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Abstract
In this work the active damping of a quadratic plate using twopiezo patch actuators is de-
scribed. A numerical evaluation of an optimality criterionfor placement of sensors and actu-
ators defines the location for the piezo patches. A state-space controller in combination with
an observer and an alternative 2nd-order controller with acceleration feedback are designed
to add additional damping to the existing modes. Specific attention was paid to suppress spill-
over (amplification of modes due to neglected dynamics), anda frequency response mode was
added to account for the effect of higher-order modes. With two actuators in optimal positions
only a small band of maximal two eigenmodes could be efficiently damped. Nevertheless, a
mode at 167Hz showed an attenuation of over 17dB. Additionalproblems were posed by a
bifurcation of the modal behaviour and the relation betweenplate and sensor thickness.

INTRODUCTION

Active structural damping of spatial structures is an important field of mechatronics, since the
application of an embedded control system with low-cost components can be much easier and
less costly than a different design with higher structural complexity or expensive materials.
The corresponding control theory is highly evolved and recently excellent text books in this
field have been published [5, 11, 12].

In practical applications, however, some of the conditionsfor these methods may not be
fulfilled, and it is of interest for the user, what problems arise and what results can be achieved
with alternate methods. In this paper the active damping of aquadratic plate is the subject,
and the non-collocated disturbance poses one of the main problems. Due to this fact, only
a small bandwidth can be attenuated with a minimal set of collocated sensor/actuator pairs.
Additional problems are posed by the symmetric eigenmodes of the quadratic plate, and the
relatively high stiffness of collocated actuators and sensors compared to the sheet metal. In
spite of these problems a controller consisting of two parallel loops and acceleration feedback
could achieve a strong damping of the dominant eigenmode.
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The remainder of this paper is structured as follows: First,the system is described
and a mathematical model for controller and observer designis designed. Special care is
taken to incorporate Frequency Response Modes into the model and to guarantee optimal
Sensor/actuator placement. Simulation results and experimental findings show that a simple
state space approach is not satisfactory in this case, but local control loops are superior. A
short summary with some proposals for improvements concludes the work.

SYSTEM AND MODEL

Quadratic Plate

The vertical elastic deflectionw(t) of a quadratic elastic plate with lengtha and thicknessh
is given by the partial differential equation

ρh
∂4w

∂t2
+ D∇4w(x, y, t) =

∂2Mpx

∂x2
+

∂2Mpy

∂y2
(1)

whereρ is the density of the material, andMpx andMpy constitute the external moments per
length applied by actuators [6, 10].

Eigenmodes of the Quadratic Plate

In fig.1 the first 3 eigenmodes of the quadratic plate are depicted. The maximum deflection is
normalized to 1. The associated eigenfrequencies are 36.3Hz for the first mode and 74.1Hz
for both second and third mode (symmetric modes). In the caseof a quadratic plate diagonal

Figure 1: Eigenmodes 1 to 3 of the Quadratic Plate

node lines exist while for the rectangular plate only edge-parallel node lines occur (fig.2).
In fig.2 the eigenmodes of a rectangular plate with a difference in side lengths of 0.5 % are
depicted. For the rectangular plate eigenfrequencies 2 and3 are slightly different, while for
the quadratic plate they are identical.

State Space Model

Each of the above introduced eigenmodesφi contributes to the overall deflectionw(t) by
superposition according to

w(t) = Φq(t) =

n
∑

i=1

φiqi(t), (2)
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Figure 2: Eigenmodes 1 to 3 of the Rectangular Plate with nearly equal side lengths

where theqi(t) are the modal coordinates. Choosing the modal coordinates and their time-
derivatives as state-vectorx the state and output equation can be written as

ẋ =

(

0 I
−diag(ω2

i ) −diag(2ξiωi)

)

x +

(

0

B

)

u +

(

0

E

)

z (3)

y =
(

C 0
)

x, (4)

where theξi are Raleigh damping-coefficients and theωi are the eigenfrequencies for thei-th
eigenmode. TheB-matrix has as many rows as eigenmodes and as many columns as actu-
ators. The matrixC has as many rows as sensors and as many columns as eigenmodes.A
voltage applied to an actuator corresponds to a certain curvature and vice versa for the sensor.
Therefore, the moments on the right-hand side of eq.1 can be produced by piezo patches, and
the modal coordinatesqi(t) can be reconstructed from the measured local curvature. Mathe-
matical piezo patch models can be found in [6, 10], and the specific coefficients for materials
are provided by the manufacturer (see e.g. [2]).

