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Kurzfassung

D I S S E R T A T I O N
Simulation of core level spectra using Density Funcional Theory
von
Dipl. Ing. Joachim Luitz
8626200

In der vorliegenden Arbeit werden zunächst die theoretischen Grundlagen erläutert,
die notwendig sind um ausgehend von einer Kristallstruktur einer Substanz deren
elektronischen Eigenschaften auf der Basis der Dichtefunktionaltheorie zu berechnen.
Daran anschliessend wird der Formalismus zur Berechnung von Elektronen Energie
Verlustspektren (Electron Energy Loss Spectra, EELS) dargestellt.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Simulation von einigen aus-
gewählten Substanzen, von denen EELS berechnet und mit experimentellen Daten
verglichen werden. Dabei wurden folgende Substanzen gewählt: Magnesium und
Magnesiumoxid, Aluminium und Aluminiumoxid, Titan und Titanoxid sowie Kupfer
und Kupferoxid. Diese Kombinationen Metall/Metalloxid wurden mit Bedacht gewählt
um die unterschiedlich notwendige Behandlung von Metall und Oxid in der Simulation
zu verdeutlichen.

Bei den durchgeführten Simulationen wurde festgestellt, dass die Verwendung eines
zumindest partiellen ”core hole” (einer elektronischen Fehlstelle in einem Rumpfzus-
tand) in der Simulation notwendig ist um die Übereinstimmung von Simulation und
Experiment zu verbessern.

Für Metalle lässt sich generell sagen, daß ein partielles ”core hole” von etwa 0.4 –
0.5 (wobei ein halbes ”core hole” dem Slater’schen Übergangszustand entspricht) in
den meisten Fällen die Simulation wesentlich verbessert.

Für die Oxide lässt sich feststellen, dass ein ”core hole” alleine zu keiner Verbesserung
führt, weil keine freien Elektronen zur Verfügung stehen um diese Ladung abzuschir-
men. Deshalb sollte die Simulation in einer Superzelle durchgeführt werden um eine
künstliche ”core hole – core hole” Wecheselwirkung zu vermeiden.
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Foreword

I have startet this thesis many years ago and should have written it 4-5 years ago.
I did not write it then, because there were so many projects in my life that were
more appealing to me. Bits and pieces of what is presented here have already been
published and disseminated in various other ways: articles, posters and (invited) talks,
despite the fact that I have left University in 2001.

However, today, I believe it is high time that I summarize this work in order do finish
my long term project called ”PhD thesis”.
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Methods

Physics is like sex.
Sure, it may give some practical results,

but that’s not why we do it.
Richard Feynman
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1 Methods

1.1 Solid State Theory

1.1.1 Introduction

There are two principal types of solids, amorphous and crystalline matter. In amor-
phous solids some sort of local ordering can be observed. However, there is no peri-
odicity which is typical for crystals, where interactions over long ranges are present.
For ideal crystals this periodicity allows to reduce the problem of an infinite body to
the calculation of a smaller, but finite number of atoms [24].

For the calculation of quantitative properties of solids, we utilise the time-independent
Schrödinger equation:

HΨ = EΨ (1.1)

In this equation Ψ is the crystal wave function, E the energy eigenvalues and H the
Hamilton operator. The Hamiltonian in Rydberg atomic units is given by:

H = (−∇2 + V ) (1.2)

where ∇ stands for the Nabla operator and V the potential which is split into com-
ponents as described later (see 1.2).

The Schrödinger equation can be solved exactly only for one-electron systems. When
extending the problem to more electrons, approximations are required. Further when
we look at solids, which are in principle infinite in three dimensions, and thus include
atoms in the order of 1023 even in a small volume, we must rely on methods to reduce
this problem.

In the following sections I will describe which assumptions and which concepts are
necessary to solve the Schrödinger equation for an infinite solid.

8



1.1. SOLID STATE THEORY 9

1.1.2 The ideal single crystal

The ideal single crystal is defined by a structure that is infinite in three dimensions,
has a fixed, given composition and a rigid translational symmetry.

From this idealisation follows, that inhomogeneities such as surfaces or interfaces are
not allowed. However, later I will show how such problems can be tackled, even under
the assumption of a 3-dimensional infinite crystal.

Most calculations in solid state science are described in reciprocal space. The lattice
vectors in reciprocal space are chosen such that they are orthogonal to those of the
lattice in real space:

~ai
~bj = 2πδij (1.3)

The unit cell in reciprocal space is the so called “first Brillouin zone”. Instead of de-
scribing this unit cells as parallelepipeds, we can find several types of polyhedra with
which we can find several types of polyhedra with which we can fill space by transla-
tion. A very important type of space filling is obtained by the Dirichlet construction.
Each lattice point is connected to its nearest neighbours and the corresponding bisec-
tion (perpendicular) planes will delimit a region of space which is called the Brillouin
zone. This cell is uniquely defined and has additional symmetry properties.

The construction of such a cell can also done in real space and is called “Wigner-Seitz
Cell”.

1.1.3 The Bloch Theorem

The calculation of properties of a solid would not be feasible, because all particles
contained in the system would have to be considered. In a mole there are 6, 023.1023

atoms and all particles (electrons and nuclei) interact with each other. This would
result in equations that can never be solved within a finite time.

However, in an ideal single crystal, the infinite problem can be reduced to a small
number of atoms due to translation symmetry. Now we can consider solving the
resulting problem.

According to Bloch’s theorem a crystal wave function can be constructed from a

plane wave ei~k~r with the wave vector ~k (in reciprocal space) and a function that is
periodic in the lattice:

Ψ(~r) = ei~k~ru(~r) (1.4)

u(~r + ~R) = u(~r) (1.5)
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where ~R is the lattice vector in real space.

Although observable quantities like the electron density (given by Ψ∗Ψ) and other
physical properties are periodic with respect to the lattice, the wave function Ψ itself
is not. We can apply the Bloch theorem to the wave function Ψ and get

Ψ(~r + ~ai) = ei~k ~aiΨ(~r) (1.6)

where the vectors ~ai are the base vectors of the lattice.

As we assumed an ideal single crystal without surface, we have to introduce periodic
boundary conditions, i.e. we require the wave function to be periodic after N unit
cells.

Ψ(~r +Ni~ai) = Ψ(~r) (1.7)

Ψ(~r +Ni~ai) = ei~kNi~aiei~k~ru(~r) i = 1 · · ·3 (1.8)

where N is an arbitrarily chosen big integer.

From these equations we derive the following conditions:

ei~kNi~ai = 1 (1.9)

kiNiai = 2πm m ∈ N (1.10)

ki = m
2π

ai

1

Ni

i = 1 · · · 3 (1.11)

Because we defined Ni as a large integer it follows that ~k must be quasi-continuous.
It can be proven that Ψ~k is periodic in reciprocal space.

For a complete lattice vector ~K in reciprocal space the following equation holds:

Ψ~k(~r) = Ψ~k+ ~K(~r). (1.12)

From the above equation we learn, that it is sufficient to know the wave function Ψ~k

for wave vectors within the first Brillouin zone in order to describe the whole crystal.

