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Abstract. Boundary layer flow problems depending on a parameter which have non-unique self-
similar or planar solutions are considered near a turning point. The behavior of non-self-similar,
or non-planar time-dependent solutions is investigated by an asymptotic expansion with respect
to the deviation of the parameter from its critical value. Considering solutions which vary slowly
with respect to time and the additional space coordinate a simplified partial differential equation
can be derived which describes the local behavior.

1 Introduction

We consider boundary layer flow problems depending on a parameter α near a regular
turning point. That is: below a critical value αc of the parameter α there are two steady
state or similarity solutions which coincide at the critical value, and above the critical
value there is no steady state or similarity solution, or vice versa. In Fig. 1a the similarity
solution of mixed convection boundary-layer flow is represented by the dimensionless wall
shear stress f ′′(0) and in Fig. 1b the planar stationary solution of the marginal separation
equation is represented by the wall shear stress at x = 0, A(0). Both curves have a turning
point.

The structure of the steady state or similarity solution, respectively, near the critical
value can be analyzed by employing ε2 = |α− αc| as an expansion parameter. Using usual
methods of bifurcation theory and assuming that the linearization at the critical value has
a one-dimension kernel the first order correction can only be found up to a constant C
which has to be determined from a “bifurcation equation”, which is a solvability condition
for the equations of the second order correction. For the problem under consideration this
is a quadratic equation.

Solutions of the original problem depend on time t and an additional space coordinate,
say z. The latter can be eliminated by the assumption of planar or self-similar flow, but in
this process the undetermined constant C of the first order correction can depend on the
additional coordinates, i.e. C = C(z, t). However, to be consistent with the expansion the
additional independent coordinates have to be rescaled with ε, the distance to the critical
conditions.

The bifurcation equation in that case is a partial differential equation for the undeter-
mined “constant” as a function of the slow additional independent coordinates. Discussion
of the bifurcation gives insight into exchange of stability and new types of solutions.

We will apply this approach to two different flow problems arising in boundary layer
theory:

• Mixed convection boundary layer flow: The bifurcation equation is a kinematic wave
equation with characteristics pointing upstream. Thus existence of solutions, connect-
ing both original similarity solutions and upstream propagating perturbations can be
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Fig. 1. Non-uniqueness of the solution. a) Similarity solution of the mixed convection boundary-
layer equations represented here by the dimensionless wall shear stress as a function of the buoy-
ancy parameter α, Pr = 1, b) solution of the planar steady marginal separation flow problem
represented by the wall shear at the location x = 0 as a function of the deviation of the angle of
attack from its critical value

demonstrated. However, these are very unusual properties of a boundary layer flow with
no reverse flow regions or interaction with the outer flow field.

• Marginal separation at the leading edge of an airfoil at an angle of attack: In that case
the ’bifurcation equation’ is the Fisher equation, a non-linear diffusion equation. Besides
the well known planar solutions it has solutions that are periodic in the lateral direction.
Moreover the stability can be discussed.

The study of the much simpler ’bifurcation equations’ allows insight into properties of
the solution of the full problem and thus is an important tool of the analysis. As shown by
these examples traditional methods of bifurcation and multiple scales analysis are combined.

2 Multiple scales analysis and bifurcations

In this section we present the main ideas of the analysis. Let us assume self-similar or planar
stationary flow, and suppose that the equation for the corresponding flow field is given by
a non-linear equation which depends on a parameter α,

N(u, α) = 0, (1)

such that the solution has a turning point bifurcation at some critical parameter αc. We
denote the corresponding solution by uc. Note that the non-linear operator N acts on u
only as a function of the similarity variable x. A necessary condition for a turning point is
that the linearization N ′ of N at the turning point has a one dimensional kernel.

Furthermore we assume that the governing equations for non-self-similar (non-planar)
flows can be written in the form

N(u, α) = −K ∂

∂t
u+ J

∂β

∂zβ
u (2)

where β is some positive integer and the linear operators K and J commute with the
differential operators ∂/∂t and ∂/∂z, respectively.
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Our goal is to describe time and z-dependent solutions near the turning point. Since
the similarity solutions behave like

√

|α− αc| near the critical point (c.f. Fig. 1a and Fig.
1b) we introduce the perturbation parameter ε2 = |α − αc|. The main idea is to rescale
the time t and the additional space coordinate such that the t and z-dependent operators
enter the asymptotic expansion with respect to ε in the second order terms only. This can
be achieved by introducing the following slow variables,

Z = ε1/βz, T = εt, (3)

and expanding u in terms of ε,

u = uc(x) + εu1(x, Z, T ) + ε2u2 + ... . (4)

Inserting (4) into (2) and comparing terms of order ε we obtain the linear equation

N ′u1 = 0. (5)

Since the operator N ′ acts on u1 as a function of x only, the solution of (5) is given by
u1 = C(Z, T )e, where e = e(x) is an eigenfunction of N ′ and C is a yet unknown function
of the slow variables Z and T .

