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Abstract

A string moving with geostationary angular velocity in its radial relative equilibrium configuration around
the Earth, reaching from the surface of the Earth far beyond the geostationary height, could be used as track
for an Earth to space elevator. This is an old dream of mankind, originating about 100 years ago in Russia.
Besides the question of feasibility from a technological point of view also the question concerning the stability
of such a configuration has not yet been completely solved. Under the assumption that a proper material
(defective carbon nanotubes) is available, making the connection possible technologically, we address the
question of stability of the radial relative equilibrium of a tapered string on a circular geosynchronous orbit
around the Earth, reaching from the surface of the Earth far beyond the geostationary height.

1 Introduction

One of the main problems of modern space explo-
ration and space technology is the high cost of send-
ing a payload from the surface of the Earth into
space. Depending on the destination in space in
the year 2000 these costs were about 104 − 106 US
Dollars for one kilogram of payload, because in or-
der to carry the payload, rockets have to move a
multiple of the amount of the payload due to their
own weight and the necessary fuel. Hence for a
long time there have been other ideas around for a
cheaper way of transporting payloads into a space
orbit. The most promising was proposed in 1960 by
Artsutanov [1] to build a celestial elevator from the
surface of the Earth to a satellite in geostationary
orbit by hanging down a string from the satellite
to the surface of the Earth. Such a string in its
radial configuration could be used as track for a
space elevator to provide easy access to a space or-
bit. This idea was investigated for its feasibility by
Isaacs et al. 1966 ([2]) for a string with constant
cross-section and by Pearson 1975 ([3]) for a weight-

optimized string with tapered cross section. Both
investigations came to the conclusion that at the
time of the investigation no material was available
to realize such a connection. Artsutanov’s idea is
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Figure 1: String connecting a satellite in geosta-
tionary orbit with the surface of the Earth. As
counterweight another string must be deployed out-
side the geostationary height. For a minimum
weight design its length is given in Fig. 4

based on the fact that a massive string moving on a
circular orbit around the Earth, under the action of
gravitational and centrifugal accelerations, finally
will reach a relative equilibrium position, which
is its streched radial position. In this equilibrium
position the string is under tension (Beletsky and
Levin [4]). To explain this we note that the motion
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center, which is defined by the equality of centrifu-
gal and gravitational accelerations, is located at the
geostationary orbit (one revolution/day). The mo-
tion centre is different from the centre of mass and
the centre of gravity of the string. For a mass ele-
ment of the string located below the geostationary
radius the value of the gravitational acceleration
acting on it is larger than the value of the corre-
sponding centrifugal acceleration and for a mass
element above the geostationary radius the value
of the centrifugal acceleration is larger than that of
the gravitational acceleration. Thus below the geo-
stationary height the net force acting at a string
element is pointing towards the Earth and above
the geostationary height the net force is pointing
away from the Earth. Decomposing these forces
into a component in the direction of the straight
line connecting these two elements and perpendic-
ular to this line, results that the string is under ten-
sion and further a moment is created turning the
string into the radial direction, as it is depicted for
a dumb-bell satellite, which is a system of two point
masses connected by a massless rigid rod, in Fig. 2.
This intuitive reasoning convinces some scientists
that the radial configuration is stable. In order to

local vertical

Centrifugal
acceleration
- gravitational
acceleration

Gravitational
acceleration
- centrifugal
acceleration

Motion center

Figure 2: Dumbell-satellite consisting of two point
masses connected by a massless rigid rod. Its mo-
tion centre moves on the geostationary orbit.

obtain a minimum-weight design the shape of the
string must be tapered, such that in each cross-
section the maximum admissible stress is reached.

This results in a shape, where the string is thick-
est at the point of highest tension, which is at the
geosynchronous radius, and thinnest where the ten-
sion is lowest, namely at its ends (Fig. 4).

Of course, one has to compensate for the weight of
the tapered string hanging down. If this is done by
another string extending outward from the geosta-
tionary radius (35863 km altitude above the surface
of the Earth (Fig. 1)), the length of this string must
be several times the length to the geostationary or-
bit (Edwards [5]), if this part of the string is also de-
signed for minimum weight (see also Fig. 4). From a
technical point of view, placing a counterweight at
the far end of a shorter string, once the inner end
is fixed, could simplify the construction and will
also result in a radial configuration reaching from
the surface of the Earth moving with geostation-
ary angular velocity. However, extending the string
beyond the geostationary height is very important
for the application as satellite launcher, because if
a payload is placed on the string in a position far-
ther away from the Earth than the geosynchronous
height, simply by separating the payload from the
string, it can be launched into a larger elliptical or-
bit or even out of the Earth gravitational field to
perform interplanetary missions (Pearson [3]).