From the properties of the reciprocal lattice vectors we can derive that any function
u(~r) which is periodic within the lattice, can be represented by a Fourier series, which
itself is periodic within the lattice.

u(~r + ~R) =
∑

~K

c( ~K)ei ~K ~R (1.13)

ei ~K ~R = 1 (1.14)

~K ~R = 2πn n ∈ N (1.15)
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This equation, however, is equivalent to equation 1.3, the definition of the reciprocal
lattice vectors. Thus it follows that the vectors ~K in the Fourier series must be the
lattice vectors of the reciprocal lattice.

1.1.4 Born-Oppenheimer approximation

The system of interacting charged particles consist of nuclei and electrons. For this
many-body problem we can write the excact many-particle Hamiltonian as follows:

Ĥ = − h̄
2

2

∑

a

∇2
~Ra

Ma
− h̄2

2

∑

i

∇2
~ri

mi
− 1

4πε0

∑

a,j

e2Za
∣

∣

∣

~Ra − ~rj

∣

∣

∣

(1.16)

+
1

8πε0

∑

i6=j

e2

|~ri − ~rj|
+

1

8πε0

∑

a6=b

e2ZaZb
∣

∣

∣

~Ra − ~Rb

∣

∣

∣

(1.17)

with Ma being the mass and Za the charge of nucleus a at position ~Ra, and me the
electron mass at position ~ri.

These terms describe the kinetic energy operator for the nuclei (a, b) of the system,
the kinetic energy operator of the electrons (i, j), the Coulomb interaction between
electrons and nuclei, the Coulomb interaction between electrons with other electrons,
and finally the last term is the Coulomb interaction between nuclei.

As nuclei are much heavier and thus much slower than electrons, we can assume them
to be ”frozen” at fixed positions, and the electrons will instantaneously equilibrate
with them [2].

The consequence of this so called ”Born-Oppenheimer approximation” on the Hamil-
tonian is as follows:

The nuclei do not move and therefore their kinetic energy is zero. The first term then
disappears and the last term degenerates to a constant. Left are solely the terms
for the kinetic energy of the electrons, the potential due to the electron-electron
interaction and the potential energy of the electrons in an ”external” potential caused
by the ”frozen” nuclei. This is formally written as:

Ĥ = T̂ + V̂ + V̂ext (1.18)

We note that in eq. 1.18 the first two terms, i.e. the kinetic energy and the electron-
electron interaction term becomes independent of the nature of the interacting sys-
tem. System specific information is carried entirely by V̂ext.
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1.2 Density Functional Theory

1.2.1 Introduction

As already mentioned, the Schrödinger equation 1.1 cannot be solved exactly for
many-electron systems. Therefore it is necessary to introduce approximations to
solve it. There are two principal methods that are applied: the Hartree-Fock method
(mainly used by theoretical chemists) and the Density Functional Theory (DFT). The
latter was mainly used by theoretical physicists [40]. However DFT also has found
its way into chemistry, which was offically appreciated by the Nobel committee by
awarding the Nobel prize for chemistry to Walter Kohn in 1998 [1].

Already in the early sixties Hohenberg and Kohn worked on the problem of electrons
in a periodic potential [15]. In this work they gave a proof that every observable of
a stationary quantum mechanical system is determined by the ground state density
alone.

The ground state energy of an interacting inhomogeneous electron system Etot[ρ(~r)]
in the presence of an external potential Vext(~r) is a functional F of the charge density
ρ(~r).

Etot[ρ(~r)] =

∫

Vext(~r)ρ(~r)d~r + F [ρ(~r)] (1.19)

The exact ground state density of a system in a particular external potential Vext(~r)
is the density that minimizes Etot[ρ(~r)].

For simplicity we will use in the following the case of a non spin-polarized system
(equation 1.19), but generalitazion for spin polarized systems is possible and is realized
in the code used.

As we can see, the charge density ρ(~r) is the basic variable in DFT. The functional
F [ρ(~r)], which independent of the external potential Vext(~r), is a universal density
function, i.e. applicable to any arbitrary system.

Despite the formal proof of Hohenberg and Kohn’s theorem the form of the functional
F remains unknown. Therefore the functional is rewritten such that it is composed of
the Hartree total energy plus a rest which is called the exchange-correlation functional,
which must be approximated.

Thus we rewrite equation 1.19 in the following form:

Etot(ρ) = Ts(ρ) + Eee(ρ) + ENe(ρ) + Exc(ρ) + ENN (1.20)



1.2. DENSITY FUNCTIONAL THEORY 13

In this equation Ts is the kinetic energy of non-interacting particles, Eee the electron-
electron replusion, ENe the nucleus-electron attraction, ENN the repulsive Coulomb
interaction between the nuclei, and Exc the exchange-correlation energy.

According to this definition, the exchange-correlation energy Exc is given by the
difference between the real total energy and the sum of the known terms. Thus
the unknown funtional from equation 1.19 has been reduced to the (still unknown)
functional for the exchange-correlation energy. This, however can be approximated
e.g. by the ”Local Density Approximation” (LDA) or the ”Generalized Gradient
Approximation (GGA).

1.2.2 Local Density Approximation

In the Local Density Approximation (LDA) the exchange-correlation energy is approx-
imated by ELDA

xc (equation 1.21), where εLDA
xc is the exchange-correlation density of

a homogeneous electron gas, which only depends on the electron density ρ(~r), thus
the name “local density approximation”.

ELDA
xc [ρ(~r)] =

∫

ρ(~r)εxc[ρ(~r)]d~r (1.21)

This exchange correlation energy can be split into two components:

ELDA
xc = ELDA

x + ELDA
c (1.22)

The first contribution ELDA
x is the exchange energy that comes from the Pauli exclu-

sion principle. In the local density approximation it is assumed that at any position
~r the exchange energy of the real system (inhomogeneous electron gas) can be sub-
situted by the corresponding energy of the homogeneous electron gas of the same
density. For the latter the exact formulation is known and scales approximately as:

Ex ∝ ρ
4

3 (1.23)

The second contribution, called the correlation energy ELDA
c , originates from the

interaction of electrons having the same spin. Both terms Ex and Ec can be calculated
using quantum Monte-Carlo methods [7]. In our code the parametrization from
Perdew and Wang [42] is implemented.
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1.2.3 Generalized Gradient Approximation

Whereas LDA uses the exchange energy density of the uniform electron gas, regardless
of the inhomogeneity of the real charge density, the generalized gradient approxiation
takes care of such inhomogeneities by including the gradient of the electron density
in the functional.

EGGA
xc [ρ(~r)] =

∫

εxc[ρ(~r),∇ρ(~r)]ρ(~r)d~r (1.24)

For practical calculations a parametrized form of the functional εGGA
xc must be im-

plemented. The parametrization used for the calculations in this work are those of
Perdew, Burke and Ernzerhof [41].

1.2.4 The Kohn-Sham equations

Starting with eq. 1.20 we derive the following one-electron equations by forming the
derivate of the total energy with respect to the electron density, such that the change
in electron density is zero. This leads to the so called Kohn-Sham equations [23]:

{

−∇2 + Vc(~r) + Vxc[ρ(~r)]
}

Φi(~r) = εiΦi(~r) (1.25)

ρ(~r) =
∑

ioccupied

|Φi|2 (1.26)

where Vxc is the exchange correlation potential, which is defined by

Vxc[ρ(~r)] =
∂Exc[ρ(~r)]

∂ρ(~r)
(1.27)

From equation 1.27 we readily see that the exchange correlation potential is only
dependent on the electron density ρ at position ~r and thus is a local potential.

