextResponse

Register

RegisterResponse
Creation of Ctx for |nitjator and
Registration for WS-BA-l

N

CreateCoordinationContext

CreateC inati ponse

Greation of Gt for Paficipar

CreateCoordinationContext

CreateCoordinationContextResponse

ApplicationMessageWithCtx

S/ S -

g Creation of Ctx for Patticip

Register

RegisterResponse

egister
T
RegisterResponse

,,,,,,,,,,,,,,,,,, iR

ListParticipants

ListParticipantsResponse

Complete

Complete

CompleteParticipantsResponse

Completed

CloseParticipants

CloseParticipantsResponse

ListParticipants

ListParticipantsResponse

=
|
1
1
I
I
1
1
1
|
|
1
1
1
1

Figure 4. A sample WS-BusinessActivity—Initi-
ator transaction

If the application decides to complete
the transaction it tells the initiator to send a
completeParticipants message to the coor-
dinator, who in turn sends Complete messages to
the specified participants. After having sent out the
Complete messages the coordinator immediatly returns
a CompleteParticipantsResponse to the initiator. It
contains a participantList element that includes the
updated participant states.

Since the coordinator does not actively inform the
initiator about state changes, they must re-query current
states by invoking the listParticipants method from time
to time. If all participants are in the correct state they
may call for closure of certain participants (in case of a
transaction with atomic outcome this can only be done
for all of them). This call behaves like the completion
call: aresponse is generated immediately after all Close

COMPUTER

SOCIETY

messages were sent to the participants, and the initia-
tor has to query for state changes. As soon as all par-
ticipants have replied with Closed and, thus, reach the
Ended state, all involved parties may forget about the
transaction after the configured timeout.

6. Summary and Conclusion

Although WS-BusinessActivity was introduced in
2001, it is still expensive for software developers to
make their products benefit from it. This is also due to
the fact that in WS-BusinessActivity a workflow engine
or extensive custom programming are needed to im-
plement the coordinator role. The approach presented
in this paper - which is also implemented as part of
the Apache Kandula project [2] - significantly reduces
the overhead involved when implementing WS-BA. Fur-
thermore, the vendor-independent specification allows
initiators to interoperate with any WS-BA-I compliant
coordinator. It thereby creates an open environment.

With the clear distinction between business logic
and transactional logic not only on the participant but
also the initiator side, WS-BA-I vastly increases soft-
ware modularity.

The clear separation of the initiator and coordinator
roles enables initiators to select independent third par-
ties who perform a transaction’s coordination. We ex-
pect third-party coordination services to be offered and
later to be certified. Thereby, both initiators and par-
ticipants are assured of a correct coordination. Future
extensions of WS-BusinessActivity—Initiator may offer
improved reliability, security or performance.

References

[1] L. Cabrera, G. Copeland, W. Cox, T. Freund,
J. Klein, D. Langworthy, I. Robinson, T. Storey, and
S. Thatte, Web Services Business Activity Framework
(WS-BusinessActivity), version 2005-08 ed., Aug. 2005.
[Online]. Available: ftp://www6.software.ibm.com/
software/developer/library/W S-BusinessActivity.pdf

[2] Apache “Kandula”, http://ws.apache.org/kandula, Jan.
2007.

[3] H. Erven and G. Hicker, WSDL Description File
for the WS-BusinessActivity—Initiator Protocol, Feb.
2007. [Online]. Available: http://www.big.tuwien.ac.at/
projects/WS-BAI/InitiatorProtocol.wsdl

[4] J. Gray and A. Reuter, Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann Publishers,
Inc., October 1993.

[S] OMG, “Object transaction service specification,’
in CORBAservices: Common Object Services
Specification. ~ Object Management Group, Sept.
2003, version 1.4. [Online]. Available: http:

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007 IEEE

(6]

(7]

[8

[

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

/Iwww.omg.org/cgi-bin/doc?formal/2003-09-02

L. Cabrera, G. Copeland, W. Cox, M. Feingold,
T. Freund, J. Johnson, C. Kaler, J. Klein, D. Lang-
worthy, A. Nadalin, I. Robinson, T. Storey, and
S. Thatte, Web Services Atomic Transaction (WS-
AtomicTransaction), version 2005-08 ed., Aug. 2005.
[Online]. Available: ftp://www6.software.ibm.com/
software/developer/library/WS- AtomicTransaction.pdf
L. Cabrera, G. Copeland, W. Cox, M. Feingold,
T. Freund, J. Johnson, C. Kaler, J. Klein, D. Lang-
worthy, A. Nadalin, D. Orchard, I. Robinson,
J. Shewchuk, and T. Storey, Web Services Coordi-
nation (WS-Coordination), version 2005-08 ed., Aug.
2005. [Online]. Available: ftp://www6.software.ibm.
com/software/developer/library/WS-Coordination.pdf
M. Papazoglou, A. Tsalgatidou, and J. Yang, “The
Role of eServices and Transactions for Integrated Value
Chains,” Business to business electronic commerce, pp.
207-241, 2003.

J. Yang and M. Papazoglou, “Interoperation support for
electronic business,” Commun. ACM, vol. 43, no. 6, pp.
39-47, 2000.

G. Weikum and H.-J. Schek, “Concepts and applications
of multilevel transactions and open nested transactions,”
in Database Transaction Models for Advanced Applica-
tions. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992, pp. 515-553.

M. Papazoglou, “Web services and business trans-
actions,” World Wide Web, vol. 6, no. 1, pp.
49-91, Mar. 2003. [Online]. Available: http:
/Iwww.springerlink.com/content/h4635u5r9m67t305
Business Process Execution Language for Web
Services, Version 1.1 ed., BEA, IBM, Mi-
crosoft, SAP AG and Siebel Systems, May 2003.
[Online]. Available: ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf

Business Transaction Protocol, Version 1.0 committee
specification ed., Organization for the Advancement of
Structured Information Systems (OASIS), June 2002.
UN/CEFACT - ebXML Business Process Specification
Schema, Version 1.11 ed., UN/CEFACT TMG, 2003.
RosettaNet Implementation Framework: Core Specifica-
tion, Version 02.00.01 ed., RosettaNet, December 2002.
[Online]. Available: http://www.rosettanet.org/rnif
ebXML - Technical Architecture Specification, Version
1.4 ed., OASIS, UN/CEFACT, Feb. 2001. [Online].
Available: http://www.ebXML.org/specs/ebTA.pdf

F. Vogt, S. Zambrovski, B. Gruschko, P. Furniss, and
A. Green, “Implementing web service protocols in soa:
Ws-coordination and ws-businessactivity,” in CECW
’05: Proceedings of the Seventh IEEE International Con-
ference on E-Commerce Technology Workshops. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp.
21-28.

P. Sauter and I. Melzer, “A comparison of ws-
businessactivity and bpeld4ws long-running transaction,”
in Kommunikation in Verteilten Systemen (KiVS), ser. In-
formatik Aktuell. Springer, 2005, pp. 115-125.

COMPUTER

SOCIETY