Until 1991 all these ideas were purely academic,
since no material was available to realize such a
project. However, at that time socalled “carbon
nanotubes” were discovered, which are Fullerenes,
that is cylindrical macromolecules composed of car-
bon atoms which are formed from a flat periodical
hexagonal lattice with the thickness of the size of
an atom (Ruoff et al [6], Pantano et al. [7]). Sin-
gle walled nanotubes have been produced with a
diameter of a few Nanometers (1[nm] = 10−9[m])
and a length of the order of Centimeters. Hence so
far an aspect ratio of order 107 has been reached.
Single walled nanotubes form the building block of
multi walled nanotubes. Moreover, it is conceived
to have bundels of nanotubes, from which one can
expect to form nanoropes or nanosheets by a tech-
nological process similar to that of weaving a tex-
tile. For the perfect nanotubes such a structure
may have a theoretical strength 100 times higher
than steel, but with only one-sixth of the weight
of steel. Moreover, besides their extreme strength,
carbon nanotubes also allow large strains up to 16-
24 %.
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The ratio between tensile strength and density is
crucial for the taper ratio of the string, that is, the
ratio between the area of the cross section of the
string at the geosynchronous orbit to the area of
the cross section at the surface of the Earth. For
example, from the calculations performed in Ed-
wards [5] the taper ratio required for steel would
be 1.7 × 1033, for Kevlar 2.6 × 108 and for car-
bon nanotubes 1.5. Our calculations which have
been performed for endmasses on each side of the
string of 1 kg, resulted in ratios between the cross-
sectional area at the geostationary height to the
area at the surface of the Earth, as can be seen
from Fig. 4, of 1.35 for σc = 150 GPa and 2.50 for
σc = 65 GPa. The second value uses the strength,
which has been measured in experiments, since the
theoretical strength cannot be expected to hold for
a technical realization. The reason is that defects
in the atomic lattice result in a reduction of the
strength and also of Young’s modulus. However
there are no data reported concerning the decrease
of the value of the Young’s modulus. Hence we in-
clude a section, where we investigate what can be
realistically expected concerning strength and elas-
ticity modulus in a technical realization.

A careful, practically relevant investigation of the
stability of the system’s relative equilibrium would
have to take into account various perturbations,
such as the gravitational attraction of the Moon,
atmospheric drag and payloads moving up and
down the string. These effects and others have
been addressed in Isaacs et al [2] and Pearson [3].
Interestingly enough the simpler question of stabil-
ity of the radial relative equilibrium position of a
long unperturbed string in the spherical symmetric
Newtonian gravitational field has not been given
much attention. However, this stability cannot be
taken for granted in any case, because in Beletsky
and Levin [4] and Krupa et al. [8] it is shown that
a dumbell satellite possesses a stable radial relative
equilibrium position only if the distance between
the two masses is significantly smaller than the ra-
dius of the orbit. This loss of stability is an orbital
instability (Krupa et al. [8]), which means that
perturbations of the orbital radius grow, whereas
perturbations of the attitude are still stable. It is
caused by the strong nonlinearity of the gravita-
tional field close to the center of the orbit.

In [9] it is shown that a pure continuous massive

string, which may form the track of the space ele-
vator, does not have a stable radial relative equilib-
rium position. This does not have significant conse-
quences for the track since adding a satellite at the
geostationary height, which practically will be the
case, will have a stabilizing effect. Hence we also
calculate the mass of a satellite at the geostation-
ary height, which would be necessary to stabilize
the radial configuration.

The calculations performed in [9] are improved, es-
pecially for the data, which we have calculated in
Section 2. The stability of the relative equilibrium
is evaluated by the Reduced Energy Momentum
Method (REMM) (see Lewis and Simo [10], Mars-
den et al.[11], Marsden [12], Marsden and Ratiu
[13]). The REMM is a generalisation of Routh’s
method as presented for example in Karapetyan
and Rumyantsev [14]. We note that for cases con-
sidered in this paper, where cyclic coordinates are
present, the REMM reduces to Routh’s method.
However, the REMM can be also applied if non-
cyclic coordinates are used. Applications of the
REMM to tethered satellite systems are given in
Wang et al [15] and Krupa et al [16].

