.

Available online at www.sciencedirect.com

-l . . DATA &
,” ScienceDirect KNOWLEDGE
ENGINEERING

Data & Knowledge Engineering 63 (2007) 26-43

www_elsevier.com/locate/datak

An approach towards an event-fed solution for slowly changing
dimensions in data warehouses with a detailed case study

Tho Manh Nguyen a* A. Min Tjoa ?, Jaromir Nemec ® Martin Windisch b

® nstitute of Software Technology, Vienna University of Technology, Favoritenstr. 9-1 11188, A-1040 Vienna, Austria
b 1 Mobile Austria, Rennweg 97-99, A-1030 Vienna, Austria

Received 13 October 2006; received in revised form 13 October 2006; accepted 13 Octoher 2006
Available online 13 November 2006

Abstract

From the point of view of a data warehouse system, collecting and receiving information from source systems is crucial
for all subsequent business intelligence applications. Incoming information can generally be classified into two types: (1)
the state-oriented data and (2) even{-oriented data or transactional data, which contains information about the change
performed by processes on the instances of information objects. On the way towards achieving the goal of a full-fledged
active data warehouse it becomes more and more important to provide data with minimal latency. In this paper we focus
on dimensional data which is provided by general data warehouse applications. The information transfer is performed via
messages containing the change of information on the dimension instances. The proposed approach is able to validate the
event-messages, reconstruct the complete history of the dimension and provide a well applicable “comprehensive slowly
changing dimension” (cSCD) interface for queries on the historical and current state of the dimension. A description of
the prototype implementation for this kind of an *“active integration” in a data warehouse and a case study at T-Mobile
conclude the paper. =
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The presence of time and the dependence upon it is one of the properties that sets special attention in data
warehouse applications apart from traditional operational systems. Time is one of the four basic characteris-
tics of a Data Warehouse as pointed out by Inmon [8]. In Data Warehousing the explicit and inherent exis-
tence of the time dimension enables the handling of historical data and time-dependent analysis (e.g. analysis
of time series). This means that users of data warehouses can analyse aspects of their organization at every
specific point or over every period of time for which historical data is recorded. Consequently this enables
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the observation of behavioural patterns in the course of time which capacitate comparisons between similar or
dissimilar periods, €.g. this year versus last year, seasonal trends. Ultimately forecasting can be regarded as
one of the most important managerial issues deals, i.e. using information of the past to predict the future.

We can clearly discern the temporal requirements (i.e., time based historical presentation of data) of a data
warehouse from those of an operational system. While in a data warehouse it is required to cover the full his-
torical nature of data, operational systems are only aimed to keep the current or very recent data. Therefore,
we must periodically feed information about changed data to the data warehouse to refresh the data ware-
house. A major role of the data warehouse is to keep the historical data consistent to provide the correct infor-
mation at any point in time the user requires. Until recently restricted integration of source systems has led to
batch-oriented data load approaches for data warehouses. The data warehouse refresh is thus performed in
batch mode when it receives multiple operational source snapshots, extract the changes, and refresh the ware-
house data. Upcoming integration technology standards [7,21] based on message exchange between informa-
tion systems not only provide substantial benefits to operative systems, but also for the data warehouses [2).

However, there exist some significant limitations of this traditional snapshot-based approach. Most impor-
tantly multiple change events between snapshots are completely ignored. Furthermore, for each snapshot
comparison the number of records to be processed is high, requiring high computing-resources and -time
and finally the history data is kept by very large daily snapshot versions consuming a huge amount of storage.
Therefore, a more efficient approach towards a near-real time solution builds an essential research challenge in
the area of data warehousing.

In this paper, we introduce the research work at T-Mobile Austria to develop an event-based refresh par-
adigm to solve the problem of updates in slowly changing dimension (SCD). For the further processing of
event-messages, we develop one comprehensive and general applicable SCD representation based on Kim-
ball’s typology of SCDs [11]. In addition we propose a valid alternative to the snapshot-based information
transfer, This solution is especially applicable in those cases, where the information requirements of the receiv-
ing data warehouse system is focused on complete and detailed historical information for all instances com-
bined with the requirement of a minimal latency. For a given latency time interval the advantages of this
method are evidently given for a dimension with a small number of changes compared to its cardinality.

The proposed method provides much more than solely a data replication. The primary target is not a phys-
ical mirror of the dimension object. All necessary views including the change history of this object are imple-
mented in a standardized way. The event-fed ¢SCD {comprehensive SCD)} approach has been designed
according to the main goals of a modern data warehouse, which provides a single point of consistent data
access. :

2. Related works

Active data warehouses [2,21,15] have the tendency to provide complete data with minimal latency. The
well-known limitations of processing dimensional snapshot data [19] can be overcome by the proposed
method, which is preferred for a dimension with a small number of changes compared to its cardinality
because of less resource consumption. The preservation of the complete history of the dimensional change
events also builds an advantage compared with historical (periodic) snapshots.

In some cases daily snapshots [19] have been used to provide change information out of the differences of
two consecutive snapshots. To hold an appropriate history of such dimensions the only way was, to store the
received snapshots chronologically, which means, that the storage request for the historical data does not pri-
marily depend on the change fluctuation and volatility of the instances. One can apply in a second step some
compression algorithms to overcome these disadvantages.

