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Abstract

While the prediction of dielectric loss spectra (DLS) from
molecular weight distributions (MWD) is relatively straight-
forward the inversion is known to be an intrinsically ill-posed
problem with high sensitivity to measurement noise. We pro-
pose artificial neural networks to solve this problem in two
steps: First, the measured DLS is approximated by a special
basis function network (BFN), thus reducing the data consider-
ably and inherently smoothing the spectra. Second, a group of
simple feedforward networks is employed to estimate the pa-
rameters of another BFN. The output of this second BFN is the
estimate of the MWD. A simulation demonstrates the perfor-
mance of the new method.

1 Introduction

The molecular weight distribution (MWD) of polymer melts is
the most important parameter to monitor product composition.
The direct measurement via size exclusion chromatography is
time consuming and expensive and therefore not suitable for
on-line assessment. With the availability of dielectric measure-
ments the analysis of dielectric relaxation in such melts moved
into focus. The normal-mode relaxation has a distinct dielectric
spectrum of a marked low-frequency loss peak with shape and
magnitude strongly depending on sample molecular weight.
Smaller side-chains contribute to a high-frequency segmental
loss peak that is insensitive to sample composition and is not
considered for inversion. There exist a host of articles cover-
ing dielectric normal-mode relaxation [1, 2, 3, 4] which form a
solid basis for the inversion of DLS.

The problem of inverting the DLS is difficult, since the solution
may not be unique for a given stochastic measurement error.
The strong sensitivity of the inversion can be explained by a
crude relation of the MWD to the second derivative of viscos-
ity with respect to frequency [3]. Therefore, extraction of the
MWD from noisy data is clearly an ill-posed problem which
needs some form of regularization. In the past, methods such
as maximum entropy [5], Tikhonov regularization [6], and iter-

ative inversion [7, 3] have been applied to this problem. While
Tikhonov regularization is applicable only to systems with lin-
ear mixing rule, the iterative algorithm may also be applied to
systems with nonlinear mixing.

Regardless of the inversion method, care must be taken to prop-
erly extract the DLS from experimental data. This includes
correct treatment of irregularly spaced data with respect to the
frequency axis � as well as correct asymptotic behaviour for����� and ���	� .

We propose a new method for the inversion by using artifi-
cial neural networks (ANN). Basically, a small group of simple
feedforward ANNs performs a general (nonlinear) mapping of
the DLS on the MWD. The method is structured in two steps:
In the first step experimental or simulated data of the DLS are
approximated by radial basis functions to provide a smooth
representation of the raw data; then a basis function network
(BFN) with specifically designed basis functions is trained in
order to minimize the number of parameters. The result of this
procedure is an inherent regularization [8, 9] and a strong data
reduction, since the parameters of the BFN are considered a
unique representation of the DLS. In a second step the parame-
ters of another BFN with different basis functions are estimated
by ANNs. To keep the ANNs simple and to enable efficient
training each of these networks has only a single output corre-
sponding to one parameter of the second BFN. The output of
the second BFN represents the MWD.

The remainder of this paper is structured as follows: In section
2 polymer descriptions in formal terms are given. The approx-
imation of the MWD and DLS by basis function networks is
given in section 3. A nonlinear mapping between the two ap-
proximations is developed in section 4.

A simulation using data with measurement noise from theoret-
ical models is performed in section 5 and results of the overall
inversion are presented. A discussion of the advantages and
limitations of the new method concludes the paper.
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Figure 1: Theoretical molecular weight distribution (MWD)
of a mixture of two polymers: 
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2 Background

2.1 Theoretical Molecular Weight Distribution and Lin-
ear Mixing

The mathematical model of theoretical MWDs 687:9;
=< of a
single polymer is given by [3, 4]6>7?9;
=<>
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where 
�) , 
�A 7 , 
 XQ7 are the monomer, number-average, and
weight-average molecular weights, respectively, and B is the
gamma function.

The resulting MWD 6J9;
=< from the mixture of two polymers
is given by a linear mixing rule6#9;
=<Y
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where 3 is the fractional contribution of 6&� . This model has
been experimentally verified for type-A polymers [2]. A pos-
sible shape from the mixture of two polymers predicted by this
model can be seen in fig. 1.