2 Carbon Nanotubes

Almost in all calculations concerning thr Space el-
evator the theoretical strength and material data
of Carbon Nanotubes has been used. However like
any industrial product they will be imperfect and
hence it is interesting to see what the influence on
the taper ratio of the string would be if the string
is made from imperfect carbon nanotubes.

We give a short fracture mechanics calculation, how
the strength and Young’s modulus may be changed
if defective carbon nanotubes are used. More de-
tails can be found in the indicated literature.

2.1 Young’s modulus

. We consider a single nanotube having thickness
t, radius r and length l, under tension σ (or force
F = 2πrtσ) and containing a nanocrack of length
2a orthogonal (most critical configuration) to the
applied load. The variation of the total poten-
tial energy induced by the presence of the crack
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is ∆W = ∆L − F∆δ, where L is the elastic en-
ergy stored in the nanotube and δ = F/S is the
elastic displacement; S is thus the nanotube’s stiff-
ness, i.e., S = 2πrtE/l, with E Young’s mod-
ulus. Applying Clapeyron’s Theorem (see [17])
∆L = F∆δ/2 and consequently

∆W =
F 2∆S

2S2

(the same result can be deduced for imposing the
displacement rather than imposing the force). Fur-
thermore, according to fracture mechanics dW =
−GdA, where A is the crack surface area, i.e. in
our case, A = 2at, and G is the energy release
rate (see [17]). According to fracture mechanics
the crack will propagate when G reaches a criti-
cal value GC , the so-called material fracture energy
(per unit area). The energy release rate is related
to the stress-intensity factor K at the tip of the
crack (derivable for different configurations from
the stress-intensity factor Handbooks) via Irwin’s
correlation (see [17]) G = K2/E. Let us consider
the presence of an isolated crack. For simplicity we
neglect the energy associated with the nanotube’s
circumferential curvature as well as the crack tip’s
self-interactions. Then K = σ

√
πa, since this case

is analogous to the well-know Griffith’s case (see
[17]). Consequently, equating the two expressions
for ∆W , i.e.,

F 2∆S

2S2
= −2t

∫ a

0
G(a)da,

we deduce the change of Young’s modulus due to
the presence of the crack of half-length a (subscript
a) compared to its theoretical (subscript th, i.e,
defect-free) value in the following simple form

Ea

Eth
= 1− a2

rl
.

Next we assume the presence of an additional
transversal crack of half-length b, not interacting
with the previous one. According to our previous
result

Ea⊕b

Ea
= 1− Eb

Eth
≡ Eb

Eth
,

where Ea⊕b ≡ Eb⊕a denotes Young’s modulus of
the nanotube containing the two non interacting
transversal cracks. Thus, we derive

Ea⊕b

Eth
=

Ea

Eth

Eb

Eth
=

(
1− a2

rl

) (
1− b2

rl

)
.

For interacting cracks the previous approach re-
mains valid if K = σ

√
πa is substituted with the

corresponding value of the stress-intensity factor
at the tips of two interacting cracks, which can
be found in proper Handbooks. However, to have
an idea of the possible role of the interaction we
note that it will be maximal for collinear coalesc-
ing cracks. Thus at the coalescence,

Ea+b

Eth
= 1− (a + b)2

rl

and the maximum interaction is predicted to be

Ea⊕b −Aa+b

Eth
=

a2b2 + 2abrl

r2l2
≈ 2ab

rl
,

where the last approximation is valid only for small
crack lengths (with respect to r and l).

