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ABSTRACT

This chapter introduces an ontology-based framework for automated construction of complex interactive
data mining workflows as a means of improving productivity of Grid-enabled data exploration systems.

The authors first characterize existing manual and automated workflow composition approaches and
then present their solution called GridMiner Assistant (GMA), which addresses the whole life cycle of
the knowledge discovery process. GMA is specified in the OWL language and is being developed around
a novel data mining ontology, which is based on concepts of industry standards like the predictive model
markup language, cross industry standard process for data mining, and Java data mining API. The on-

tology introduces basic data mining concepts like data mining elements, tasks, services, and so forth. In
addition, conceptual andimplementation architectures of the framework are presented and its application

to an example taken from the medical domain is illustrated The authors hope that the further research

and development of this framework can lead to productivity improvements, which can have significant
impact on many real-life spheres. For example, it can be a crucial factor in achievement of scientific

discoveries, optimal treatment of patients, productive decision making, cutting costs, and so forth.
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INTRODUCTION

Grid computing is emerging as a key enabling
infrastructure for a wide range of disciplines in
science and engineering. Some of the hot topics
in current Grid research include the issues as-
sociated with data mining and other analytical
processes performed on large-scale data reposi-
tories integrated into the Grid. These processes
are notimplemented as monolithic codes. Instead,
the standaione processing phases, implemented
as Grid services, are combined to process data
and extract knowledge patterns in various ways.
They can now be viewed as complex workflows,
which are highly interactive and may involve
several subprocesses, such as data cleaning, data
integration, data selection, modeling (applying a
data mining algorithm), and postprocessing the
mining results (e.g., visualization). The targeted
workflows are often large, both in terms of the
number of tasks in a given workflow and in terms
of the total execution time. There are many possible
choices concerning each process’s functionality
and parameters as well as the ways a process
is combined into the workflow but only some
combinations are valid, Moreover, users need to
discover Grid resources and analytical services
manually and schedule these services directly on
the Grid resources essentially composing detailed
workflow descriptions by hand. At present, only
such a “low-productivity” working model is
available to the users of the first generation data
mining Grids, like GridMiner (Brezany et al.,
2004)(asystem developed by ourresearch group),
DiscoveryNet (Sairafi et al., 2003), and so forth.
Productivity improvements can have significant
impact on many real-life spheres, for example, it
can be a crucial factor in achievement of scien-
tific discoveries, optimal treatment of patients,
productive decision making, cutting costs, and
so forth. There is a stringent need for automatic
or semiautomatic support for constructing valid
and efficient data mining workflows on the Grid,

and this (long-term) goal is associated with many
research challenges.

The objective of this chapter is to present an
ontology-based workflow construction framework
reflecting the whole life cycle of the knowledge
discovery process and explain the scientific ratio-
nale behind its design. We first introduce possible
workflow composition approaches— we consider
two main classes: (1) manual composition used
by the current Grid data mining systems, for ex-
ample, the GridMiner system, and (2) automated
composition, which is addressed by our research
and presented in this chapter. Then we relate these
approaches to the work of others. The kernel part
presents the whole framework built-up around a
dataminingontology developed by us. Thisontol-
ogy is based on concepts reflecting the terms of
several standards, namely, the predictive model
markup language, cross industry process for data
mining, and Java data mining API. The ontology

is specified by means of OWL-S, a Web ontology

language for services, and uses some concepts
from Weka, a popular open source data mining
toolkit. Further, conceptual and implementation
architectures of the framework are discussed and
itlustrated by an application example taken from
amedical domain. Based on the analysis of future
and emerging trends and associated challenges,
we discuss some future research directions fol-
lowed by brief conclusions.

BACKGROUND

In the context of modern service-oriented Grid
architectures, the data mining workflow can be
seen as a collection of Grid services that are pro-
cessed on distributed resources in a well-defined
ordertoaccomplisha largerand sophisticated data
exploration goal. At the highest level, functions
of Grid workflow management systems could
be characterized into build-time functions and
run-time functions. The build-time functions are
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concerned with defining and modeling workflow
tasks and their dependencies while the run-time
functions are concerned with managing the
workflow execution and interactions with Grid
resources for processing workflow applications.
Users interact with workflow modeling tools to
generate a workflow specification, which is sub-
mitted for execution to a run-time service called
workflow enactment service, or workflow engine.
Many languages, mostly based on XML, were
defined for workflow description, like XLANG
(Thatte; 2001), WSFL (Leymann, 2001), DSCL
(Kickingeretal., 2003) and BPML (Arkin, 2002).
Eventually the WSBPEL (Arkin et al, 2005)
and BPEL4WS (BEA et al,, 2003) specifications
emerged as the de facto standard.

In our research, we consider two main work-
flow composition models: manual (implemented
in the fully functional GridMiner prototype
(Kickingeretal.,2003)) and automated (addressed
in this chapter), as illustrated in F igure 1. Within

Figure 1. Workflow composition approaches
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manual composition, the user constructs the target
workflow specification graphically in the work-
flow editor by means of the advanced graphical
user interface. The graphical form is converted
into a workflow description document, which
is passed to the workflow engine. Based on the
workflow description, the engine sequentially or
in parallel calls the appropriate analytical services
(database access, preprocessing, OLAP; clas-
sification, clustering, etc.). During the workflow
execution, the user only has the ability to stop,
inspect, resume, or cancel the execution. As a
result, the user has limited abilities to interact
with the workflow and influence the execution
process. A similar approach was implemented in
the DiscoveryNet (Sairafi ct al., 2003) workflow
management system.

The automated composition is based on an
intensive support of five involved components;
workflow composer, resources monitoring, work-
flow engine, knowledge base, and reasoner.

Avtomnaled Cosiposi
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Workflow composer: Is a specialized tool,
which interacts with a user during the workflow
composition process. This chapter describes its
functionality in detail.

Resources monitoring: 1ts main purpose is ob-
taining information concerning the utilization of
system resources. Varieties of different systems
exist for monitoring and managing distributed
Grid-based resources and applications. For exam-
ple, the monitoring and discovery system (MDS)

-is the information services component of the
Globus Toolkit (Globus Alliance, 2005), which
provides information about available resources
on the Grid and their status. Moreover, MDS
facilitates the discovery and characterization of
resources and monitors services and computa-
tions. The information provided by resource
monitoring can be continuously updated in the
knowledge base (KB) to reflect the current status
of the Grid resources.

Workflow engine: Is a runtime execution en-
vironment that performs the coordination of
services as specified in the workflow description
expressed in terms of a workflow language. The
workflow engine is able to invoke and orchestrate
the services and acts as their client, that is, listen
to the notification messages, deliver outputs, and
so forth.

