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ABSTRACT

The identification of the pharmacokinetic-pharmacodynamic propofol model from noisy measurement
data is desirable, since it enables automatic open- and closed-loop drug delivery schemes to adapt to vary-
ing patient parameters. In order to investigate the influence of measurement noise on the performance
of different nonlinear block-oriented identification algorithms a simulation study with a standard Wiener
block structure for the physiological propofol model is performed. The results indicate that suitable
nonlinear identification methods outperform linear models even in the presence of strong measurement
noise.
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1 INTRODUCTION

Propofol is a hypnotic drug which is administered during anaesthesia to achieve a desired depth of anaes-
thesia (DOA). Within the past few years a lot of interest has been taken in the automatic control of DOA
using direct and indirect measurements of the hypnotic drug effect (Mortier, Struys, Smet, Versichelen,
and Rolly 1998; Linkens, Abbod, and Backory 1997). The main problems in an automatic drug deliv-
ery system are reliable measurements of anaesthetic depth and an accurate physiological model of the
patient.

Although a widely accepted propofol model consisting of a linear dynamic pharmacokinetic part
(Shafer and Gregg 1992) and of a nonlinear static pharmocodynamic part (Schwilden, Sch¨uttler, and
Stoeckel 1985) exists, the drug effect (and model parameters) may not only vary within different patients
but also based on their clinical condition.

Therefore, on-line identification of the model parameters based on input-ouput measurements is de-
sireable and may be achieved by nonlinear identification schemes. Among artificial neural networks and
other more general nonlinear model structures there also exist block-oriented models. The present paper
investigates recently published algorithms (Bai 1998; Pelt and Bernstein 2000) to study their performance
in the presence of measurement noise. This influence is of great importance since the measurement of
DOA is still a problematic task.
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2 IDENTIFICATION ALGORITHM

2.1 Block-Oriented Models

Block-oriented models consist of blocks with linear dynamic systems described by discrete-time transfer
functionsG(q�1) interconnected with static nonlinearitiesf(u). In Figure 1 the Hammerstein model
(f ! G), the Wiener model (G! f ), and the nonlinear feedback model (G! f ! G) are shown. The
propofol model mentioned above has the structure of a Wiener model.

u(k)

a)

-

b) c)

u(k) u(k)y(k)y(k) y(k)
-1G(q )-1G(q ) -1G(q )f(e)f(u)

f(y)

Figure 1. Different Types of Block-Oriented Nonlinear Models: a) Hammerstein Model, b) Wiener
Model, c) Nonlinear Feedback Model

2.2 Algorithm

The algorithm for identification presented in (Bai 1998) and extended in (Pelt and Bernstein 2000) con-
sists of two comparatively simple steps. Instead of solving the nonlinear least squares optimization
problem, an approximation consisting of a standard least squares optimization and a fixed rank approx-
imation in the Frobenius norm. The procedure provides simultaneous approximations of the linear and
nonlinear blocks of the system. Moreover, the least squares optimization may be implemented in recur-
sive formulation enabling the algorithm to be used on-line.

2.2.1 Method by E.W. Bai

In (Bai 1998) a method to identify nonlinear systems of the structure given in Figure 2 is presented.
Although this is obviously a combined Hammerstein-Wiener model, the algorithm does not directly

u(k) y(k)w(k)v(k)
-1G(q )N (u)1 N (w)2

Figure 2. General Model Structure Used by Er-Wei Bai

identify the nonlinearitiesN1 andN2 directly but the more general model description
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where the functionsf andg represent a priori known smooth nonlinearities. This is certainly a strong
restriction to the applicability of the method since a direct analytical relationship betweenf andg and
the block-nonlinearitiesN1 andN2 does not exist in general. Therefore, even if the generic type of the
nonlinearitiesN1 andN2 is known (e.g. the Hill-equation forN2), it cannot be incorporated into the
identification algorithm and the nonlinearitiesf andg can only be chosen and optimized by guess.

The estimation of the model parametersai, bj , cm, anddn is performed in two steps: First, the
parameter combinationsaicm and bjdn which enter the model (1) as linear coefficients are identified
by standard least squares estimation. Second, an optimal solution for the model parameters is found by
approximating the exact performance criterion with a Frobenius norm. By selecting only appropriate
nonlinearities a pure Hammerstein or a pure Wiener model may also be identified.
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Although an analytical result for the convergence of the algorithm in the presence of noise is also
included, only asymptotic behaviour is guaranteed and no quantitative statements on the performance of
the algorithm are possible.

