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Abstract

The main topic of this work is the calculation of injector characteristics with CFD codes.

For the calculation with CFD codes it is necessary to build up models. In this work two-
dimensional models are used. The geometry of the two-dimensional injector is fixed by the
basis given by Schlag [2]. Schlag divides the injector into three parts: nozzle, mixing duct and
diffuser. The pressure drop or rise in each part is modelled appropriately by fluid dynamic
equations. For fixed operation conditions, as the net pressure rise and the jet properties,
all possible injector geometries are calculated. One of these geometries, the smallest one,
is chosen for further investigations. The characteristic of this possible injector is calculated
with the method proposed by Schlag and then by applying a commercial CFD code.

Modelling the geometry, two different wall shapes are investigated. One of them represents a
constant diameter injector with a constant mixing duct height. The other one is an approxi-
mation of a constant pressure injector. A circle being tangent to the diffuser and keeping the
same heights at the entrance of the nozzle and at the entrance of the mixing duct as those
of the constant diameter injector is used. In both cases, the wall of the diffuser is a straight
line.

As shown by Hembold et al. [9], the efficiency of the constant pressure injector is higher than
that of the constant diameter injector.

The characteristics and the flow fields of both injector types are shown, discussed and com-
pared.
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Nomenclature

Latin characters

Symbol Unit Description

A [m?] Area.

AR -] Area ratio.

a -] Width ratio.

A1y eeey Uy, -] Essential dimensions.

B -] Constant in the equation for the logaritmic wall law.
cS [m?] Control Surface.

cv [m?] Control Volume.

Cp -] Static pressure recovery.

Chp; -] Ideal pressure recovery.

c [%] Speed of sound.

€1, €2 -] Constants in the transport equations of the k — ¢ model.
cy -] Proportionality constant.

Ccp [ngK] Specific heat capacity at constant pressure.
D -] Strain rate tensor.

dp [m] Hydraulic diameter.

E [J] Energy.

Eu -] FEuler number.

e [J] Exergy.

F Extensive property.

Fs [N] Surface forces, shear forces.

Fy [N] Volumetric forces.

I [%] Volumetric forces per mass unit.
gi [%5] Acceleration due to gravity.

H [J] Total enthalpy.

h [m] Separation between walls.

1 -] Identity tensor.

K -] Von Karman constant.

k [TZ—;] Turbulent kinetic energy.

ki, ko -] Proportionality factors.

L [m] Length.

l [m] Prandtl mixing length.

M [N m] Total momentum.

Ma -] Mach number.

m [kg] Mass.
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Nomenclature

m -] Dimensionless parameter for the time period T calculation.
P,.., P, -] Physical quantities.

P [Pa] Pressure.

Q [%] Heat flux.

Qp [mi o Heat flux due combustion or chemical reaction.
Q, [m‘g -] Heat flux due to radiation.

Q [Z—i] Total discharge per unit width.

Q1 [Zg—i] Discharge per unit width of the jet.

Q2 [Z—i] Discharge per unit width of the secondary flow.
q [mi o Heat flux due to convection.

Re -] Reynolds number.

T, [K] Environmental temperature.

T5 [K] Total temperature of the jet.

T, [K] Turbulent intensity.

ty [m] Thickness of the jet pipe

T [ kgz)] Turbulent intensity tensor.

u [%] Specific internal energy.

Vi [%] Turbulent velocity scale.

v [%] Velocity of the environment.

T; [%] Mean velocity.

o [%] Fluctuating velocity.

vk (%] Shear stress velocity.

W [%] Power.

w [m] Width.

Y [m] Distance to the wall.

yT -] Dimensionless wall distance.

Greek characters

Symbol Unit Description
ag; -] Exponents of the essential dimensions.
X -] Specific heat ratio.
p [%] Density.
Ap [Pa] Pressure rise.
€ [TZ—;] Turbulent disipation.
10} Amount of F' per mass unit.
Ac -] Roughness coefficient.
L |- Load coefficient.
i [kgz)m Dynamic viscosity.
Ly [kgz)m Proportionality factor.
i [kgz)m | Dynamic turbulent viscosity.
2 I N
vt [ ] Kinetic turbulent viscosity.
I1 -] Dimensionless parameter.
O -] Constant in the transport equations of the & — ¢ model.
o -] Constant in the transport equations of the & — ¢ model.
T [ Surface forces tensor.



Nomenclature

T [ Stress tensor.

C) [°] Angle of the diffuser.

0 [°] Semi-angle of the diffuser.

Tw [%] Shear stress at the wall.

Subindices

Symbol Description

A Entrance of the nozzle.

A, Total magnitudes for the jet at a plane in the jet nozzle.

B, Total magnitudes for the secondary flow at the entrance of the mixing duct.
C, Total magnitudes for the mixture at a plane at the end of the diffuser.
E Secondary flow at the entrance of the mixing duct.

F End of the diffuser.

G Suctioned gases.

J Jet nozzle.

M End of the mixing duct.

doff Diffuser.

mix Mixing duct.

nozz Nozzle.

vi



Chapter 1

Introduction

An injector, also known as jet-ejector or jet pump, describes a device in which a pumping
effect is achieved using a motive fluid. It requires no mechanical drive and has no moving
parts. This general sentence can be applied to every injector independently of the model or
range of application.

The jet is the motive fluid and serves to create vacuum. The function will depend greatly
on the design of the nozzle, the mixing duct and the diffuser, elements which the fluid pass
through.

The flow section will change along the path. The pressure in the nozzle decreases and the
velocity rises. Conversely the flow is retarded in the diffuser while its pressure increases to
the discharge pressure at the outlet of the injector.

The beginning of the mixing duct has the lowest static pressure. At this point the suction
flow coming from the environment enters into the mixing duct and is mixed with the motive
fluid flowing with very high velocity. Part of the kinetic energy is transferred to the suction
flow. Motive flow and suction flow pass together as a mixture through the diffuser, loosing
velocity and gaining pressure.

In an injector, the static pressure energy of the motive flow which cannot be directly trans-
ferred is thus converted into kinetic energy. This kinetic energy can be released to the suction
flow by momentum transfer while both flows mingle. The diffuser converts the kinetic energy
of the mixture consisting in motive flow and suction flow back into static pressure energy.

1.1 Applications and Classification

The injectors are used to create vacuum, to compress gases, to convey liquids, to transport
granular solids and to mix liquids or gases.

The motive fluid may be

e steam at pressure above atmosphere
e atmospheric steam
e vacuum steam

e compressed gas or air



1. Introduction

1.1 Applications and Classification

e atmospheric air

e water and other available liquids.

The following table summarizes the terms of the injectors laid down according to the DIN
standards 24290. When defining certain types of injectors, the standard terms for motive
fluid and material delivered (gas, steam, liquid, solids) can be replaced by specific ones.

Suction Motive medium Motive medium Motive medium
medium Gas Steam Liquid
Gas ventilator (Gas ventilator Steam ventilator Liquid ventilator
compressor (Gas compressor Steam compressor Liquid compressor
vacuum Gas vacuum ejector | Steam vacuum ejector Liquid ejector
Liquid Gas liquid ejector Steam liquid ejector | Liquid vacuum ejector
Solids Gas solids ejector Steam solids ejector Liquid solids

Depending on both fluids, the following applications can be described:

e Steam, gas and water jet injectors are used for creating vacuum, conveying compressing
and mixing of gases, liquids and solids.

e Steam jets and water ventilators are used in waste gas mixing nozzles.

e Steam jets are used as steam jet heaters.

o Water jet liquid, vacuum and solid injectors are used as gravelpumps.

e Evaporating units.

e Steam jet cooling systems are used for water cooling by partial evaporation.

e Surface condensers and direct contact condensers are used in process plants and steam

turbines.




Chapter 2

Fluid Dynamics

2.1 Laminar Flow

When talking about fluids as a continuous environment, it should be beard in mind that
there are four basic principles which have to be carried out. These are:

e Mass conservation which leads to the continuity equation.
e The second law of Newton which leads to the constant momentum equation.

e The first principle of the thermodynamics which leads to the constant energy
equation.

e The second principle of the thermodynamics.

Apart from these main principles there are also secondary principles derivated from them,
like the constant mechanic energy, which must be also obeyed.

All the equations can be expressed either in their integral (built-in) formulation when they
are referred to a volume or in their differential formulation when the volume they are referred
to tends to a point. In order to understand what this volume is like when this volume tends
to a point there are some helpful definitions.

The principle listed above have the following ways of application:

1. All the activities of all and every one of the masses must be so that they obey the main
and the secondary relevant principles.

2. All the activities of all and every one of the volumes must be so that they obey the
main and the secondary relevant principles.

In the first case, the principles are applied to an amount of mass called system. A system can
change shape, position and thermal condition, but it must have always the same amount of
mass. For instance an element is treated like a system when it keeps the same mass although
it changes its shape and volume, like in a closed piston.

The second way takes a spatially fixed and determined volume called control volume. The
amount and the identity of the materia (mass) in the control volume can change along time,
but the shape keeps constant. For instance a nozzle would be treated as a control volume.



2. Fluid Dynamics 2.1 Laminar Flow

2.1.1 Reynolds Transport Theorem

When the equations mentioned above are assigned to any body and it is desired to have them
in terms of system or control volume, the Reynolds transport theorem will be applied.

For a given extensive property I (a property which depends on the amount of the substance),
the Reynolds transport theorem tells that the temporary variation of this extensive property
Fin a system is equal to the substantial variation of F,

dF _ DF

— = —. 2.1
dt Dt (21)

system

This gives two answers:

e How to pass from a system to a control volume.

e How to pass from the view of Lagrange to the view of Fuler.

Calculation of the Substantial Variation

The substantial variation of the property [ is calculated with the derivative of this property.
The definition of derivative is given by

dF . F|t-|—At — Fl,
A e vE— (22)

A control volume must be fixed first. The control volume will be coincident with the system
at the instant ¢

F|t = FCV|t (2-3)

and for the instant ¢ + At it will be like in figure 2.10

F|t-|—At = (FCV -+ F3)|t—|—At . (2-4)
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v t t+ /\ t

Figure 2.1: Reynolds transport theorem

Calling ¢ the distribution per mass unit of the property F', I’ can be expressed as
F:/ (bdm:/ opdV. (2.5)
m 14

Introducing equation 2.3, 2.4 and 2.5 in equation 2.2 the derivative becomes

dF r Jev op dv|t+At — Jy19p dv|t+At + Jys 0 dv|t+At — Jov opdV],
— = lim . (2.6)
dt  Ai—=0 At

Designating dA as area vector, dl as stream line direction vector and solving the whole limit
by parts, it is obtained

. fVl ¢p dv|t+At . fl pr dA dlCOSO .

i, SRR = i S = [ g da @)
. fVS ¢p dv|t+At . f3 p¢dA dlCOSO .

i, SO = i BEEEGEEE < o 7 28)

m fCV (bp dv|t+At - fCV (bp dV|t 8ICV p(b dV

li = . 2.
At At ot (2.9)
With equation 2.7, 2.8 and 2.9 the derivative becomes

dr 0 DF

— = — dv / o) dA = —. 2.10

dt system ot /CV p¢ + CS p¢ (U ) Dt ( )

In equation 2.10 pdV is a mass element contained in the control volume, [, p¢dV is the
total amount of the property F' contained in the control volume and [ ¢ p¢ (07) dA is the
flow of the property F through the area dA.
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Remarks

e The velocity ¥ is measured with regard to the surface of the control volume.

e The change along the time of the property F inside the control volume must be evalu-
ated by a fixed observer inside the control volume.