Knowledge base ﬁmw_v and reasoner: A set of
ontologies can be used for the specification of
the KB structure, which is built-up using a set
of instances of ontology classes and rules. The
reasoner applies deductive reasoning about the
stored knowledge in a logically consistent man-
ner; it assures consistency of the ontology and
answers given queries.

Due to different roles and behaviors of the
presented components, we distinguish two modes
of automated workflow composition: passive and
active.

Passive Workflow Construction

The passive approach is based on the assumption
that the workflow composer is able to compose a
reasoning-based complete workflow description
involving all possible scenarios of the workflow
engine behavior and reflecting the status of the
involved Grid resources and task parameters
provided by the userat the workflow composition
time. Although the KB is continuously modified
by the user’s entries and by information retrieved
from the resource monitoring services, the
composition of involved services is not updated
during the workflow execution. Therefore, the
composition does notreflect the *state of the world,”
which can be dynamicaily changed during the
execution. It means that the workflow engine does
not interact with the inference engine to reason
about knowledge in the KB. Thus, the behavior
of the engine (the decisions it takes) is steered
by fixed condition statements as specified in the
workflow document.

The essential tasks leading to a final outcome
of the passive workflow composition approach
can be summarized as follows:

1. The workflow composer constructs a com-
plete workflow description based on the
information collected in KB and presents
it to the workflow engine in an appropriate
workflow language. .

2. The workflow engine executes each subse-
quent composition step as presented in the
workflow description, which includes ali
possible scenarios of the engine behavior,

Active Workflow Construction

The active approach assumes akind of intell igent
behavior by the workflow engine supported byan
inference engine and the related KB. Workflow
composition is done in the same way as in the
passive approach, butits usability is more efficient
because it reflects a ‘state of the world.” It means
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thatthe outputs and effects of the executed services
are propagated to the KB together with changes
ofthe involved Grid resources. Considering these
changes, the work flow engine dynamically makes
decisions about next execution steps. In this ap-
proach, noworkflow document is needed because
the workflow engine instructs jtself using an
inference engine which queries and updates the
KB. The KB is queried each time the workflow
engine needs information to invoke a consequent
service, for example, it decides which concrete
service should be executed, discovers the values
of its input parameters in the KB, and so forth.
The workflow engine also updates the KB when
there is a new result returned from an analytical
service that can be reused as input for the other
services.

The essential tasks leading to a final outcome
in active workflow composition approach can be
summarized as follows:

1. The workflow composer constructs-an
abstract workflow description based on
the information collected in the KB and
propagates the workflow description back
into the KB. The abstract workflow is not a
detailed description ofthe particular steps in
the workflow execution butinstead a kind of
path that leads to the demanded outcome.

2. The workflow engine executes each sub-
sequent composition step as a result of its
interaction with the KB reflecting its actual
state. The workflow engine autonomously
constructs directives for each service ex-
ecution and adapts its behavior during the
execution.

Related Work

Amain focus of our work presented in this chapter
is on the above mentioned passive approach ofthe
automated workflow composition. This research
was partially motivated by (Bernstein etal.,2001).
They developed an inteliigent discovery assistant
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(IDA), which provides users (data miners) with
(1) systematic enumerations of valid data mining
Processes according to the constraints imposed
by the users’ inputs, the data, and/or the data
mining ontology in order that important and
potentially fruitful options are not overlooked,
and (2) effective rankings of these valid processes
by different criteria (e.2., speed and accuracy) to
facilitate the choice of data mining processes to
execute. The IDA performs a search of the space
of processes defined by the ontology. Hence, no
standard language for ontology specification and
appropriate reasoning mechanisms are used in
their approach. Further, they do not consider any
state-of-the-art workflow management framework
and language.

Substantial work has already been done on
automated composition of Web services using
Semantic Webtechnologies. Forexam ple, Majithia
etal., (2004) present a framework to facilitate au-
tomated service com position in service-oriented
architectures (Tsalgatidou & Pilioura, 2002) using
Semantic Web technologies. The main objective of
the framework is to support the discovery, selec-
tion, and composition of semanticaily-described
heterogeneous Web services. The framework
supports mechanisms to allow users to elaborate
workflows of two levels of granularity: abstract
and concrete workflows. Abstract workflows
specify the workflow without referring to any
specific service implementation. Hence, services
(and data sources) are referred to by their logical
names. A concrete workflow specifies the actual
names and network locations of the services
participating in the workflow. These two level
workflow granularities are also considered in our
approach, as shown in an application example.

Challenges associated with Grid workflow
planning based on artificial intelligence concepts
and with generation of abstract and concrete
workflows are addressed by (Deelman et al., 2003).
However, they do not consider any service-ori-
ented architecture. Workflow representation and
enactment are also investigated by the NextGrid
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Project (NextGrid Project, 2006). They proposed
the OWL-WS (OWL for workflow and services)
(Beco et al., 2006) ontology definition language.
The myGrid project has developed the Taverna
Workbench (Oinnetal., 2004) forthe compaosition
and execution of workflows for the life sciences
community. The assisted composition approachof
Sirin (Sirin et al., 2004) uses the richness of Se-
mantic Web service descriptions and information
from the compositional context to filter matching
services and help select appropriate services.

UNDERLYING STANDARDS AND
TECHNOLOQGIES

CRoss Industry Standard Process
for Data Mining

Cross industry standard process for data mining
(CRISP-DM) (Chapman et al., 1999) is a data

mining process model that describes common ly
used approaches that expert data miners use to
tackle problems of organizing phases in data
mining projects. CRISP-DM does not describe a
particular data mining technique; rather it focuses
onthe process ofadatamining projects’ life cycle.
The CRISP-DM data mining methodology is de-
scribed in terms of a hierarchical process model
consisting of sets of tasks organized at four levels
of abstraction: phase, generic task, specialized
task, and process instance. At the top level, the
life cycle of a data mining project is organized
into six phases as depicted in Figure 2.

Thesequence ofthe phases is not strict. Moving
back and forth between different phases is always
required. ltdepends on the outcome of each phase,
which one, or which particular task of a phase has
to be performed next. In this chapter, we focus
our attention on the three phases of data mining
projects’ life cycle, namely: data understanding,
data preparation, and modeling.

Fligure 2. Phases of CRISP-DM reference model (i Chapman et al., 1999)

o
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Data understanding: This phase starts with an
initial data collection and proceeds with analytic
activities in order to get familiar with the data, to
identify dataquality problems, to discoverfirst in-
sightsinto the data, or to detect i nteresting subsets
to form hypotheses for hidden information.

Data preparation: This phase covers all activi-
ties to construct the final data set from the initial
raw data. Data preparation tasks are likely to be
performed multipletimes and not in any prescribed
order. Thetasks includetable, record, and attribute

selection as well as transforming and cleaning
data for the modeling phase.