Controller and Observer Design

The control law for a state space controller is given byu = Kw w−K x, where the set pointw
may be considered zero. A possible design procedure is to rotate the position of the open-loop
poles in the complex plane towards the real axis therefore increasing the damping.

A state space controller requires all states to be known. Since only physical quanti-
ties can be measured the modal coordinatesqi(t) and their derivativeṡqi(t) must be recon-
structed by an observer. For the above defined state space system (3,4) a 4th-order Luenberger-
Observer is designed by

˙̂x = (A − HC)x̂ + Bu, (5)

where the observer gain matrixH is computed by minimizing a quadratic criterion by solving
the resulting Riccati-equation.

FREQUENCY RESPONSE MODE (FRM)

Every continuous linear system has an infinite number of eigenmodes with associated eigen-
values. In order to achieve acceptable accuracy a small number of modesnred associated with
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the lowest eigenvalues is typically chosen for controller design. However, due to external
forces or moments a large number of modes may be necessary to guarantee a desired accu-
racy. This problem may be overcome by the use of a particular solution, which incorporates
the effect of higher order modes.

The particular solution for a modal model with external excitation f(t) = FejΩ0t is
given by

Wp =

n
∑

i=1

ΦiΦ
T
i

ω2
i − Ω2

0 + 2jζiΩ0ωi

F, Ws = Wp|Ω0=0 =

n
∑

i=1

ΦiΦ
T
i

ω2
i

F = KsF, (6)

whereΩ0 = 0 yields a particular static modeWs which may be treated as an additional
eigenmode of the system. However, the definition of proper boundary conditions for the com-
putation of (6) is difficult, especially in the presence of rigid body modes.

One way to overcome this problem is the FRM. Using anΩ0 equal to half the first
eigenfrequency of the system the FRMWFRM is also computed by (6). The approximate
overall solutionw(t) of the modal system is then given by

w(t) ≃

n
∑

i=1

φiqi(t) + WFRMαFRM (t), (7)

whereαFRM (t) is a scaling factor for the FRM. If the bandwidth of the external excitation
is equal or smaller than the bandwidth of the model eq.(7) will yield a good result. For each
position of an external excitation a dedicated FRM has to be added. The FRM adds a constant
to the transfer functions of the system, thus altering only gain and zeros but not the poles.
In fig.3 the frequency response of a high-order model, a reduced version, and a reduced ver-
sion plus FRM are plotted. More details can be found in [1], [12], [4], and [13]. It should
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Figure 3: Effect of the Frequency Response Mode (FRM)

be noted that incorporation of the FRM is an important means to avoid or at least minimize
spillover phenomena where unmodelled higher modes affect the state vector estimate (obser-
vation spillover).
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PLACEMENT OF SENSORS AND ACTUATORS

The above mentioned spillover problem is closely associated with optimality in observabil-
ity and controllability. In order to optimize these properties a quantitative criterion must be
defined. Using either the observability gramianWo or the controllability gramianWc the fol-
lowing criterion is utilized [7]:

C = trace(W )
2N

√

det(W )

σ(λi)
(8)

In this criterionσ(λi) is the standard deviation of the eigenvaluesλi of the gramian. This
formulation can be shown to be equal to criterions using theH2-norm [9], [8].

Symmetric Modes of the Quadratic Plate

In the case of the quadratic plate symmetric modes with equaleigenfrequencies arise (fig.1).
Using only one sensor or actuator, respectively, the gramians will become singular. In the case
of closely lying eigenvalues the gramians will be ill-conditioned. This problem can only be
overcome by applying additional sensors or actuators.