2.2 Normal-Mode Dielectric Loss Spectrum

Normal-mode dielectric relaxation in type-A polymers with
linear mixing can be described by the DLS _�` `%9a�b<_ ` ` 9c�b<Y
d9c_ ) ]e_�fg< @(hijlk � 6 j @ �m ! @ fin k �nCoUprqsq � @Ut j
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where t j 
 ty)&@ G 
 j
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is the relaxation time of species with molecular weight 
 j , 6 j
is the weight fraction of this species, 9a_ ) ]e_%fg< is the dielectric
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Figure 2: Theoretical dielectric loss spectrum (DLS) of a
mixture of two polymers: 
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Only the normal-mode peaks are represented by the model.
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Figure 3: Diagram of a single layer basis function network with
a linear combination of nonlinear basis functions |~} .
strength, � an experimentally determined exponent, t ) and 
�)
are the reference relaxation time and molecular weight respec-
tively. It should be noted that this definition of the DLS _�` `%9a�b<
is based on the MWDs 6 j of the components. The prediction
of the DLS from this model corresponding to the polymer mix-
ture from above is depicted in fig. 2.

3 Basis Function Networks (BFN)

3.1 Basic Structure

In order to approximate both the MWD and the DLS by smooth
functional representations with a small number of parameters
we propose the use of special BFNs.

The output � of a general single layer BFN (fig. 3) may be
represented by the continuous mapping � : IR

q � IR�g
0��9;� Wl� <Y
 i��} k �L� } | } 9a�:< W (6)

where � is the vector of input values and � is the parame-
ter vector. It is important to note that the single layer BFN is
linear in the parameters � } as can be seen from eq.(6). In an
approximation problem it is therefore possible to compute an
optimal parameter vector ��� using linear standard algorithms.



The main problem of approximation is then posed by the proper
choice of (nonlinear) basis functions | } 9a�:< .
3.2 Smooth Approximation

A possible choice of |g}l9��:< are the so called radial basis func-
tions (RBF) |�}r9a�:<b
0��9r�y��]��^}r��< W (7)

where � is a continuous function from IR � to IR, � @ � denotes
the Euclidian norm, and the � } are the centers of the basis func-
tions. The choice of the function � and the proper location of
the centers �:} are the main design problems. There exist theo-
retical results which draw a connection between regularization
theory and an optimal choice of these parameters [8, 9]. There-
fore, we use RBF networks with Gaussian basis functions��9a�:<b
 M N 9y�U�%�r�P <v� W (8)

to ensure smooth approximations of data corrupted by mea-
surement noise. In eq.(8) � } represents the center of the basis
function and . is the spread (analogous to the variance of a
Gaussian distribution) which was identical in all basis func-
tions. Due to the shape of the basis function the correct asymp-
totic behaviour of the approximated function is always guaran-
teed, as opposed to [3] where a polynomial fit required addi-
tional measures.

Using the function newrb from MATLAB’s neural network tool-
box we obtained good results typically using 
 
�� basis
functions. The optimal spread . of the basis function was found
by minimizing the quadratic validation error.

The measured data are now represented by approximations

� 
 �i } k � � } ��9a��]�� } <

 �i } k � � } M N 9U�U�%�r�P <v� W (9)

with 
 linear parameters � } (weights), 
 nonlinear param-
eters � } (centers), and the nonlinear parameter . (spread) to-
talling in �%
 E � parameters.

3.3 Molecular Weight Distribution (MWD)

In order to reduce the number of parameters even more sig-
nificantly we tried to replace the smooth approximation from
eq.(9) by a basis function network with only two specially
suited basis functions.

The theoretical shape of the MWD of a single polymer is given
in eq.(1). It is therefore obvious to choose a basis function �6
of the same structure for efficient approximation of measured
data. A suitable function is�6J9;
 W�� . W 
 A�� <>
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Figure 4: Basis function for approximation of MWD. .*
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which follows directly from eq.(1) by normalizing the maxi-
mum to 1. The basis function �6J9D
 WC� . W 
 A�� < depends on 2
parameters: . , which defines the spread of the function ( �I is
analogous to the variance of a Gaussian distribution function)
and 
 A , which is the center of the basis function (weight frac-
tion where maximum occurs). The weighting factors � } of the
feed-forward network (fig. 3) equal the maximum values of the
basis functions given in fig.4. While the network is linear in
the parameters � , the quantities . and 
�A represent nonlinear
parameters of the basis function.