Modeling: In this phase, various modeling
techniques are selected and applied, and their
parametersare calibrated to optimal values. Typi-
cally, there are several techniques for the same
data mining problem type. Some techniques have
specific requirements on the form of the data.
Therefore, stepping back to the data preparation
phase is often required.

Table 1. Generic tasks and outputs of the CRISP-DM reference model

Collect nitial Data
* Initial Data Collection Report

Data Set

Integrate Data

Format Data

* Dalta Set Description

Describe Data Select Data
*  Data Description Report * Rationale for Inclusion/ Exclusion | Generate Text Design
*+  Text Design
Explore Data Clean Data
* Data Exploration Report * Data Cleaning Report Build Model
+ Parameter Settings
Verify Data Quality Construct Data *  Models

*  Data Quality Report = Derived Attributes
* Generated Records

= Merged Data

* Reformatted Data

The presented phases can be delimitated into a
set of tasks defined by their outputs as presented
in Table 1.

Predictive Model Markup Language

Predictive model markup language (PMML)
(Data Mining Group, 2004) is an XML-based
language that provides a way for applications to
define statistical and data mining models and to
share these models between PMML comphiant
applications. More precisely, the language’s goal
is to encapsulate a model in application and in a
system independent fashion so that its producer
and consumer can easily use it. Furthermore, the
language can describe some of the operations
required forcleaning and transformin ginput data
prior to modeling. Since PMML version 3.1 is an
XML based standard, its specification comes in
the form of an XML schema that defines language
primitives as follows:

Setect Modeling Techniques
*  Modeling Techniques
* Modeling Assumption

* Model Description

Assess Model
*  Mode!l Assessment
* Revised Parameter Settings
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Data Dictionary: It defines fields that are
the inputs for models and specifies their
typesand valueranges. These definitions are
assumed to be independent of specific data
mining models. The values of a categorical
field can be organized in a hierarchy as de-
fined by the taxonomy element, and numeric
fields can be specified by their intervals.
Mining schema: The mining schema is a
subset of fields as defined in the data dic-
tionary. Each model contains one mining
- -schema-that lists fields as used in that model.
The main purpose of the mining schema is
to list fields, which a user has to provide in
order to apply the model.
Transformations: It contains descriptions
of derived mining fields using the following
transformations: normalization—mapping
continuous or discrete values to numbers;
discretization—mapping continuous values
todiscrete values; value mapping—mapping
discrete values to discrete values; aggrega-
tion—summarizing or collecting groups
of values, for example, compute averages;
and functions—derive a value by applying
a function to one or more parameters.
Model statistics: It stores basic uni-variate
statistics about the numerical attributes used
in the model such as minimum, maximum,
mean, standard deviation, median, and so
forth. ‘

Data mining medel: It contains specifica-
tion of the actual parameters defining the
statistical and data mining models. The lat-
est PMML version addresses the following
classes of models: associationrules, decision
trees, center-based clustering, distribu-
tion-based clustering, regression, general
regression, neural networks, naive bayes,
sequences, text, ruleset, and support vector
machine.

The models presented in PMML can be ad-

increase the overall complexity ofa mining model
as follows:

Built-in functions: PMML supports func-
tions that can be used to perform prepro-
cessing steps on the input data. A number
of predefined built-in functions for simple
arithmetic operations like sum, difference,
product, division, square root, logarithm,
and so forth, for numeric input fields, as
well as functions for string handling such
as trimming blanks or choosing substrings
are provided.

Model composition: Using simple models
as transformations offers the possibility
to combine multiple conventional models
into a single new one by using individual
models as building blocks. This can result
inmodels being used in sequence, where the
result of each model is the input to the next
one. This approach, called ‘model sequenc-
mg,’ is not only useful for building more
complex models but can also be applied to
data preparation. Another approach, ‘model
selection,’ is used when the result of a model
can be used to, select which model should
be applied next.

Output: Itdescribes asetof result values that
can be computed by the model. In particular,
the output fields specify names, types and
rules for selecting specific result features.
The output section in the model specifies
default names for columns in an output
table that might be different from names
used locally in the model. Furthermore, they
describe how to compute the corresponding
values,

Model verification: A verification model
providesamechanism forattaching a sample
dataset with sample results so that a PMMI.
consumer can verify that a model has been
implemented correctly. This will make
model exchange much more transparent for
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users and inform them in advance in case
compatibility problems arise.

Weka Toolkit

Weka (Witten & Eibe, 2005) is a collection of
machine learning algorithms, especially classi-
fications, for data mining tasks. Moreover, Weka
contains tools for data preprocessing, regression,
clustering, association rules, and visualization. It
is also well-suited for developing new machine
learning schemes. The Weka’s AP is organized
in a hierarchical structure, and the algorithms are
delimitated by their relevancy to the classes of
data mining tasks as presented in F igure 3.

Java Data Mining Application
Programming Interface

The Java data mining API (J DM) (Hornick et al.,
2003) proposes a pure Java API for developing
data mining applications. The idea is to have a
common API for data mining that can be used by
clients without users being aware or affected by the
actual vendor implementations for data mining.
A key IDM API benefit is that it abstracts out the
physical components, tasks, and even algorithms
of a data mining system into Java classes. It gives
a very good basis for defining concrete data min-
ing algorithms and describing their parameters
and results. JDM does not define a large number
of algorithms, but provides mechanisms to add

new ones, which helps in fine tuning the exist-
ing algorithms. Various data mining functions
and techniques like statistical classification and
association, regression analysis, data clustering,
and attribute importance are covered by this
standard.

Web Ontology Language for
Services

Web ontology language for services (OWL-S)
(Martin et al., 2004) consists of several interre-
lated OWL ontologies that provide a set of well
defined terms for use in service applications.
OWL-S leverages the rich expressive power of
OWL together with its well-defined semantics to
provide richer descriptions of Web services that
include process preconditions and effects. This
enables the encoding of service side-effects that
are often important for antomated selection and
composition of Web services. OWL-S also pro-
vides means for the description of nonfunctional
service constraints that are useful for automated
Web service discovery or partnership bindings.
OWL-S uses OWL to define a set of classes and
their properties specific to the description of Web
Services. Theclass Serviceisatthe top of this ontol-
ogy (see Figure 4), which provides three essential
types of knowledge about a service represented
asclasses: ServiceProfile, S erviceGrounding and
ServiceModel.

Figure 3. Taxonomy of algorithms as presented in Weka API
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*  The ServiceProfile describes “what the
service does.” The profile provides informa-
tion about a service that can be used in the
process of service discovery to determine
whether the service meets one’s needs.

. The ServiceModel informs “how to use the
service.” In more detail, the model gives
information about the service itself and
describes how to perform a specific task
composed by subtasks involving certain
conditions,

*  TheServiceGrounding specifies the service-
specific details of how to access the service,
forexample communication protocols, mes-
sage formats, port numbers, and so forth. It
is a kind of mapping from abstract activity
description to its concrete implementa-
tion.