Numerical Issues

The implementation of (8) requires that for each point alonga grid the criterion has to be
evaluated and stored. Each evaluation of (8) comprises the calculation of the current grami-
ans, their eigenvalues and determinant. To speed up the computation the position grid is re-
fined iteratively, symmetries are exploited, and the boundaries of the plate are disregarded for
physical reasons. A plot of the criterion (8) is given in fig.4. The first sensor position is fixed
at the ”x” and the second sensor position is optimized.

SIMULATION AND EXPERIMENT

The experiment consists of a quadratic plate made of 1mm sheet metal (steel) and a side length
of 0.5m clamped on all sides in a massive frame. Piezo patches[2] with a length of 35mm and
a thickness of 1mm (maximum voltage 250V) were applied to theoptimal positions. In fig.5
the plate with applied sensors and actuators is shown. Actuators 1 and 2 are used for control
input, the third patch is used for excitation. Additional accelerometers are used for validation
or control input, respectively.

Simulation Results

In fig.6 the transfer function from disturbance to actuator 2is plotted. Only the first 3 eigen-
modes are included, the observer is designed for only 2 eigenmodes. This simulation result
indicates a fundamental limitation of the plate: Additional damping can only be added over a
small frequency range, since the disturbance and the control input are not collocated. In order
to achieve a larger bandwidth more actuators have to be applied. Symmetric modes require
additional pairs of actuators.
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Figure 4: Criterion for optimal actuator posi-
tion

Figure 5: Quadratic plate with sensors and
actuators
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Figure 6: Simulated transfer functions from
disturbance to actuator 2 (open and closed
loop)
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Figure 7: Transfer functions from disturbance
and sensor 1 (theoretical and real)

Experimental Results

Model Validation

In fig.7 the predicted and measured transfer functions between disturbance and sensor 1 are
plotted. Only the first eigenfrequency shows a good agreement, all other modes exhibit consid-
erable deviations due to increased mass and bending stiffness at sensor and actuator locations,
geometrical imperfections, non-uniform clamping conditions, and different mode shapes (see
section ”Eigenmodes of the Quadratic Plate”).

During closed loop operation the collocated sensor patch delivered good results, while
an additional collocated accelerometer detected poor performance. This can be referred to the
fact that using collocation the system response is only controlled locally and a good perfor-
mance of different measurements cannot be guaranteed [3].
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PT2-Controller with Accelerometer

Using the accelerometer as sensor two 2nd-order local controllers were implemented at a
resonance frequency of 167Hz, where a significant peak in theopen-loop transfer function
was measured. The controller transfer function is given by

Gc =
P

1
(2π167)2

s2 + 2·0.02
2π167s + 1

=
P

9.083−7s2 + 3.812−5s + 1
. (9)

This controller acts at a resonance frequency of 167Hz with adamping ofζ = 0.02 (small
bandwidth). Due to the non-symmetric mode shapes differentgainsPi were used for each
collocated sensor/actuator pair (P1 = 45, P2 = 12). Using these gains peak control inputs
of 200V were observed. The dominant eigenmode at 167Hz couldbe attenuated by 17dB.
Results are plotted in figures 8 and 9.
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Figure 8: Open-loop accelerations
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Figure 9: Closed-loop accelerations

CONCLUSIONS

The active damping of a quadratic plate clamped on all sides using piezo patches as actuators
is the subject of this work. A state-space controller with modal feedback as well as local 2nd-
order controllers with acceleration feedback have been implemented and compared. In order
to account for actuator effects and to avoid spillover the Frequency Response Modes (FRM)
were incorporated into the model.

Actuators and sensors have been optimally placed by numerically evaluating a crite-
rion. Due to non-collocated disturbance and actuators onlya small bandwidth for vibration
damping is feasible if a small number of actuators is applied. This fact could be shown both
in simulations and experimentally. Additional problems were posed by the symmetric eigen-
modes and by the local reinforcement of the plate at collocated sensor/actuator pairs. A 2nd-
order controller with acceleration feedback was designed as alternative, gaining a reduction
of 17dB for mode at 167Hz.

Improvements in this application can be expected from non-collocated sensor/actuator
pairs and from thinner yet stronger patches. A detailed FE-analysis would produce a more
realistic model. Finally, the most suitable control structure for non-collocated disturbances is
anH∞-design, which allows for maximum damping bandwidth for a given set of sensors and
actuators.
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