Kimball [10] has introduced three slowly changing dimension (SCD) types to track changes in dimension
attributes. In the SCD Type 1, the changed attribute is simply overwritten to reflect the most current value
thus does not keep the historical changes. The SCD Type 2 creates another (dimension) record to keep trace
the changed attributes, but could not keep the old value both before and after the change. For this purpose,
the SCD Type 3 uses the current value and previous value which is not an appropriate method for unpredict-
able changes.

L
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Bliujute et al. (4] suggested the temporal star schema to overcome the SCD problems with event and state-
oriented data. They tackled the SCD type 2 in fixed attributes with timestamp. We propose a2 more general
event model where the target dimensional object can be fine tailored depending on business requirements.

Research in temporal databases [5] has identified two orthogonal dimensions of time in databases valid
time, modeling changes in the real world and transaction time, modeling the update activity in the database
{18]. In data warehouse, there is another step to refresh the warehouse data from the operational data sources.
Therefore, the third time dimension — processing time — is used to model the activity of loading new data into
the warehouse. The flexibility in choosing the event timestamp (e.g. between transaction timestamp and pro-
cessing timestamp) enables in the proposed cSCD representation the handling of time-consistency issues as
discussed in [20].

The authors in {6,23] proposes a temporal multi-dimensional data model to cope with the changes of dimen-
ston via multi versions and valid time. Our purpose is not only to keep track the versions of instances but also
their relationships within the dimensional data.

Inmon recommends the usage of normalized dimensions [8]. This is very important as the event-based
maintenance of denormalized dimensions although possible is not very practical [3]. -

3. State-oriented data versus state-change or event-oriented data

In systems theory, the notation of srate is introduced in order to separate the past from the future [1]. A
state is something that has extent in time. Something is true about an object for a period of time, but was nei-
ther true before nor after. An event is instantaneous [5]; it is something that “happens”, rather than being true
over a period of time. Events delimit states. The occurrence of an event results in a fact becoming true; later,
the occurrence of another event renders that fact no longer valid. Hence, events and states are duals: states can
be represented by their delimiting events, and events are implied by states [17].

In a data warehouse, two types of data exist: (1) state-oriented data and (2) state-change or event-oriented
data. Examples of state-oriented data include, e.g., address, prices, account balances, and inventory levels.
Examples of event-oriented data are sales, inventory transfers, and financial transactions.

Since every event is of significant importance in the event-oriented data approach, the loss of a single event
can lead to a loss of synchronization in the state between a source system and the data warehouse. Datasets
containing event information must be queued and removed on reading to ensure that every event is processed
just once and no event gets loss. :

If the system processes state information, e.g., the current address, it is reasonable to integrate it with the old
version of the state value stored. In such a system there is no need to guarantee that every dataset is processed
Just once. In addition, if a single state change is lost during data integration, the data warehouse is automat-
ically resynchronized by processing the next state information.

Event-oriented data in a data warehouse uses an event representation, which means that each row in the fact
table represents some event and has a timestamp, capturing the event occurrence time. For state-oriented data,
we obviously make use of the state representation. Every row in the table describes some state and has two
timestamps, i.¢. the beginning and ending times of the period throughout which the state persisted (see Fig. 1).

ran~avtion Dale

2005-05-07 +500

Fig. 1. Event representation vs. state representations of data.
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4. Slowly changing dimension

In a data warehouse the information storage is typically divided into fact tables and dimension tables [10].
Fact table data, by its nature, represents a time series of measurements and is always augmented with an expli-
cit time dimension. Analyzing old fact-table data is one of the standard queries in a data warehouse. Dimen-
sional data requires a more specialised treatment. Dimensions do not change in a predictable manner, Le:
individual entities (e.g. customers, products) evolve slowly. Some of the changes are true physical changes
{e.g. customer’s new address). Other changes are actually corrections of mistakes in the data. One of the major
contributors to the development of solutions in the area of changes in dimension attributes is Ralph Kimball.
For these kinds of changes he introduced the notion of slowly changing dimensions (SCDs) {11] The purpose of
the SCD solution is to maintain the un-altered relationship between the facts and dimension table without
updating the fact tables when the dimension data is changing. In the following sections, we will briefly intro-
duce the SCD Types 1-3 as proposed by Kimball and discuss their limitations before suggesting an enhanced
SCD Type 2 which we have used for our prototype implementation at T-Mobile Austria.

4.1, SCD Type 1

“"Querwrite the old values in the dimension record with the new values”

This is the simplest and fastest SCD solution because it simply overrides the old dimensional value with the
new information without keeping any trace. Obviously, it does not maintain any past history and we loose the
ability to track the old history. The technique thus does not address the implications of evolving data, because
a fact is only associated with the current value of a dimension column. Nevertheless, overwriting is frequently
used when the data warehouse team legitimately decides that the old value of the changed dimension attribute
is not of further interest.

Fig. 2 illustrates an example using SCD Type 1 to keep the information about customer Robert changing
his address from 20 Rennweg to 25 Favoritenstr on 02-16-2005. As we can see, the old value of address (20
Rennweg) is overridden by the new one.