Comparing terms of order ε2 we obtain

N ′u2 = −C
2

2
N ′′(e, e) −Nα − ∂C

∂T
Ke+

∂βC

∂Zβ
Je, (6)

where Nα is the derivative of the operator N with respect to the parameter α. Note that
the second derivative N ′′(., .) of the nonlinear operator N with respect to u is a bilinear
operator.

Since the operator N ′ is not regular the right-hand side of (6) has to satisfy a solv-
ability condition. Now let f be an eigenfunction of the adjoint operator of N ′. The ’left’
eigenfunction f can be interpreted as a linear functional and we use the usual notation
for applying a linear functional f onto a function u: 〈 f, u 〉. In the examples given in that
paper 〈 f, u 〉 =

∫

f udx denotes the usual L2 scalar product. Applying the linear functional
f onto (6) we obtain the solvability condition

−〈 f,Ke 〉∂C
∂T

+ 〈 f, Je 〉∂
βC

∂Zβ
− 1

2
〈 f,N ′′(e, e) 〉C2 − 〈 f,Nα 〉 = 0, (7)

which is in general a partial differential equation for C. If β = 1 (mixed convection) the
nonlinear kinematic wave equation

CT − νCZ + µC2 − δ = 0 (8)

is obtained. If β = 2 (marginal separation) (7) is the non-linear diffusion equation

CT − νCZZ + µC2 − δ = 0 (9)

which can be transformed to the well-known Fisher equation [5]. Implicitly we have assumed
that the coefficients µ, ν and δ are non-vanishing and finite. In the following we will apply
these ideas to the above mentioned examples from boundary-layer theory and discuss the
resulting bifurcation equations.
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Fig. 2. Mixed convection boundary layer flow over a horizontal plate

3 Mixed convection - non-linear wave equation

3.1 Problem formulation

As a first example we consider mixed convection boundary-layer flow along a horizontal
semi-infinite flat plate aligned parallel to a uniform free stream (Fig. 2).

It has been shown by Schneider [10] that a similarity solution exists if the plate tem-
perature is proportional to the inverse of the square root of the distance from the leading
edge T ∗

w(x)−T ∗
∞ ∼

√
x∗. The influence of buoyancy is measured by the dimensionless buoy-

ancy parameter α = Gr/Re5/2 = g∗β∗(T ∗
w(L∗) − T ∗

∞)(L∗ν∗)1/2(U∗
∞)−5/2, where U∗

∞, T ∗
∞,

T ∗
w, β∗, ν∗, g∗ are the unperturbed velocity and temperature of the oncoming fluid, the

plate temperature, the isobaric expansion coefficient, the kinematic viscosity and the grav-
ity acceleration, respectively. The definition of α depends on the plate temperature at some
distance L from the leading edge. However, due to the assumption that the plate tempera-
ture is proportional to x−1/2 the buoyancy parameter α is independent of L∗. Dimensional
quantities are denoted by a star.

The modified boundary layer equations are formulated in terms of the ’similarity’ vari-
able η = y/

√
x = y∗

√

U∗/ν∗x∗, but retain the dependence on the coordinate x = x∗/L∗ par-
allel to the plate and time t. Instead of the lateral Cartesian coordinate y we use η = y/

√
x.