2.1.2 Mass Conservation Equation or Continuity Equation

If the extensive property [ is equal to the mass m,

m :/ ¢ dm, (2.11)
the value of ¢ must be
¢ =1. (2.12)
Applying the definition of a system
dm
- = 2.1
dt system 0 ( 3)
to equation 2.10, it is obtained
dm J
am -2 dV—|—/ 5i7) dA =0, 2.14
il . o Loedv [ o) (2.14)

which is known as the Mass Conservation Equation.

In case of air, it is more interesting to study the fluid in a point. To do so, the differential
form of the equation is used. To obtain the differential form of the equation it is necessary
to apply the Gauss theorem

f{ bitdA :/ Vo dV (2.15)
A v
to equation 2.14, obtaining then
J ~
—/ pdV + [V (pe)dv =0. (2.16)
ot Jov oV

Changing the order of derivative and integration in the first term of equation 2.16 the inte-
grand can be transformed to

9 v = 92 gy 4 1)

ot ot ot

(2.17)
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As the control volume does not change in time by definition, the second term on the right
hand side of equation 2.17 is

p=0. (2.18)
Introducing equation 2.17 and 2.18 in equation 2.16, equation 2.16 becomes

/OV[%,O—I-V(,OE)] v =0, (2.19)

Because equation 2.19 is valid for any control volume, it is also valid for any stream line:

d »
FT + V (p?) = 0. (2.20)

Using subscripts notation, equation 2.20 can be written as
J J
= — ;) =0. 2.21
50+ g (o0 (221)

If the total derivative is defined as

—=—+4vV 2.22

Dt o UV (222)
equation 2.20 can be written as

Dp

— Vi=0. 2.23

oy TPV (2.23)

2.1.3 Constant Momentum Equations

The second law of Newton says that

adm = dFy + dFs, (2.24)

where dFy are volumetric forces and dFs are surface forces applied on the element dm.
On the basis of velocity equation 2.24 can be written as

A . .
d—:dm = dFy + dFs. (2.25)

The term dm can be expressed as
dm = pdV, (2.26)
the volumetric forces applied on any element of mass can be defined as

APy = fp, dm = p f,, dV (2.27)
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and the surface forces applied on the surface of that element can be written as

—

dFs

*III

7 dsS, (2.28)

where the tensor 7 expresses all the forces that appear on the surfaces of the fluid element.
The tensor can be split up in

_ 2 N\ = =
T = (—p—l— (,uv - §) ,ule) I+ 2D (2.29)

where p is the pressure working on the element, y; is the viscosity of the fluid, p, is a
proportionality factor, I is the identity tensor and D is the strain rate tensor. Defining each
one of these elements, the identity tensor is

_ 1 00
I=10 1 0], (2.30)
0 01
the proportionality factor is
T+ T2+ 13+ 3p
v = - , 2.31
1 Ve (2.31)
and the strain rate tensor is
vy g dv a'U:r a'Uz
G d(+ ) $(E+5
= _ 1 {dus v 81/ 1 81/ avz
D= 5( + y) o L (G y 2 . (2.32)
1 (aum + auz) 1 (a'Uy + auz) aa%z

Once each of the force elements that are involved in the equation 2.24 has been defined,
equation 2.24 can be integrated over any volume

/p O v = /pfde—l—/ (2.33)

If the distribution per mass unit ¢ is set to v the property F becomes
F= / pEdV = / 5dm. (2.34)
14 14
The left hand side of equation 2.33 can be expressed as

dF d - -
—/ Tdm = / dm / p—dV = / pfmdV + / (TA)dS. (2.35)
system dt 14 S

dt
Applying the Reynolds transport theorem to equation 2.35 the Constant Momentum

Equations are obtained finally

dF F - _
- _8 V—|—/p17 (07) dS:/ pfde—I-/ (T7) dS =
dt |system cv s
8 — o - = -
—/ pvdV —I—/ pU(0R) dS :/ pfmdV —I—/ (TR)dS (2.36)
ot Jov cs v cs

where
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. % Joy pUdV is the temporary variation of the momentum inside the control volume,
o [spU(U7) dS is the convective transport through the control surface,
e [0y pf:n dV is referred to the mass forces in the control volume and

e [ (Ti) dS is referred to the surface forces on the control volume.

If the differential formulation is of interest, again the Gauss theorem, equation 2.15, is applied
to the surface terms like

/pﬁ(m) as= | Vpridv (2.37)
s cVv

and
/ Fa)yds= [ vFav, (2.38)
cs cv
resulting then in the differential formulation for the Constant Momentum Equations

8 = RN - =
577 + Vpiid=pfn+ VT (2.39)

2.1.4 Equations of Navier-Stokes

Equation 2.39 can also be written with suscripts

dlpvid v _ O (2.40)

0o
pYi 0x; 0x;

ot

Inserting equation 2.29 in equation 2.40, the Nawvier-Stokes equations for a laminar flow are
obtained
0 0 dp 2 0 [ 0Ov a [ 0v;  0Ov;
2PV S (pU) vy = plmy — -3 o — . 2.41
5P T By PV U = P =~ gH Gy, (axj) TS (axj T )

In equation 2.41 the Stokes hypothesis

2 =0
Slul oy =

and the assumption of constant viscosity u; are used.

2.1.5 Constant Energy Equation

According to the first principal of thermodynamics changes of the energy dI are done by the
work of external forces Wdt and by the heat supply Qdt:

dr . :
— = . 2.42
T =W+Q (2.42)
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The variation of the energy F can be expressed by

dE  d 1,
— = e v d 2.4
dt dt/v’o<u+2v) v (243)

where u is the internal specific energy of the fluid and v the velocity of the fluid.

The external forces W operating on the fluid volume are
W= o= /V,of;ﬁdwr/g(?ﬁ)ms, (2.44)
and the heat flux Q is equal to
Q= [Lands+ [ @, +Q) av. (2.45)

where — [ ¢'7 dS is the heat flux by conduction through the surfaces of the fluid volume and
Jv (Qp + Q) dV is the heat flux originated in combustion, chemical reaction or in radiation.

Inserting equations 2.43, 2.44 and 2.45 equation 2.42 becomes
d 1 - _ .
—/ p(u—l——v2) dv :/ pfmﬁ'dV—l—/ (TrA)vdS + Q. (2.46)
dt 14 2 system 14 S

Applying the Reynolds transport theorem 2.10 the integral expression for the Constant
Energy Equation is obtained.

0 L, 12) Sy 10
8t/CVp(u—l—Qv)dV—I—/CS,0<u—|—2v (077) dS =

/Cvpf:nﬁd‘/—l—/cs (7)) 5dS - /Cstjﬁd5—|-/cv Q) + Q) dV. (2.47)

Defining the total enthalpy H as

1 P
H=u+-v*"+= 2.48
u+ 211 + ,07 ( )
equation 2.47 can be written as

g/ pHdV—I—/ pH (v11) dS =
ot Jev cs

@dwr/ pf:nEdV—l—/ (7 ) UdS—/ (jﬁdS—|—/ (@, +Q,) dV, (2.49)
cv Ot oV cs cs oV

where

™ =F+4pl (2.50)
is the stress tensor and T the identity tensor.
The differential form is obtained applying (Gauss theorem on equation 2.49
0 0 ap 0 dq;
—(pH — H) = — TV — — i'*‘_—] r 2.51
i PH) g (o ) = Gyt e fivi = g (i) = G+ @t @ (2:51)
or in symbolic notation
0 L _Op = .
%(pH)—I—V(pHv):E—I—pfmv—l—V(T*v)—Vq—l—Qp—l—Q,,. (2.52)

10



2. Fluid Dynamics 2.2 Turbulent Flow

2.2 Turbulent Flow

Having a fluid running with a high enough Reynolds number makes the movement of this
fluid very sensitive to any disturbance and makes also these disturbances get amplified very
fast. The flow becomes very irregular taking an uncertain character. Such a flow is called a
turbulent flow which is featured by very high both spatial and temporary fluctuations of the
physical quantities.

For permanent turbulent flows, whose mean physical quantities do not change in time, the
instantaneaous quantity ¢ can be split in a mean part ¢ and a fluctuating one ¢':

¢(x7y7 Z7t) — $($7y7 Z) +¢/($7y7 Z7t)'

2.2.1  Reynolds Averaged Navier-Stokes Equations

When these splitted turbulent quantities are introduced in the differential form of the constant
momentum equations, equation 2.39, or what is the same, in the Navier-Stokes equations 2.41

an additional term VT appears.

The tensor T is known as Reynolds stress tensor and is defined by

2 Y Iyl
pu,; pULL,  —pULVL
— 1yl 2 1oyl
T P, UL puy pUy UL (2.53)
Y 7oyl 2
pulul puuy, U

The Reynolds averaged Navier-Stokes equation for the mean flow have the following form for
an incompressible fluid:

g v; + i( —,) R
ot T By, UV T

v 20 (om0 (om om0 o
—me,' 8$z 3'[” 8$2 (8$]) —I_'uaw]‘ (8$] + 8902) p@xjvi Uj' (2'54)

The Reynolds stress tensor T is normally 100 to 1000 times bigger than the laminar shear
stress tensor T in free flow.

2.2.2 Mixing Length Theory by Prandtl
The mixing length theory tries to give an analytical expression for the Reynolds stress ten-
sor. For a fluid in two-dimensional and permanent turbulent flow Boussinesq established

the hypothesis that the Reynolds stresses can be expressed in analogy to the laminar shear
stresses,

07,
Try = phy— 2.55

where 1ty was defined as the dynamic turbulent viscosity which is equal to

11



2. Fluid Dynamics 2.2 Turbulent Flow

e = puy. (2.56)

vy is the kinematic turbulent viscosity or eddy viscosity which depends on the local, normally
unknown conditions of the flow. Prandtl/ was able to substitute the turbulent kinetic viscosity
by a magnitude that he called mixing length.

Observing only the mean flow, the velocity of a particle depends on the coordinates, but not
on the time:

Aﬁxl — 5x(y + l) - 5av(y)v
ATy, = 0,(y) — Uy — ).

Developing the expressions for Aw,,

dv,
Aﬁxl — [ﬁx(y) + L

i dy] — Tz (y) (2.57)

and for Av,,

v, dy] (2.58)

the difference in velocity Av,, and Av,, can be espressed by

dv
AT, =1 —= 2.
Uy ay |, (2.59)
and
dv
AT, =1—2| . 2.
=G| (2.60)

The velocity fluctuation is assumed as the average value of these deviations, expressed as

- 7 Lo _
7] = ot = 5 (1A, | + AT, ]) =1

dv,

i (2.61)

Y

In this two-dimensional sample the main velocity in the cross direction is approximately zero
v, ~ 0 and the fluctuations in both directions are set to be proportional

du,,
— . 2.62
ml (2.62)

ol
Uy

=kyl

vy

— I

0.8

The Reynolds stresses T}, , can be espressed by

12



2. Fluid Dynamics 2.2 Turbulent Flow

dv,\ 2
= —pki k1P =Z) =
plz(dy)

dv,\ 2
— 12 bt — 12
pB () =t

Equation 2.63 is the statement of Mixing Length Theory, where [ is the Prandtl mixing
length.

