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Advancing from unsupervised,
single variable-based to supervised,
multivariate-based methods:
A challenge for qualitative analysis
Bernhard Lendl, Bo Karlberg
This article reviews and describes the open challenges of defining the

unreliability limit or region when advancing from unsupervised single

variable-based to supervised, multivariate-based methods applied for the

purpose of qualitative analysis. An unambiguous definition of unreliability

regions is difficult to make when dealing with multivariate methods, altho-

ugh useful additional information, such as increased selectivity, may be

gained when applying such methods.
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1. Qualitative analysis

Qualitative chemical analysis is the
branch of analytical chemistry that is
principally concerned with detecting and
identifying one or more constituents of a
sample with the overall purpose of
producing a binary response (i.e., a ‘‘Yes’’
or a ‘‘No’’ regarding the presence of the
constituent(s) in the sample concerned).
The underlying analytical problem is for-
mulated in such a way that a specified
property is either assigned or not assigned
to the sample. Thus, this type of analysis
should enable a decision to be made as to
whether or not a sample contains a
certain category or class of compounds.
Therefore, from a logical perspective,
qualitative chemical analysis is a simple,
fundamental classification methodology.
Either the sample has a defined property A
(and thus belongs to class A) or the sample
does not (and does not belong to class A).

The way that a classification of this type
is performed depends on the data that the
method or technique used generates. A set
0165-9936/$ - see front matter ª 2005 Elsev
of ballots cast in an election can, for
example, be manually sorted through
visual inspection into two categories (e.g.,
ballot papers with a punched hole and
those with no hole). However, if the
instrumental method adopted produces a
wealth of multivariate data for each
sample, elaborate, chemometric methods
are required to make the desired Yes/No
classification. It is important to recognize
at this point that any method or technique
used for classification purposes, no matter
how simple it may be to perform, will
eventually fail to classify all samples
correctly. Consequently, the term unreli-
ability of a test has been proposed for use in
connection with qualitative analysis [1].

It is important to determine the factors
that can make qualitative analytical tests
unreliable. This is not straightforward,
and at least two concepts have to be
considered: calibration and analytical selec-
tivity. An erroneous calibration and/or
poor selectivity will definitely lead to
unreliability.
2. Unsupervised and supervised
classification

A classification can be unsupervised or
supervised. Unsupervised classifications do
not require any a priori knowledge about
the samples that are going to be classified.
The property that is assigned to the ‘‘Yes’’
category of samples is, as the ballot
example given above, easily measured and
ier Ltd. All rights reserved. doi:10.1016/j.trac.2005.03.010
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the test method used has proved to be sufficiently
selective.

However, supervised classification requires a priori
truth knowledge about the set of samples that is
intended to be used for calibration purposes. A typical
example of a supervised classification would be the
determination of the origin of a particular wine
through Fourier-transform infrared spectroscopy, FTIR
(e.g., addressing the question: is this a Merlot wine?).
FTIR data obtained for a large set of Merlot wines and
FTIR data obtained for other types of wine may then
be processed by an artificial neural network (ANN)
training procedure to create a model that can be
applied to new samples for which a priori knowledge
about their origin is not available.

These two examples, classification of ballots and wine
samples, represent two extremes of the widely complex
spectrum of applications developed for qualitative
analysis. To classify all these applications is challenging,
as is the selection and/or development of suitable classi-
fication methods when going from simple, unsupervised
methods to more complex classifications requiring a
supervised calibration strategy. This article briefly
elucidates and describes this urgent challenge for analy-
tical chemists.
3. Zero-order instruments – single-variable
methods

Instruments used in analytical chemistry are categorized
according to the type of data they provide [2]. Zero-order
instruments produce one datum per sample. Examples
of such instruments are balances, pH meters and
filter photometers. The observed variables are conti-
nuous. However, in this context, it will be necessary
to discuss the concept of calibration. According to the
2004 draft revision of the VIM [3], calibration has two
definitions:

(1) an operation establishing the relation between
quantity values provided by measurement stan-
dards and corresponding indications of a measur-
ing system, carried out under specified conditions
and including evaluation of measurement uncer-
tainty; and
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Figure 1. Illustration of the unreliability interval C0–C1 for single-va
(2) an operation that establishes the relation,
obtained by reference to one or more measure-
ment standards, that exists under specified condi-
tions, between the indication of a measuring
system and the measurement result that would
be obtained using the measuring system.

The calibration of a balance differs substantially from
the calibration procedure for a wet chemistry method,
but the two definitions above cover both these examples.