4.2. SCD Type 2

“Create an additional dimension record using a new value of the surrogate key”

This technique partitions the history between the old and the new value. A new surrogate key is created
when a true physical change occurs in a dimension entity at a specific point in time, such as a customer’s
new address.

A fact is always associated with the value of a dimension column before it changes (via the surrogate key).
A sequence of facts describes the evolving data. This technique automatically partitions history and therefore
analytical applications are not required to place any time constraints on effective dates in the dimension.
However, finding out the whole sequence of changes from the data repository (in order to do analysis across
history) is difficult and involves rather complex and expensive queries.

Name Aabdress

Aebdress

Fig. 2. Example using SCD Type 1.
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Aeddress Kevord-t:

Fig. 3. Example using SCD Type 2.

‘The use of SCD Type 2 requires that the dimension key is generalized (surrogate key) to ensure the unique-
ness property of the primary key of the dimension table when adding the new record with the same key with
the previous record. It may be sufficient to take the underlying production key and add some version digits to

‘the end of the key to simplify the surrogate key generation process. Future insertions to the fact table will be

related to the new identifying codes, and so the segmentation will remain consistent with respect fo time. Fig, 3
illustrates the example of using SCD Type 2 to keep trace the address information after the updating.

4.3. SCD Type 3

“Create an old field in the dimension record to store the immediate previous attribute value.”
In an application which requires comparisons across transitions, SCD Type 3 is an appropriate solution. In

-an SCD Type 3, there will be two columns to indicate the particular attribute of interest, one indicating the

original value, and one indicating the current value. There will also be a column that indicates when the cur-
rent value becomes active. A fact is associated with both the original value and with the current value of a
dimension column.

Compared to SCD Type 2, the SCD Type 3 does not increase the size of the table, since new information is
updated while it still keeps part of history. However, SCD Type 3 is rarely used in actual practice because it
modifies the structure of the dimension tables (adding more columns). Further more, SCD Type 3 is not be
able to keep the entire history where an attribute is changed more than once because it keeps only the original
and the current values of the changed attribute. Intermediate values are lost (see Fig. 4).

4.4. Limitations of the existing SCD approaches

Among the above three SCD solution approaches, SCD Type 2 is the most widely used in Data Warehousing
projects {13]. While SCD Type 1 and Type 3 update the existing data and destroy the old inforimation which
implicate a conflict with the non-volatile Warehouse design criteria [8], SCD Type 2 inserts a new record with-
out deleting or updating anything. However, SCD Type 2 partitions the history in a strict manner and does not
allow the overlapping of valid times. Due to the absence of dates, it is impossible to determine precisely when

it 176

Fig, 4. Example using SCD Type 3.
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changes occur. The only way to extract the time is via a join to the fact table. This will give an approximate time
for the change. The degree of accuracy depends on the frequency of fact table entries relating to the dimensional
entry concerned. The more frequent the entries in the fact table, the more accurate the traceability of the history
of the dimension is, and vice versa.

The following three main issues give an explanation why the existing SCD approaches are not sufficient:

1. Comparing one dimension row with another to determine what has changed involves performing analysis
across rows; something where SQL is notoriously bad [12].

2. Even when the next row in the dimension correctly tracks a change, it is impossible to examine the row in
isolation to determine exactly what has changed, especially if more than one attribute has been changed.

3. If the data warehouse has to tie to the books, then it is not allowed to change e. g. an old monthly sales total,
even if the old sales total was incorrect [11]. Late-arriving fact and dimension data cannot be integrated in
such data warehouses using traditional SCD techniques.

4.5. Comprehensive enhanced SCD solution (cSCD)

As discussed in Sections 4.2 and 4.3, SCD Type 2 can keep traces of multiple changes of a dimensional attri-
bute, while SCD Type 3 can keep the current value and previous value of a dimensional attribute. One can think
about the possibility of mixing SCD Type 2 and SCD Type 3 to support increased analytical application com-
plexity requirements. We propose an enhanced SCID which is a mix between SCD Type 2 and SCD Type 3. For
each dimensional attribute change, as in case of SCD Type 2, we create a new record with the new surrogate key
into a table, i.e. the TRANS table. The fact table records are linked to the relevant TRANS record via the sur-
rogate key. However, for the attribute value chain tracing purpose, additional columns are added into the
TRANS table. “Previous_Value” keeps the previous value of the attribute before it changes to current value,
“Valid_from” and “Valid_to” determine the valid duration of the dimension attribute during the whole history
of dimension entity. “Version” is the counter to keep the version of dimension attribute in time. “Last_version”
is the redundant attribute which indicates the newest version (which means that the correspondent record stores
the current attribute value and still be valid at the moment) (see also [22]). “Recordstamp” points out the pro-
cessing time of the change of dimension attribute. “Change_key” is the attribute indicates which operation has
effect the attribute (i.e., insert or delete or update). This column is used for checking the validation of the trans-
action which will be discussed later in this paper.