Y
Uz

— oyl — A
Tyy = —pvpv, = —pks vy,

vy
dy

dv,

o (2.63)

With this theory the unknown turbulent viscosity p; has been replaced by the also unknown
mixing length [. This mixing length is undetermined in free turbulence anad has to be
modelled appropriately.

2.2.3 k — ¢ Turbulence Model

The k — ¢ turbulence model uses the eddy viscosity assumption to relate the Reynolds stresses
to the mean flow variables. This model was first derived for incompressible flows, in which
density fluctuations can be ignored. Doing a Favre averaging on the Navier-Stokes equations
the formally identical equations are obtained for the turbulent mean flow. Thus, in practice,
this model is also used for compressible flows.

The turbulent viscosity p; is modelled as the product of a turbulent velocity scale V; and a
turbulent length scale [ as proposed by Prandtl-Kolmogorov. Introducing a proportionality
factor ¢, the turbulent viscosity y¢ can be expressed by

pe = pe V. (2.64)

In this model the turbulent velocity scale V; is determined as
V,=Vk (2.65)

where k is the turbulent kinetic energy, determined by the solution of a semi-empirical trans-
port equation taken from the CFX manuals [1] as

dpk 0 4 0 e\ Ok |
W—I_ T%(pvjk)_a—lecul‘l‘ ) 8—%] =P -pe. (2'66)

Ok

ok is a constant with a value of o, = 1.0 and ¢ is the turbulent dissipation rate of & also
given by a semi-empirical transport equation written as

Opz 0 (o9 &)ﬁ _ o C e
8t+8$]‘(png)_a$]‘ KM—I_UE x‘]_cl P=epy (267)

where ¢ = 1,44, ¢ = 1,92 and 0. = 1, 22.

In both cases the shear production P is

dv; [ 0v;  Jv; 2 dv; Jv;

dx; \dz;  Ox; 3z, x;

13



2. Fluid Dynamics 2.2 Turbulent Flow

In the k — ¢ model the length scale is assumed as a dissipation length scale. For isotropic
turbulent dissipation scales Kolmogorov determined

N

k

I=—. (2.69)

Inserting equation 2.65 and 2.69 in equation 2.64, the eddy viscosity p is calculated by

k2
He = PCu=—s (2.70)

where the proportionality factor ¢, takes the value of ¢, = 0, 09.

2.2.4 Universal Formulation of the Velocity Distribution in the Vicinity
of a Wall.

In a free turbulent flow the turbulent stresses are in general much larger than the viscosity
stresses. Close to a wall this is not valid. In this region the viscosity stresses have nearly the
same magnitude as the turbulent stresses.

When moving in a region very close to a wall, ¥y — 0, with y the distance from the wall, the
shape of the duct will not be relevant for the calculations.

The parameters which have influence on the character of the flow are p, py, 7, and y. The
width of the wall h does not appear as it does not have influence on the local flow. Using
dimensionless analysis the velocity v, depends on

vy = f(ps 1t Tw, Y)
where 7, is the shear stress at the wall.

Applying the II-theorem, two dimensionless parameters are obtained,

M = =
/Ul’
and .
M, = PYU,
Hi
where

-
vi= [ 2.71
p (2.71)

is known as the shear stress velocity and II, is normally called dimensionless wall distance

yt.

With both dimensionless parameters the distribution of the velocities in the wall region can
be expressed by

g (25 2 i, 2

Equation 2.72 is often called Universal Wall Law.

14
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<l<

fully turbulent region ™ Upper Limit
o depends on
log-law region Reynolds no.
Y+=5._ Y+=60 In V'ylv

Figure 2.2: Universal Wall Law [13].

In the viscous sublayer (figure 2.2) where the viscosity predominates the value of the shear
stress at the wall can be calculated by the viscosity stress

Ovy
Tw = Tpy = ,ula—y. (2.73)

A linear function for the velocity distribution is obtained

U_i _ PYY% _ y-l- (2‘74)
Uz i
also called Prandtl’s wall law.

In the fully turbulent region (figure 2.2) the shear stress can be approximated by the turbulent
stress

Tw = Tey = —,OUQ Ull/' (275)

Using the Bousinesq approximation

v\ 2
T = —p 2 (d_”y) : (2.76)

with [ = f(y, p, 7w) and applying the [l-theorem, the mixing length [ can be expressed by
=Ky (2.77)
with a universal constant K called Von Karman constant.

A logarithmic distribution for the velocity distribution

T sme 4B (2.78)
v o
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is obtained which is also known as the logarithmic wall law.
The value of B has been obtained experimentally and is equal to 5 for a smooth wall.

For the buffer layer there is not any theoretical expression for the velocity distribution, it is
an undetermined region.

2.3 Dimensional Analysis

The application of the II-theorem has been mentioned before. This theorem, also called Buck-
wmgham “s theorem, gives the answer to the question of how many dimensionless parameters
can be formed with the physical quantities involved in a problem and how to obtain these
parameters.

A group of physical quantities is a dimensionless parameter when the multiplication of the
dimensions of those physical quantities gives the unit as a result. With this definition it is
provided that the introduction of dimensional homogeneity is also valid for the dimensionless
parameters. The dimensional homogeneity establishes that any equation derived analytically
and representing a physical phenomenon must be satisfied in any dimensional system.

By the dimensional analysis, a phenomenon can be formulated as a relation between groups
of dimensionless parameters. The main advantages of the dimensionless parameters are
e a considerable smaller number of experiments is required to establish a relation between
physical quantities,
e simplification of the problem and

e the possibility of doing experiments on scaled models.

2.3.1 II-Theorem

When in a physical problem a relation between n physical quantities Py, Ps,..., P, exists,
f(P,...,P)=0

these quantities Py, P,...,P, can be expressed on the basis of m essential dimensions, taking
the following form

. — . 4Pl Qg2 Qg
P=Pai" ay”.. ay™,

where ay,as,..,a,, are the essential dimensions and «;; are the exponents of those dimensions.

The Il-theorem proofs that the maximum number of dimensionless parameters that can be
formed with the n physical quantities is n — p, where p is the rank of the array o;;. The
relation

f(P, .., P) =0

is then equivalent to the relation

Fy, o ,_) =0

where the parameters 11, ..., II,,_, are the dimensionless parameters that can be formed with
the quantities P,Ps,...,P,.

16
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2.3 Dimensional Analysis

When
det |042']‘| 75 0

with ¢, 7 < p, there exist p independent quantities P, ,%,...,F, and n — p dependent quantities

Ppi1,Ppy2,...,P, that can be expressed by the independent ones as

Popi =11 Pi Py Py
with=1,2,..,n — p.

The expression

QAptil  Ypti2 aap+im

Poyi = Pppia"" ay m

can be transform to

Qptij = Q15 Ti1 + Q2j Tig + oo+ Qpj Tip

which is a system of m equations with p unknown quantities that can be solved as a normal

equation system to obtain the exponents z;;.

2.3.2 Main Dimensionless Parameters

The main physical quantities in the model are the pressure rise Ap, the velocity of the jet
vy, the density of the suctioned gases pg, a characteristic length dyr, the mass flow of the
jet M and the mass flow of the suctioned gases Mg. For the problem of the injector it is
of interest to obtain a relationship between the pressure rise Ap and the mass flow of the
suctioned gasses. These relationships are done in order to generalize the results for different
operating points or geometries as well as for checking the compressibility of the fluid and the

ratio between the inertia forces and the viscosity forces.

With this duties the Fuler number Fu

A
Lu= 5 - 27
2PGU;
the load coeflicient p
H= M,
the Mach number Ma
Ma = Y
c

with the speed of the sound

c=+/xRT

and the Reynolds number Re

_ pudy
i

Re

with dy as the hydraulic diameter of the duct are calculated.
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Chapter 3

Injector

3.1 Elements of an Injector
There are three main elements in an injector:

e the nozzle,
e the mixing duct and

e the diffuser.

So that, it would be useful to have a small description of each element.

3.1.1 Nozzle

The nozzle is the first element in the injector. Its main duty is to minimize the losses that
could be caused by a sudden contraction of the fluid coming in the injector directly from the
environment. Furthermore, it also accelerates this mass of induced gases before they reach
the mixing duct. This can be managed by a gradual contraction of the section where the
gases are running through, avoiding detachments or stalls in the stream.

Two kind of losses appear in a nozzle:

e friction losses and

o detachment losses.

In a long nozzle with a small contraction angle, no detachment is ensured, but the friction
losses will be increased, so that, an optimal angle should be used to minimize the sum of
both losses. This angle lies between 20° and 40°.

The angle used for the injector nozzle is much smaller than the data given above. This can
be justified by the fact that the main target here is avoiding unstable regimes and that the
nozzle is short enough to neglect the losses. These losses can be calculated by

18



3. Injector 3.1 Elements of an Injector

2
w
Ap:@pQ—?. (3.1)

Equation 3.1 is taken from [4] for angles smaller than 20°, where w, is the velocity at the
end of the nozzle and (5 is a coefficient calculated by figure 3.1.

- —— [ e
0,08/— W 2 ‘ w J
& A2 dy
- ‘ || —p=4°
0,06} —
L~ N
o~
o A 6
A 11|
_§ 0,04 74 —
i
3 1 e e
5 AEBES
"] L~
2 ;
$ o =
= . 20°
///
0
10 12 N 16 18 20

d]/dz —

Figure 3.1: Coefficient (3 [4].

3.1.2 Mixing Duct

Succeeding the nozzle, the suctioned fluid is pumped into the mixing duct. Once there, it will
mix with the mass flow of the jet. Both circumstances lead to a situation of non-developed
flow. The length of the region with this kind of flow regime can be calculated by

lna = Cy Re dyr ~ (50...100) dp, (3.2)

where Re is the Reynolds number, dy is the hydraulic diameter and (', is a constant which
values are by Boussinesq

C, = 0,06...0, 065

or by Schiller

C, = 0,029.

Non-developed flow means that in the calculation of the losses the coefficients of the Nikuradse
diagram cannot be used, but a loss coefficient according to Brauer [11] hast to be used. This
coeflicient takes the value of Ag = 0,025.

The efficiency in the mixing pipe is not easy to calculate, so that the value given by Schlag
[2] Mmiz = 0,9 will be assumed as valid.
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3. Injector 3.1 Elements of an Injector

3.1.3 Diffuser

The diffuser is placed after the mixing duct. Its target is increasing the pressure of the
mass flow which goes out from the mixing duct by converting the largest possible portion of
dynamic pressure into static pressure.

The exit flow conditions and performance level of the diffuser are related to the presence of
flow separation or stall. The maximum effectiveness is attained with a total angle between
the diverging walls of approximately 7°.