2.2.2 Method by T.H. Van Pelt and D.S. Bernstein

A substantial extension to the above described algorithm is given in (Pelt and Bernstein 2000). The
structure is a combined nonlinear feedback-Wiener model (Figure 3) where the nonlinearitiesf and
g are modeled by piecewise linear continuous functions. In this case, no a priori knowledge of the

u(k)

-

y(k)
-1G(q )f(u)

g(y)

Figure 3. General Model Structure Used by T.H. Van Pelt and D.S. Bernstein

nonlinearitiesf andg is required and only the number and positions of the knots between the linear
functions have to be chosen. This choice is not critical and may be adapted according to a first estimate.
Similar to the algorithm described above a pure nonlinear feedback model, a pure Wiener model or a
combination may be identified.

The parameter estimation is almost identical to the afforementioned algorithm, some additional math-
ematical results are incorporated in the nonlinear estimation part. No analytical results on the effect of
noise are given.

3 SIMULATION

3.1 Physiological Reference Model

Reference data for the study were generated using a Wiener model for the effect of propofol. The
pharmacokinetics are modeled by a linear discrete-time transfer function, and the pharmacodynamic part
is modeled by the Hill equation:

e(k) =
B(q�1)

A(q�1)
u(k) ; y(k) = E0 �

Emaxe
(k)

e

50
+ e(k)

; (2)

In the transfer function the inputu(k) is the propofol infusion rate and the outpute(k) is the drug
concentration at the effect site. The transfer function is of order 4, corresponding to a three-compartment
model with an additional effect compartment. In the Hill equationE0 is the effect without any drug
presence,Emax is the maximum deviation fromE0, e50 is the concentration at 50% of the maximum
effect, and the parameter determines the steepness of the nonlinearity.

Two data sets were generated using uniformly distributed white noise sequences with different posi-
tive ranges as inputu(k). Data set 1 corresponds to an outputy(k) which is equivalent to a drug effect of
only 5%, while data set 4 is equivalent to a drug effect of 70%. Measurement noisen(k) was in all cases
a zero-mean white noise Gaussian sequence. Noise intensity is given by the signal-to-noise ratio (SNR)

SNR =

s
�2y

�2n
; (3)

where�2y denotes the covariance of the signal and�2n is the noise covariance.
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Table 1. Model Names and Structures

Name Structure
Bai1 Hammerstein
Bai2 Hammerstein/Wiener

Pelt02 Nonlinear Feedback
Pelt12 Hammerstein/Nonlinear Feedback
Linear Output Error Model

3.2 Identification

Identification was performed with several model structures including linear, Wiener, Hammerstein, non-
linear feedback, and a combined Hammerstein/nonlinear feedback model. The motivation to include
models with obviously different structure is given by the fact that the actual nonlinear dynamic effect
of propofol may not be accurately modeled by a Wiener structure. Additionally, the robustness of the
identification algorithms with respect to a structural mismatch can be tested. Model names and structures
as used in this paper can be found in ...

All models were identified with and without measuring noise of different signal-to-noise ratios. For
both data sets SNRs of1 (no noise), 1000, 200, 100, 40, 4, 2 were generated by adding appropriate
noise signals.

All input-output data sets were normalized between�1 and+1. To ensure proper model validation,
data sets were split up in two independent parts with similar spectral and time domain properties. The
input signal of the validation part was used as input to the identified model and the simulated model
output was compared to the reference validation output by computing the mean squared error (MSE).
This validation procedure emphasizes the importance of a good model prediction.

3.3 Results

The comparison between the different model identification schemes clearly indicates that measurement
noise is well tolerated by most of the nonlinear identification algorithms. If a structural model mismatch
exists the identification with measurement noise may still yield an acceptable performance.

The example of Figure 4 shows the validation results for a Hammerstein model (dotted), a combined
Hammerstein/nonlinear feedback model (dash-dotted), and a linear output-error model (dashed). In the
left plot no measurement noise was added, leading to a very good performance of all nonlinear models.
The linear model yields a four times larger MSE than the nonlinear models. In the right plot the signal-
to-noise ratio due to measurement noise wasSNR = 3:53. Although the performance of all models has
clearly deteriorated in the presence of strong measurement noise, the linear model is now performing
best, indicating a more robust behaviour with respect to noise.