Please note that each record in the TRANS table corresponds to a change value of one dimension attribute
in which we are interested in called traced attribute. In case we do not consider the change of dimension attri-
butes, these attributes are classified as flat attributes and the TRANS table only keeps the current value (over-
ridden as in SCD Type 1). For example, consider the case of customer dimension table which contains the
following columns: ID, Name, and Address. ID is the dimension key, Name is the flat attribute (ie., the
change of name value is not of some interest and thus is not traced). Address is a traced attribute. Fig. 5 gives
us an example how TRANS keeps the records when customer Robert changes his address from 20 Rennweg to
25 Favoritenstr. The Valid_to the very big date value: 31-12-9999 00:00:00 implies until change.

Vsl Trosn Chianae by
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Fig. 5. Example using enhanced SCD {mix Type 2 and Type 3).

o~




L%

32 T. Manh Nguyen et al. | Data & Knowledge Engineering 63 (2007) 2643
3. Data warehousing at T-mobile: a case study

The data warehouse at T-Mobile Anstria runs on an Oracle 9.1.3 relational database and has a data volume
of about six terabytes (TB). The complexity and number of operational source systems is very high. Therefore,
the data warehouse provides its information as a stngle point of truth for nearly all units of the enterprise. One
of the most important operational sources for the data warehouse is the BSCS system (Business Supporr and
Control System). BSCS is the billing system and as such stores customer relevant data. However, the customer
care system at T-Mobile Austria does not directly use BSCS functionality for performance reasons. It has an
independent data repository and reads/updates relevant data by using BSCS interfaces.

3.1. Snapshot-based SCD approach

Since 2001, the data warehouse at T-Mobile Austria is built and refreshed using the batch approach. The
dimensional data loaded from legacies like the billing system (BSCS), SAP or the CRM Systems is reccived via
daily snapshots. Although the data is currently batch loaded, the data freshness requirement for transactional
data is very high, e.g. CDRs {call detail records} are usually loaded every 4 h.

The Data Warehousing team at T-Mobile Austria has implemented a flexible snapshot COMPArison
.. approach. Fig. 6 gives-an overview of the model. Applying the snapshot comparison technique to a particular
data warehouse dimension involves three tables:

5.2. Table SNAP

This table contains full snapshots of relevant datasets and tables of an operational source system. A snap-
shot describes datasets, which are already cleansed and transformed. However, a snapshot only contains cur-
rent data, i.e. if a dataset/key is deleted within an operational source system, it is not part of the snapshot. A
sequence of snapshots is distinguished by their snapshot date.

3.3. Table TRANS

This table contains the transactions, which were derived from two arbitrary (in general succeeding) snap-
shots taken from the table SNAP. The snapshot comparison approach distinguishes between flat and traced
attributes,

* If a change affects only flat attributes, it does not cause the generation of a new version of the according
dimension dataset in the data warehouse. .

* If a change affects a traced attribute, the according transactions (insert, update, or delete) in the operational
system are reconstructed by comparing the snapshots. ,

SNAP_HIST TRANS FLAT
Consequent Series Historical | Accurnnlated
of Daily Snapshets transaction dataof transaction data for
within some days interested attributes dimensions
afdimensinns

SNAPSHOT

Consequent Series
of Daily Snapshots
within some days

Fig. 6. Snapshot-based comparison SCD approach.
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5.4. Table FLAT

This table contains the full history of the life-cycle of dimension datasets. If an update or delete transaction
was identified by the snapshot comparison, a new version of the involved dimension dataset is inserted into the
data warehouse using an enhanced SCD (mix Types 2 and 3} technique. The effective date of the changed attri-
bute is derived from the snapshot date.

Wwith this approach, a series of complete snapshots are stored chronologically to trace the complete history
of dimensions without considering the number of actual data changes. This demand has been implemented via
a PL/SQL package namely UTL_SCD. This functionality has often been reused within the data warehouses
ETL processes (which are performed with the Informatica tool. at T-Mobile).

However, some issues remained unsolved. It is possible that more than one change on the same attribute
occurs between two succeeding snapshots. If the data is collected by the snapshot comparison method, only
those values will be captured, which exist at the time of the snapshot. All intermediate changes are completely
missed in this case. Additionally, with the data warehouse side of six terabytes (TB), the tremendous daily
snapshot versions are kept in the data warehouse for a specified time-period and significantly increase the data
size while the amount of data changes is actually relatively small, For each snapshot comparison the number
of records to process is high, requiring also high computing-resources and -time. )

5.5. Event-based SCD approach

Due to the many problems of the snapshot-based approach, a more efficient near-real time approach is con-
sidered. Data changes in the operational sources are captured and provided in near real time as event messages
via the event-based infrastructure of TIBCO [7]. This approach implies also the validation of the message con-
tent, which is necessary because of the highly differing quality provided by the message sources. Mainly three
quality aspects, which are independent from the event-based infrastructure, are under inspection: the com-
pleteness, uniqueness and order of the event-messages.

For the further processing of the event-messages we developed one comprehensive and general applicable
SCD representation which is inspired by Kimball’s three SCD types [11,6] as discussed in Section 4.5 and we
propose a valid alternative to the snapshot-based information transfer. This solution is applicable especially in
cases, where the information requirements of the receiving system is focused on complete and detailed histor-
ical information for all instances enhanced with a minimal latency demand. Especially in cases, where a dimen-
sion contains a large number of instances compared with the numpber of instance-changes within the time
interval, which represents the time-latency requirements of the receiving system, the advantages of this method
are obvious.