We are now ready to derive a general law. Let us
consider N cracks having the size ai or, and that is
the same, M different cracks with multiplicity Ni

(N =
∑M

i=1 Ni). Let ni = 2ai/q represent the num-
ber of adjacent vacancies in the crack of half-length
ai, q be the atomic size, and fi = (Nini)/(2πrl/q2)
be its related numerical vacancy fraction. Then we
can write (the approximations are valid for small
cracks)

E

Eth
=

N∏
i=1

Eai

Eth
=

N∏
i=1

(
1− a2

i

rl

)
=

M∏
i=1

(
1− a2

i

rl

)Ni

≈ 1−
M∑
i=1

Nia
2
i

rl
= 1− π

2

M∑
i=1

fini. (1)

We note that our treatment can be viewed as a gen-
eralization of the approach proposed in [18], being
able to quantify the constants ki fitted by atomistic
simulations in ref. [18] for three different types of
defects. In particular, rearranging eq. (1) and in
the limit of three small cracks, we deduce

Eth

E
≈ 1 + k1c1 + k2c2 + k3c3, (2)

which is identical to eq. (15) in [18], in which
ci = Ni/l is the linear defect concentration and
ki = n2

i q
2/(4r). The authors of [18] consider 1,

2 and 3 atoms missing, with and without recon-
structed bonds. For not reconstructed bonds two
alternative defect orientations were investigated for
2 and 3 atoms missing (for details see [18]). Even
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Table 1: Comparison between present approach (bold numbers) and atomistic simulations, for defects with
reconstructed and not reconstructed (italic numbers) vacancies (with different orientations for 2 and 3 atoms
missing, see [18] for details). All the reported quantities are in Ångström (for a (m,p) carbon nanotubes we
simply consider here q ≈ 0.246 nm, see [19], and r ≈ 0.0392

√
m2 + p2 + mp nm).

(m, p) r k1(n1 = 1) k2(n2 = 2) k3(n3 = 3)
(5,5) 3.39 0.45 1.2 1.2 1.79 1.4 1.7 2.8 4.02 1.8 2.2 3.6
(9,0) 3.53 0.43 1.1 1.1 1.71 1.2 1.3 2.1 3.86 1.6 2.4 3.6
(10,10) 6.79 0.22 0.8 0.5 0.89 1.0 0.7 1.3 2.01 1.2 1.0 1.5
(17,0) 6.67 0.23 0.8 0.5 0.91 1.0 0.7 1.0 2.04 1.2 1.2 1.7

if their defect geometries are much more complex
than our considered nanocrack, the comparison be-
tween our approach and their atomistic simulations
shows good agreement, as summarized in Table 1.

Thus, if only one type of crack, formed by n adja-
cent vacancies, is present with fraction f in a space
elevator cable, its Young’s modulus E(f, n) must
satisfy:

E(f, n)
Eth

≈ 1− π

2
fn. (3)

2.2 Strength

Contrary, the strength is influenced only by the
most critical defect (i.e., is not a function of f);
applying quantized fracture mechanics [19] (G? =
−∆W/∆A = GC) for the crack propagation we
have found for the failure stress σ

(NT )
f of a single

nanotube
σ

(NT )
f

σth
≈ 1√

1 + n
.

Thus, by imposing the longitudinal equilibrium of
the entire cable, we derive its strength σf (ν, n) ac-
cording to

σf (ν, n)
σth

≈ 1− ν

(
1− 1√

1 + n

)
, (4)

in which ν represents the fraction of defective nan-
otubes in the cable (we expect ν ≈ 1). Thus, small
defects can strongly reduce the strength of a space
elevator cable, as emphasized in a recent paper [20],
whereas large damage is needed to have a strong
stiffness reduction.

Some data for high strength steel, Boron fibre, Car-
bon fibre, Kevlar and Carbon nanotubes, is given
in Table 2. For the Carbon nanotubes we present

(1) the theoretically calculated values, (2) the ex-
perimental values and (3) and (4) two sets of val-
ues calculated from eq. 3 and 4. The difference in
these values follows from assumptions concerning
the defect concentration, which has a strong influ-
ence on the stiffness. The detailed calculations are
explained in [18].