The use of a BFN with a special basis function �6 can be viewed
as a grey model. Although the parameter values are not known
in advance the knowledge of the special functional structure
can be incorporated in the model.

Since the basis function �6 is of the same shape as the theoret-
ical MWD (1) it should be possible to approximate the MWD
of a mixture of two polymers with only two basis functions�6 � and �6 ! thus reducing the total number of parameters nec-
essary for describing the MWD to 6: . � W . ! W 
 A�� W 
 A�! W � � W � ! .
Among these parameters � � and � ! are easily determined from
a least squares optimization while both spread and centers of
the two basis functions are determined by an iterative algo-
rithm.

In order to obtain suitable starting values for weight and cen-
ters characteristic points in the smooth function approximation
such as extrema of the function and its derivatives up to third
order were calculated. The correlations between these points
and the true parameter values were evaluated for varying frac-
tional contributions 3 . Overall, 6 characteristic shapes of the
MWD could be found (with increasing 3 ): Single maximum
left, single maximum plus shoulder left, local maximum left,
local maximum right, single maximum plus shoulder right, and
single maximum right. By building a table from these cases and
the characteristic points simple decisions based on the correla-
tions were used to determine the starting values for weights and
centers.

Then, the best spread for these parameter values was deter-
mined by a simple gradient search. The performance criterion
for this optimization is the quadratic error only in the data left



of the maximum for the left basis function and right of the max-
imum for the right basis function. This choice ensures a min-
imum of interference between the two basis functions and a
correct shape of the distribution at the upper and lower ends.

Next, optimal centers and weights of �6/� and �68! were found
iteratively by alternatingly optimizing the 
�A1¡ and � } of both
basis functions. In this step the complete data are used to form
the quadratic error. The iteration is terminated when the de-
crease in the error criterion is smaller than a given constant.

3.4 Dielectric Loss Spectrum (DLS)

The functional representation of the DLS (4) is complex and
inherently requires the knowledge of the corresponding MWD.
Therefore, it is not a suitable choice for a basis function. In-
stead, the comparatively simple Gaussian distribution function
works very well in approximating a DLS. The basis function is
given by �¢ 9a� W�� . W ��A � <Y
 M N 9y£ � £ TP < � W (11)

where . defines the spread of the function ( �I is the variance
of the Gaussian), � A is the center of the basis function (cor-
responding to the mean of the Gaussian). Since the function
value of �¢ depends only on ¤ ��]e� A ¤ the resulting network is
a radial basis function network. The favorable properties men-
tioned in the previous section also exist in this case.

The iterative algorithm outlined in the previous section is also
applied on the smooth approximation of the DLS, only the first
part of finding characteristic points is skipped. Since the basis
functions for the DLS are symmetric Gaussian distributions the
choice of the initial values is less critical and the global max-
imum of the DLS is directly used to obtain the starting values
for the first basis function.

4 Nonlinear Mapping Between Functional Rep-
resentations

In the previous sections the methods and algorithms for
smoothing and reducing the data of measured MWDs and
DLSs have been presented. Each function is now uniquely
defined by 6 parameters and the inversion problem has been
transformed into a continuous mapping ¥ : IR ¦+� IR ¦ . Instead
of trying to identify this MIMO function directly the problem
is split up into identification of 6 independent MISO mappings�%} : IR ¦ � IR. Each of these mappings ��} can be represented by
a simple single hidden-layer feed-forward network (see fig.5)
with § sigmoid activation functions ¨ where the mathematical
description is given by��
©� } 9;� Wrª+Wl� <>
 hi } k � � } ¨©«¬ ¦ijlk �®­ } j � j�¯° 4 (12)

The justification for the replacement of a MIMO function by
6 independent MISO functions can be given as follows: Each
MISO function may be constructed from the original MIMO
mapping where only one output is being considered. In the case
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Figure 5: Diagram of a single layer feed-forward network with
sigmoid activation functions ¨ and a linear output neuron.

of feed-forward networks, this approach allows a reduction of
parameters since all connections to the discarded outputs and
the associated weighting parameters may be omitted.