Equation 1.25 is structurally identical to the Schrödinger equation (1.1). As the multi-
electron equations have been reduced to a single-electron Schrödinger equation, the
problem can now be solved.

1.3 The Variational Principle

The Rayleigh-Ritz variational principle provides a powerful mechanism for finding
ground state energies. It is based on the fact, that the expectation value of any trial
function is always greater than the eigenvalue of the exact wavefunction.
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Since the exact wavefunction is not known, we construct a trial function Ψk as a
linear combination of basis functions φi which are weighted by coefficients Ci:

Ψk =

n
∑

i=1

Ciφi (1.28)

The expectation value for the energy 〈E〉 can then be written as

〈E〉 =

∫

Ψ∗
k(C1, . . . , Cn)ĤΨk(C1, . . . , Cn)dr

∫

Ψ∗
k(C1, . . . , Cn)Ψk(C1, . . . , Cn)dr

. (1.29)

Minimization of 〈E〉 requires that the derivatives with respect to Ci (for i = 1, . . . , n)
must vanish, which yields a set of secular equations:

n
∑

j=1

(Hij − εiSij)Cj = 0 (1.30)

Hij =

∫

φ∗
i Ĥφjd

3r (1.31)

Sij =

∫

φ∗
iφjd

3r (1.32)

where Hij are matix elements of the single-particle Kohn-Sham Hamiltonian Ĥ, and
Sij the elements of the overlap matrix. This represents a general eigenvalue problem.
Once we know εi we can subsitute it in equation 1.30, determine the coefficients Cj

and thus define the trial function Ψk. The obtained eigenvalues are real, since the
Hamiltonian and the overlap matrix are hermitian.

If the basis functions are independent of energy, the problem reduces to a general
eigenvalue problem, and the eigenvalues εi are obtained by diagonalization according
to equation 1.30.

1.4 The ”Self Consistent Field (SCF)”

In the previous section we have described how to reduce the complex problem of many
interacting particles to a Schrödinger-like equation. In order to solve these equations,
we have to construct the effective Hamilton operator.

The problem, however, is that parts of this Hamilton operator depend on the electron
density, which can only be derived from the solution of the Kohn-Sham equations. To
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solve this problem, we use the iterative method called “Self Consistent Field” (SCF)
as follows:

Initially we use atomic densities at the positions of the atoms in the crystal. From
such a crystalline density we can set up the Hamilton operator. From this we derive
an electron density in the crystal by solving the Kohn-Sham equations and summing
the electron density of all occupied states. From this new electron density we can
calculate a new potential and from this again a new Hamilton operator.

We repeat these steps as often as necessary to satisfy predefined convergence criteria
(e.g. constant total energy). The converged results are then independent of the
starting potential, and therefore self consistent.

A prerequisite for a good convergence and a small number of iterations is a good
starting potential and an efficient procedure to mix old (input) and new (output)
electron densities after each iteration.

1.5 The Linearized Augmented Plane Wave Method

1.5.1 Introduction

To solve the Kohn-Sham equations 1.25 [23] a number of different methods have
been developed. From the Bloch Theorem (see section 1.1.3) boundary conditions
for the single particle wave function can be derived. A general solution for these wave
functions can be obtained with plane waves. Madelung [30] has shown that plane
waves consitute a complete and orthogonal basis set. However, strong fluctuations
appear in the wave function close to the nucleus. To describe these features a huge
number of plane waves would be required. To reduce the number of plane waves,
Slater suggested in 1937 to augment the plane wave basis set in the region of the
atomic spheres with basis functions that are more appropriate for the description of
atomic wave functions. This resulted in the Augmented Plane Wave method [57].
However, this particular basis set leads to a non-linear eigenvalue problem, which
is hard to solve. In 1975 Andersen suggested to expand the energy dependence of
radial wave functions inside the atomic spheres with its energy derivative and thus
established the Linearized Augmented Plane Wave (LAPW) method [3].

1.5.2 Basis Set in the LAPW method

In the LAPW method the unit cell is divided into non overlapping regions (see figure
1.1): the region of the atomic spheres (I), and the region of the remaining volume,
the so called “interstitial” (II).
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II
I

I

Figure 1.1: Division of the unit cell in the LAPW method

The radius of the non-overlapping atomic region is called ”muffin-tin” radius. It is
usually chosen as big as possible, but always under the condition, that the spheres
do not overlap.

Within the interstitial region the wave function is expanded in by plane waves having
Bloch-form:

φ ~kn
=

1√
Ω
ei ~kn~r (1.33)

(1.34)

with ~kn = ~k + ~Kn and ~k being the wave vector of the first Brillouin zone and ~Kn a
reciprocal lattice vector.

To avoid the huge number of plane waves to describe the wave function near the
nucleus, the basis set is augmented: Within an atomic sphere t the wave function is
represented by a linear combinations of radial functions ul(r, El) multiplied with the
angular dependent lattice harmonics Ylm(r̂).

The radial parts can be calculated from a numerical outward integration of the radial
Schrödinger equation along a radial mesh:

{

− d2

dr2
+
l(l + 1)

r2
+ V (r) − E

}

ru(r, E) = 0 (1.35)

From equation 1.35 we see that the radial functions are functions of the energy,
which would lead to energy dependent secular equations which can be solved by the
repeated calculation of the secular determinant. This was done in the original APW
method [57].

In the LAPW method we linearize the radial functions and thus the problem is reduced
to a linear eigenvalue problem. We do this by a Taylor expansion of the radial function
to first order.
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ul(r, E) ' u(r, El) + u̇(r, El) (1.36)

The linearization energy El is chosen such, that it is close to the expected eigenvalue.

Therefore we can write the wave function within the atomic sphere as:

φkn
=
∑

lm

[Almul(r, El) +Blmu̇l(r, El)]Ylm(r̂) (1.37)

The coefficients Alm and Blm are functions of kn and are calculated under the con-
ditions that the wave function must be continuous in value and slope at the sphere
boundary.

1.5.3 Solving the Schrödinger equation

Using the above basis set, we can now solve the one-electron Kohn-Sham equations
(equation 1.25) using the Rayleigh-Ritz variational principle (see section 1.3).

The elements of the Hamilton- and the overlap-matrix are calculated, and the resulting
generalized eigenvalue problem (equation 1.35) is solved. For the calculation of the
Hamilton matrix elements a ”full potential” is used, i.e. there is no approximation in
the description of the potential. The potential is represented by a Fourier series in
the interstitial and by radial dependent times lattice harmonics functions inside the
atomic spheres [5, 6].

The results of the generalized eigenvalue problem are energy eigenvalues of the crystal
wave function from which the variational coefficients of the trial function (see section
1.3) can be calculated.