To calculate the efficiency of this element 74;¢ ¢, equation 3.3 given in [15] is used

C
Ndiff = C_p7 (3.3)
Pe

where C', is the static pressure recovery and C),, is the ideal static pressure recovery for
one-dimensional flow which can be determinated by

with AR = Width at theend of the dif fuser

Width atthe beginning of the di f fuser as area ration of the diffuser.

In order to obtain all these values, some parameters must be fixed first. Figure 3.2 is used

to obtain a value for the ratio ‘ngtholthedifjuser “\yrigh an angle equal to 82, a value of 5 is
width atthe entrance )

chosen for this ratio, which ensures the flow field is in a region where there is no appreciable
stall.

With the fixed length and the fixed angle is possible to calculate the area ratio AR and with
the area ratio AR the ideal static pressure recovery (.. The value obtained for the area
ratio is

= w = 1—|—2itan9 = 1,699.

AR
W W 2
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Figure 3.2: Flow regimes in straight-wall, two dimensional diffusers [15].

The static pressure recovery can be calculated with figure 3.3. As the factor % is unknown,

an intermediate value % = 0,015 was chosen. With % = 0,015 the static pressure recovery
becomes

C,=0,5T.
A A7
30 70 30 |40 |30 20
20 | Pressurs Recovery / = /
25,
0.015
s | wE .SS;TL"&/
/60
£ /1
o | /4/,70 T
s | /oanir
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AR .-50’ I 3
4 yd
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25(/"° 2 ,_l
10 7
s0 | e !
0 s 1 20
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" Vzo .
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Figure 3.3: Static pressure recovery [15].
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3. Injector 3.2 Confined Jet

With these data the efficiency of the diffuser is 74;r; = 0, 9.

3.2 Confined Jet

3.2.1 Plane Jet

The jet makes the job of suctioning gases from the environment and coming over the pressure
at the end of the injector.

The flow of a confined jet discharging into the same fluid can be separated in four different
regions:

1. The first one is known as the development region and consists of two potential flow zones
with different velocities separated by a shear layer. These regions are the potential core
of the jet and the mass of suctioned gases. The shear layer increases with the distance
from the nozzle, erasing the potential core of the jet. The disappearance of the potential
core indicates the end of this region. There is also another shear layer at the walls of
the duct.

2. In the second region, the shear zone extends from the center line to the outer uniform
flow, which can be considered as a potential flow. This region ends when the potential
flow has disappeared.

3. The third region is entirely a region of shear flow. Recirculation of the flow is possible
here.

4. Finally, at the end of the third region the flow can degenerate in a fully developed flow
when the duct is long enough.

Considering a plane jet coming from a nozzle of semi-height % with a uniform velocity,

discharging symmetrically in a plane duct of semi-height @, the equations of motion are

the balance of momentum in the injector “s axial direction X

v, v, ldp 107
G20 gy, D 2P 20T 3.5
e —I_vy@y pdac—l_p@y (3:5)

and the continuity equation

ov,  Ov,
il (3.6)

Integrating 3.6 it is obtained that the discharge () per unit width is constant along the injector
axis. Neglecting the shear stress in equation 3.5, the balance of momentum can be reduced
to

d Wy

%/0 i (p+pv§) dy =0, (3.7)

which states that the pressure plus momentum is also constant along the injector axis.
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3. Injector 3.2 Confined Jet

3.2.2 Study of the Principal Flow Regimes

Subtracting the jet ‘s discharge per unit width ¢1from the injector “s total discharge per unit
width @), the secondary stream “s discharge per unit width @5 is obtained

Q=0 - (3.8)

The secondary stream “s discharge per unit width ()2 can be used for a study of the principal
flow regimes:

e At an appreciably high ()5 the jet expands symmetrically in the duct.
o If (), decreases, recirculating regions appear on both sides of the injector axis.

o If ()2 decreases further, the eddies grow in size and are unequal in spatial extension. At
still lower discharges, these eddies start to oscillate. The oscillation of the jet reaches
a maximum value when the entire nozzle discharge flows back into the supply duct of
the secondary stream. When this occurs, the load coefficient p becomes negative. The
load coefficient is defined as .

= MJ
where M is the mass flow of the secondary stream or the suctioned gases, and Mjy is
the mass flow of the jet. This parameter will be used later on.

(a) Injector nozzle

Ambient fluid

Secondary eddy Injector nozzle
(c) Principal eddy Potential core

Figure 3.4: Two-dimensional jet (a) without and (b) with eddy formation. (c) Oscillating
two-dimensional jet instantaneous view [§].
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3. Injector 3.2 Confined Jet

Figure 3.4 gives an idea of the nature of the flow field. Figure 3.5 shows the flow characteristics
with the paameter % and I{/VV—J‘;’

6.._

TWO-DIMENSIONAL JET
WITHOUT EDDY FORMATION

Q TWO-DIMENSIONAL JET
= 4 WITH EDDY FORMATION ]
Ql ___..—o--"'""
- -
0"
- QOSCILLATING JEY
2 . —
0 | | 1
1 10 20 30 40 50
Wi
W,

Figure 3.5: Flow characteristics of plane confined jets [3].

In order to study the flow with oscillating jets, it is useful to define a dimensionless charac-
teristic parameter m

M Wy

7@7 (3-9)

m=

where M is the pressure plus momentum in the axial direction.

In case of oscillating jets, variations upstream and downstream of the recirculating regions is
a function only of the parameter . The oscillation period T occurring at various primary
and secondary discharge ratios can be calculatedfor m > 2 according to Curtet [8] by

-2

h
— =0,02vm — 0,029 3.10
QT b \/E b b ( )
where
_ Wy
h= —2 (3.11)

0,5+1,65VVVV—;J'

h approaches Wy when the ratio IE/VV—AZ becomes very small.
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Chapter 4

Injector Geometry

4.1 Model by Schlag [2]

4.1.1 Pressure Variation in a Gas-Gas Injector

Schlag divides the gas-gas injector for his model in three main parts: the nozzle, the mixing
duct and the diffuser. With this model of injector, he considers that the mean pressure along
an injector axis changes by the following facts:

The pressure drop in the nozzle Ap,,,.. due to the acceleration of the suctioned gases.

e The pressure rise in the mixing duct Ap,,;; due to the mixing out of the jet and
suctioned gases.

The pressure loss caused by the wall roughness in the mixing duct Ap, ;.

The pressure rise in the diffuser Apg; ;s due to the deceleration of the flow.

The model of Schlag neglects the pressure loss by wall friction in the nozzle as well as in the
diffuser and considers constant density for all the fluid mass, so that, all the calculations are
made according to this suppositions.

In the nozzle the suctioned gases raise their speed from a velocity v4 at the beginning up to
a velocity vg at the end of it. This velocity can be calculated with the continuity equation
considering also the area of the jet duct Ay. This area can be calculated with the mass flow
My, the density py and the velocity vy of the jet by

My

Ay = . (4.1)
PIvJ
Then the velocity of the suctioned gases at the end of the nozzle vy is obtained by
Mg
vp= ————7—— 4.2
BT pa(Anr — Ag) 4.2

where Ay is the area at the entrance of the mixing duct, Ay is the area of the jet, Mg stands
for the mass flow and pg for the density of the suctioned gases.
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4. Injector Geometry 4.1 Model by Schlag [2]

The pressure fall in the nozzle due to the acceleration of the suctioned gases is

PG
Apnozz = 7(7]% - U%‘) . (43)

In order to calculate the pressure rise in the mixing duct, some quantities must be defined
first. The mean velocity of the gases at the end of the mixing duct vp; can be calculated by

_MJ-I-MG

paAm (4.4

UM

The efficiency of the mixing duct 7,,:, gives the part of momentum transmitted in the mixing
duct.

The load coefficient p is defined as

pw= 7 (4.5)

The change in the pressure along the mixing duct due to the mixing of the jet and the
suctioned gases is

(vg —onm) + (e — vm)

(4.6)

In the mixing duct, there are pressure losses due to the roughness of the walls. These are
considered and can be expressed by

Ly pa
pc ' 47
Wy 2 EM (4.7)

Apr,mix - - AG

The dynamic pressure &% vp vy is calculated with the geometrical medium between the

velocity at the beginning and the velocity at the end of the mixing duct. First calculations
would be made with the loss coefficient A taken from the Nikuradse diagram, shown in figure
4.1. This A¢g is conditioned by the Reynolds number and the roughness of the wall. Bearing
in mind that in these cases the behaviour of the flow field is neither turbulent nor laminar,
the Ag will be more influenced by one or another factor depending whether the flow profile
is closer to a laminar flow or a turbulent one. If the flow is almost laminar, the coefficient
depends mainly on the Reynolds number. If the flow is almost turbulent, it will be influenced
also by the roughness of the wall. Brauer [11] took a value for Ag = 0, 02.
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Figure 4.1: Nikuradse diagram [7].

When practical measurements are done in order to obtain the pressure drop in a real duct, the
values obtained for the coeflicient Ag are larger than those obtained by interpolation of the
Nikuradse lines because at the beginning of the mixing pipe the flow is not fully developed.

Schlag evaluates his measurements and obtained a value of Ag = 0,025.

An optimal length of the mixing duct is obtained when the pressure at the end of the duct
is a relative maximum.

In the diffuser the gases are decelerated from the velocity vas to the velocity vy producing
as a consequence a the pressure rise Apy; ;s expressed by

PG
Apaigs = maiss = (03 = 0f)- (4.8)

Compiling all what have been reckoned above, the variation in the pressure for a one phase
gas-gas injector is equal to

Ap = Apnozz + Apmiz + Apromiz + Apaisy- (49)

4.2 Calculation of the Geometry

4.2.1 Requirements to the Injector

Using the model by Schlag a plane injector is designed for the following requirements:
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4. Injector Geometry 4.2 Calculation of the Geometry

e Gases with environmental conditions (T = 15°C', pg = 1 bar, v4 = 0™ /) are suctioned
at a rate of 10k9/m5 overcoming a pressure rise of 1000 Pa.

e The injector is driven by a jet with a velocity of vy = 200" /s and a total temperature
T9 = 30°C'. The load coefficient p defined in equation 4.5 is desired to be 3, 75.

The following hypotheses are made for the fluid:

e The fluid is incompressible, so that p is constant.
e The fluid is assumed to be ideal with the following constant properties: ¢, = 1004, 5 J/kg K
and R = 2877 /4, k.

The dimensions of the injector are fixed by the following rules:

e The length of the mixing duct Ljs is taken, according to Schlag [2], as 6 times the
height of the entrance

Ly

— =6. 4.10

e (4.10)
e The diffuser angle is 26 = 8? according to chapter 3.1.3.

e The length of the diffuser Lp, according to chapter 3.1.3,is 5 times the height of the
mixing duct

Lp
— =5. 4.11
o (.11
e The length of the nozzle Ly is equal to the width at the entrance of the mixing duct
W
Iy _, (4.12)
W

The thickness of the jet duct t; is taken as t; = 2 mm.

And finally some constants are chosen for the thermodynamic models:

e The efficiency of the mixing duct is equal to 7, = 0,9, according to Schlag [2].
e The coefficient Ag = 0,025, according to Schlag [2].

e The efficiency of the diffuser is set to n4;rs = 0,9, as explained in chapter 3.1.3
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4. Injector Geometry 4.2 Calculation of the Geometry

4.2.2 Calculation of Pressure Rise

Starting with the jet, the calculations have been done in the following way:

The temperature of the air at the end of the jet duct T’y is calculated by

1
T;=T9 — —v3.
2¢,

The pressure at the end of the jet duct py is approximated as

pj ~ 1Lbar.