As dependent variables f = ψ/
√
x, ϑ =

√
xθ and h = xpx are used where ψ, θ and px are

the dimensionless streamfunction, temperature distribution and pressure gradient parallel
to the plate, respectively. Derivatives with respect to η are denoted with a prime, [11]. Thus
the transformed boundary-layer equations read

2f ′′′ + f f ′′ − αh = 2x(f ′f ′
x − f ′′fx + f ′

t), (10)

2

Pr
ϑ′′ + (fϑ)′ = 2x(f ′ϑx − ϑ′fx + ϑt), (11)

h′ + (ηϑ)′ = 2xϑx. (12)

At the wall η = 0 the no slip boundary condition for the flow field and the plate
temperature are prescribed:

f(x, 0, t) = f ′(x, 0, t) = 0, ϑ(x, 0, t) = 1 . (13)

At η = ∞ the matching conditions to the outer flow field

f ′(x,∞, t) = 1, ϑ(x,∞, t) = 0, h(x,∞, t) = 0 (14)

have to be satisfied.
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Using the notation w = (f, ϑ, h)T we write (10)-(14) in the compact form

N(w, α) = x(J(w)wx −K(w)wt) (15)

where N is the nonlinear differential operator on the left side of (10)-(12) and J and K are
the differential operators on the right side of (10)-(12), respectively. Note that both J and
K are non-linear operators. To be in accordance with the analysis of Sect. 2 one can replace
J(w), K(w) by J(wc), K(wc), respectively, and note that the differences J(w) − J(wc),
J(w) −K(wc) do not enter the solvability condition.

In contrast to the general procedure outlined in the previous section the operators on
the right-hand side are multiplied by x. Therefore a coordinate transformation is necessary
which will be discussed later.

For solutions which depend only on the similarity variable η the boundary layer-equation
reduces to

N(w, α) = 0. (16)

This is a set of nonlinear ordinary differential equations. The solutions have been discussed
by several authors [10], [1], [6].

For α > 0 a unique solution has been reported, while for α < 0 there are two solution
branches connected at a turning point α = αc. For buoyancy parameters below αc there are
no steady solutions at all , cf. Fig. 1a.

3.2 Analysis near the turning point

At the turning point αc with unique solution uc the linearization of the similarity equations:

N ′(wc, αc)∆w = 0 (17)

has a nontrivial solution. In the following it will be denoted by W = (F,D,H)T . Now
analyzing the behavior near the turning point we introduce the expansion with respect to
the perturbation parameter ε2 = |α− αc| defined as the square root of the deviation of the
buoyancy parameter from its critical value

w = wc + εw1 + ε2w2 + ... (18)

Inserting it into the similarity equations we obtain for the first order correction terms

N ′w1 = 0, (19)

which has the general solution w1 = CW where C is a yet undetermined function of x
and t. Following the ideas of Sect. 2 we assume that the solution depends on large scale
independent variables only such that the derivatives with respect to these variables are
small. However, in the present case the term x∂/∂x remains of the same order of magnitude
if we rescale x by any power of ε. Therefore it is useful to introduce the new coordinate
χ = ln x instead. However, we cannot expand the terms containing x∂/∂t uniformly. Thus
we replace t by τ = ln(1 + t/x). Using this new independent variables we have

x
∂

∂x
=

∂

∂χ
− (1 − e−τ )

∂

∂τ
, x

∂

∂t
= e−τ ∂

∂τ
. (20)

Now we can introduce the slow variables,

X = εχ, T = ετ, (21)
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and consider w as a function of the fast and slow variables

w ∼ wc + εC(X , T )W + ε2w2(X , T , τ) + ... . (22)

Inserting this expansion into the second order correction equation we obtain

N ′w2 + C2N ′′(W,W ) +Nα = CXJ(wc)W − CT (1 − e−τ )J(wc)W + e−τCTK(wc)W
+(1 − e−τ )J(wc)w2,τ + e−τK(wc)w2,τ ,

(23)

where Nα denotes the derivative of N with respect to α and N ′′ is the second derivative of N
with respect to w. However, the fast time scale remains in the second order equation. After
some initial transient behavior on the ‘time scale’ τ the solution w2 will depend on T and X
only. The linear ordinary differential equation for w2 is only solvable if the inhomogeneity
satisfies a solvability condition. In order to formulate this condition we introduce the adjoint
operator N

′+ of N ′ and, by W+, denote a basis vector of its one-dimensional kernel. It is
given as the non-trivial solution of the system of ODEs

N
′+(W+) =





−2F+′′′

+ (fbF
+)′′ + f ′′

b F
+ − ϑbD

+′

2

Pr
ϑ+′′ − fbD

+′ − ηH+′

−H+′ −KF+



 = 0 (24)

with the boundary conditions

F+′

(0) = F+′

(∞) = D+(0) = D′(∞) = H+(0) = 0. (25)

Multiplying (23) by W+ and integrating with respect to η from 0 to ∞ yields the solvability
condition

CX − CT + µC2 − δ = 0, (26)

with the constants δ and µ given by

δ =

∫ ∞
0
W+Nα dη

∫ ∞
0
W+JW dη

, µ = −
∫ ∞
0
W+N ′′(W,W ) dη
∫ ∞
0
W+JW dη

.