However, the relative performance of the algorithms also depends on the underlying nonlinearity in
the data set. Since the Hill equation (2) represents a static nonlinearity with varying slope the operating
point is also of great influence. In Figure 5 the results for data set 1 (5% drug effect operating point) and
data set 4 (70% drug effect) are depicted (numerical values can be found in Table 2 in the appendix).
While the linear model never performs optimal in the absence of noise, it is clearly best for small SNRs
in data set 1. The situation is similar for data set 4, but the overall performance of the linear model is
now so poor that an advantage can only be expected for unreasonable high levels of noise.

The performance of the nonlinear identification algorithms can be summarized as follows: Model
structures with only one nonlinearity (Bai1 and Pelt02) show both good performance in the presence
of small measurement noise and with small SNRs. The pure Hammerstein model Bai1 outperforms all
other algorithms except for the linear model in the case of SNR=2.

It should be noted that the model order of the best linear model was 5 while for the nonlinear mod-
els orders 2 to 3 achieved best results. Higher orders often lead to unstable systems for the nonlinear
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Figure 4. Model Validation (Left-Identification Without Measurement Noise, Right-With Measurement
Noise): Actual Output (solid), Hammerstein Model (dotted), Combined Hammerstein/Nonlinear Feed-
back Model (dash-dotted), Linear Output-Error Model (dashed)
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Figure 5. Model Validation: Left – Results for Data Set 1, Right – Results for Data Set 4

algorithms.

4 DISCUSSION

The results of our simulations indicate that nonlinear block oriented model identification may yield better
performance than linear models in the presence of noise, depending on the operating point of the original
nonlinear system. Nevertheless, classical linear models show a very robust behaviour with respect to
noise and may be more accurate for small SNRs.

The model structure mismatch obviously affects the complicated models more strongly than the
simple models with only one nonlinearity. This can be seen in Figure 5 for data set 4 where the simple
models achieve better results even in the absence of noise. The same is true for the robustness with regard
to measurement noise. The Hammerstein model Bai1 and the nonlinear feedback model Pelt12 show the
smallest increase in MSE with growing SNR.

The identification of a pure Wiener model is not possible with the algorithms treated here, since a
static nonlinearity at the output of the linear dynamic block directly affects both the filtered input and
output of the linear system.

An application of the hammerstein model Bai1 in a clinical trial seems justified. The algorithm is
quite robust with respect to noise, it achieves best performance in the absence of noise and may be im-
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plemented in recursive form. It could be used to monitor the changes in the patients pharmacokinetics as
well as the pharmacodynamics. The resulting model may easily be used for a model predictive controller
in closed loop or only as an indicator of the patients’ clinical state.

5 APPENDIX

Table 2. Model Performance Expressed as Mean Squared Prediction Error From Validation Data

Model data set 2 4 40 100 200 1000 1

Bai1 1 4; 1:10
�3

1; 20:10
�3

6; 60:10
�4

6; 26:10
�4

6; 22:10
�4

6; 38:10
�4

6; 40:10
�4

Bai1 4 4; 7:10
�3

2; 40:10
�3

3; 86:10
�4

3; 16:10
�4

2; 70:10
�4

2; 11:10
�4

2; 07:10
�4

Bai2 1 8; 04:10
�2

8; 24:10
�2

6; 91:10
�2

1; 51:10
�1

1; 09:10
�2

2; 10:10
�3

2; 00:10
�3

Bai2 4 3; 39:10
�1

4; 22:10
�1

1; 30:10
�3

4; 71:10
�2

4; 82:10
�2

7; 40:10
�3

4; 20:10
�3

Pelt12 1 7; 87:10
�2

7; 94:10
�2

8; 24:10
�2

1; 60:10
�3

9; 04:10
�4

9; 09:10
�4

9; 24:10
�4

Pelt12 4 5; 57:10
�2

6; 87:10
�2

6; 86:10
�2

6; 44:10
�2

1; 94:10
�2

2; 60:10
�3

2; 70:10
�3

Pelt02 1 1; 48:10
�2

5; 30:10
�3

1; 2:10
�3

1; 1:10
�3

1; 2:10
�3

1; 2:10
�3

1; 2:10
�3

Pelt02 4 1; 25:10
�2

4; 6:10
�3

2; 9:10
�3

2; 6:10
�3

2; 6:10
�3

2; 5:10
�3

2; 5:10
�3

Linear 1 1; 99:10
�3

1; 55:10
�3

1; 43:10
�3

1; 43:10
�3

1; 41:10
�3

1; 42:10
�3

1; 40:10
�3

Linear 4 4; 50:10
�2

4; 48:10
�2

4; 54:10
�2

4; 44:10
�2

4; 41:10
�2

4; 44:10
�2

4; 41:10
�2
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