The proposed method is in fact a kind of logical information replication which can be successfully imple-
mented with quite realistic and reasonable efforts. But the target of this logical replication is not to build a
mirror of the dimensional physical object but to provide all necessary views on this objects to fulfil a much -
higher variety of demands, than the original source object can support. The event-fed ¢cSCD approach has
been designed according to the main goals of T-Mobile Austria’s data warehouse, which are simple: “to pro-
vide a single point of truth easy to access™.

Fig. 7 depicts the overall view of our event-based SCD process. Compared to the snapshot-based approach,
the event-based SCD process does not reguire to keep all consequent snapshots data, instead it requires the
event data which refiects all changing data since the last refresh cycle. The legacy systems thus do not need
to send the full snapshot every night as they have to do at the moment. However, they need to provide the
event data as frequently as required in the near real time refresh cycle.

The event-based SCD process will access the event data, filters those which happened since the last refresh
(those records which do not appear in TRANS or those which are different with current records in TRANS)
and then update the TRANS table.

The new event-based approach requires a very high level of truthfulness of the event. Therefore, the event-
based SCD approach must provide as a necessary feature of event validation which validates the events with
automatic correction options to override invalid events before applying these events to refresh the TRANS
table. The Table Event Protocol keeps the invalid events as an operational log.
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Fig. 7. Global view of event-based S5CD process.

Since we do not keep all snapshots, in the case that there is requirement to have the snapshot at one point in
time of any subset of entity instances, it must be made possible to rebuild such snapshot data. From the
TRANS table, we can rebuild the snapshot of any subset instance at any point in time. The snapshot Zener-
ation process can be totally based on TRANS or it could receive a truthful snapshot as the based snapshot to
generate the on demand snapshot of any subset S;(i indicates the entity instance) at any time point ¢ (f denotes
the point of time where the snapshot is built).

Such on demand Snapshot could be inconsistent with the Legacy Snapshot at some time- point, we
thus have to check our TRANS to be consistent with the Legacy SNAP at these time points. When
the inconsistency status is detected, the inconsistent data will be applied as the incoming events to re-
establish the consistency. This process will also store the truthful Legaey Snapshot table in the periodic
SNAF HIST.

6, Event model
For a formal description of an event and event processing a UML based mode] is created. The core part of

this model is a UML profile describing the event meta-model. Additionally, the notion of event is defined and
shown by a simple example. Possible strategies of event interpretations are discussed.
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Based on the defined model and the interpretation of the event we broader discuss and indicate that the
traditional distinction between fact and dimension in an event-based DWH environment can be regarded
as a different specialization of our event-based model.

6.1, Profile

i

i
§

To describe a general event [9] it is necessary to raise the mode} to the meta-level M2 [14] as the structure of
each event type is very proprietary based on the transferred business information. The simplified profile def-
inition is depicted in Fig. &,

The key concepts of the event profile are as follows:

— Stereotype ({Event}) describes the object containing the event data.

~ Stereotype {{Efd)) (abbreviation for event-fed dimension) depicts the target object that is maintained via
the event stream.

- Stereotypes ((Trans)) and {(Snap)) as subtypes of {{Efd}} are discussed below. Those stereotypes are appli-
cable on the class level, the rest of stereotypes are connected with an attribute:

— Stereotype ((Kcy)) is used to mark the (natural or surrogate) primary key of the dimension.

~ Stereotype ((Order}) is intended to define the order in which the events were created and should be pro-
cessed. This stereotype attribute is use to determine the order of concurrent events (which have the same
timestamp).

- Stereotype ((Timestamp}) identifies an attribute containing the timestamp information of an event. The
transaction time (the timestamp when the transaction happened), event creation time (the timestamp when
event is created), event processing time (the timestamp when the event is processed) are various examples of
this stereotype.

— Stereotype ((Action)) describes the nature of the change represented in the event (insert/update/delete).

~ Stereotype ((Status)) enables the depiction of a logical deletion of a dimension instance.

<< profle >
EvertModal

— Clawm == gtereotype s> Athbute =« glereotype 3>
Evert Koy

| << glereotype >

<< stamolype »a Order
Efd
| =<« stemotype 52 =< starpotype >>»
Timestamp TimestsrpPost
<< glereoiype >> <« starsotype =>
Snap Trana << smrEotype »> =< gereotypa >
| Version ProcSanyp

<< gltemeotype »>
Action

<< glerectypa »»
Staluw

<= gtereoiype ==
LawtVersion

Fig. 8. Simplified profile event definition.
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Not all of the listed stereotypes are mandatory, the usage is constrained by semantic rules (see below) such
as: The {(Event}) and ({Efd}) classes must contain at least one Key attribute (i.., an attribute with stereotype
((Key))). Order and Timestamp attributes may coincide, e.g. in cases when the time grain is to large to distine _
the events uniquely, the Order attribute is used to define the unique event sequence. The opposite extreme ;
when neither of those attributes is defined is also valid. In that case the “timestamp of event processing’
can be used as a default Timestamp attribute (of course the unique order of events must be established in this:
case as well). :

6.2. Example

To illustrate the usage of the event profile let us consider a simplified application that maintains the cus--
tomer attributes via an event interface. The customer is identified with an attribute id, the customer attributes
consist of name, address and tariff.