Let us consider a Soxhlet extraction method for
determining the fat content in a sample. The final ana-
lytical step is weighing the fat residue obtained after
evaporation of the organic solvent. A calibrated balance
will then produce data needing just a simple conversion
to a percentage value, or no conversion at all. The
underlying analytical problem might be to determine
whether or not the sample has a low fat content. Sam-
ples having a fat content below a certain specified cut-off
level, CL, should be classified as ‘‘low-fat products’’, while
all other samples do not belong to this category. This
method can be compared with the spectrophotometric
molybdenum blue method for determining phosphate-
yielding absorbance values that must be converted to
concentration values through a calibration function,
preferably a linear function. The ‘‘converted’’ or
‘‘derived’’ variable values are then used for the final
classification of samples.

The transfer of the observed or derived continuous
variable values to binary 0/1-variable values has been
treated thoroughly elsewhere [4,5]. Fig. 1 gives an
excellent summary of the problems associated with
moving from a continuous single-variable system to the
binary system. CL, defined as the cut-off limit, can be a
concentration, a weight, a total index (e.g., phenol index
or iodine number) or, in principle, any other parameter
related to the sample. The classification is based on the
very simple criterion that samples for which the conti-
nuous variable responses are larger than CL will have
the binary value 1 and consequently the assigned
property A; all other samples will not have the assigned
property. The uncertainty that this single-variable
system possesses will then determine the unreliability
interval. In Fig. 1, this interval is C0–C1, subdivided into
the zone of false positives, C0–CL, and the zone of false
negatives, CL–C1. Setting the limits of C0 and C1 will also
RELIABILITY
REGION

C1

CORRECT

RESPONSES
YES

ZONE OF
FALSE

NEGATIVES

 INTERVAL

riable methods for qualitative analysis. CL is the cut-off limit.
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determine the probability of reporting a correct answer
when the obtained variable value lies in the reliability
regions. In this context, the unreliability of a test has
been defined as the property of a test method that
characterizes the range of values of the measurand, for
which the probability of committing errors of the first
(false positive) or second kind (false negative) exceeds
accepted limits.

Zero-order instruments require full analytical selec-
tivity to give accurate values for the target variable.
Interferences cannot be detected, since only one datum
per sample is obtained. This datum usually represents,
after suitable conversion through calculation or
calibration, an analyte concentration. However, as
mentioned above, many single-variable analytical
methods aim at determining some type of total index
that gives an estimated concentration of a group of
analytes. A common feature of all single-variable
methods is that they enable unsupervised classification
when prior data are used to set or validate decision
criteria.
4. First-order instruments – several variables

A first-order instrument is in principle an array of zero-
order sensors. Diode-array spectrometers are typical
examples of first-order instruments. However, the
instrumental set-up for producing first-order data does
not necessarily consist of a set of similar sensors; such
set-ups may also consist of several different instruments,
which analyze different properties of the sample.

Let us consider some typical practical examples for
which first-order instruments are used when generating
data.

The first example is the determination of protein in
wheat. The reference method is the classical Kjeldahl
method based on digestion, distillation and titration. This
method is tedious, expensive and produces a lot of haz-
ardous waste. Consequently, near infrared (NIR) analy-
sis has today largely replaced it, but it is still the general
reference method used to enable multivariate calibra-
tion. Such calibration is often applied to large data sets
comprising thousands of samples for which both NIR
spectra have been acquired and Kjeldahl analyses
have been performed. Commonly applied regression
approaches in this context are partial least squares (PLS)
and ANN analyses. The regression vector, b, obtained
from the multivariate calibration is then used to convert
spectral data for the new samples with unknown protein
contents into protein content values. Assume that we
have an NIR analyzer calibrated in this way so that it
displays the calculated protein content for each sample.
For the analyst, such an instrument would resemble and
perform like a zero-order instrument and, consequently,
it could be analogously used for qualitative purposes.
490 http://www.elsevier.com/locate/trac
The underlying question asked might be: does the
protein content in this wheat lot exceed 12.0%? The
uncertainty of this classification method cannot be
exactly determined, but it can be estimated. This means
that the unreliability interval can also be estimated. The
statistical tools that must be applied in such cases are
somewhat more complex than those applied for zero-
order instrument data. Comprehensive descriptions of
state-of-the-art statistics can be found in textbooks on
fundamental chemometrics. It is important to note that
first-order instrument data can reveal the presence of
interfering constituents in the sample, unlike zero-order
instrument data. However, the interfering constituents
cannot be quantified.