The crystal wave function can be solved for different k-points of the first Brillouin
zone. To increase the accuracy of the calculation, a finer k-mesh has to be chosen.
Showing the energy eigenvalues along certain symmertry lines of the Brillouin zone
results in a so called bandstructure plot. The weighted number of states vs. energy
yields the density of states (DOS).

g(ε) = VBZ

∫

BZ

δ(ε− ε~ki,b
)d~ki (1.38)

where VBZ is the volume of the first Brillouin zone.

1.5.4 The electron density

Occupying the energy levels according to the aufbau principle (with weight wi) with
electrons until all electrons are used results in the Fermi level. The Fermi level is the



1.5. LAPW 19

highest occupied energy level. The electron density ρ(~r) is given by a summation

over all occupied levels ε(~ki, b) (see also equation 1.26), where ν is the band index
and wi is the wieght of the star of the k-vectors.

ρ(~r) =
∑

i,ν

wiρ~ki,ν
(~r) (1.39)

ε(~ki, ν) ≤ EF (1.40)

ρ~ki,ν
(~r) = Ψ → ∗~ki,ν

(~r)Ψ~ki,ν
(~r) (1.41)

The electron density is represented by lattice harmonics within atomic spheres and
by a Fourier series in the interstitial region

ρ(~r) =







∑

LM

ρLM(r)fLMYLM(r̂) atomic sphere
∑

n

ρ( ~Kn)ei ~Kn~r interstitial
(1.42)

where fLM is a constant given by symmetry.

Lattice harmonics are linear combinations of spherical harmonics having the point
group symmetry of the corresponding atom [25]. This means, that within the atomic
spheres, a local coordinate system has to be chosen, which obeys this condition. This
also ensures, that an efficient basis set (i.e. as small as possible) is chosen.

1.5.5 The potential and total energy

The potential V (~r) is given by two components:

V (~r) = Vcoul(~r) + Vxc(~r) (1.43)

the Coulomb potential Vcoul(~r), and Vxc(~r) the exchange-correlation potential , which
is due to the Pauli exclusion principle.

The Coulomb potential can easily be derived from the total electron density by solving
the Poisson equation[54]:

∇2Vcoul(~r) = −8πρ(~r) (1.44)

The second part, the exchange-correlation potential, is also calculated from the to-
tal electron density using the local density approximation (see section 1.2.2) or the
generalized gradient approximation (see section 1.2.3).
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The total potential (like the electron density) is represented by lattice harmonics and
a Fourier series.

V (r) =







∑

LM

VLM(r)YLM(r̂) atomic sphere
∑

K

VKe
iKr interstitial

(1.45)

Thus the total energy of the system per unit cell can be calculated from the electron
density according to Hohenberg and Kohn (eq. 1.19). It consists of the following
contributions: the kinetic, the potential and the exchange-correlation energies (see
equation 1.20).

The absolute value of the calculated total energies has no so much physical relevance
because LDA and GGA are only rough estimates. However, differences in the total
energy can be calculated accurately and are relevant for relative stabilities.

1.5.6 Description of electronic states

In a solid one can distinguish electronic states that have different properties. They
are called core, semicore and valence states.

Core states

These are electronic states having a very low energy (normally less than approx.
−7 Ryd). These states are strongly localized around the nucleus and their corre-
sponding charge density is completely confined inside the atomic sphere. As these
states do not interact with other electronic states, they can be treated separately.
They can be calculated by solving the relativistic atomic Dirac equation in the po-
tential of the crystal. At the sphere boundary (muffin-tin radius) the wave functions
of these states should be zero in order to obey orthogonality.

The calculation results in a spherically symmetric charge distribution of these state

ρcore = ρ(r)Y0,0(r̂) (1.46)

where r is the distance from the nucleus.

Semi-core states

These states lie in an energy range between approximately -7 and -2 Ryd and the
corresponding charge density leaks outside the sphere. Their interaction with valence
states is not negligible. However, their interaction, and thus their influcence on the
k-dispersion (i.e. the dependence of the energy eigenvalues on the wave vector ~k; see
section 1.1.3) is small.
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Semi-core states can be included in the calculation of valence states by introducing
so called “local orbitals” [52, 53]:

φLO
kn

=
∑

lm

[Almul(r, E1,l) +Blmu̇l(r, E1,l) + Clmul(r, E2,lm)]Ylm(r̂) (1.47)

Thus local orbitals are constructed from two radial functions at different energies
(corresponding to principle quantum numbers n and n+1) plus one energy derivative
at one of the energies The coefficients Alm, Blm and Clm are chosen such to make
the LO vanish in both, value and slope, at the sphere boundary. The advantages of
using local orbitals are:

• no separate calculation of semi-core states is necessary,
• local orbitals ensure that semi-core states are orthogonal to valence states, and
• local orbitals can be used to describe unoccupied states at higher energies,

which can be important for the calculation of spectra [43]).

Valence States

Valence states are responsible for chemical bonding. They have a high k-dispersion,
thus a large number of k-points is necessary for their proper description.

1.5.7 Summation of states

To describe all states of a crystal, all different states described above, have to be
summarized. Within DFT the easiest way to accomplish this is via electron densities,
which were formally written in the same form. Simply adding the coefficients will yield
the total electron density (equation 1.39) from which the potential is calculated.

1.6 The APW+lo method

Sjöstedt, Nordström and Singh [55, 56] have demonstrated that the standard LAPW
method is not the most efficient way to linearize Slater’s APW method. Efficiency
can be increased by lifting the constraint that each plane wave must match in value
and slope to the solutions inside the atomic spheres.

By using the standard APW basis, however, with ul(r, El) at a fixed energy El (in
order to keep the linear eigenvalue problem) one can increase the efficiency.

To have enough variational flexibility in the radial basis functions a new local orbital
(lo) is added:
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φkn
=
∑

lm

[Alm,kn
ul(r, El)]Ylm(r̂) (1.48)

φlo
lm = [Almul(r, E1,l) +Blmu̇l(r, E1,l)]Ylm(r̂) (1.49)

This new local orbital lo (in lower case to distinguish it from the conventional local
orbitals LO in eq. 1.47) looks much like the LAPW basis set, but here the Alm and
Blm are not dependent on kn. They are determined by the requirement that the lo
is normalized and its value is zero at the sphere boundary.

The new type of basis functions have ”kinks” at the sphere boundary. This makes it
necessary to include surface terms in the kinetic energy part of the Hamiltonian. The
total wavefunction, however, is smooth and differentiable.

Madsen et al. [31] have shown that this scheme converges to practically identi-
cal results as the conventional LAPW method, but allows to reduce the parameter
Rmt ∗ kmax by about one, thus leading to significantly smaller basis set and therefore
reducing the computation time dramatically (up to an order of magnitude).

1.7 Simulation of core-level spectra

1.7.1 Introduction

In core level spectroscopies we are interested in the absoprtion (or emission) fine
structure in the range of 20–40 eV above (or below) the edge. Due to the fact
that core states are involved in this type of spectroscopy, site specific information is
obtained.

Whereas in Electron Energy Loss Spectroscopy (EELS) we use electrons to excite core
states into unoccupied conduction band levels, in X-ray experiments X-photons are
utilized. However, the theoretical descriptions of both X-ray and EELS experiments
are very similar [18]. Both derivations start from Fermi’s Golden rule within first order
perturbation theory. More details are given below.