The class with its associated stereotype Event describes the customer-value-change event. This event is gen-
erated on each change of at least one attribute of a particular customer. As marked with stereotype Key the
primary key of the customer dimension is the attribute id. The attribute timestamp is stereotyped as Time-
stamp, i.e. this attribute defines the point in the time of the change of customer attributes. The rest of attributes
have no stereotypes they are regular event attributes containing additional information.

The second class in Fig. 9 describes the target object maintained via the event feed (stereotype Trans defines
that a full versioned history of the target object will be build; see the detailed discussion in Section 5.3). The
meaning of the additional attribute is discussed below.

6.3. Event processing

The profile based event model must be enriched with setnantic rules defining the interpretation of an event,
The most important feature is the sub-typing of the Efd object. In the profile two main examples are defined
Snap and Trans.

The Snap object is maintained with overwrite policy, i.e. new records are inserted; existing records are
updated or deleted. In a Snap object only one record per primary key is stored. Snap is mnemonic abbreviation
for dimension snapshot.

The Trans object is maintained cumulatively, each event is added to their target object, building a complete
transactional history of the dimension.

The handling of primary key of the build dimension can be configured. The primary key option defines if
the target object uses the natural key (as provided within the event) or if a surrogate key should be generated
while the event is processed. In any case the primary key always uniquely identifies the dimension instance, so
if a complete history of the dimension is maintained an additional attribute stereotyped as ((Version)) must
extend the primary key of the target table. .

Another option is defined on the level of attribute; an attribute noted as T imestanp Post is applicable for
Trans object only. 1t is filled with the value of the corresponding Timestamp attribute of the successor version

<< Trang »»
< Even =
CustonesTras
- << EveartF eud »> e Koy > -idiedt
<< Koy »>.kint << Vargion >>-versionint
i:o”wur.-m << Timestamp »»-vekdFromDT:Timestamn
addresx String << TiegtompP ont >~ 4slld¥eD T:Timestamp
Lariftine << ProcStamp > yecordsinmp: Timastomp
<« Acton »> changeiey char << LagVersion >>lastve sion;char
T B >> imestamp Tim P Tieme:String
o Grder »x.gaq v .u&nnnw_._an
faritint
-ackdresaF rom: String
oriF rom:nt

Fig. 9. Customer event profile example.
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below) s gecreased by the smallest grain of the time dimen
h stereoty date (e.g. 31-12-9999 00:00:00). The usage of two

€ Lo distif design but extreme practical solution as for the se
site extreg simple logic can be applied (required timestamp b
Processind  If an attribute has a suffix From it contains th

sion (e.g. 1 ms). The default value 18 an artificially set high
timestamps in a fuli history table is not a “pure relational”
lection of a version of a particular dimension occurrence a
etween Timestamp and T, imestampPost),

¢ value “before the change”, i.e. in Trans object this is the
shed in tff yalue stored in the preceding version. The association between the corresponding attributes is established with
naming conventions,
4 Adifferent semantic aspect is the validation of the event model, i.e. if the model i well-formed. Examples of
4 constraints that must be checked are listed below:
15 the cuf - Event class must have at least one Key attribute;
attributg

— Each Timestamp attribute must have a type compatible with date/time.

ntis ged  The final role of semantic checking in the event context is the event v

¢ Key ti§ event data with redundant information that can be checked while the eve
as Timg interpreted as an advice of lost or corrupted events,

alidation. It is possible to extend the
nt is processed. The exceptions can be

ittributg For examples adding an Action attribute to the event {possible values: _.bmm:\:wmmﬁa\a&ﬁ& enables addi-
4 tional checks:

's defin

1.3). TH

- Key must exists in the target object on update and delete;
§ - Key must not exists in the target object on insert.

Other types of validation can be alternatively implemented as

services on the event transport layer, e.g.
guaranteed delivery or de-dup filtering [16].

1 me.m:._r.m
definedf 7. Event-fed cSCD implementation

‘ds arg The described implementation represents a particular instantiation of the presented event model in Section

Aatiof] 6. The target object is implemented as a Trans table; natural key option is used; Action and from attributes are
supported.

nplete
{ 7.1 Development environment

nes 5
Tated Because the target DWH is also based on Oracle DBMS, we decided to kee
-€. sof ronment, i.e. developing the event feed ¢SCD solution as an Oracle PL/SQL
I) mappings.

p the current development envi-
‘ package and easily call the func-
must] tionality from ETL {e.g. Informatica Powercente
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i The example mapping shown in Fig. 10 illustrates the source-target dependency (Note: the event transfor- -
| mation is done in UTL_EVENT_SCD). The source tables are the EVENT table (which contains only the new
,_ arriving events) and the old TRANS table, the target table is the new (updated) TRANS table (which keeps
, the full history of the dimension life-cycle). With this approach, the requirement of retrieving the state of each

N entity at any time point is still supported (generated on demand) without keeping a series of state-baged
: ‘ snapshots.