In terms of the original variable x and t the general solution of equation (26) is given by

C =

(

1 +
2

CI(ε ln(x + t))(1 + t/x)2ε
√

δµ − 1

)

cs, (27)

where CI(X ) is an arbitrary function and cs =
√

δ/µ.

3.3 Discussion of the results

Equation (26) is a wave equation with characteristics pointing upstream. Therefore pertur-
bations can propagate upstream. Depending on the asymptotic behavior of CI for X → ∞
the solution at a fixed location x converges either to the upper similarity solution (C = cs),
to the lower branch similarity C = −cs or to a stationary solution connecting both similarity
solutions

C = cs
c− xε

√
µδ

c + x2ε
√

µδ
, (28)

where c is an arbitrary constant. In Fig. 3 numerical solutions of the stationary modified
boundary layer equations connecting both similarity solutions are shown and compared
with the asymptotic result. The solution is represented by the wall shear stress f ′′(x, 0).
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Fig. 3. Solution connecting two similarity solutions for a) α = −0.08 (ε = 0.1), Pr = 1 b)
α = −0.04, Pr = 1

Moreover the connecting solutions exist not only for small values of ε. In Fig. 3b a
numerical solution of the stationary boundary layer equation for α = −0.04 is shown. An
interesting fact is that this solution has a reverse flow region (f ′′ < 0).

Using the bifurcation method combined with the multiple scale analysis the physical
relevance of the two similarity solutions has been discussed, showing that the upper solution
is stable provided that the downstream perturbations are not too large.

4 Marginally separated boundary layer flows - non-linear

diffusion equation

4.1 Formulation of the problem

At high Reynolds numbers the flow around an airfoil is governed by the boundary-layer
equations. The solution of the boundary-layer equations can be obtained as long as the
angle of attack is below a limiting value. For lager angles the solution terminates in the
form of a Goldstein singularity. At the limiting angle the marginal separation singularity
occurs which can be eliminated by taking into account the interaction pressure resulting
from the increase of the boundary-layer displacement.

The equation governing the local flow behavior near the marginal separation can be
formulated in terms of the negative correction of the displacement thickness A which is
proportional to the local wall shear stress. The origin of the coordinate system is sup-
posed to be in the point where the marginal separation singularity occurs. The stream-wise
coordinate is denoted by x and the lateral coordinate by z.

For a planar stationary flow A(x) satisfies the integro-differential equation [12], [7]

A2 − x2 + α− J Axx = 0, (29)

where the integral operator J is given by:

JA(x, z, t) = λ

∫ ∞

x

A(ξ, z, t)√
ξ − x

dξ (30)

and α denotes the deviation of the angle of attack from its limiting value. It is well known
that (29) has solutions only for α below a critical value αc = 2.66. Furthermore, for
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0 < α < αc the solution is not unique. In Fig. 1b the solutions, represented by the value of
the displacement thickness at x = 0, are plotted as a function of α. Both solution branches
are connected at the turning point α = αc. Similarly as in the previous example we want to
study the behavior of time dependent three dimensional solutions near the turning point.

The interaction equation for three dimensional time dependent flow is [4]

A2 − x2 + α− J Axx = J Azz + LAxx + LAzz −K At, (31)

where K, L are integral operators defined by

LA(x, z, t) = − λ

2π

∫ X

−∞

∫ ∞

−∞

∫ ∞

−∞

(s− ξ)(A(ξ, η, t) − A((ξ, z, t))

[(s− ξ)2 + (z − η)2]3/2[x− s]1/2
dξ dη ds, (32)

KA(x, z, t) = γ

∫ X

−∞

1

(x− ξ)1/4
A(ξ, z, t) dξ, (33)

and λ and γ are some known constants. Note that we have written equation (31) in such a
form that the right-hand side vanishes for strictly planar stationary flows and the operators
on the left side are identical with the planar stationary problem (29).

4.2 Bifurcation analysis

Again we want to make use of the linearization of the planar problem

2Acb− Jbxx = 0, (34)

where Ac(x) is the solution of the planar problem (29) at α = αc. Note that equation (34)
has a one dimensional kernel spanned by an eigenfunction b(x).