So that, the density will be

py = é%. (4.13)
The jet mass flow is also known due to the given load coefficient:

My = % (4.14)

,u

The height of the jet W is calculated by

Wy = My (4.15)

pPIvJ

Applying equations 4.13, 4.14, 4.15 to the practical case, the values of table 4.1 have been
obtained for the jet.

Table 4.1: Parameters of the jet.

Temperature Ty | 283,24 K
Density py | 1,23%9 /2
Mass Flow M | 2,675/,
Width Wy | 10,84 mm

The pressure gain in the plane injector is calculated as follows:

The pressure in the nozzle will vary according to equation 4.3. With the consideration of
v4 = 0 the pressure drop in the nozzle is

2
Apnozz — _—pGQUE . (416)

Introducing a dimensionless factor a

a=-—2 (4.17)
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and equation 4.5, equation 4.2 can be transformed to

_ Mg _ pc My
vE = = )
PG (WM—WJ—QtJ) PG [WJ((Z— 1) — 2tg]

The pressure rise in the mixing duct is given by equation 4.6. Inserting the parameter a, the
losses can be calculated as

(v —vm) —p(vg —om)
a WJ nmll’

Apmm’ - MJ

with )
_ My (p+1)
vy = ——

paaWy

as the velocity at the end of the mixing duct.

The pressure rise along the diffuser is given by equation 4.8, but the velocity at the end of
the diffuser is unknown yet. A relation between the velocity at the beginning and at the end
of the diffuser must be found first. This can be done using the geometric parameters and the
constant mass flow equation.

By geometry
Wr — Wy =2Lp tané.

By constant mass flow
Wat par v = Wr pp op.

Taking p as constant, vy as the velocity at the entrance of the diffuser and vy as the velocity
at the end of the diffuser, the ratio UEJ\Z— is given by

1

o T (4.18)

VM 1+2 W—f/[ tan 6

Introducing equation 5.1 in equation 4.8 the pressure rise can be expressed by
2
PG 2 1

APgitr = Nagirf —v 1— . 4.19
Paiff = Maifs = U (1+2%tan9) (4.19)

The losses in the mixing duct can be obtained using equation 4.7.

Once this has been done, the net pressure rise is calculated by summing up the pressure rises
and drops in the elements according to equation 4.9.

Varying the ratio a, the points of figure 4.2 are obtained. This figure shows the pressure rise
depending on this parameter.
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Figure 4.2: Net pressure rise in the injector for different values of the parameter a

Looking at the figure 4.2, there are two values of the parameter ¢ that carry out the require-
ments established before. These values are shown in table 4.2.

Table 4.2: Values of the parameter @ which carry out the requirements.

ay 197 28
as | 25,58

These two ratios give two possible injector geometries.

4.2.3 Calculation of the Geometry

Once these values have been obtained, it must be decided which geometry should be used.
The one with the larger ratio I{/VV—A;I or the one with the smaller. This will depend on the
conditions of the problem and its requirements. In this case the smaller one is chosen,
because it is required a small geometry with the capability to overcome the design pressure

rise for a constant jet mass flow.

The characteristics for both possible injector geometries are shown in figure 4.3. It can be
noticed that for the larger ratio of heights, small fluctuations in the load coefficient p give
almost no variation in the pressure rise, so that, the injector with this geometry can be used
when the jet flow rate is not that constant as required and the pressure rise is desired to be
nearly constant. For the small injector, a larger range of pressure rises can be overcome when
changing the load coefficient.

31



4. Injector Geometry 4.2 Calculation of the Geometry
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Figure 4.3: Characteristics for both possible injector geometries using the model by Schlag.

The model by Schlag uses only average values in different control planes. Thus, only the
width of those control planes can be determined. The length of the nozzle, the mixing duct
and the diffuser are determined by equations 4.10, 4.11 and 4.12. The shape of the walls is
not necessary for the model by Schlag. The profile of the diffusor is chosen to be a straight
line, and for the remaining elements, the nozzle and the mixing duct, two different profiles

will be investigated.

1. The first shape consists of straight lines between the control planes.

2. The second shape is constructed by drawing a circle being tangent to the diffuser
and passing through the calculated heights at the beginning of the nozzle and at the
beginning of the mixing duct.

The radius of the circle R4 can be calculated by

Ry = 2Lu (4.20)
"7 sing '
with 8 as the half of the angle of the diffuser.
The nozzle width W, is calculated for both geometries by
Wy = @ + Ri(1l—cosa) — Ry (1 —cosf) = @ + Ry (cos® — cosa) (4.21)
with
SLu+W
« = arcsin M (4.22)
Ry
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4. Injector Geometry

4.2 Calculation of the Geometry

Both geometries are plotted in figure 4.4 and 4.5.
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Figure 4.4: Half injector with constant width mixing duct.
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Figure 4.5: Half injector with a circle as wall shape.
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Chapter 5

Model Used in CFD

Once the necessary values to draw the geometry are fixed, the injector can be modelled in
a program which uses CFD codes. With this program the flow in different operating points
will be analyzed. The results will be compared with the results obtained by the model of
Schlag.

5.1 Building the Model

Before starting the calculations an appropriate model has to be chosen.

5.1.1 Half or Full Geometry

By the drawings of the injector, the injector can be considered as a symmetric object in order
to simplify the calculations and make them faster. Considering only half of the injector makes
the number of nodes smaller and, as a consequence, the time required for the calculations
is shorter. But the property of symmetry can only be used successfully when the flow is
symmetric, too. A non-symmetric flow field for instance, eddies of different sizes on both
sides of the jet, cannot be modelled by the half geometry. The load coeflicient is calculated
with the results of the inlet flow through the boundaries of the model and changes for a
non-symmetric flow depending on the use of a symmetric or a non-symmetric model.

5.1.2 Steady or Unsteady

As in the previous case, depending on the conditions of the problem, the flow field can change
with time. This occurs when the conditions for a swinging jet are reached. In these cases,
the steady state solution is not reliable physically.

If the example of the load coeflicient is taken again, a similar situation to the one before
appears. When the jet swings, the outlet flow through the boundaries changes with time.
The instantaneous load coeflicient calculated with the mass flow through the boundaries
changes with time, too.

In cases of a transient flow, a proper time step width must be chosen in order to get useful
results for every time step. Splitting up one jet period into twenty time steps ensures good
enough results to get proper average values. Also the changing flow field is expected to be
resolved well.
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5. Model Used in CFD 5.2 Boundaries and Turbulence

5.2 Boundaries and Turbulence

The boundary conditions are chosen in order to cause an adequate change of pressure from
the beginning to the end of the injector. This change is done both for the design case and
for different cases where the observation of jet reactions, output values for the flow or the
display of any magnitude is interesting. To obtain correct output values the following steps
must be beard in mind.

5.2.1 Inlet Boundaries

At the jet nozzle an inlet boundary is applied. At an inlet boundary the velocity components,
the turbulent kinetic energy and the turbulent dissipation rate have to be specified. For a
compressible calculation the temperature must be specified additionally. The pressure is
extrapolated during the solution process from downstream flow data.

The turbulent kinetic energy, k, comes by the fluctuating values of the velocity, and it can
be expressed by

Assuming isotropic turbulence

equation 5.1 can be written as

k= ;F (5.2)

Introducing in equation 5.2 the turbulent intensity T, defined as

the turbulent kinetic energy & can be expressed by

= ;(TU o)2.

The turbulent intensity 7, is chosen to be 0, 035.

According to equation 2.69, the turbulent dissipation rate £ can be specified by

o

k

£ l .

The dissipation length scale is set to be equal to the width of the jet nozzle
[=Wj.
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5. Model Used in CFD 5.2 Boundaries and Turbulence

5.2.2 Pressure Boundaries

Pressure boundaries were used at the inlet and at the outlet of the flow domain because there
was no information about the velocity distribution.

The "environmental" inlet models the envinronment. A total pressure boundary condition
was specified to ensure a correct modeling of the environmental conditions. The total tem-
perature was also specified for calculations with compressible fluid.

During the solution process the static pressure is extrapolated from downstream flow data
and the velocity is calculated by the model of isentropic acceleration of the fluid. Neumann
boundary conditions, i.e. zero normal gradients, are imposed on the velocity components and
zero gradients on the turbulence quantities k£ and .

At the outlet of the flow domain a static pressure boundary condition was applied. Neumann
boundary conditions are imposed on the velocity components, on the turbulence quantities
k and g, and also on the temperature for compressible calculations. The outlet of the flow
domain was located round one diffuser length downstream of the end of the diffuser to ensure
there is no local influence of the pressure boundary condition on the velocity components.

The diffuser and the outlet were connected by a so called tail pipe. Although additional losses
by numerical dissipation and by mixing out of the flow were expected in the tail pipe, the
obtained results how that these losses are low compared to the pressure rise of the injector.

5.2.3 Symmetry Boundaries

For the symmetric model of the injector a symmetry boundary condition was applyed at the
axis of the injector. At a symmetric boundary condition, the Neumann boundary condition
is imposed on all physical quatities.

5.2.4 Wall Boundaries

The no-slip condition was imposed for the velocity components on the walls. For compressible
calculations the walls are set to be adiabatic. The high Reynolds number k — ¢ turbulence
model with wall functions was used to model the boundary layer.

The use of a wall function as implemented in the CFD-code demands a dimensionless wall
distance yt, calculated with the thickness of the first cell adjacent to the wall, in the range

30 < yT < 100.
Because of the complex geometry and because of the loacally high gradients of quantities,
the mesh could be refined at least so far that all the dimensionless wall distances were in a

range
15 < yT < 200.

36



Chapter 6

Results

6.1 Incompressible Fluid

6.1.1 Injector Characteristics by the Model of Schlag.

The model of Schlag is calculated with the assumption of incompressible fluid. The different
widths of the injector planes such as that at the beginning or that at the end of the mixing
pipe have been calculated with this condition. Once this has been done, the characteristic
curve of the injector can be calculated. This curve shows the correlation between the pressure
rise and the load coefficient.

The densities have been calculated according to the hypotheses made for the ambient tem-
perature and for the total temperature of the jet. They are shown in table 6.1.

Table 6.1: Values used for the temperature and density.

Temperature of the jet T 283,24 K
Density of the jetp 1,23%9 / s
Temperature of the ambient T, | 288,15 K
Density of the ambient pg 1,21%9 /4

Figure 6.1 shows the characteristic curve of the injector according to the model of Schlag.
This curve shows the normalized pressure rises that the injector can come over for different
load coefficients.

The characteristic curves of both injectors with different wall shapes are the same because
the wall shape has no influence in this model, at least so far as the efficiency of the mixing
duct does not change.
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Figure 6.1: Characteristic curve of the injector by the model of Schlag for a constant jet mass
flow.