As we deal with the services composition,
the aspects of ServiceModel and its main class
process, including subclasses AfomicProcess,

Simple Process, and Composite Process and their
properties are discussed here in more detail.

Atomic process: The atomic process specifies an
action provided by the Web service that expects
one message as an input and returns one message
inresponse. ltmeans thatthe atomic processesare
directly invokable and have no other subprocesses
to be executed in order to produce a result. By
definition, for each atomic process there must be
grounding provided, which is associated with a
concrele service implementation.

Simple process: The simpie process givesa higher
abstraction level of the activity execution. It is not
associated with groundings and is not directly
invokable, but like the atomic process, it is con-
ceived of having a single step execution.

Composite process: Web services composition is
a task of combining and linking Web services to
create new processes in order to add value to the

Figure 4. Selected classes and their relations in OWL-S ontology (Martin et al., 2004)
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collection of services. In other words, it means
that composition of several services can be viewed
as one composite process with its defined inputs
and outputs.

Moreover, OWL-S enables inclusion of some
expressions to represent logical formulas in Se-
mantic Web rule language (SWRL) (Horrocks et
al.,2004). SWRLisarule language that combines
OWL with the rule markup language providing
a rule language compatible with OWL, SWRL
includes a high-level abstract syntax for Horn-

are sublanguages of OWL. SWRL expressions
may be used in OWL-S preconditions, process
control conditions (such as if-then-else), and in
effects expressions.

Ontology-Based Construction of Grid Data Mining Workflows

GRIDMINER ASSISTANT
Design Concepts

To achieve the goals presented in the Introduc-
tion section, we have designed a specialized
tool—GridMiner Assistant (GMA)—that fulfils
therole ofthe workflow composershown in Figure
1. It is implemented as a Web application able to
navigate a user in the phases of the knowledge
discovery process (KDD) and construct a work-
flow consisting of a set of cooperating services
aiming to realize concrete data mining objectives.
The main goal of the GMA is to assist the user
in the workflow composition process. The GMA
provides support in choosing particular objec-
tives of the knowledge discovery process and

Figure 5. Concept overview of the abstract data mining service

Data Mining
Tasks
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Diata Mining Elements

Data Mining
Services
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manage the entire process by which properties
of data mining tasks are specified and results are
presented. It can accurately select appropriate
tasks and provide a detailed combination of ser-
vices that can work together to create a complex
workflow based on the selected outcome and its
preferences. The GMA dynamically modifies
the tasks composition depending on the entered
values, defined process preconditions and effects,
and existing description of services available in
the KB. For this purpose we have designed adata
mining ontology (DMO), which takes advantage
“ofan explicit ontology of data mining techniques
and standards (as presented in the above sections)
using the OWL-S concepts to describe an abstract
Semantic Web service for data mining and its
main operations,

The service named abstract data mining
service (ADMS) simplifies the architecture of the
DMO asthe realization of the OWL-S service with
a detailed description of its profile and model. To
clearly present the process of workflow composi-
tion using operations of the ADMS, we define
three essential types of data mining components
involved in the assisted workflow composition:
DM-elements, DM-tasks and DM-services,
as depicted in Figure 5. In order to design the
ADMS, we consider a set of transactions repre-
senting its functionality described by DM-tasks.
‘The DM-tasks can be seen as operations of the
ADMS realized by concrete operations of involved
DM-services using DM-elements as their inputs
and outputs.

The following paragraphs introduce the data

mining ontology, which is built through the

description of the DM-tasks, DM-elements and
involved DM-services. The ontology covers ali
phases of the knowledge discovery process and
describes available data mining tasks, methods,
algorithms, their inputs and results they produce.
All these concepts are not strictly separated but
are rather used in conjunction forming a consis-
tent ontology.

Data Mining Elements

The DM-elements are represented by OWL classes
together with variations of their representations
in XML. It means that a concept described by an
OWL class can have one or more related XML
schemas that define its concrete representation
in XML. The clements are propagated by the
ADMS into the KB and can be used in any phase
of data mining process. The instances of OWL
classes and related XML eclements are created
and updated by the ADMS service operations as
results of concrete services or user inputs. The
elements can also determine the behavior of a
workflow execution if used in SWRL rules and
have an influence on preconditions or effects in
the OWL-S processes. Inthe DMO, we distinguish
two types of DM-clements: settings and resuls.
The settings represent inputs for the DM-tasks,
and on the other hand, the results represent out-
puts produced by these tasks. From the workflow
execution point of view, there is no difference
between inputs and outputs because it is obvions
that an output from one process can be used, at
the same time, as an input for another process.
The main reason why we distinguish inputs and
outputs as settings and results is to simplify the
workflow composition process, to ease search-
ing in the KB, and to exactly identify and select
requested classes and their properties.

The settings are buili through enumeration
of properties of the data mining algorithms and
characterization of their input parameters. Based
on the concrete Java interfaces, as presented in
the Weka API and JDM APIL, we constructed
a set of OWL classes and their instances that
handle input parameters of the algorithms and
their default values (see Figure 6). The settings
are also used to define different types of data
sets that can be involved in the KDD process.
Class DataSet and its derived subclasses collect
all necessary information about the data set (file
location, user name, SQL etc.) that can be rep-
resented by different data repositories such as a

193




Ontology-Based Construction of Grid Data Mining Workfiows

relational database, CSV, WebRowSet file, and
so forth. Properties of the DataSet are usually
specified by a user at the very beginning of the
KDD process composition.

The following example shows a concrete in-
stance of the OWL class aigorithm keeping input
parametersofan Apriory-type algorithm (Agrawal
etal., 1994), which produces anassociation modetl.
The example is presented in OWL abstract syntax
(World Wide Web Consortium, 2004).

Class (Setting partial Element)
~Class (Algorithm-partial Elemeént)
Class (Parameter partial Element)

ObjectProperty( hasParameter
domain(Setting)
range(Parameter))

~.==<E==_Afamo%_~3|>ﬁ:oq,@volmoa:m

annotation(rdfs:label “Apriori-type algo-
rithm™)

type(Algorithm)

value(hasParameter _humber_of rules)

value(hasParameter _minimum_support)
value(hasParameter _minimun_rule_confi-
dence))

Individual(_number_of rules
annotation(rdfs:label “The required number
of rules™)
type(Parameter)
value(value “10))

Individual(_minimum_support
annotation{rdfs:label “The delta for minimum
support™)
type(Parameter)
value(value “0.05™)

—-.._mﬁd=»~A|um=macul_.:_olnozmam:om

annotation(rdfs:label “The minimum confi-
dence of a rule™) :

type(Parameter)

value(value “0.9”))

The results are built on taxonomy of data
mining models and characterization of their main
components as presented in the PMML specifica-
tion, therefore, the terminology used for naming
the result elements is tightly linked with the
names of the elements in PMML. As a result, it
is easy to map its concepts to the concrete XML
representations as done in the PMML schema.
Figure 7 depicts the basic classes and their rela-
tions used to describe the Result DM-elements
in the DMO.