The second example is the classification of minced
meat, as being of poultry (Yes) or non-poultry (No)
origin. Again, NIR spectroscopy may be used. If it is used
for calibration purposes, spectra of a large number of
samples of all kinds of meat with known origin are first
acquired. They are then classified, using an appropriate
chemometric method. Several such methods are avail-
able and the optimal choice depends on the application.
In many cases, there is no ‘‘best’’ choice. Principal
component analysis (PCA) is a commonly applied clas-
sification method. If we are lucky, distinct clusters may
be observed, and all poultry meat samples (and no
others) may fall into a single cluster. In reality, this very
rarely happens. To perform PCA on a set of NIR spectra,
no a priori knowledge about the samples is required
(unsupervised classification). However, in the minced
meat example, we have relevant knowledge, so a
supervised classification method, such as partial least
squares discriminant analysis (PLS-DA), might be con-
sidered. The spectral data would then be contained in the
X matrix and the binary response values in the Y matrix.
The Y matrix contains two variables. The values of these
two variables are (1;0) for poultry samples and (0;1) for
all other meat samples. Prediction of Y for new samples
with unknown origin will thus yield two y-values that
are not necessarily either of the integers 0 and 1. The
definition of an unreliability interval is clearly a
challenge in such cases.
5. Second-order instrumentation – several
variables

Second-order instruments are steadily gaining in
importance in analytical chemistry, mainly because
their prices are falling to affordable levels. An example of
a second-order instrument is a liquid chromatograph
equipped with a diode-array detector. An important
feature of second-order instrumentation is that analysis
can be performed in the presence of any component in
the sample that is not included in the calibration model
(the second-order advantage). The data treatment
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required for classification and qualitative analysis is, of
course, more complex than the treatments required for
first-order instrumentation. Each sample generates a
huge number of data points that will eventually lead to a
Yes/No answer.
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Figure 2. Use of a linear discriminant function to classify Yes/No
samples.
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Figure 3. Use of a non-linear discriminant function to classify Yes/
No samples.
6. The unreliability interval and the unreliability
region

As concluded above (referring again to Fig. 1), zero-
order data yield a well-defined unreliability interval,
since uncertainty data can be generated to provide the
basis for a straightforward calculation once the signif-
icance levels of errors of the first and second kinds have
been agreed. The cut-off limit, CL, represents the only
datum for which we give both a Yes and a No answer.
First and higher order instrumentation generates data
for which the number of variables is reduced by an
appropriate projection method to enable classification.
In the wheat example discussed above, the number of
variables is reduced to one and the classification is
straightforward, even though determination of an
unambiguous unreliability interval is more complex.
However, this example differs in another distinct way
from the zero-order (i.e., Soxhlet) example. Suppose
that we are inadvertently testing a peanut sample in-
stead of a wheat sample. The multivariate calibration
model will then give us a predicted protein value and
thus also the basis for a Yes or No answer to the
qualitative question asked (i.e., whether or not the
protein value is greater than 12.0%). However, the X
residual will most likely be large for this peanut sample,
giving us a new dimension of unreliability. This infor-
mation is vital and enables us to detect that the given
sample falls outside the established calibration. The fact
that we can detect such cases will ascertain the
achievement of correct classification results. This is an
inherent property of first and higher order instrumen-
tation, namely that outliers can be detected.

When using PCA for data reduction and classification
purposes, the data are typically projected onto a plane
(formed by two variables or �orthogonal components�) in
a score plot. In such cases, a discriminant function may
give a line that separates the two clusters (i.e., the Yes
and No clusters), as in Fig. 2. Measurements projecting
data points exactly on this line (after the PCA data
treatment) belong to either of these two clusters, analo-
gously to the case when the CL value was obtained for
zero-order instruments. However, again, the unreliability
region, as we may call this entity, is no longer an interval
but rather a region, projected onto a part of the plane,
and is not easily calculated. Again, a ‘‘new’’ type of
unreliability appears, for samples with score values far
away from any of the two clusters and far away from the
discriminant function line.
Fig. 3 illustrates a fairly complex classification problem
(data reduction to two component variables). No straight
line can be utilized as the discriminant function in this
case. Instead, non-linear discriminant function
approaches, such as back-propagation ANNs or support-
vector machines (SVMs), may be considered [6]. The
http://www.elsevier.com/locate/trac 491
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unreliability concept is even more difficult to define for
applications of this kind.

Soft independent modeling of class analogy (SIMCA) is
a commonly applied supervised classification method [7].
Two or more separate PCA models are constructed. For
qualitative purposes, the two classes are called Yes and
No, and each class is enclosed in a defined hyper-volume.
The boundaries of these hyper-volumes are defined in
terms of the calculated standard deviations of points in
each class. Any new measurement will be assigned
probabilities for belonging to either of the two classes, so,
in this case, there will be a consistent estimation of the
unreliability. Consequently, SIMCA somewhat differs in
this respect from the other mentioned classification
methods for first and higher order data.

In conclusion, first and higher orders of instrumen-
tation generate data that can be subjected to a super-
vised classification method that will give us the desired
Yes or No answers. However, defining the unreliability
region in such cases remains a challenge for analytical
chemists. Nevertheless, it is worth repeating that, based
on the nature of a multivariate response, additional
sources leading to unreliable classification results can be
492 http://www.elsevier.com/locate/trac
detected. As an example, outlier detection has been dis-
cussed in the text. Such additional information is in
principle not available when dealing with zero-order
data.
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