— ] e

L
, ‘ 7.2. The UTL_EVENT SCD package

[ The package is used to trace the changing attributes of any (dimensional) table. Tt accepts a variant of

K ‘ parameters for the detailed configuration of the event processing and -correction such as traced entity (via In
P ¥ table name parameter), correct option (optional, mandatory or automatically), refresh option {incremental

R or from scratch), filer criteria.

The package (Fig. 11) contains three main modules: event processing (EP), snapshot generation (SG),and U
consistency checking (CC) providing the following options:

...:H\&Eﬁwﬁﬁnnﬁagcomoﬂn HmnnwwﬁmEogﬁonnm_qmnmmomcumo:ro entity instances (update TRANS Un,
table) with full historical tracing and versioning.

— Providing the state information at any point in time for any instance or subset of instances (generate SNAP- Ch
SHOT table on demand). o

— Checking the consistency between the
solving the inconsistency issue,

entity state data of the legacy system and the data in DWH, and —

7.2.1. Event processing (EP) to

_ The event processing (EP) module is the main module of the package: it processes event data and refreshes  sio
m the TRANS table as follows. It first accesses the event data, filters those which occurred since the last refresh .
_._ (i.e., those records which do not appear in TRANS or have different states with the current records in  car

TRANS). The event validation then checks the events with automatic correction options to ove

rride some  the
invalid events. This validation and correction processes are based on some useful attributes such as change  tus

key, attribute_from or sequence order. The invalid or overridden events are kept in the PROTOCOL table. |
Table 1 cnumerates the invalid cases and how to make the corrections or throw exceptions as invalid events.  tha

Only the valid events are used to refresh the TRANS table. For each event data related to an entity hec
instance, an equivalent transaction record in the TRANS table is created. If there are other events related into

from
tabl

ear
seco
Seco,
or
appr

polic
asm

722

Excep tion

time .
shots,
Ing st
Fig. 1. UTL_EVENT SCD package modules and its related tabjes. 715 ¢
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Table 1

EFD SCD Package Corrections and Exceptions

Case Description Remark
1 Duplicated More than one events received with identical PK, Only one of those events is processed, all other are moved to
4 avents timestamp and sequence number protocol table (as there is no distinction, the processed event is

randomly selected)
Dupticated More than one event have identical PK and time, All events are processed in the order of sequence numbers. As
time but they are distinct in their sequence numbering the time of all events is identical, all but the last event are

stored in the TRANS table as “semi invalid”, ie. vatidfrom >
validto

Insert after Two (or more) events with the same PK are inserted  Correction: The first event is “normally” processed. The

insert (change_key = L") subsequently with different following ones are corrected to Update (ie., change_key is set
timestamp to “U"). The change is written in the protocol table
Update non- An update event is received without preceding insert Correction: The update event is interpreted as an insert event
existing PK.  event (i.e., change key is set to ‘I') The change is written in the
protocol table
Delete non- A delete event is received without preceding insert  Invalid: The delete event is moved to protocol table
existing PK event
Change key The event interface contains change key. An eventis  Invalid: The event is moved to protocol table
NULL or received with invalid or NULL change key
invalid

to the same entity, the enhanced SCD (Section 4.5) is applied to keep trace over all transactions (with ver-
sions). The TRANS table thus contains the complete transaction history of dimension changes.

The invalid cases (i.e., those events in the protocol table) will be manually investigated. It is possible to dis-
card those events which are really invalid ones {(due to error in the system). If they are some missing events,
they are re-applied as the new events (inserted as new record in EVENT table) to correct the inconsistent sta-
tus of the DWHs.

Examples: We apply the UTL_EVENT_SCD package to trace the Customer’s attribute changes. Suppose
that we have currently two customers Robert and Sonja until 7 a.m., 14/02/2005. At 7:10, Robert informs that
he changes his address from 20 Rennweg to 25 Favoritenstr. 7:12 a.m., a new customer Micheal has registered
into the system, and Robert changes his tariff from Type 1 to Type 2 at 7:13. At 7:14, Sonja changes her tariff
from Type 2 to Type 1. The UTL_EVENT_SCD package is executed at 7:15 to refresh the previons TRANS
table. (Fig. 12)

The investigation of the performance behaviour based on the prototype implementation showed a near lin-
ear scalability of the processing time per event with an average throughput of about 300 TRANS-records per
second on a dimension with the cardinality of one million records. The minimum refresh period is about 34
seconds caused by process overheads. However, with the high number of events (e.g. over 20,000 events), the
more events accumulated, the less efficient of the event-SCD approach compared to the snapshot-based SCD
approach (see Fig. 13).

With the current activities at T-Mobile which process daily about 15,000-20,000 events, the ideal refresh
policy could be applied event-based SCD processing at every 3 h. The snapshot-based SCD could be applied
as mud night if necessary.