The main idea is to introduce properly scaled slow time and lateral space variables,
such that the terms on the right-hand side of (31) are sufficiently small. Following [3] we
introduce the perturbation parameter ε2 = αc −α and the slow variables Z =

√
εz, T = εt.

Thus we expand A in terms of ε as

A = Ac(x) + εa1(x, Z, T ) + ε2

(

(ln ε)a′2(x, T ) + a2(x, Z, T )
)

+ .... . (35)

Inserting (35) into (31) and comparing terms of order ε2 yields equation (34) for a1. The
general solution is given by a1 = C(Z, T )b(x) with a yet unknown function C(Z, T ) which
has to be determined, as usually in multiple scales problems, from a solvability condition
for higher order terms, namely the terms of O(ε2). The equation for a2 reads

2Aca2 − Ja2,xx = 1 + CZZJb− CTKb− C2b2. (36)

Since the integral operator on the left side is singular the inhomogeneity on the right side
has to satisfy a solvability condition. It is obtained by taking the L2-scalar product with
respect to x of equation (36) with the eigenfunction n(x) to the eigenvalue 0 of the adjoint
operator of the linearization. Thus n(x) is the solution of the integral equation

2Acn− d2

dx2
Jn = 0. (37)

As a result we obtain the solvability condition

CT − νCZZ + µC2 − δ = 0, (38)
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with

ν =
〈n, Jb 〉
〈n,Kb 〉 , µ =

〈n, b2 〉
〈n,Kb 〉 , δ =

〈n, 1 〉
〈n,Kb 〉 , (39)

where 〈n, q 〉 :=
∫ ∞
−∞ n(x)q(x) dx denotes the scalar product in L2. For details on the

functions n and b the reader is referred to [3]. We have to note that the operator L does
not influence the solvability equation. Insertion of a1 = C(Z, T )b(x) into L produces a term
of higher order which has to be eliminated by a term of order ε2(ln ε)a′2 where a′2 is of the
form a′2 = d(T )b(x).

4.3 Discussion of the bifurcation equation

Equation (38) can be transformed to the Fisher equation [5] which is well known from
the description of nonlinear wave propagation in gene populations and reaction diffusion
processes.

In contrast to these studies, where meaningful solutions are limited to the interval be-
tween the two equilibrium states (−cs, cs) with cs =

√

δ/µ, in the present case no restriction
on the magnitude and sign of C is imposed. In the following we will discuss some special
types of solutions.
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Fig. 4. Solutions of the Fisher equation a) Traveling wave solutions, b) periodic solutions. The
solutions represent the variation of the wall shear stress in the span-wise direction

Considering planar solutions (independent of Z) we obtain the general solution

C(T )

cs
=

1 − a e−2
√

δµT

1 − a e−2
√

δµT
, (40)

where a is an arbitrary constant, indicating the upper solution branch is stable when con-
sidering planar perturbations only. Considering laterally traveling waves we introduce the
coordinate ξ = Z − λT and equation (38) reduces to the ODE

λCξ + νCξξ − µC2 + δ = 0, (41)

which can be discussed by phase plane analysis. For λ > 0 a hetero-clinic orbit exists
connecting both steady state solutions ±cs. Solutions for different values of λ are shown in
Fig. 4a. It should be noted that at a fixed location Z this solution tends to cs corresponding
to the upper solution branch. For λ = 0 a homo-clinic orbit exists.
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Of special physical interest are stationary solutions which are periodic in the lateral
direction. They can be expressed analytically using the Jacobian elliptical functions. The
functions contain an arbitrary constant φ ∈ [0, π/3] which is a measure for the amplitude.
Note that for φ� 1 the amplitude is small and the solutions are close to harmonic functions.
In the limiting case φ = π/3 a homo-clinic orbit is obtained.

5 Conclusions

Using the bifurcation analysis combined with a multiple scales approach the complicated
original (integro-)differential equations can be reduced to a single partial differential equa-
tion. This in turn leads to a significant simplification of the boundary-layer flow problems
allowing the construction of new weakly non-similar and three-dimensional solutions and a
discussion of their stability.

The presented examples concern laminar boundary-layer flows. However, as shown re-
cently, a similar analysis applies to quasi equilibrium turbulent boundary-layer flows [9].
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