In figure 6.1 there is no distinction between taking one half of the injector cutted by its
symmetry plane or considering the whole injector. The reason of making no distinction is
implicit in that model. This model only considers the ratio I{/VV—A;I and different load coefficients
to get the pressure rises at the end of the diffuser. Schlag does not take into account the
generation of non-symmetrical flow or the swing of the jet when the pressure at the outlet is
higher than in the design point. This model assumes the flow field as steady, even in operating
points with a low load coefficient, where according to Curtet 8] the flow is transient.

6.1.2 Injector Characteristic by CFD Model

The CFD model will give an accurate visualization of the flow field inside the injector for
different pressures at the end of the diffuser as well as the possibility of obtaining the load
coeflicient.

6.1.2.1 Injector with Straight Lines as a Wall Shape

In the straight lines geometry the mixing duct has a constant width. A constant width mixing
duct makes the structure easier to build than any other feasible geometry. It will be shown
that both the efficiency and the load coefficients are lower than for the geometry with a circle
line as a wall shape. The decrease of the load coefficient for the same pressure at the end of
the diffuser results also in the appearance of vortices and asymmetries at lower pressures.

Starting with half geometry calculations have been made for a pressure rise range from
Ap =0 Pa to 2500 Pa.
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6. Results 6.1 Incompressible Fluid

First the flow field of the design point was calculated and the results are analyzed.

The flow field is as expected for a confined jet. High gradients in the v, velocity at the be-
ginning of the mixing duct with a strong shear stress region and a progressive dissappearance
of the jet at the same time as the shear stress region grows. The high gradients are present
while the potential core of the jet exists. An interpolation of the v, velocities and its flow
field at the beginning of the mixing duct are shown in figures 6.2 and 6.3.
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Figure 6.2: Interpolation of the values of v, at the beginning of the mixing duct.

At the end of the mixing duct an enterly region of shear flow should be reached. Doing a graph
with the interpolated values of the v, velocity, it is found that the v, is not constant. This
means that the maximum pressure that can be reached in the mixing duct is not achieved as
assumed in the theory by Schlag [2]. The profile of the v, velocity is almost constant at the
end of the diffuser. This means there will not be a rise in the pressure along the tail duct, as
required for the CFD model in the chapter 5. Both velocity profiles are shown in figure 6.4.
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Figure 6.3: Velocity vector field at the beginning of the mixing duct, design point, colored
with v, velocity.
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Figure 6.4: Interpolation for the v, velocity in the injector at the end of the mixing duct and
at the end of the diffuser at the design point for half geometry.

40



6. Results 6.1 Incompressible Fluid

Furthermore, the load coeflicient can be calculated. It is obtained p = 3,05, lower than
expected by the model of Schlag. This result creates the necessity of checking the efficiency
in the injector as a possible explanation for this lower value.

In the interval from Ap = 0 Pa to 2500 Pa, calculations have been made for the following
points: Ap = 0, 550, 1000, 1500, 2000 and 2500 Pa. The load coefficients of table 6.2 were
obtained by these calculations.

Table 6.2: Values of the load coeflicient for the straight lines geometry cutted by the symmetry
plane and incompressible fluid.

Ap=0 Pa w=4,168
Ap =550 Pa | = 3,583
Ap=1000 Pa | g = 3,050
Ap=1500 Pa | p = 2,248
Ap=2000 Pa | p = 1,350
Ap=2500 Pa | p =0,212

When modeling only a half of the geometry no problems are supposed to exist for the design
point. However, for higher pressure rises, or what is the same, for lower load coefficients,
there is the possibility that vortices are formed with unequal extension in size at both sides
of the symmetry plane or even that the jet swings. If this phenomenon occurs, the results of
the half geometry will not be reliable. To have an idea about when the vortices will appear
figure 3.5 is used.

In this figure and for the value of W’" = 19,2815 it is found that the eddy formation starts

at a value Q =4 and the oscﬂlatmg Jet starts at a value of Q = 2,5 . To express this ratio

by the load coefficient the following development is done:
Q _h+Q Q2

0= g =it =ltn (6.1)

So that, the formation of eddies starts for a & = 3 and the jet starts swinging at a p =1, 5.

In figure 6.5 the velocity vector flow field is shown for Ap = 2500 Pa and p = 0,212. The
formation of eddies can be seen clearly in this figure. Because of using a symmetry plane in
the injector axis no asymmetry of the flow field can appear. This is the reason why the whole
geometry model must be used.
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Figure 6.5: Eddy formation for half geometry, straight lines geometry, p = 0,212, colored
with v, velocity.

In the whole geometry model calculations were run for the design point pressure rise as well
as for the pressure rises of Ap = 0, 550, 1500, 2000 und 2500 Pa. For these pressure rises,
the obtained load coeflicients are shown in table 6.3.

Table 6.3: Load coeflicients for the straight lines geometry, whole geometry, incompressible

fluid.

Ap=0Pa w=4,259
Ap=>550Pa | p=3,719
Ap=1000Pa | p = 3,106
Ap = 1500 Pa | p = 2,348
Ap=2000Pa | p=1,350
Ap=2500Pa | p = 0,286

Again the load coefficient at the design point is lower than the one expected by the model
of Schlag. For higher pressure rises the values obtained for the load coefficient p are in the
region of eddy formation and swinging jet.
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6. Results 6.1 Incompressible Fluid

Doing a comparison between the load coefficient of both geometries, the results seem to be the
same, as shown in figure 6.6. However taking the pressure rise Ap = 1500 Pa with p = 2, 348,
the non-symmetrical flow field is shown in figure 6.7. In the upper part of the mixing duct a
vortex can be seen clearly.
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Figure 6.6: Comparison of load coefficients between half and whole geometry, straight lines,
incompressible fluid.

Following the theory of Curtet [8] only asymmetries should appear but no oscillatory phe-
nomenon for this load coefficient. A transient calculation has been made to check if the jet
swings. Calculating the load coefficient for the last time steps, it can be concluded that this
coefficient is constant as shown in figure 6.8.
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Figure 6.7: Non-symmetrical eddy formation for whole geometry with g = 2,348, incom-
pressible fluid, colored with v, velocity.
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Figure 6.8: Instantaneous load coefficients, pressure rise 1500 Pa, incompressible fluid.
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For a pressure rise Ap = 2500 Pa where the p is low enough to have a swinging jet, the time
period of the recirculating regions has been calculated with help of equations 3.9, 3.10 and
3.11.

The time period has a value of T = 0,028 s and is used in the transient calculation to obtain
the periodical function of the load coeflicient. An average value for the load coefficient can
be calculated with these instantaneous values.

When doing a graph with the values of u obtained in several time steps of the transient
calculation for a pressure rise Ap = 2500 Pa the periodicity can be recognized in figure 6.9.
The calculated time period is 0, 0448 s, higher than the one given by Curtet.
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Figure 6.9: Variation of the load coeflicient for Ap = 2500 Pa, incompressible fluid.

The average value for the load coefficient of the swinging jet is in this case u = 0,0804.

It is also possible to show the instantaneous flow field along a time period. The changing flow
field is shown in figures 6.10 to 6.15. It can be seen that there are time steps where the jet
is bumping against the walls and time steps where the flow field is almost symmetric. The
minimum and maximum discharges are reached in intermediate positions of the jet because
of some transient effects in the movement of the fluid.
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Figure 6.13: Velocity vector flow field in time step 17, incompressible fluid, colored with v,
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Figure 6.14: Velocity vector flow field in time step 18, incompressible fluid, colored with v,

velocity.

As can bee seen two vortices are present, one on the upper side and one on the lower side
of the jet. The vortices change their size and position with time. In figure 6.14 even three
vortices can be seen. The third vortex is formed when the jet divides the lower vortex into

two parts.
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Figure 6.15: Velocity vector flow field in time step 21, incompressible fluid, colored with v,

velocity.

It is also of interest to see how the pressure rises along the injector axis. The pressure

increases in order to obtain the desired pressure rise at the end of the diffuser. Figure 6.16
presents the change of the pressure along the symmetry axis for the design point both for the

half geometry and for the whole geometry.
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Figure 6.16: Pressure along the injector axis for incompressible fluid and straight lines ge-
ometry.

Both models seem to have the same pressure distribution along the injector axis. This is true
from the point of view that for the design point there should not be any asymmetry in the

flow field.

Some regions of the injector can be distinguished in figure 6.16. Figure 6.17 shows the velocity
distribution for several planes along the injector axis. The minimum of the pressure is located
at x = 0m. This minimum is coincident with the beginning of the jet where the maximum
of kinetic energy exists. The pressure increases very fast in a short distance, caused by the
sudden decceleration of the jet when entering the mixing duct, approximately at = 0, 1 m.
The increasing shear stress layer erases the potential core of the jet and the pressure increases
at a constant rate, x = 0,5 m. Once the potential core has disappeared, x = 1 m, the pressure
keeps rising while the shear stress region extends from the center to the walls. And finally,
at the ending part of the mixing duct this shear stress region has been almost extended
completely. Along the diffuser the rest of the remaining kinetic energy of the gases is used
to rise the pressure. Furthermore, there is no pressure rise along the tail duct, which agrees
with our requirements for the boundary conditions.
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Figure 6.17: Velocity distribution at different distances from the jet nozzle for incompressible
fluid and straight lines geometry.

As a consequence of the mixing out of the jet and the suction gases losses are created. To
have an idea how big they are or how much work is extracted from the injector, the efficiency
is calculated. The efficiency gives a ratio between the obtained exergy and the applied exergy.

The exergy is a measurement of the useful energy in the process, and is defined by Fratzscher
et al. [6] as

Ae = Ah —T, As. (6.2)

Developing each member of equation 6.2

Ae=c,(T =T, —Tuc, lnTz—l—RTu InL (6.3)
u Pu

is obtained, where ¢, is the specific heat capacity at constant pressure. The subindex u
indicates a measurement in the magnitudes in calm conditions which have been taken as
T, = 15°C' and P, = 100000 Pa. P and T are the total pressure and total temperature,

respectively.

To obtain the efficiency 7 following calculation is made,

- 1

ec, (g +1my)  eo, (6.4)
myea, +MaqeB,  €C,en '

where A4, indicates the total magnitude at the exit of the jet nozzle, B, the total magnitude
of the secondary flow at the entrance of the mixing duct, and ', means the total magnitude
of the mixture when the values are taken at the end of the diffuser.
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6. Results 6.1 Incompressible Fluid

The necessary magnitudes to obtain the exergy have been calculated by averaging the values
of the pressure, velocity, density, temperature, velocity? and % at the beginning of mixing
duct for the jet and for the secondary flow, and at end of the diffuser for the mixture.

Applying equation 6.4 the efficiency achieved by the injector for the design case is equal to
n=36,6%.

6.1.2.2 Injector with Curve Lines as Wall Shape

Starting the calculations with the half geometry model, it appears a symmetric problem with
symmetric results. But it is already known this is not always true, especially in the case of
low load coefficients.

Running a calculation for the design case, the obtained load coefficient is ¢ = 3,31. This
value is lower than the expected by the model of Schlag, although larger than the one for
the injector with straight lines. With this g and by figure 3.5 no eddies or asymmetries are
expected. Checking the v, velocity in figure 6.19 there are no negative values for it and
the flow field is as supposed. Figure 6.18 and 6.19 show the high gradients in the velocity
at the beginning of the mixing duct where the jet starts mixing with the gases from the
environment.
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Figure 6.18: Interpolation of the values of v, velocity at the beginning of the mixing duct.
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Figure 6.19: Velocity vector field at the beginning of the mixing duct, colored with v, velocity.