Again, we are using a linear output neuron which causes the pa-
rameters � } to be linear while the ­ } s are nonlinear parameters.

The hidden layer consisted of only 6 sigmoidal neurons with
an activation function

�?9 � <>
 �� E M N !r± ]���4 (13)

Training of the network (12) was done using the Levenberg-
Marquard method. We used a batch algorithm where the all
training data are presented to the network before the parame-
ters are adapted. Success of the training was evaluated using
validation data and the training was terminated when the vali-
dation error remained within a small tolerance band or started
to rise again. In order to ensure a minimal dependency upon
initial conditions several repeated training runs with varying
initial conditions were performed and the best parameter set
was implemented.

5 Simulation

In a simulation study we tested the ability of the proposed
method to correctly predict the unknown MWD for a given
DLS from a mixture of two polymers. In a chemical process
plant the exact specification (MWD) of the individual com-
ponents is usually given by size exclusion chromatography.
Therefore, the centers 
 A�} and the spread parameters ¨ } are
well known. The remaining problem is the estimation of the
weighting parameters � } . We further assume that the mixing
parameter 3 is varied between 0.2 to 0.3. With our choice of
polymers this range covers all generic shapes of the MWD: sin-
gle peak, left and right shoulders, double peak, and plateau. 21
discrete values of 3 were chosen to generate complete data sets
(both MWD and DLS) from equations (1), (3) and (4). The
parameters were chosen as
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Figure 6: Left: Weighting parameters � � and � ! of the approxi-
mated DLS for different values of 3 . Right: Weighting param-
eters � � and � ! of the approximated MWD for different values
of 3 .
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Each distribution and spectrum consisted of 61 discrete data
points. Normally distributed noise with zero mean and a stan-
dard deviation of ¶J
©�'4 �'� ³ was added to theoretical data.

Smoothing and data reduction is carried out efficiently with
about 9 radial basis functions for the smooth approximation
and 11 iterations to reduce the data to two special basis func-
tions. The estimated parameters over the whole range of 3 are
close to the actual values as can be seen in figure 6. A small
bias is present when noisy data are approximated, however, the
final prediction is not adversely affected. The reason for the
larger bias in the parameter � � (see figure 6, right, and table
1) is the weakly pronounced shoulder on the left side of the
MWD (see figure 8) which makes the estimation of the corre-
sponding weighting parameter � � more problematic compared
to the estimation of � ! which is associated with a distinct peak.
The situation obviously changes with different shapes of the
MWD; in general, the less pronounced the effect of a single
basis function is the larger the relative estimation error will be.
Nevertheless, the absolute error will be still acceptable since
the contribution of the uncertain parameter to the overall pre-
diction is small in this case.

The feed-forward neural network (12) was trained using 16 out
of the 21 data sets with normalized data. The network was ini-
tialized with random parameters (method of Nguyen-Widrow
for hidden layer, uniformly random for output layer). A max-
imum of 500 epochs of batch training was carried out and the
performance of the resulting network was evaluated using the
5 validation data sets.

The resulting prediction of the MWD for 3�
·�'4´�%��� from the
network, the theoretical distribution, and the prediction error is
given in figure 8. The predicted and the actual weight param-
eters and the respective errors are listed in table 1. It should
be noted that the DLS for 3�
{��4 ���%� does not exhibit a double
peak but shows a rather distinct single maximum (see fig.7).

10
0 11 00

84

0

0.2

0.4

0.6

0.8

frequency [Hz]

1
0

.

e
’’

e
  

-
 e

0
¥

Figure 7: Theoretical DLS with measurement noise for 3=
��4 ���%� . Noisy DLS - solid, theoretical DLS - dash-dotted, basis
functions - dotted.
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Figure 8: Predicted MWD from inversion for 3e
¸��4 ���%� . Pre-
dicted MWD - solid, theoretical MWD - dash-dotted, basis
functions - dotted, prediction error - dashed.