3 Reduced Energy Momentum
Method (REMM)

The REMM is the proper mathematical method
to investigate the stability of relative equilibria in
symmetric Hamiltonian systems. Mathematically
speaking, a relative equilibrium is a solution, whose
orbit coincides with an one parameter group or-
bit of the symmetry group of the system. For the
problem treated in this paper the symmetry group
is the planar rotation group. In engineering lan-
guage a relative equilibrium is an equilibrium in
a properly moving (in this case rotating) coordi-
nate frame. Whereas for nonsymmetric Hamilto-
nian systems the stability test according to La-
grangeDirichlet requires for an equilibrium to be
stable that the second variation of the potential
V (q) must be positive definite, in the symmetric
case the situation is more complicated. Now the
invariance against the symmetry group motion (ro-
tation) and consequently the existence of additional
conserved quantities must be included in the anal-
ysis by forming the socalled amended potential Vµ0

defined by

Vµ0
(q) = V (q) +

1
2
µ0 ·J −1(q)µ0 . (5)

Here J (q) is the “locked inertia tensor”, which is
a generalization of the inertia tensor of the rigid
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Table 2: Data for some high strength materials. σc: tensile strength; E: Youngs modulus; %: density.
Material Abbr. σc [GPa] E[GPa] % [kg/m3] εc

Steel St 1-5 200 7900 0.025
Boron fiber 3.5 400 2450 0.087
Kevlar 3.6 127 1440 0.028
Carbon fiber CF 2-5 250-830 1850 0.008
Carbon nanotubes (theoretical data)(1) CTT 150 630 1300 0.238
Carbon nanotubes (experimental data)(2) CTE 65 630 1300 0.103
Carbon nanotubes (according to (3, 4))(3) CTT0.6 65 378 1300 0.516
Carbon nanotubes (according to (3, 4))(4) CTT0.2 65 126 1300 0.172

body motion obtained by locking the deformabil-
ity in the configuration q obtained from the group
motion. The conserved quantity µ0 is the angular
momentum for the relative equilibrium configura-
tion.

In order to avoid taking the second derivative of
the inverse of the locked inertia tensor in (5) for
the calculation of the second variation of Vµ0 , it is
convenient to make use of the expression

D2Vµ0(q0)(δq, δq) = D2Vξ0(q0)(δq, δq)

+ identξ0(δq) ·J −1(q0)identξ0(δq) , (6)

where

identξ0(δq) := −(DJ (q0) · δq) · ξ0, (7)

and

Vξ(q) = V (q)− 1
2
ξ ·J (q)ξ (8)

is the augmented potential. ξ is the angular veloc-
ity. The subscript 0 indicates that the quantities in
(7) are evaluated at the relative equilibrium.

For a relative equilibrium to be stable the second
variation given by (6) must be positive definite.

4 Simple model: Dumbell-
Satellite

In order to show the necessary steps we con-
sider first the dumbell-satellite of Fig. 3, treated in
Krupa et al. [8]. It consists of two point masses
connected by a massless rigid rod of length 2a.

The expressions necessary to evaluate the stabil-
ity condition of the radial relative equilibrium for

orbit

2a

Earth

ϕ

ϑ

r1
r

r2

m

Figure 3: Planar motion of a dumbell-satellite of
length 2a on a circular orbit around the Earth

the dumbell satellite are the kinetic and potential
energies:

T =m(ṙ2 + r2ϑ̇2 + a2(ϑ̇ + ϕ̇)2),

V =− km√
r2 + 2ra cos ϕ + a2

− km√
r2 − 2ra cos ϕ + a2

,

where k is the gravitational constant of the Earth.
The locked inertia tensor is given by (Krupa et al.
[8])

J (q) · ξ = J(q, FL(ξQ(q))) = 2m(r2 + a2)ξ (9)

The augmented potential (8), expressed by the an-
gular velocity ϑ̇ = ξ reads

Vξ = V −m(r2 + a2)ξ2
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and the amended potential (5) expressed by angu-
lar momentum µ0 = J ξ is given by

Vµ0 = V +
µ2

0

4m(r2 + a2)
.

The equilibrium position is stable, if V ′′
µ0

is positive
definite. For the radial relative equilibrium position
we obtain as deciding quantity ([8])

∂2Vµ

∂r2
=

2((r/a)4 − 10(r/a)2 + 1)
((r/a)2 − 1)3

> 0

For r/a <
√

5 + 2
√

6 ≈ 3.14626 the second deriva-
tive ∂2Vµ/∂r2 becomes negative. This means that
fixing the radius r of the orbit and increasing the
distance a between the two masses beyond the
given value, results in the instability of the radial
relative equilibrium position.

From this example we draw the following conclu-
sions, which will be used to simplify the following
analysis of the continuous problem:

1. Only the planar problem has to be considered.
This is justified by the analysis given in Krupa
et al. [8] and Krupa et al. [16], where it is
shown that the perturbation out of the orbital
plane completely decouples and is always sta-
ble.