Figure 6. Basic setting classes used to describe input parameters

el ObjectProperty
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Figure 7. Basic classes used to describe Results in DMO
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From the perspective of a Web service, the
DM-eiements can be seen as messages exchanged
between service and client (XML elements), and
from the abstract workflow point of view, as items
exchanged between activities of sim ple oratomic
process inside a composite process (instances
of OWL classes). The following example shows
how the PMML element DataDictionary, having
subelements DataField and taxonomy, can be rep-
resented as DataDictionary class in the OWL.

DataDictionary — XML Schema:

<element name="DataDictionary™>
<complexType>
<sequence>
<element ref="DataField”
maxQOccurs="unbounded” />
<element ref="Taxonomy” minOccurs="0"
maxOccurs="unbounded” />
</sequence>
<attribute name="numberQfFields”
type="nonNegativelnteger” />

</complexType>
</element>

DataDictionary — OWL Class:

<Class rdf:ID="DataDictionary”>
<Restriction>

<onProperty rdf:resource="#hasDataFi
eld”/>

</Restriction>
<Restriction>
<onProperty rdf‘resource="#hasTaxono
my”/>
<minCardinality rdf:dataty pe="#nonNeg
ﬁ?&:ﬁqu.VVOA\EEONR_E&:%V
</Restriction>
<Restriction>
<onProperty rdfresource="#numberOf
Fields™/>
</Restriction>
</rdfs:subClassOf>
</Class>
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Data Mining Tasks

Thetasksare specialized operations of the ADMS
organized in the phases of the KDD process as
presented inthe CRISP-DM reference model. The
GMA composes these tasks into consistent and
valid workflows to fulfill selected data mining
objectives. The tasks are workflow’s building
blocks and are realized by concrete operations
of involved DM-Services using DM-elements as
theirsettings and results. Furthermore, GMA can
automatically select and insert additional tasks

into the workflow to assure validity and logical

o.onmmm?unow of the data mining processes. We dis-
tinguish two types of DM-tasks that are forming
the OWL-S ServiceModel of the ADMS—-setters
and getters.

Setters and getiers give a functional de-
scription of the ADMS expressed in terms of the
transformation produced by the abstract service.

Table 2. DM-tasks and their DM-elements

Furthermore, the setters are used to specify the
input parameters for data mining tasks, and the
getters are designed to present results of concrete
service operations. The setters interact with a
user who specifies values of the input parameters
represented as properties of the seltings class,
for exampie, location of data source, selection of
target atiributes, the number of clusters, and so
forth. The setters do not return any results but
usually have an effect on creating and updating
the DM-elements. The setters are not realized
by concrete operations of involved services but
are used to compose compact workflows and
assure interaction with the user. The getters are
designed to describe actual data mining tasks at
different levelsof abstraction. Thusa gettercanbe
represented by an instance of the CompositePro-
cess class as, for example, a sequence of several
subtasks, or a getter can be directly defined as an
instance of the AdfomicProcess class realized by
a concrete operation of a DM-service,

B

" collect initial data setdataset datasetsettings dataset
= : . L
5 | describe data getdatadictionary dataset datadictionary
= E
.m m seftaxonomy taxonomysettings taxonomy
L)
B | explore data getrmodelstats dataset modelstats
=a
verify data quality
select data setminingschema miningschemasettings miningschema
=
.m clean data gettransformation defincfunction dataset
|
-3 construct data derivedfield dataset
&
z integrate data mediationschema dataset
=
format data miningschema dataset
select modeling technique setminingmodel miningmodelsettings miningmodel
generale test design settestset datasetsettings dataset
2 build modet getclassificationmodel mininingmodelsettings model
M getassociationmodel
m getclusteringmodel
getsequentialmodel]
getneuralnetworksmodel
assess model getmodelverification Emz_.azm:,_oan_mo::_mm model
—_—
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Table 2 presents some of the setters and
getters on the highest level of abstraction orga-
nized according to the phases of the CRISP-DM
reference model and lists their input and output
DM-elements.

The setters are designed to interact with the
user, therefore, each setter has a related HTML
input form used by the user to insert or select the
input parameters’ values of the examined DM-ele-
ment. The GMA presents the form implemented
as adynamic Web page to the user, and based on

_ his/her inputs, the GMA updates parameters of

the DM-elements,
Data Mining Services

Realization of a particular DM-task is done by
invoking concrete operations of involved DM-
services described in OWL-S as an atomic,
simple or composite process related to its Ser-
viceGrrounding (operators that can be executed)

Figure 8. Basic classes and their relations in DMQ

as defined in the appropriate WSDL document.
The operations produce DM-elements that can be
reused by other operations in further steps of the
workflow execution. Within our project, several
data mining services were developed including
decision tree, clustering, associations, sequences,
and neural networks with detailed descriptions of
their functionality in OWL-S.

Data Mining Ontology

Based on the concepts and principal classes in
the preceding sections, we have constructed the
final DMO as depicted in Figure 8. The DMO
incorporates the presented OWL-S ontology
and its classes describing DM-tasks and DM-
services as well as Result and Setting classes,
which describe the DM-elements. The ontology is
also supplemented by a set of semantic rules that
determine in detail particular relations between
involved classes, but its presentation is out of the
scope of this chapter.

reatize !
Process (OWL-S} reslizedBy

el ObieciPropedty

= w u wlp SubClass

Sarvice (OWL-5)

Setling
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WORKFLOW CONSTRUCTION

In order to credte the final workflow, the GMA
follows a combination of the backward and
forward chaining approaches. It means that the
process begins with a user-based selection of
a target task, which produces the desired data
exploration output. Additional tasks are auto-
matically inserted into a chain before the target
task until a task without any or already satisfied
preconditions is encountered (backward phase).
.Next, by.insertion of additional tasks, this chain
is automatically extended into a form in which
allmatching preconditions and inputs parameters
are satisfied (forward chain). According to this,
our approach to workflow construction is based
on two phases as follows.