The interpolation of the values of the v, velocity at the end of the mixing duct and at the
end of the diffuser are shown in figure 6.20.

The axial component of the velocity, v,., can be considered as constant at the end the diffuser,
but not at the end of the mixing duct. In fact, it is larger than in the case with the straight
lines, but also the load coefficient is larger. A constant velocity profile over a wide range
would be desiderable to obtain the maximum performance in the mixing duct.
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Figure 6.20: Interpolation of the v, velocity in the injector at the end of the mixing duct and
at the end of the diffuser at the design point for half geometry.

Calculations have been done in order to analyze the off-design behaviour of the injector.
The pressure rises are Ap = 0, 550, 1500, 2000, 2500 und 3000 Pa. With them, the load
coeflicients of table 6.4 have been obtained.

Table 6.4: Load coefficients for the curved line geometry cutted by the symmetry plane and
incompressible fluid.

Ap=0Pa w=4,276
Ap=>550Pa | u=3,765
Ap=1000Pa | p = 3,310
Ap=1500 Pa | p = 2,664
Ap=2000Pa | p = 1,969
Ap=2500Pa | p=1,162
Ap=3000Pa | p=0,185

Load coefficients in the regions of eddy formation and swinging jet are obtained, but possible
asymetries that could exist cannot be shown in this model. For instance for a pressure rise
of 3000 Pa the half geometry model only shows a big vortex without any asymmetries or
movement of the jet as seen in figure 6.21. Then, these results are not valid for the whole
range of pressure rises.
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Figure 6.21: Eddy formation for half geometry curved line with g = 0, 185, colored with v,

velocity.

As the results for the half geometry cannot be accepted in any operating point as valid, the
whole geometry model was used to obtain the load coefficients for the pressure rises from

Ap =0 Pa to 3000 Pa. These coefficients are shown in table 6.5.

Table 6.5: Load coefficients for the curved line geometry and incompressible case.

Ap=10Pa w=4,306
Ap=>550Pa | = 3,808
Ap=1000 Pa | = 3,411
Ap=1500Pa | p = 2,684
Ap=2000Pa | = 2,017
Ap=2500Pa | p=1,181
Ap=3000 Pa | = —0,0296

Again there are load coefficients for the cases of high pressure rises which are in the region
of a swinging jet. Doing a graph with the results of the load coeflicients for the half and for

the whole geometry figure 6.22 is obtained.
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Figure 6.22: Comparison of load coefficients between half and whole geometry, curved lines,
incompressible fluid.

Here the results are not the same for the half geometry model and for the whole geometry
model at high pressure rises. For the half geometry a load coefficient of p = 0,185 was
obtained for the case of Ap = 3000 Pa. In the whole geometry the load coefficient takes a
value of pp = —0,0296 for the same pressure rise. Both of them are not reliable because they
lie in the swinging jet area, so that, a transient calculation is required.

Furthermore, the negative load coefficient means that the pressure at the end of the injector
is higher than the one the injector can come over and there is a reversible flow. When a
transient calculation was tried, the results were incongruent due to the reversible flow. To
make a transient calculation a lower pressure rise Ap = 2750 Pa was chosen. This pressure
rise gives a low value for the load coefficient in the steady state calculation: u = 0,5489. The
transient calculation with the oscillation of the load coefficient is reflected in figure 6.23.

The average value for the load coefficient is p = 0, 5547.

It is again of interest to check how the pressure changes along the injector axis, for both
geometries and for the design case. Figure 6.24 shows both cases.
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Figure 6.23: Instantaneous load coeflicient for Ap = 2750 Pa, incompressible fluid and curved
lines geometry.
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Figure 6.24: Pressure along the injector axis for incompressible fluid and curved lines geom-
etry.
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Again the absence of asymmetries in the design point makes both profiles almost identical.

At the beginning of the mixing duct, very close to the jet nozzle, the pressure increases very
fast as the jet looses kinetic energy mixing with the gases from the environment. Afterwards
the pressure keeps almost constant until nearly the half of the mixing duct, 2 = 0, 5m. This
occurs because of the shape of the mixing duct. The cross-section decreases and the gases
are accelerated until the half of its length. While the gases are being accelerated, there is no
conversion of kinetic energy into static pressure.

The pressure profile is lower and smoother in general than in the constant width mixing
duct. However, the pressure that could be overcome is higher due to the larger velocity of
the mixture at the end of the diffuser.

The velocity distribution at the same distances from the jet nozzle as in the straight lines
geometry is shown in figure 6.25. In general, the velocities are higher than in the case of
constant width mixing duct as it was expected, especially for the planes which distance from
the jet nozzle is 0,5m and 1m. These planes have the largest differences in pressure rise
because they are situated in the region of the converging duct.

200 'm
—e— Distance from the jet nozzle =Om.
-0 Distance from the jet nozzle =0,1m.
—v — Distance from the jet nozzle =0,5m.
—v— - Distance from the jet nozzle =1m.
a 150 - —=— Distance from the jet nozzle =1,25m.
E — - Distance from the jet nozzle =2,29m.
N
z il
1) IR
S AlE
o 100 + : -
> M
> 7 \\\
/V_‘/v -
il N
207 = b 3
5 D:;%;Ef-a—:— ~D—g:g;g, "
. . _g—o— / E‘\ O—0- . ﬂ\:
i J |y ~
0 ./ X. p L
= T - v T T T v ™ T =
-0,20 -0,15 -0,10 -0,05 0,00 0,05 0,10 0,15 0,20

Distance from the symmetry axis (m)

Figure 6.25: Velocity distribution at different distances from the jet nozzle for incompressible
fluid and curved lines geometry.

The efficiencies for the curved lines case are expected to be higher than in the straight lines
case. This phenomenon can be understood looking at the shape of the mixing duct. The
energy lost in the mixing process is the work done by the turbulent stresses. Decreasing
the velocity differential between the primary and secondary flows can reduce this work. A
positive pressure gradient, as in the constant width mixing duct, decreases the velocity of the
secondary flow more in proportion to the velocity of the jet, causing an adverse effect on the
velocity difference. Conversely, a negative pressure gradient as in the curved lines geometry,
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supports an equalizing effect on the mixing process and so reduces the work done by the
turbulent shear stresses.

The efficiency for the design case is in this geometry equal to 42,3 %. Comparing with the
case of straight lines this is 16,6 % bigger.

6.2 Compressible Fluid

The cases before are treated with the supposition of incompressible fluid, due to the fact that
Schlag considers this hypotheses to build up his model. But in the problem considered here,
the jet comes out with a velocity of vy = 200™ /. If the Mach number is calculated according
to equation 2.81, the result is Ma = 0,6. For Ma > 0,4, it is said in [14] that the effects of
the compressibility must be taken into account.

6.2.1 CFD Model for Compressible Fluid

The calculations are done for the same environmental conditions and for the same pressures
at the outlet as in the cases before, but with the consideration of compressible fluid.

Both for the case with the constant width mixing duct and for the case with the circle as
wall shape the same dimensions in the geometry are used. If it is desired to calculate a new
geometry for a compressible fluid, not only the equations of motion but also thermodynamical
equations must be applied. The application of thermodynamical equations makes the model
more complicated than the one given by Schlag.

6.2.1.1 Injector with Straight Lines

Having run calculations for the pressure range from Ap = 0 Pa to 2500 Pa the load coefficients
of table 6.6 were obtained for the half geometry and the ones of table 6.7 for the whole
geometry.

Table 6.6: Load coefficients for the straight lines geometry cutted by the symmetry plane
and compressible fluid.

Ap=0Pa w=3,4282
Ap=550Pa | p=3,0152
Ap=1000Pa | p = 2,5403
Ap=1500 Pa | p = 1,9093
Ap=2000Pa | p=1,1110
Ap=2500Pa | p=0,0316

58



6. Results 6.2 Compressible Fluid

Table 6.7: Load coefficients for the straight lines geometry and compressible fluid.

Ap=0 Pa [ = 3,5399
Ap = 550 Pa | 4= 3,0266
Ap = 1000 Pa | p = 2,5951
Ap = 1500 Pa | u=1,9192
Ap = 2000 Pa | = 1,1675
Ap = 2500 Pa | 4 = 0, 4266
Ap = 3000 Pa | p= —0,33

The data of both tables are graphed in figure 6.26. When the pressure at the outlet is high
the load coefficients are much different. It can be affirmed without seeing the figures of the
flow field that the flow is not equal in both cases for the same pressure conditions. This
means that asymmetries appear.
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Figure 6.26: Comparison of load coefficients for the compressible case with straight lines
geometry.
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Figure 6.27: Velocity vector field for the half geometry model with Ap = 2000 Pa, colored
with v, velocity.

Figures 6.27 and 6.28 show the flow field of the half geometry model and the whole geometry
model for the pressure rise Ap = 2000 Pa, respectively. In the figure representing the half
geometry model, there are no asymmetries in the flow field. On the contrary, the figure
representing the whole geometry shows an asymmetry of the flow field.

The difference between load coeflicients can also be justified by the fact of having done only
a steady state calculation. For the case of Ap = 2500 Pa, the load coefficient is in the region
of a swinging jet. Applying the condition of transient flow to this pressure rise the load
coefficients change with time as shown in figure 6.29.
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Figure 6.28: Velocity vector field for the whole geometry model with Ap = 2000 Pa, colored
with v, velocity.
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Figure 6.29: Instantaneous load coefflicients for Ap = 2500 Pa, compressible fluid and straight
lines geometry.

61



6. Results 6.2 Compressible Fluid

The average value for the load coeflicient is equal to p = 0, 2635, lower than the one reflected
in the steady state calculation.

Figure 6.30 depicts a comparison between the load coefficients of the incompressible case and
those of the compressible case. The characteristic curve of the compressible case is much
steeper than the one of the incompressible case.

For the incompressible case the jet and the secondary flow densities are taken as constant
all along the injector. However, these densities change in the compressible case. Taking
arbitrarily the design case, Ap = 1000 Pa, the values obtained for the density and for the
velocity in the jet and in the secondary flow show why the load coefficients are lower for a
compressible fluid.
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Figure 6.30: Comparison between the load coeflicients for the incompressible and for the
compressible case for the straight lines geometry.

Table 6.8 is obtained by interpolating the values of the density and the velocity in a plane at
the entrance of the mixing duct.

Table 6.8: Comparison between the incompressible and compressible case, straight lines
geometry.

Incompressible Compressible
py=1,210"/ s | p;j=1,223%/
vy = 181,6121™/, | vy = 181,6121™/;
pe = 1,217/ 5 pe = 1,187/ 5
ve = 34,387/ ve = 30,077/,

With the values of table 6.8, the mass flow m; through the inlets can be calculated with
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m; = p;v; Aj.

(6.5)

Applying this equation, the values obtained for the mass flow are shown in table 6.9.

Table 6.9: Comparison between the mass flow in the incompressible and compressible case,
straight lines geometry.