2. Moreover, it follows both from the general the-
ory of the REMM, where a block diagonaliza-
tion of the second derivative is predicted, and
our calculations, that also the stability analy-
sis of the angular motion (attitude motion) of
the string in the orbital plane and of the ra-
dial motion decouple and hence, as it is shown
above, only the radial variation results in the
relevant stability condition.

5 Continuous string model

Following the conclusions drawn at the end of the
preceeding Section for the treatment of the dumbell
satellite we simplify the stability problem. Due to
the block diagonalization of the second variation we
only perform the second variation with respect to
the radial coordinate. To give a general proof that

the perturbation concerning the attitude motion is
always stable, one has to prove that the inequality

0 ≤
∫ s1

s0

{
EA(s)

r′ − 1
r′

(δy′)2

+ %A(s)
(

k

r2
− ξ2r

)
(δy)2

}
ds

+ m0

(
k

r2
0

− ξ2r0

)
(δy)2(s0)

+ m1

(
k

r2
1

− ξ2r1

)
(δy)2(s1)

+ ms

(
k

r2
gs

− ξ2rgs

)
(δy)2(sgs) (10)

holds for all nontrivial transversal variations δy(s)
satisfying the integral constraint

0 =
∫ s1

s0

%A(s)r(s)δy(s)ds + m0r(s0)δy(s0)

+ m1r(s1)δy(s1) + msr(sgs)δy(sgs). (11)

Obviously the last term in (10) vanishes, because
the gravitational and centrifugal accelerations can-
cel out at the geostationary orbit. The integral con-
straint (11) follows from the definition of the inter-
nal vibration modes given by the REMM. We note
that (11) excludes rigid rotations around the cen-
ter of the Earth because for a rotation y(s) ∝ r(s)
the right hand side in (10) vanishes. Unfortunately
we were not yet able to show analytically that (10)
holds for all admissible transversal variations, be-
cause the coefficient of (δy)2 is negative outside
the geo-stationary orbit. However, all numerical
calculations carried out by discretising the massive
string resulted in stability concerning the attitude
motion. Hence we proceed as indicated, checking
only the radial variation of the amended potential.

We consider now a system consisting of masses m0

at the inner radius r0, m1 at the outer radius r1,
and the satellite (space station) with ms at the
geostationary orbit rgs = r(sgs), connected by a
linearly elastic massive (density ρ) string. Anal-
ogously as in the preceeding Section we need, ac-
cording to (5), the quantities V , T and J , which
are given by

V =
∫ s1

s0

(
EA

2
(r′ − 1)2 − k%A

r

)
ds

− m0k

r(s0)
− m1k

r(s1)
− msk

r(sgs)
,
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T =
J
2

ξ2 =
µ2

0

2J
,

J =
∫ s1

s0

%Ar2ds + m0r(s0)2 + m1r(s1)2 + msr(sgs)2.

Inserting the first variations

δV =
∫ s1

s0

(
EA(r′ − 1)δr′ +

k%A

r2
δr

)
ds

+
m0k

r2(s0)
δr(s0) +

m1k

r2(s1)
δr(s1)

+
msk

r2(sgs)
δr(sgs)

δT =− µ2

2J 2
δJ = −ξ2

2
δJ

δJ =
∫ s1

s0

2%Arδrds + 2m0r(s0)δr(s0)

+ 2m1r(s1)δr(s1) + 2msr(sgs)δr(sgs).

into
δV + δT = 0 (12)

and performing integration by parts to remove δr′

results in one field equation

E(A(r′ − 1))′ =
k%A

r2
− ξ2%Ar, (13)

with the boundary and switching conditions

EA(r′ − 1)|s0 =
km0

r2(s0)
− ξ2m0r(s0), (14a)

EA(r′ − 1)|s1 = − km1

r2(s1)
+ ξ2m1r(s1), (14b)

EA(r′ − 1)|s
+
gs

s−gs
=

kms

r2(sgs)
− ξ2msr(sgs) (14c)

From these equations the tension σ(s) in the string
and the extension of the string can be calculated.
Since the right hand side in the jump condition
(14c) vanishes, the normal force EA(r′−1) remains
continuous at the space station and the jump con-
dition can be neglected in the computation of the
equilibrium configuration. In order to have a min-
imum weight design, the cross section A(s) of the
string is varied such that the tension σ reaches its
maximum admissible value in each cross section,
that is,

σ = E(r′ − 1) ≡ σc.