Tasks Composition

The aim of this phase is to create an abstract
workflow consisting of a sequence of DM-tasks.
Figure 9 presents an example of the abstract
workflow composed of DM-tasks. ‘Task D’ is the
initial task inserted into the workflow in the sense
of the previously mentioned backward phase of
the workflow composition, and the task’s result,
represented by a DM-clement, is the final goal
of the abstract workflow. The DM-clement can
be, for example, a decision tree model in the data
mining phase, a listof all available statistics in the
data understanding phase, or the data preparation
phase can result in a new transformed data set.
Selection of the final result is the only interaction
with the user in this phase; the other steps are

Ontology-Based Construction of Grid Data Mining Workflows

hidden. The composition then continues with an
examination of preconditions and inputs of the
target task “Task D.’ Ifthe task has an input which
does not exist (KB does not contain an instance
of the required DM-element) or condition that has
to be satisfied, then the KB is queried for such a
task that can supply the required DM-elements
or can satisfy these preconditions by its effects:
the missing task can be “Task C’ in our case. The
design of the ontology ensures that there is only
one such task that can be selected and inserted
into the workflow prior to the examined task. For
example, if we want to obtain a list of statistics
(getModelStats task)then there must be an existin I
DM-element DataSet. It means that a task which
creates the DataSet element must anticipate the
getModelStats task in the workflow composition
(it can be the setDataSet task in our case). The
newly added tasks are treated in the same way
until a task without any preconditions or already
satisfied preconditions is encountered, or a task
without any input that is produced as result of
another task is reached, which is “Task A’ in our
example.

Values Acquisition

Figure 10 presents the same workflow but viewed
from another perspective: now ‘Task A’ is the
initial task and ‘Task D is the final one, In this
phase of the workflow construction, the task pa-
rameters are set up. Their values can be obtained
in the following ways: (a) as effects of DM-tasks
{getters)or (b) entered directly by a user (setters).

Figure 9. Example of tasks composing the abstract workflow

precondition
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In other words, not all values of input parameters
can be obtained automatically as results of pre-
vious operations and therefore must be supplied
by a user. This phase of the values acquisition
starts by tracing the abstract workflow from its
beginning, ‘Task A’, and supplying the values by
abstract interpretation of the partial workfiow or
providing them from a user. The user can enter
the values directly by filling input fields offered
by an appropriate graphical user interface or by
selecting them from a list created as a resuit of a
KB query, e.g., a list of data mining algorithms
for'a'spécific method is determined by available
implementations of services able to perform the
task. If the user selects a list item value that has
influence on the precondition or effect that has
to be satisfied in the next steps, then the KB is
searched for such a task that can satisfy this re-
quest. The newly discovered tasks are inserted
automatically into the workflow. It can be, for
example, acase whenthe user wantsto increase the
quality of used data adding some transformation
tasks, presenting the resulting model in different
form, and so forth,

To illustrate the main features of the GMA
and explain the phases of the tasks composition
and values acquisition, we present a practical
scenario addressing step-by-step construction of
a simple workflow aiming at discovering of clas-
sification model for a given data set. This scenario
is taken from a medical application dealing with
patients suffering from serious traumatic brain
injuries (TBI).

Figure 10. Example of values acquisition phase

Workflow Construction Example

At the first clinical examination of a TBI patient
{Brezany et al., 2003), it is very common o as-
sign the patient into a category, which allows to
define his/her next treatment and helps to predict
the final outcome of the treatment. There are five
categorics of the final outcome defined by the
Glasgow outcome scale {GOS): dead, vegetative,
severely disabled, moderately disabled, and good
recovery.

It is obvious that the outcome is influenced
by several factors that are usually known and
are often monitored and stored in a hospital data
warehouse, For TBI patients, these factors are for
example: injury severity score (ISS), abbreviated
injury scale (AIS), Glasgow coma score (GCS),
age, and so forth. It is evident that if we want to
categorize the patient, then there must be a prior
knowledge based o cases of other patients with
the same type of injury. This knowledge can be
mined from the historical data and represented
as a classification model. The mined model is
then used to assign the patient to the one of the
outcome categories. Ln particular, the model
can assign one of the values from the GOS to a
concrete patient.

As we mentioned in the previous section, in
the first phase, the composition of the abstract
workflow proceeds by using the backward chain-
ing approach starting with the task and then
producing the demanded result. In our case, the
classification model is represented by a decision

DM-element 1 DM-element 2 DM-element 3
\ o, irput .\ oy, Input *
- resutt
Fnt ! ~ “\\\\\\Sm:_ﬁ ~ m
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tree. Moreover, inthisexample, we assume thatthe
dataunderstanding phase of the K DD process was

successfully finished, and we have all the neces- list of DM-tasks and models they produce. This

sary information about the data set to be mined. query is issued by the GMA automatically. (See
It means that appropriate records corresponding Box 1.)

tothe DataSetand DataDictionary DM-elements
are already available in the KB, and the workflow
can start with the data preprocessing task.

The list can be obtained as a result of the wo._ low-
ing SPARQL (SPARQL, 2006) query returning a

Selection of the classification model givesusa
directlink tothe getClassificationModel DM-task
that can be realized by a concrete service opera-
tion. Information about its input DM-elements
and the corresponding DM-task producing them
can be retrieved from the KB by submitting the
foliowing SPARQL query, which is also issued
by the GMA automatically (see Box 2).

Phase 1: Tasks Composition

As we presented previously, the first step of the

task composition is the interactive selection of
..—..the final model from a listof'all available models,

Box I. .
N
Query: .
PREFIX dmo: <hitp /fdmo.gridminer.org/v1i>
PREFTIX rdfs; Awnﬁ“\\ﬁii.iw.o_.m\wcoo\o_\&m.ma?wam*v )
PREFIX rdf: <http:/fwww. W3.0rg/1999/02/22-rdf-syntax-nsi>
SELECT ?ModelName 7Task
FROM <http: \\sés.@HHQEH:mH.owo\QEO\qH\QBo.ozpv
WHERE {
?mode] rdfitype <#Madel> .
?inodel rdfs:label ?ModelName .
?model dmao:createdBy ?Task
H
ORDER BY ?ModelName
Resuit:

_ ask T
getAssociationModel
getClassificationModel
getClusteringModel ]

Box 2,
Query:
PREFIX dmo: Arzﬁ"\\nao.maa_amzmﬁcww?;mv
SELECT ?Setting ?Task
FROM Asnﬂuu\\zzz.@Hwaauﬁmn.omm\%oxi.\n_ao.oiv
WHERE {
dmo:getClassificationMode] dmo:hasSettings ?Setting .
?Task dmo:create ?Setting
}
Result:
L T Setting ) _Task 1
{ MiningModel ~ setMiningMode]
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Figure 11. Abstract workflow after the phase of tasks composition
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The discovered DM-task setMiningModel is
inserted into the workflow prior to the getClas-
sificationModel task, and its preconditions and
inputs are examined. The only precondition of
the setMiningModel task is the existence of the
MiningSchema DM-element. This requirement
canbe satisfied by-inserting the setMiningSchema
task into the workflow, whose effect is the cre-
ation of the MiningSchema DM-element. The
sefMiningSchema task has two preconditions:
the existence of the DataSet and DataDiction-
ary DM-elements. Their corresponding records
are already available in the KB, so no additional
tasks are inserted into the abstract workflow.
As the result, an abstract workflow consisting
of three DM-tasks (see Figure 11) is created and
is instanced as a new composite process of the
ADMS in the KB. The figure also presents the
DM-elements identified during the composition
phase as preconditions of the involved tasks and
a fragment of the concrete workflow.