7.2.2. On demand snapshot generation (SG)

Despite the series of snapshots is not kept as previously, the requirement to have a snapshot at one point in
time for any subset of entity instances remains. From the TRANS table, we can rebuild these required snap-
shots. The package provides two options to generate a snapshot: (1) from (Fig. 14) and (2) based on an exist-
ing snapshot, further referenced as based snapshot (Fig. 15). The generated Customer snapshots at 7:00 and
7:15 are shown in Fig. 16.
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Yalid to Name Address | Tariff | Address  |Tariff | Record version | Last_  [Change
frum from |  seamp Version key
C1 [14-02.2005 [1-12-0999 [Robert |20 Rennweg | T1L 14-02-2005 1 Y I
07:00:00 00:00:00 07:00:00
C2L| CZ [14-02-2005 [31-12-9990 [Somja 15 Kargan T2 14-92-2005 1 Y I
:00:00 09:69:00 07:00:08
[CUST_EVENT
Smr|Cust] Timestarap [ Seq | Name | Address | Tariff Address_from|Tariff_from {Change key
key| ID
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07:18:00
£31] C3 #14-02-2003 21 Micheal 10 Rathaus T2 13
[o7:12.00
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l37:14:00
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:13.00 00.00:00 117:15:00
CI1 | €2 [14-02-2005 (14-02-2005 WE.B 15 Kargan T2 L4-02-2005 1 N 1
00:00 [0713:59 . f7:15.00
C22| C2 {14-62-2005 [31-11-9909 |Sonja 15 Kargan Tl T2 H4-G2-2005 2 Y U
07:14:.00 - B0:00:00 :15:00
C31 | C3 [14-02-2005 [31-12-9900 Richeal [1D Rathaus TX 14.02-2005 1 Y 1
07:12:00 1:60:00 :15-00
Fig. 12. TRANS table refresh after UTL_EVENT._SCD package execution. are the
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Fig. 14. Create snapshot from scratch (i_timepoint is the time point of the snapshot data). £
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7.2.3. Consistency checking and recovery {CC) .
In the event-based cSCD approach, an inconsistent state could be detected when we are able to access on 2 This -
truthful snapshot source (usually provided from the legacy systems). The input requirements of this process  the neec
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CREATE TABLE CUST_SNAP AS
SELECT * FROM
(SELECT ID,i_ timepoint as Snaptime, WName, Address, Tariff
FROM CUST_TRANS WHERE CHANGE KEY <> 'D" AND
i_timepoint BETWEEN VALIDFROM T AND VALIDTO_T
AND VALIDFROM_T > v_prev_time
UNION ALL
SELECT ID,i_timepoint as Snaptime, Name, Address, Tariff
FROM BASED_CUST_SNAF
WHERE ID NOT IN
(SELECT ID FROM CUST_TRANS WHERE
i_timepoint BETWEEN VALIDFROM_T AND VALIDTO T
AND VALIDFROM_T > v_prev_time)
):

Fig. 15. Create snapshot from based snapshot (BASED_CUST_SNAP is the based snapshot table, v_prev_time is the time point of the
based snapshot data).

SNAPSHOT at 14-02-2005 7:00 SNAPSHOT at 14-02-2005 7:15
gvmﬂm Name [Address Tariff | [Cust Snaptime Name Address  [Tanff
INU_ 14-02-2005 [Robert [20 Rennweg [ T1 |Hn_“uu 14-02-2003 07:15:00 Robert  [25 Faveriten | T2
cz MMMWQNHMQM Bomja (15 Kargan T2 C2 114-02-2005 07:15:00 Sonja 15 Rargan ‘ Tt
P C3 {14-02-200507:15:00 Micheal |10 Ruthaus | T2

Fig. 16. SNAPSHOT tables generated at 7:00 and 7:15.

are the mandatory truthful snapshot (S, ¢;) table and the metadata parameters describing the record-structure.
The consistency checking process compares a truthful snapshot(-part) taken on any subset of instances S;, at
any point of time ¢ with the corresponding on demand snapshot (8, ) (see Section 7.2.2) which is temporary
stored in a TEMP_SNAP (S, #;) table. The found inconsistencies between the snapshots are applied again as
new change events to correct the TRANS records.

8. Summary

In this paper, we introduced the event-fed comprehensive slowly changing dimension approach to over-
come the limitation of existing SCD approaches and the snapshot-based solution. The event-fed ¢SCD
approach significantly reduces the number of records to be processed compared to the snapshot-based
approach. Besides, compared with the Kimball’s classification of SCD [11] we see that the SDC Types 1, 2
and 3 are only examples of possible instantiations of the proposed ¢SCD approach (SDC 1 and 2, respectively
use the Snap object without and with from attributes; SDC 3 is based on Trans object without from attributes).

Although the target object was up to now considered as a dimension, this is not a limitation of the proposed
model, A typical fact table can be described also as a versioned dimension (fast changing dimension), using the
add-version update policy (each event creates a new record in the fact table) with appropriate validation e.g. to
maintain a balance attribute.

Furthermore by extending our model with summarizing stereotypes (e.g. add the actual value of the attri-
bute to the previous value) the way is paved for describing running aggregates. On the other hand the corre-

lation of system-dependent event-messages as an alternative to the join of dimensional snapshots needs further
investigations.
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