From this relation follows

r′ − 1 = σc/E. (15)

Inserting (15) into (13) results in

A′/A =
%

σc

(
k/r2 − ξ2r

)
. (16)

From (16) the shape of the string between the two
end masses can be calculated. It is shown in Fig. 4
for carbon nanotubes with the four different values
of σc given in Table 2 and endmasses of 1 kg each.

 0

 5e-11

 1e-10

 1.5e-10

 2e-10

 2.5e-10

 3e-10

 3.5e-10

 4e-10

 0  1  2  3  4  5  6  7  8  9
A

(s
) 

[m
2 ]

r/rgs

CTT
CTE

CTT 0.6
CTT 0.2

Figure 4: Cross-sectional areas of the four carbon
nanotube strings from Table 2 and end masses of
1 kg.

The string with the higher admissible stress has a
cross-sectional area of 6.6 · 10−11m2 at the surface
of the Earth. At the geostationary height the cross-
sectional area is 9.3 ·10−11m2, thus giving the ratio
1.41, which is a little bit smaller than the ratio
given in Edwards [5]. The taper ratios for the cases
numbered in Table 2 are listed in Table 3.

Table 3: Taper ratios for the cases in Table 2.
Case Taper ratio A(r0) [m2] A(rgs) [m2]
CTT 1.41 6.6e-11 9.3e-11
CTE 2.43 1.5e-10 3.7e-10
CTT0.6 2.30 1.5e-10 3.5e-10
CTT0.2 1.90 1.5e-10 2.9e-10

6 Determination of orbital sta-
bility of the radial relative
equilibrium position

To guarantee stability of the radial relative equilib-
rium position it is necessary and sufficient that the
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second variation of (5) is positive definite (Krupa
et al. [16]). Inserting

δ2V =
∫ s1

s0

(
EA(δr′)

2 − 2k%A

r3
(δr)2

)
ds

− 2m0k

r3(s0)
(δr(s0))2 −

2m1k

r3(s1)
(δr(s1))2

− 2m2k

r3(sgs)
(δr(sgs))2

δ2T =
µ2

J 3
(δJ )2 − µ2

2J 2
δ2J

δJ =
∫ s1

s0

2%Ar δrds + 2m0r(s0)δr(s0)

+ 2m1r(s1) δr(s1) + 2msr(sgs) δr(sgs),

δ2J =
∫ s1

s0

2%A(δr)2ds + 2m0(δr(s0))2

+ 2m1(δr(s1))2 + 2ms(δr(sgs))2.

into δ2V + δ2T , we have to check the positive def-
initeness. It is explained in Krupa et al. [16] that
this can be done at least in two different ways. We
take the approach, where a minimization problem
is formulated, because this results in an accurate
determination of the smallest eigenvalue, the sign
of which determines the stability of the configura-
tion (Krupa et al. [16]).

Hence we formulate the quadratic minimization
problem

min
‖δr‖2w=1

(δ2V + δ2T )(δr, δr′)

where

‖δr‖2
w =

∫ s1

s0

ρAδr2(s)ds + m0(δr(s0))2

+ m1(δr(s1))2 + ms(δr(sgs))2. (17)

As outlined in [21], we reformulate this isoperimet-
ric minimization problem as Optimal Control prob-
lem, because this formulation gives sligthly simpler
equations than the analogous Lagrangian formula-
tion. After some calculations we obtain the bound-
ary value problem

δr′ = δN/(EA) (18a)

δN ′ =
(
−2k

r3
− ξ2 − λ

)
%Aδr

+ 2%Aξ2rδξ, (18b)

s = s0 : δN = m0

(
−2k

r3
− ξ2 − λ

)
δr

+ 2m0ξ
2rδξ, (18c)

s = s1 : δN = −m1

(
−2k

r3
− ξ2 − λ

)
δr

− 2m1ξ
2rδξ, (18d)

s = sgs : δN(s+
gs) = δN(s−gs)

+ ms

(
−2k

r3
− ξ2 − λ

)
δr

+ 2msξ
2rδξ, (18e)

with the scaling condition

1 = ‖δr‖2
w. (18f)

δN denotes the virtual axial force in the string.
Positive eigenvalues λ assure stability.