The considerations for the calculation of absoption spectra can be direcly used for
emission spectra as well, if provision is taken that initial and final states are inter-
changed.

Rez [45] has given a marvellous review of the various methods for the calculation of
spectra with a near edge structure. A hierarchy of approximations for the calculation
of near edge structures can be given:
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1. Atomic Wave Function
the basic edge shape can be calculated but no fine structure; the maxima are
shifted

2. Single Scattering Approach
the atomic wave functions are reflected from neighboring atoms. This approach
works well for the so called “extended structure” (approx. 50 eV to several
hundreds eV above the edge).

3. Full Multiple Scattering Approach
Multiple scattering allows for multiple reflection of the wave functions. The
potential is constructed by the superposition of ion cores. The calculation is
carried out in a non-self-consistent manner and does not give a good represen-
tation of the states near the threshold.

4. Self-Consistent one-electron band theory methods.
Unoccupied states are calculated in a self-consistent potential. The methods
for the self-consistent calculation of the potential are manifold, e.g. APW
(augmented plane waves), ASW (augmented spherical waves), KKR (Korringa-
Kohn-Rostoker), or LAPW (linearized augmented plane waves).
These methods direcly yield the local angular momentum resolved densities of
states.

5. Inclusion of Core-hole effects.

In this work a self-consitent one-electron band theory method, namely (L)APW+lo
has been used. Furthermore the effects of the core-hole have been investigated using
the same method but applied to numerous materials. Other methods will not be
covered by this work.

1.7.2 Inelastic scattering of electrons in a solid

The definition of elastic and inelastic scattering depends on the target [46]. In the
case of elastic scattering the inner energy of the system (i.e. target and incident
particle) does not change. If, however, the inner energy changes, the scattering
process is called inelastic.

Scattering between two electrons is always elastic, as the sum of the kinetic energies
of both electrons remains unchanged before and after the scattering process.

In a solid the scattering process is always inelastic as the inner energy of the target
changes due to the excitation of electrons from occupied to higher, unoccupied energy
levels [13]. A typical case of an inelastic process is the interaction of a fast incident
electron with an atom, exciting a core electron to a higher energy level (see figs. 1.2
and 1.3).

In a Transmission Electron Microscope (TEM) the interaction of a fast electron (200
keV) with the target sample are described by such inelastic scattering processes.
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Figure 1.2: electron scattering [9]

By use of a Parallel Electron Energy Loss Spectrometer (PEELS) it is possible to
count the transmitted electrons according to their energy. This yields the electron
energy loss spectrum (EELS), i.e. the number of detected electrons as a function of
their energy loss (see fig. 1.4).

1.7.3 Energy Loss Near Edge Structure

The Energy Loss Near Edge Structure (ELNES) describes the structure of the edge
up to approx. 30 eV above the edge onset (see fig. 1.4). In this region, which can
be measured with only a few percent of experimental error, the spectrum describes
in principle the density of unoccupied electron states of the crystal.

For an incident electron to loose a certain amount of energy by an inelastic scattering
process, it must excite a core electron of the target atom with exactly this amount of
energy. The core electron is in due course excited to an unoccupied state above the
Fermi level. The probability for this process is proportional to the number of empty
states, which are given by the density of states DOS (see eq. 1.38).

The local density of (unoccupied) states depends on the crystal structure, the atoms,
the atom positions and also on the chemical environement of the target.

1.7.4 The Dynamic Form Factor

The probability per unit time for a certain transition between an initial state |i〉 and
a final state |f〉 can be given by Fermi’s Golden Rule (see [14]):

dWif = 2
π

h̄

∣

∣

∣
〈f |V |i〉

∣

∣

∣

2

dvf δ(Ei − Ef) (1.50)
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Figure 1.3: Electron transitions

In equation 1.50 Ei and Ef denote the initial and final energies of the system, dvf

the differential volume element in phase space, and V the Coulomb potential between
the two electrons.

The initial and final states are given by

|i〉 = |ki〉 ⊗ |n`m〉, |f〉 = |kf 〉 ⊗ |kν〉 (1.51)

where |ki〉 and |kf〉 represent the inital and final states of the incident electron, |n`m〉
the initial state of the core electron (represented by the quantum numbers n, ` and
m) and |kν〉 its final state (valence state, characterized by the band index ν and the
k-vektor in the Brillouin zone).

We can write the differential electron current as
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dj(dE, dΩ) =
∂W

∂Ω∂E
dΩdE (1.52)

or as

dσ =
∑

if

(2π)3me

h̄ki
dWif (1.53)

with

dWif =
2π

h̄
〈kν| ⊗ 〈kf |V |ki〉 ⊗ |n`m〉dvf δ(E + En`m − Eκν). (1.54)

Using the relation dvf = 2me

2h̄
kfdEdΩ yields

∂2σ

∂Ω∂E
=

(

2π

h̄

)4

me
2kf

ki

∑

k,ν
n,`,m

∣

∣

∣
〈kν|⊗〈kf |V |ki〉⊗|n`m〉

∣

∣

∣

2

δ(E+En`m−Eκν). (1.55)

Equation 1.55 gives the number of scattered electrons per energy unit as a function
of their energy loss E.
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To calculate the ELNES of an edge, we need a solution of this equation in the energy
range of Eedge to Eedge + 30 eV. Equation 1.55 would require an integration in 6-
dimensional space (over r of the fast electron and R of the core electron). To avoid
this the formula is converted analytically.

Thus it is possible to simplify the matrix element 〈kf |V |ki〉: in the case where the
fast electron can be described as a plane wave, this matrix element is exactly the
Fourier transform of the Coulomb potential between the fast electron and the core
electron (n`m at position R):

〈r|ki〉 = (2π)−
3

2 eiki·r and 〈r|kf〉 = (2π)−
3

2 eikf ·r (1.56)

〈kf |V |ki〉 =
1

(2π)3

∫

d3r
e20

|r − R|e
i(ki−kf )·r

(1.57)

=
e20

2π2q2
eiq·R with q = ki − kf

This yields a simple expression for the differential cross section of equation 1.55:

∂2σ

∂Ω∂E
= 4

(

e0
q

)4

me
2kf

ki

∑

k,ν
n,`,m

∣

∣

∣
〈kν|eiq·R|n`m〉

∣

∣

∣

2

δ(E + En`m − Eκν) (1.58)

The sum is now defined as the dynamic form factor

S(q, E) =
∑

k,ν
n,`,m

∣

∣

∣
〈kν|eiq·R|n`m〉

∣

∣

∣

2

δ(E + En`m − Eκν). (1.59)

1.7.5 Near Edge electron energy loss spectra (ELNES)

For near edge Electron Energy Loss Spectra Schattschneider and Nelhiebel [49, 37]
define the double differential scattering cross section for the excitation of an atom by
a fast electron as

∂2σ

∂E∂Ω
=

4γ2

a2
0

k

k0

1

Q4
S(Q, E). (1.60)

They define the Dynamic Form Factor (DFF) as
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S(Q, E) =
∑

i,f

| < i|e−iQR|f > |2δ(E + Ei − Ef ) (1.61)

where a0 is the Bohr radius, γ =
√

(1 − β2) the relativistic factor, and k0, k the
length of the fast electron’s wave vectors k0 and k before and after interaction.
The scattering vector is defined as Q = k0 − k. In those cases where the dipole
approximation is justified, we can write eiQR ' 1 + iQR. Then the direction of Q

plays the same role as the polarization vector ~e ~P in X-ray absorption spectra. Thus
the formulae derived for Electron Energy Loss Spectrometry may also be applied to
XAS [26] as long as the dipole approximation remains valid.