6 Discussion

The simulation studies confirm that the new method works well
for smoothing, data reduction, and the inversion problem. In
an industrial process the measured MWD and DLS for several
mixing parameters 3 have to be measured in order to provide
the necessary data for training the feed-forward network. This
training may be done off-line and the resulting network can
be applied on-line to estimate the actual composition of the
polymer mixture. Computation of the predicted MWD is less
time consuming than the measurement of the DLS.

There are some shortcomings to the proposed algorithm: The
data reduction algorithm incorporates some heuristic elements

3 1st weight � � 2nd weight � !
theoretical value 0.511 0.745
predicted value 0.495 0.751
abs. prediction error -0.0163 0.00563
rel. prediction error 3.19 % 0.76 %

Table 1: Theoretical and predicted values for the weights � �
and � ! of the MWD for 3�
©��4 ���%� .



(choice of initial values for iteration) although they are pro-
grammed to be executed automatically. It is also not yet opti-
mized and a more sophisticated scheme with tuned parameters
is expected to yield even better results. Moreover, we have
no analytical proof of convergence and stability of our method
although simulation results indicate a robust behaviour with re-
spect to noise and no unstable runs have been observed. Train-
ing results of the feed-forward network show a well known de-
pendency upon initial conditions. This requires repeated runs
with varying starting parameters. However, the impact on over-
all performance is negligible since extended experiments have
shown that within 4 to 5 training runs a set of parameters very
close to the optimal set can be found. Moreover, the most crit-
ical part for the accuracy of the overall algorithm is clearly the
smooth approximation of the noisy DLS. After a correct ap-
proximation of the DLS the training of the feed-forward net
poses no problem. This is true even in on-line application since
the training is very fast for this small network and 4 to 5 re-
peated training runs can be done in a few seconds on an average
computer.

Inversion by Tikhonov regularization works only in the case of
linear mixing (3) because of the assumption of a linear relation
between DLS and MWD. However, the more complex theory
of nonlinear mixing [3] definitely calls for a nonlinear map-
ping as proposed in section 4. Linear mixing may be consid-
ered a special case of the general nonlinear framework. Since
the equations for nonlinear mixing contain only mild nonlin-
earities the smooth approximation described in section 3.2 is
expected to give acceptable results. The nonlinear mapping
between DLS and MWD (section 4) should be working irre-
spective of the method used for approximation because of the
general nonlinear nature of the feed-forward network. We are
currently investigating the performance of our method when
applied to polymer mixtures with nonlinear mixing rules.

The extension of the proposed method to multi-component
mixtures is straightforward: The part of smoothing the mea-
sured DLS with radial basis functions can remain unchanged.
Data reduction has to be performed with one special basis func-
tion for each component instead of fitting only two basis func-
tions. This will certainly call for an adaptation of the heuristic
rules for the starting values and additionally, the iterative algo-
rithm to estimate the parameters � } will converge more slowly.
In order to investigate the feasibility of this approach further
simulation studies are required.

As demonstrated by simulations the method is fairly insensitive
to measurement noise and inherently provides for a regular-
ization of the inversion problem. The use of specialized basis
functions (1) and (4) automatically guarantees correct asymp-
totic behaviour and efficient data reduction.

In chemical engineering the method outlined here provides a
useful tool to implement an automated on-line measurement of
the composition of a mixture of two polymers.

7 Conclusions

A new method for inversion of the DLS of a mixture of two
polymers from the measured MWD has been developed and
the performance has been demonstrated by a simulation. Artifi-
cial neural networks are employed to solve the problem in two
steps: First, the measured data DLS and MWD are approxi-
mated by radial basis functions to ensure correct asymptotic be-
haviour and a smooth function. To achieve further data reduc-
tion these smoothed functions are approximated by 2 special-
ized basis functions using an iterative algorithm. In the second
step simple feed-forward networks with sigmoidal activation
functions are used to represent the nonlinear mapping between
DLS and MWD parameters. A simulation study demonstrates
the performance of the method for prediction of the MWD from
DLS data corrupted with measurement noise.
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