Comparing (18) with (13) and (14), we find that
(18) is just the eigenvalue problem for the lineariza-
tion of the BVP (13) and (14).

7 Numerical results

We consider first the string without a satellite at
the geostationary height (ms = 0). In Fig. 5 the
smallest eigenvalue of (6) is depicted against the
ratio r0/rgs. If this ratio is equal to 1, the string
is of zero length and if it is equal to 0.151, the in-
ner radius r0 is equal to the radius of the Earth.
Hence in this case the string extending down from
the geostationary height touches the surface of the
Earth. We can see from Fig. 5, that for short string
lengths the radial relative equilibrium of a string
moving with geostationary angular velocity is sta-
ble for all materials, since λ is positive. Increasing
the length of the string, λ becomes negative for all
strings made from nanotubes, when the inner ra-
dius r0 decreases to approx. 0.8rgs.

Up to now we neglected the influence of the space
station’s mass (ms = 0) on the orbital stability.
Since the geostationary orbit of the space station,
without strings attached to it, is orbitally stable,
a sufficiently heavy space station should be able to
stabilize the configuration.

We proceed now in the following way: Keeping the
eigenvalue λ ≡ 0 and regarding ms as additional
unknown variable, we calculate the necessary mass
ms of the space station, for increasing string length,
to stabilize the radial configuration of the system.
In Fig. 6, which is related to Fig. 5, we depict ms

9
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without intermediate satellite (ms = 0) depicted
against the ratio r0/rgs for four different materi-
als. Only for length ratios, where λ is positive, the
second variation of (6) is positive definite. For ab-
breviations in the Figure see Table 2.

for all four strings made from carbon nanotubes for
the values Table 2. At the length, where the radial
string configuration without intermediate satellite
looses stability, the mass necessary for stabilisation
becomes nonzero and grows for increasing string
length. Three of the four strings are too soft and
consequently no radial equilibrium configuration
exists, no matter how big the mass of the space
station is selected. The reason for this nonexis-
tence of an equilibrium is explained with a simpler
example in the Appendix.
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Figure 6: Minimum mass ms ([kg]) of the space
station necessary to stabilize the radial relative
equilibrium for the four strings of Table 1.
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Figure 7: Spring pendulum in its radial relative
equilibrium position in geostationary orbit

8 Conclusions

The main result of our investigation is that the ra-
dial relative equilibrium of a tapered string made
from carbon nanotubes moving on a circular geo-
stationary orbit and reaching from the surface of
the Earth into space is orbitally unstable. How-
ever, its configuration can be stabilized by attach-
ing to it a sufficiently heavy satellite in geosta-
tionary height. We calculated the minimum mass
necessary for this satellite to achieve stabilization.
Moreover, we also obtained the practically impor-
tant result that for too soft strings the stabilization
of the orbitally unstable relative equilibrium is not
possible, because due to the large extension no rel-
ative equilibrium exists.

9 Appendix: Spring pendulum
in geostationary orbit

We consider the simple spring pendulum sketched
in Fig. 7. If it moves on a circular orbit in its radial
relative equilibrium position with geostationary an-
gular velocity, the equilibrium equation reads

c(rgs − r0 − l0) =
km

r2
0

−mr0ω
2.

Inserting the angular velocity of the geostationary
orbit

ω2 =
k

r3
gs

we obtain

c

km
(rgs − r0 − l0) +

r0

r3
gs

=
1
r2
0

,

which we rewrite as

γ(a− br0) =
1
r2
0

, (19)
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where

γ =
c

km
, a = rgs − l0 and b = 1− 1

γr3
gs

.

We introduce the scaling r0 = αr into (19) to ob-
tain

α2γa− α3bγr =
1
r2

. (20)

Setting

α2γa = 1 or α =
1

√
aγ

we obtain from (20)

1− βr =
1
r2

, (21)

where

β =
αb

a
.

Equation (21) has a solution only if β is small
enough, because if β is too large, there is no in-
tersection between the straight line and the hyper-
bola.

If we resubstitute the physical quantities, it follows
that the stiffness c must be large enough, meaning
that the extension is below a certain limit.

This agrees with the result, which was obtained for
the continuous case.
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