Incompressible | Compressible
1y = 2,428 | iy =2,44% )/,
e = 8,07/, | mg =6,92"/,

Applying the definition of load coefficient, equation 4.5, the load coefficient for the compress-
ible case is lower.

Furthermore, being the density of the secondary flow smaller, it is easier for the jet to
penetrate into this stream. Due to the decrease of the density, the mass flow suctioned
is also smaller as it was reflected in table 6.9. With these two reasons it can be said that the
mixing process is sooner completed. So that, the velocity profile at the end of the mixing
duct is more uniform and closer to a constant profile than in the incompresible case. At the
end of the diffuser both profiles are very close and considering that the discharge is smaller
now, it can be said they are almost identical. Both cases are shown in figure 6.31.
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Figure 6.31: Comparison between the v, velocities both for incompressible and compressible

fluid.

The pressure distribution along the injector axis will also differ due to compressibility. Figure
6.32 shows how a more uniform and lower velocity at the end of the mixing duct results in a
higher pressure at the end of the mixing duct.
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Figure 6.32: Comparison between the pressure distribution along the injector axis for com-
pressible and incompressible fluid for the straight lines geometry.

The efficiencies have been calculated for the whole pressure range and are shown in figure
6.33.
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Figure 6.33: Efficiencies of the straight lines geometry, compressible fluid.
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For the design case the efficiency is 17, 4 % lower than that of the incompressible case, Neomp =
30,0 % < Mincomp = 36,3 %. The mass flow of the secondary flow is smaller in the compressible
case and so the injector efficiency is also lower.

The maximum efliciency lies in the region where the vortices begin to appear, near to a
@ = 2,5. At this point, the presence of vortices generates gains in the injector due to the
suppression of adverse static gradients to complete the mixing process [9]. This gain offsets
the additional energy required to form the vortices. Larger vortices requires more energy and
give rise to a fall in the efficiency. For load coefficients larger than the one of the design case,
the increase of the total energy is smaller than the energy required to maintain the vortices.
Therefore the efficiency for these cases will decrease.

6.2.1.2 Injector with a Circle as a Wall Shape

Doing the same experience for the curve line profile, the results are similar to the comparisons
made for the incompressible case. Table 6.10 shows the load coefficients for the half geometry
and table 6.11 shows them for the whole geometry.

Table 6.10: Load coefficients for the curved line geometry cutted by the symmetry plane and
compressible fluid.

Ap =0 Pa [t = 3, 6256
Ap =550 Pa | p=3,2074
Ap = 1000 Pa | pu = 2,8384
Ap = 1500 Pa | 4 = 2,3025
Ap = 2000 Pa | g = 1, 7450
Ap = 2500 Pa | u = 1, 0546

Table 6.11: Load coeflicients for the curved line geometry and compressible fluid.

Ap=0 Pa 1= 3,8369
Ap=550 Pa | u=3,3610
Ap=1000 Pa | p = 2,8193
Ap = 1500 Pa | p = 2,4005
Ap=2000 Pa | p=1,7737
Ap=2500 Pa | p = 1,0048
Ap=3000 Pa | p = -0,0167

Figure 6.34 displays both data.
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Figure 6.34: Comparison of the load coefficients of the curved lines geometry, compressible

fluid.

The appearance of asymmetries at high pressures cannot bee seen so clearly as in the straight
lines geometry, but it was previously demonstrated that at low load coefficients there are
unequal extended vortices at both sides of the symmetry plane.

Figure 6.35 is obtained by doing a transient calculation with a pressure rise Ap = 2500 Pa.
This figure exhibits the instantaneous load coefficient versus time step number. The mean
value of the load coefficient is =1, 1113.
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Figure 6.35: Instantaneous load coeflicients for Ap = 2500 Pa, curved lines geometry, com-

pressible fluid.
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Figure 6.36: Comparison of load coefficients of the incompressible and compressible calcula-
tions for the curved lines geometry.
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Comparing the load coeflicients with those of the incompressible case, the load coefficients
of the compressible calculations are lower than those of the incompressible calculations as
shown in figure 6.36.

Taking the design case as representative, table 6.12 is obtained with the interpolated values of
density and velocity at the entrance of the mixing duct both for the jet and for the secondary
flow.

Table 6.12: Comparison between the values of the density and the velocity in the incompress-
ible and compressible case, curved line geometry.

Incompressible Compressible
py=1,21%9/ = py=1,2289/ .
vy = 181,6121™/, | vy = 181,6121™/;
po=1,21%/ . po =1,1838%9/
ve = 38,02™/; ve = 32,51™/;

The mass flows of table 6.13 were calculated with equation 6.5.

Table 6.13: Comparison between the values of mass flow in the incompressible and compress-
ible case, curved line geometry.

Incompressible | Compressible
g =242/ | iy =2,44%
g =8,928/, | me =7,46M/,

These values show again that the amount of gases from the secondary flow taken into the
injector is lower for the compressible case. Then, the load coefficient will be also lower for
the same conditions.

The pressure distribution along the injector axis also appears to be different from the in-
compressible case. The pressure distribution of the design case is shown in figure 6.37. The
same reasons mentioned for the straight lines can be utilized here to explain the differences
between both distributions.

Doing an interpolation of the velocity values at the end of the mixing duct and at the end
of the diffuser, the profiles are as expected. The velocities are higher for the incompressible
case.
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Figure 6.37: Comparison of the pressure distribution along the injector axis for compressible
and incompressible fluid for the curved lines geometry.

Figure 6.38 displays the velocities at the end of the mixing duct and at the end of the diffuser
both for compressible and incompressible fluid. Comparing figure 6.38 to figure 6.31, the
conclusion is the same as in the incompressible case. The velocities are higher for the curved
line geometry than for the straight lines geometry.
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Figure 6.38: Comparison between the v, velocities both for incompressible and compressible
fluid in the curved lines geometry.

Figure 6.39 is obtained by calculating the efficiencies in the tested pressure range.
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Figure 6.39: Efficiencies for the curved lines geometry compressible case.

The maximum efficiency lies in the region between p = 2 and g = 3, where the eddies appear.
The explanation is the same as in the straight lines geometry.

The efficiency in the design case, Ap = 1000 Pa, is equal to n = 35,88 %, smaller than the
efficiency achieved with incompressible fluid n = 42,3 %. For the design case of the curved
line geometry the efficiency neomp is 15,2 % lower than 7:comp-

6.2.2 Comparison of Straight Lines Geometry and Curve Lines Geometry

If the results of the straight lines geometry are fitted together with the curved lines geometry,
the load coeflicients and the efficiencies can be clearly compared.
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Figure 6.40: Comparison of the straight lines geometry, the curved lines geometry and the
results proposed by the model of Schlag.

Comparing the curves in figure 6.40, it is found that for low load coefficients the pressure
rise that the injector can overcome is larger than the one expected by the model of Schlag.
For higher load coefficients this difference decreases until the model of Schlag has larger load
coeflicients for the same pressure rises. This phenomenon occurs in the straight lines geometry
at lower load coefficients than in the curved lines geometry because the load coefficients are
smaller in general and the mixing process is worse for constant width mixing ducts.

The pressure rises at low load coeflicients are higher than the ones obtained by the model
of Schlag. This can be attributed to the average in the discharge when the jet is swinging.
Schlag did not consider this circumstance when building up his model. The swinging jet gives
rise to some maximums that increase the suctioned mass gas flow for the same pressure at
the outlet.

For larger load coefficients, between 1,5 < p < 3, there is a maximum in the efficiencies
because of the improvement of the mixing process with the appearance of eddies. Despite
this improvement the load coefficients within this range are lower for the straight lines case
than for the model of Schlag.

Furthermore, for high load coefficients, the losses in the diffuser increase. These losses de-
crease the efficiency and make the curves move towards lower load coefficients. So that, if
lower values for the efficiency had been applied in the diffuser for these cases, the charac-
teristics of the model of Schlag would have been nearer to the ones obtained by the CFD
calculations.

Figure 6.41 depicts the different charactersitics of the model of Schlag changing the efficiency
of the diffuser. The high influence of the diffuser efficiency for high load coefficient can be
seen clearly.
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Figure 6.41: Characteristics of the model of Schlag for different diffuser efficiencies.

Making a comparison of the efficiencies of the straight lines geometry and the curved lines
geometry, the injector with the variable width mixing duct has got a better performance for
the whole range of pressures rises. The percentage of improvement is shown in table 6.14.

Table 6.14: Improvement in the efficiency of the curved line injector.

Pressure rise

Improvement in %

Ap=0Pa 27,5
Ap =550 Pa 30,4
Ap = 1000 Pa 19,6
Ap = 1500 Pa 28,2
Ap = 2000 Pa 34,7
Ap = 2500 Pa 36,1

The efficiencies for both geometries can be shown together in one graph. Figure 6.42 shows
the efficiency versus pressure rises, figure 6.43 the efficiency versus the load coeflicients.

In figure 6.42, the maximum eflicency is reached at different pressure rises. For the straight
lines geometry it is reached at the design point and for the circled lines geometry it is reached
at Ap = 1500 Pa. This difference in pressure rise has it explanation when looking at figure
6.43. Both maximums occur approximately for the same load coefficient. As it was previously
explained, these maximums happen for a load coefficient in the range 2 < p < 3 where the

vortices are formed the first time and improve the mixing process.
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Figure 6.44: Comparison of the pressure distributions for the straight lines geometry and
curved lines geometry, compressible fluid.

The pressure distribution along the injector axis for both geometries is shown in figure 6.44.

The pressure is lower for the curved lines geometry until the end of the diffuser. However,
the velocity of the mixture is higher in the curved lines geometry, as can be seen in figure
6.31 and 6.38. For this reason, the pressure at the end of the injector can be higher for the
curved line geometry when using the same jet properties and discharge velocity.
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Chapter 7

What Else Can Be Done

Once the results of the compressible case have been obtained, the geometry can be recalcu-
lated using the mean value of the density obtained by the compressible calculations. With
pa = 1,1861%9/ = only one ratio I{/VV—J = 21,5 is obtained to overcome the design pressure

rise. With this ratio, the calculation process can be started again.

Also for both geometries and same operating conditions, calculations for an axisymmetric
model can be done. In the axisymmetric geometry the area at the entrance of the mixing
duct and the area of the jet nozzle are proportional to the squared diameter, D?. The
obtained ratios are %—J‘;f = 3,352 and %—M = 5,795, as shown in figure 7.1. These ratios are
smaller than in the plane case and also the characteristic curves of the injector are different,
as shown in figure 7.2. The part load conditions of the injector will become more important.

In both cases, it can be tried to model a real constant pressure injector. In a real constant
pressure injector the different heights or diameters must be calculated along the injector axis
by the application of thermodynamic equations.

Also a real three dimensional injector can be modelled. In this injector the jet is not uniform
at the end of the jet nozzle. The flow has a momentum of momentum which produces two
additional vortices. This phenomenon has influence on the mixing process.

The influence of the jet properties on the behaviour of the injector can also be tested, for
instance, how the velocity of the jet affects the flow when it is increased to values of Ma > 1.

Furthermore, it has been mentioned in the introduction that the injector can work with
different nature fluids and even with fluidized particles. The path of this particles in the
injector and their influence on the behaviour of the injector could be investigated.
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