However, in contrast to XAS where the momentum transfer is always zero, the scatter-
ing vector Q is sensibly dependent on the direction between the incident and outgoing
wave vectors. Therefore even for small momentum transfers the dipole approximation
can become insufficient when looking at angluar resolved spectra in EELS.

Nelhiebel et al. [37] have given three formulae for the calculation of the DFF within
the framework of WIEN2k. The simplest formula they present is for averaging over
all directions (e.g. when looking at polycrystalline samples) and thus is equivalent to
equation 1.78 for the calculation of X-ray spectra:

S(Q,Q′, E) = oj`

`′

max
∑

`′=0

`+`′

∑

λ=|`−`′|

ρ`′(Enj` + E)

(1.62)

Pλ(cosα)[λ]

(

`

0

λ

0

`′

0

)2

〈jλ(Q)〉nνk``′〈jλ(Q′)〉nνk``′

The other two formulae include orientation dependence of the sample relative to
the incident electron beam. For crystals with at least orthorhombic symmetry the
equation reads:

S(Q,Q′, E) = 4π oj`

`′

max
∑

`′=0

`+`′

∑

λ=|`−`′|

[`′][λ]
1

2 〈jλ(Q)〉nνk``′

(

`

0

λ

0

`′

0

)

`+`′

∑

λ′=|`−`′|

iλ−λ′

[λ′]
1

2 〈jλ′(Q′)〉nνk``′

(

`

0

λ′

0

`′

0

)

(1.63)
+λ
∑

µ=−λ

+λ′

∑

µ′=−λ′

Y λ
µ (Q̃)

∗
Y λ′

µ′ (Q̃′)

+
∑̀

m=−`

+`′

∑

m′=−`′

ρ`′m′(Enj` + E)

(

`

−m
λ

µ

`′

m′

)(

`

−m
λ′

µ′

`′

m′

)

.
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To calculate angular resolved spectra of highly anisotropic crystals with symmetries
lower than orthorhombic the following formula must be used:

S(Q,Q′, E) = 4π oj`

`′

max
∑

`′=0

`+`′

∑

λ=|`−`′|

[`′][λ]
1

2 〈jλ(Q)〉nνk``′

(

`

0

λ

0

`′

0

)

`+`′

∑

λ′=|`−`′|

iλ−λ′

[λ′]
1

2 〈jλ′(Q′)〉nνk``′

(

`

0

λ′

0

`′

0

)

(1.64)
+min(λ,λ′)
∑

µ=−min(λ,λ′)

Y λ
µ (Q̃)

∗
Y λ′

µ (Q̃′)

+
∑̀

m=−`

ρ`′ m−µ(Enj` + E)

(

`

−m
λ

µ

`′

(m− µ)

)(

`

−m
λ′

µ

`′

(m− µ)

)

.

All of these formulae have been implemented into WIEN2k as the module elnes (see
2.3).

1.7.6 TELNES.2 - new development

New developments in the theory of ELNES in anisotropic materials have shown that a
fully relativistic treatment of the incident electron is necessary to obtain correct cross
sections because relativity acts in opposite ways on the components of the momentum
transfer parallell and perpendicular to the incoming electrons velocity [47, 17].

In this section we present Bethe’s fully relativistic theory as developed in [47] but
extended beyond the dipole approximation [22].

General formalism

The central quantity in our theory is the double differential scattering cross section
(DDSCS), which gives the probability of exciting the sample from an initial to a
final state by absorbing a certain energy and impuls from the electron beam. These
initial and final states are taken to be one electron states (i.e., we pretend that
the electron beam interacts with one electron of the sample and leaves the rest of
the sample unchanged). The aim of this chapter is to derive an expression for the
double differential scattering cross section that will be of use for the calculation and
interpretation of ELNES. The result has to be fully relativistic, has to capture the
sensitivity of an EELS experiment to the sample to beam orientation, and has to allow
for interpretation of the cross section in terms of the orbital momentum l-character
of the final state.
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We make three additional assumptions :

• Diffraction effects are not important (i.e., either there is no diffraction, or we
are working in one diffraction spot (eg. the 000 spot) and the others may be
ignored. This implies that the cross section is fully determined by the dynamic
form factor (DFF). Cross terms in the impuls transfer vector q, which require
the use of the mixed dynamic form factor (MDFF) [38], do not occur.

• The initial state is a sharp state with zero energy width. This limits the appli-
cability of our results to transitions from core states to unoccupied states and
excludes very low energy edges and valence to unoccupied state transitions.

• We are working in a crystal and therefore the final state is a Bloch state.

A relativistic expression for the DDSCS has recently been presented in [47]. We use
equation 12 of [47] (repeated as eq. 1.65 below) as starting point . We then elaborate
the equations in a similar way as in [38]. We expand all quantities in spherical
harmonics and solve the integrals over the angular coordinates using properties of the
spherical harmonics. We also introduce spin quantum numbers in the equation, as in
[48].

The DDSCS for scattering with energy loss E in a direction specified by the solid
angle Ω (related to q in the right hand side of the equation), is given by

∂2σ

∂E∂Ω
=

4a−2
0

q2 − (E/h̄c)2

k′

k

∑

i,f

|〈i|eiq.r(1 − p.v0

mec2
)|f〉|2δ(Ef − Ei − E)

=
4a−2

0

q2 − (E/h̄c)2

k′

k
DFF(q, E) (1.65)

where i are initial states of energy Ei, f are final states of energy Ef , the impuls
transfer vector or scattering vector q = k − k′, where k is the wave vector of the
incident fast electron and k′ the wave vector of the scattered electron and v0 is the
velocity of the incident electron, a0 is the Bohr radius, and me the electron rest mass.

We use the principal quantum number n, the orbital number li and the relativistic
quantum numbers j and jz to characterize the core state, thereby assuming that the
atomic description remains valid for the initial one-electron state, even in a solid.
Neglecting the magnetic or exchange field (and afterwards using first-order pertur-
bation theory to get the splitting of the core states), the core-state wave function is
expressed in terms of a radial function and spherical harmonics,

ψnlijjz
(r, s) =

∑

mi

(−1)li+jz−1/2
√

2j + 1

(

li 1/2 j
mi s −jz

)

wnlijs(r)Ylimi
(r̃) .