Phase 2: Values Acquisition

The second phase of the workflow construction
starts with the examination of the first DM-task in
the abstract workflow (setMiningSchema). In this
phase, the values of the DM-elements’ properties,
identified in the previous phase, are supplied by
the user and additional DM-tasks are inserted as
needed. The following paragraphs describe in

more detail the steps of setting the DM-elements
produced and used by the involved tasks.

setMiningSchema: This task can be seen as a
simple data preprocessing step where data fields
(attributes} used in the modeling phase can be
selected and their usage types can be specified.
The primary effect of this task is a new Mining-
Schema element instanced in the KB, keeping
all the schema’s parameters specified by the
user. Moreover, the user can specify whether
some preprocessing methods should be used to
treat missing values and outliers of the numerical
attributes. Selection of a preprocessing method
requires an additional DM-task, which is able to
perform the data transformations and produce a
new data set that can be used in the next steps.
If one of the transformation methods is selected
then the KB is queried again for a task able to
transform the data set. The getTransformation
task has the ability to transform the selected data
set, therefore, can be inserted into the abstract
workflow in the next step.

As we presented in previous paragraphs, the
selters are designed to interact with the user,
therefore, each setter has a related HTML input
form used by the user to insert or select the values
of the examined DM-element input parameters.
The GMA presents the form implemented as a




Figure 12. Input HTML form for the MiningSchema
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dynamic Web page to the user, and based on its
inputs, the GMA updates values of the DM-ele-
ments’ parameters.

Figure 12 presents the input form used by the
GMA to construct the MiningSchema DM-ele-
ment. Inthis form, there is one mandatory property
for the classification task — ‘target attribute.’
It is one of the categorical DataFields from the
DataDictionary element, which is the GOS in
our case. Therefore, the ‘target attribute’ must
be marked as ‘predicted’ in the MiningSchema
DM-element. The effect of the setMiningSchema
task is a newly created DM-element Mining-
Schema, which describes mined fields and their
transformations.

getTransformation: Thistask isinserted into the
workflow right after the setMiningSchematask. It
does notrequire interaction with the user because
its input parameters are already specified in the
MiningSchemacreated asthe effect of the previous
task. The task just examines the MiningSchema
element and selects a concrete operation from

DM-Services available in the KB, which can
satisfy the chosen data preprocessing objectives.
The task can select operation ‘transform’ of the
specialized DataPreprocessing service (DPP
service) and insert it into the concrete workflow
(see Figure 14).

setMiningModel: Specification of the properties
of the selected model is the main purpose of this
task. The GMA presents a list of all available
data mining algorithms producing classification
models and selects its input parameters. Based
on the selected parameters, a new DM-element
MiningModel describing model properties is
created as an effect of this task. The following
SPARQL query retrieves all parameters for the
C4.5 classification algorithm (Quinlan, 1993) that
is used to setup the MiningModel element in our
example. (See Box 3)

The GMA presents the results to the user in
the HTML form presented in Figure 13, where
the user specifies values of the input parameters
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Box 3.

Query:

FROM
WHERE |

H
ORDER BY ?ParameterName

PREFIX dma: <http://dmo.gridminer.org/v] >

PREFIX rdfs: <http:/fwww.w3.0rg/2000/0 ) /rdf-schema#>

SELECT ?ParameterName ?DefaultValue
<htep://www.gridminer.org/dmo/vl/dmo.owi>

dmo:_algorithm_c4.5_Settings dmo:hasParameter ?Parameter
?Parameter rdfs:label ?ParameterName .
?Parameter dmo: value ?DefauliValue

... Figure 13. Input HTML form for the MiningModel

MiningModel Settings

Adgorithn

Algorithm Settings

Binary split
Instances per [eal 2

Confidence
Pruned free

.

needed to build the classification model using the
C4.5 algorithm.

getClassificationModel: This task examines the
MiningModel element created in the previous task
and identifies the appropriate operation that can
build the classification model using MiningModel
parameters. The task can be the operation ‘build’
implemented by the DecisionTree Service (DT
Service), which returns the classification model
represented by the PMML element TreeModel.
Moreover, if parameter ‘pruned tree’ is marked
as true (false by default) then the additional
operation of the DT Service ‘prune’ is inserted
into to the concrete workflow to assure that the
discovered decision tree is modified using a prun-
ing mechanism.

If all required parameters and preconditions
of the tasks involved in the abstract workflow
are satisfied then the GMA constructs a concrete
workflow specification in the BPEL language and
presents it to the workflow engine. The concrete
workflow. is a sequence of the real services and
is related to the abstract DM-tasks as presented
in Figure 14.

The final output returned from the work-
flow engine is a PMML document containing a
TreeModel element that represents the demanded
model that can be used to classify a particular
patient into the GOS category.

The following BPEL document created in our
scenario contains five variables representing the
DM-¢elements used as inputs and outputs of the
invoked operations. The variable DataSet is an
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Figure 14. Abstract and concrete workflow afier the phase of values acquisition
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XML in WebRowSet format (RowSet Java ob-
Ject in XML format) storing all the initial data.
TransformedDataset is anew WebRowSet created
by the ‘transform’ operation, and TreeSettings is
used as input for the ‘build’ and ‘prune’ opera-
tions. The variable TreeModel stores the PMML
document with the ful] decision tree, and the
PrunedTreeModel stores its pruned version. The
BPEL flow reflects the composition as done in the
concrete workflow consisting of three operations
invoked in sequence. (See Box 4.)

SYSTEM PROTOTYPE

An overview of the first system prototype is
shown in Figure 15. We use the OWL editor Pro-
tégé (Noy et al,, 2001) to create and maintain the
DMO, which is stored in the KB, To reason about
knowledge in the KB, we use the Pellet reasoner
(Sirin & Parsia, 2004), which is an open-source
Java based OWL DL reasoner and provides a de-
scription logic interface (DIG) (Bechhofer et al.,
2003). The GMA is implemented asa standalone
Web application supported by the Jena Toolkit
(McBride, 2003) and is able to interact with a
user to assemble the required information. The
GMA communicates over the DIG interface with
the reasoner, which is able to answer a subset of
RDQL queries (Seaborn, 2004). The GMA que-
ries KB every time it needs to enumerate some
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parameters or find a data mining task, algorithm,
service, and so forth. Moreover, the GMA also
updates the KB with instances of DMO classes
and values of their properties. The final outcome
of the GMA is a workflow document presented
to the workflow engine Auriga (Brezany et al,
2006) inthe BPELAWS language. The GMA also
acts as a client of the workflow engine, which
executes appropriate services as described in the
BPEL document and returns their outputs back
to the GMA. A more detailed characterization of
these major components follows.

Aunriga WEEP workflow engine is an easy to
execute and manage work flow enactment service
for Grid and Web services. The core ofthe engine is

-implemented as a standalone application referred

to as the Auriga WEEP Core, which orchestrates
the services asspecified ina BPEL. Auriga WEEP
has also a specialized version, which is wrapped
by a Grid service implementation focused onusing
the Globus 4 container as the running environ-
ment. The engine has a pluggable architecture,
whichallows additional Grid specific functionality
to be used in the Auriga Core extensions.

. Jena is a Java framework for building
Semantic Web applications. It provides a
programmingenvironment for RDF, R DF S,
OWL and SPARQL and includes a rule-
based inference engine.
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Box 4.

Variables:

Sequence:

<sequence™>
< flow>

<invoke partnerLink="DTService

</ flow>
< sequence>

<variable name="DalaS¢t" element="wrs: webRowSet"/>

<yariable name="TransformedDataset" element="wrs:webRowSet "/>
<variable name="TreeModel" element="pmm]; TreeModel"/>
<variable name="PrunedTreeModel” elemen="pmml: TreeMadel"/>
<variable name="TreeSettings" element="dmo:Setting"/>

<invoke partnerLink="DPPService" operation="transform" inputVariable="DataSet"
outputVariable="TransformedDataset” />

<invoke partnerLink="DTService" operation="build"
inputVariable="TreeSettings” outpwtVariable=""TrecModel"/>

operation=
inputVariable="TrecSettings" outputVariable="Pruncd TreeModel"/>

pruiie"

Figure 15. Overview of the prototype system
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«  Pellet provides functionalities to see the
species validation, check consistency of
ontologies, classify the taxonomy, check
entailments and answer a subset of RDQL
queries. Pellet is based on the tableaux algo-
rithms developed for expressive Description
Logics and supports the full expressivity of
OWL DL.

«  Protégéis m: ontology editorand knowledge
acquisition system. It implements a rich set
of knowledge-modeling structures and ac-

tions that support the creation, visualization,
and manipulation of ontologies in various
representation formats including OWL.

FUTURE WORK

We envision the following key directions for
future extension of the research presented in
this chapter:
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Activeworkflow engine: Thisapproach was
already briefly discussed in the background
section and sketched in Figure 1. In this
case, the interaction mode between the user,
workflow composer and the functionality
of the composer basically remain the same
as in the described passive approach. The
functionality of the existing GridMiner
workflow engine will be extended to be
able to make dynamic decisions about the
next workflow execution step based on the

. .actual context of the knowledge base and

the results of the reasoning. Moreover, the
workflow composer can listen tothe changes
in the knowledge base and automaticaily
interact with the user when some additional
information or hints have to be supplied.
Workflow ranking: The datamining ontol-
ogy will be extended by estimations of each
operation’s effects on workflow attributes
such as speed, model accuracy, ete. Due to
the user’s preferences (e.g., speed vs. accu-
racy) the composer can then better optimize
individual selection steps, derive a set of
workflows with the corresponding ranking
and supply the best option to the workflow
engine. Inthis process, information aboutthe
current Grid resource utilization provided by
standard Grrid information services can also
be included into this optimization process.
Workflow planning: Weconsiderupgrading
the intelligence of the workflow composer
with the development of a supporting plan-
ningsystem which will be able to proposean
abstract workflow from the specification of
the goals and the initial state. We will exploit
and adapt Al planning optimizations.
Support by autonomic computing: We will
investigate how the presented framework
should be extended to be able to include some
functionality of autonomic computing into
the workflows composed. This involves in-

vestigating workflow patterns, categorizing
requirements and objectives, and designing
corresponding rule templates.

CONCLUSION

Thecharacteristics of data 96?5&05 inscientific
environments impose unique requirements for
workflow composition and execution systems. In
this chapter, we addressed the issues of composing
workflows with automated support developed on
top of Semantic Web technologies and the work-
flow management framework elaborated in our
Grid data mining project. The kernel part of that
support is a tool called the GridMiner workflow
assistant (GMA), which helps the user interac-
tively construct workflow description expressed
in a standard workflow specification language.
The specification is then passed fo the workflow
engine for execution. The GMA operations are
controlled by the data mining ontology based on
the concepts of PMML, JIDM, WEK A and CRISP-
DM. A practical example taken from a medical
application addressing management of patients
with traumatic brain injuries illustrates the use of
the GMA. The results achieved will be extended
in our future research whose key issues were
outlined in the chapter, Although this research is
conducted inthe context ofthe GridMiner project,
its results can be used in any system involving
workflow construction activities.

FUTURE RESEARCH DIRECTIONS

Inthissection, we identify three future challenges
and research problems in the ontology-based
workflow construction and execution.
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L. Extended Data Mining Ontology

Data mining as a scientific discipline is a huge
domain which is still expanding. New approaches
todata analyses, visualization techniques, or even
new algorithmsare contin uously being developed.
There are also plenty of real applications tailored
to the application domain specifically for data
mining tasks. Therefore, it is nearly impossible
to completely describe this dynamic field of data
mining with a static ontology. The ontology pro-
posed in our chapter can only be used for a subset
ofthehigh number of data miningtasks. Hence we
see new opportunities in extending the proposed
data mining ontology with different, application
domain specific, tasks that would better express
the functionality of the constructed workflows,

2. Quality of Services and Workflows
Another issue that is not fully covered in the
proposed ontology is the description of the qual-
ity of the involved data mining services, Espe-
cially in the Grid infrastructures, the properties
of the involved resources (e.g., performance,
price, bandwidth, etc.) play the crucial role in
their discovery and right selection. So we see
another opportunity in the detailed description
of the data mining services’ properties which
can be done as a direct extension of the OLW-S
language. Moreover, there can also be a detailed
description of the composed workflows’ quality
which can be used for effective ranging of the
entire workflows.

3. Autonomic Behavior of the Workflow
Enactment Engine

Autonomic computing is one of the hottest top-
ics in information technologies. Different arcas
in computer science, ranging from hardware to
software implementation on the application level,

try to apply some autonomic features (like, e.g., .

self-tuning, self-configuration, self-healing, etc.)
to assure stability and availability of the system.
The autonomic behavior of the Workflow Engine

an ensure that the execution of the data min-
ing workflows results in a required goal even in
such a dynamic environment as the Grid where
the Workflow Engine must react to the changes
of the involved resources and adopt its behavior
to new conditions and reflect the actual ‘State of
the Grid’,
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