(1.66)

The final one-electron state is a Bloch state characterized by the wave vector κ in the
first Brillouin zone and the band index ν. In contrast to the initial state, the final-state
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wave function is completely delocalized over the crystal. However, when calculating
the matrix element in eq. 1.65, the strong localization of the core electron effectively
cuts off the integral of their product at a finite radius. So one needs a description of
the Bloch-electron only within that sphere since the overlap of initial and final states
vanishes outside of that sphere. We expand the Bloch state in spherical harmonics
and radial APW functions uEκν

ls (r). These functions are solutions inside the chosen
sphere of the radial Schrödinger equation containing the spherical component of the
crystal potential and the energy Eκν of the final state as eigenenergy, according to
Slater’s APW approach [57]. Thus the final state κν is given as

Ψκν(r, s) =
∑

lm

dκν
lmsu

Eκν

ls (r)Ylm(r̃) . (1.67)

We now introduce the cross-density of states :

Dl′m′s′

lms (E) =
∑

f≡κν

df
lms (df

l′m′s′)
∗ δ (Ef − E). (1.68)

As the functions uEκν

ls are normalized, the modulus squared of the expansion coeffi-
cients dκν

lms directly gives the contribution of this particular Bloch state to the local
partial l,m-DOS, which is a diagonal term of the cross-DOS in eq. 1.68.

The interaction potential has to be expanded in a similar way as the wave functions.
We utilize the Rayleigh formula for the exponential factor in terms of spherical Bessel
functions jλ:

eiqr = 4π
∞
∑

λ=0

+λ
∑

µ=−λ

iλYλµ(q̃)∗Yλµ(r̃)jλ(qr) . (1.69)

To treat the remaining (relativistic) factor of the interaction potential, we write the
impuls operator p = −ih̄∇ in a basis of spherical harmonics. The laboratory coordi-
nate frame is fixed such that its z-axis is parallel to the beam and hence to v0. In
that case we need only retain the z-component of the impuls operator.

1 − (mec
2)−1v0.p =

∑

lm

|lm〉〈lm| − (mec
2)−1ih̄v0

∑

lm

[

cos θ|lm〉 ∂
∂r

−

m
cos θ

r
|lm〉 − sin θ

e−iφ

r

√

(l −m)(l +m+ 1)|lm+ 1〉
]

〈lm|
(1.70)

Inserting eqs. 1.66 – 1.70 into eq. 1.65, we see that in the expanded matrix element
〈i|V |f〉 the radial and angular integration have been separated. The angular integrals
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can be solved by using basic properties of the spherical harmonics and the Wigner
3j-symbols. We introduce the notation

∫

dΩY ∗
l1m1

Yl2m2
Yl3m3

= (−1)l1−m1

√

[l1l2l3]

4π

(

l1 l2 l3
−m1 m2 m3

)(

l1 l2 l3
0 0 0

)

=:

{

l1 l2 l3
−m1 m2 m3

}

. (1.71)

Round brackets denote a Wigner 3j-symbol, curly brackets the product of three
spherical harmonics.

The sum over initial states in eq. 1.65 is a sum over the quantum number jz (we
assume that we are interested in one particular core state (n, li, j), and that all other
core states give rise to transitions with an energy loss much different from that of
the current edge), and the sum over final states is a sum over all Bloch states κν.
We obtain our main result:

DFF(q, E) = (4π)2
∑

mim′

i

∑

lms

∑

l′m′s′

∑

λµ

∑

λ′µ′

Dl′m′s′

lms (E + Ei)i
λ−λ′

Y ∗
λ′µ′ (Ωq)Yλµ (Ωq) tλµmi

lms (t
λ′µ′m′

i

l′m′s′ )∗ (1.72)

tλµmi

lms =
∑

jz

(−1)mi+m′

i(2j + 1)

(

li 1/2 j
mi s −jz

)(

li 1/2 j
m′

i s′ −jz

)

×
[

{

λ li l
−µ mi m

}
∫

jλulswnlijs

+
ih̄v0

mec2
2

√

π

3

∫

jλwnlijs(
∂uls

∂r
− m

r
uls)

×
(

{

l + 1 l 1
−m m 0

}{

λ li l + 1
−µ mi −m

}

+

{

l − 1 l 1
−m m 0

}{

λ li l − 1
−µ mi −m

}

)

− ih̄v0

mec2
2

√

2π

3

√

(l −m)(l +m+ 1)

∫

jλuls
wnlijs

r

×
(

{

l + 1 l 1
−m + 1 m −1

}{

λ li l + 1
−µ mi −m + 1

}

+

{

l − 1 l 1
−m + 1 m −1

}{

λ li l − 1
−µ mi −m+ 1

}

)]

(1.73)
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The indices lms and l′m′s′ are related to the DOS. They allow the interpretation
of the scattering cross section in terms of s-, p-, d-, and f-transitions. Spherical
harmonics of order λµ and λ′µ′ describe the sample to beam orientation. The sample
is rotated in the microscope, then the coordinate system in which the partial DOS
is defined (called the crystal frame) and the laboratory frame rotate away from each
other. Hence q and Ylm(q) have to be rotated into the crystal frame (or, equivalently,
the DOS has to be transformed to the laboratory frame). This is the origin of
orientation senitivity in equations 1.72 and 1.73.

Although eq. 1.72 contains apparently unrestricted summations over many indices,
only a selected set of terms will contribute. The properties of the Wigner 3j symbols
act as selection rules, eg. for λ = 0 the only allowed nonrelativistic term is the
one that has l = li. Additionally, the radial integrals may make certain transitions
very unfavorable. For λ = 0 and small scattering angles, one can approximate the
spherical Bessel function jλ by a constant, and the first radial integral in eq. 1.73
reduces to a product of initial and final state wave function, which is zero for l = li.
So, terms for λ = 0 are not expected to contribute in this case.

The DDSCS is obviously ”q-dependent”. At a given energy loss, this means that the
cross section depends on the scattering angle. In an EELS experiment one always
has a finite collection semiangle (the angular width of the detector aperture) and
convergence semiangle (the width of the beam). These parameters allow a certain
range of wave vectors k and k′ that, together with the energy loss E, determine a
set of allowed q. To simulate the experiment, one needs to integrate eq. 1.72 over
this set of allowed q-vectors.

Descriptions of ELNES are often limited to terms proportional to the DOS – that is,
cross-DOS terms for which l 6= l′, m 6= m′ or s 6= s′ are not taken into account. In
general, there is no reason for these ”cross terms” to be zero. One can show that
symmetry reduces the number of contributing cross terms [38]. For atoms with at
least orthorhombic site symmetry, all cross terms disappear if the crystal frame is
chosen accordingly.

For the simulation of ELNES for isotropic or polycrystaline specimens eq. 1.72 is
simplified by integrating over all orientations of the scattering vector q. This yields:

DFF(q, E) =
∑

mim′

i

∑

lms

∑

l′m′s′

Dl′m′s′

lms (E + Ei)t
λµmi

lms (t
λµm′

i

l′m′s′)
∗. (1.74)

Equations 1.72 and 1.73) can be easily reduced to the nonrelativistic case. It is
sufficient to replace the speed of light c by infinity, and one immediately recovers the
results of [38] and [19].

Working in the non relativistic case all cross terms cancel from eq. 1.74. In the
relativistic case, however, eq. 1.73 shows that cross terms may still appear in the
orientation averaged spectrum.
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1.7.7 X-ray emission and absorption spectra (XES, XAS)

The formalism for the calculation of X-ray emission spectra within the APW was
developed by Neckel et al. [36] and was later applied to the calculation of various
systems [35].

According to Mohn [32] the number of transitions per given time from an initial to a
final state can be derived from Fermi’s golden rule and are given by

w
(−)
a→b =

(

2πe

mh̄ω

)2
I

c
| < b|e−i~k ~R~e~P |a > |2 (1.75)

if wba = 1
h̄

(E0
a − E0

b ) > 0.

The operator e−i~k ~R for X-ray emission and absorption is of such a small value that it
can be expanded into the Taylor series

e−i~k ~R = 1 + i~k ~R− k2R2 + . . . (1.76)

Thus the matrix element is given by

< b|~e ~P |a >≈ ~e < b|~P |a >≈ iωbam < b|~R|a > (1.77)

In this matrix element the “electric dipole operator” ~R is utilized and is therefore
called the “dipole approximation”.

To calculate the intensity of such a transition the following formula can be used:

Inkσ(ν) =
8πe2(2πν)3

3hc3

∑

l

Mp(l, n
′l′, E)2Wl,l′χ

P
l (E)δσ,σc

(1.78)

where Mp(l, n
′l′, E)2 is the radial transition probability given by

Mp(l, n
′l′, E) =

∫ ∞

0

Rn,l(r)Rn′,l′(r)r
3dr), (1.79)

χP
l is the partial density of states of character l for atom P and Wl,l′ are weight

factors for the angular integrals (containing the dipole selection rule ∆l = ±1) and
are given by

Wl,l′ =

(

l + 1

2l + 1

)

δl,l′−1 +

(

l

2l + 1

)

δl,l′+1 (1.80)

This equation has been implementend into WIEN2k in the module txspec (see 2.2).
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1.8 Broadening of spectra

The formulae given in the previous chapter yield the theoretical, unbroadened spectra
of ELNES or XANES. Due to various physical processes, which are descibed in detail
below, the features of these spectra are broadened. In earlier calculations using
the lorentz routine of the program xspec we only broadened emission spectra as
described below. Recent works, however, have shown that the same formalism can
also be applied to absorption spectra [59, 33]. This generalized broadening procedure
is now implemented in WIEN2k in the module broadening (see 2.5).

There are mainly two effects that are responsible for the broadening of spectra.

1.8.1 Broadening of the core state

The broadening of core states is called “life-time broadening”. The core hole created
by the excitation process is quickly filled (mainly by Auger processes, i.e. electrons
from an energetically higher lying state fill up the hole, and the energy difference is
transfered to another electron that is lifted into an unoccupied state). The finite
life-time of the core hole gives rise to the broadening of the spectrum which depends
on the type of the target atom. Life-time broadening is assumed to be constant and
denoted with Γ0. Values for the life-times or core states are tabulated [44]. In the
calculation we fold the theoretical spectrum with a Lorentzian with a halfwidth of Γ0.

1.8.2 Broadening of valence states

There are two processes that broaden valence states:

• the hole in the valence region is filled by an electron of higher energy. The
energy difference can be used to excite another electron from the valence band
into an unoccupied state.

• the radiationless transition of an electron to the core hole by an Auger process.
Simultaneouly two electrons from the valence band are scattered, one into the
core and the other in a state above the Fermi level.

Emission spectra

Both effects contribute to the so called “low energy tailing” and is commonly de-
scribed by the following equation:

Γvalence(E) = W

(

1 − E − E0

EF − E0

)2

(1.81)
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where W is the energy dependent broadening parameter, EF the Fermi energy and
E0 the bottom energy of the lower band.

For emission spectra a “two-band broadening” scheme is implemented. This is nec-
essary to properly describe the broadening of semicore states. We apply the formula
for two different energy ranges, assuming that the broadening parameter W is the
same for both band ranges.

Thus the formulae used for the broadening due to core and valence life-times can be
written as:

E0 < E ≤ EF Γ(E) = Γ0 +W
(

1 − E−E0

EF−E0

)2

E1 < E ≤ E0 Γ(E) = Γ0 +W

E2 < E ≤ E1 Γ(E) = Γ0 +W +W
(

1 − E−E2

E1−E2

)2

E ≤ E2 Γ(E) = Γ0 + 2W

The broadening is implemented by folding the calculated spectrum with a Lorentzian
according to the following equation:

I1(E) = I0(E) − 1

π

Γ(E)

(E − Ei)2 + Γ(E)2
(1.82)

Absorption spectra

For absorption spectra two different formulae are implemented. One scheme using a
similar formula as in the emissions part, given by Muller et al. [34] which is derived
from the random phase approximation (RPA):

Γ =
π2
√

3

128
ωplasma(

E

E0
)2 (1.83)

where E0 is the bottom of the valence band and ωplasma the plasma frequency.

The other scheme is an empirical linear function described by Weijs et al. [59] where
the broadening parameter assumes the following form:

Γ(E) = Γ0 +
E

10
(1.84)
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1.8.3 Instrumental broadening

The instrumental broadening is included by folding the simulated spectrum with a
Gaussian function with a FWHM corresponding to the energy resolution of the actual
spectrometer that was used in the experiments.

1.9 The Core Hole

The process giving rise to (core level) electron energy loss specrtra or X-ray absorption
spectra includes the excitation of a core electron into an unoccupied state leaving an
electron hole in the core region. This core hole gives rise to a modified potential
acting on the other electrons. In this section we descibe briefly how this core hole
can be taken into account (or be neglected).

1.9.1 Initial State Approximation

In earlier calculations the effects of the core hole were negleted completely. For many
systems even a regular ground state calculation is sufficient. We call this the ”initial
state approximation”.

1.9.2 Final State Approximation

Despite the good agreement of the ”initial state approximation” for many systems,
various authors have shown, that some systems require the inclusion of a core hole
in the simulation in order to arrive at reasonable spectra (see e.g. [11, 59, 12, 27, 8,
28, 10] and many more).

In the final state approximation we create a core hole of infinite life time, which in
due course results in a modified potential, which is taken care of in the SCF cycle,
relaxing the other electrons in the presence of the core hole. Often this approximation
overestimates the effect of the real core hole by far. This is due to the fact that we
artificially (by the periodic bounary conditions) create interactions between the core
hole site and its next periodic image. In order to reduce this artifical core hole – core
hole interaction, we can perform this approach in a supercell and thus reduce this
unphysical interaction by enlarging the distance between the periodic images. This
makes the effect of the core hole on the crystal potential much smaller and more
realistic.
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1.9.3 Partial Core Hole Screening (PCS)

As both the initial state approximation and the final state approximation are static
descriptions of the inherently dynamic process of exciting a core electron to an unoc-
cupied state, we recently developed a method which lies in between and allows us to
model the time-dependent excitation process in a static description [29].

The idea behind the PCS is that in real systems the core hole will be screened by
(free) valence electrons. The electrons screening the core hole create a different
potential on the site, which in due course also changes the wavefunctions and thus
the resulting spectrum.

In the PCS we introduce a fractional occupation number at the atom which hosts
the core hole. In doing so we can vary between initial state (no electrons missing)
and final state approximation (1.0 electron missing). This allows us to adjust the
simulated result to the experimental spectrum in order to optimize the PCS value.

1.9.4 Slater’s Transition State

Density Functional Theory is by definition limited to the calculation of ground states.
Energy eigenvalues derived from an SCF calculation should not be mistaken as exci-
tation energies. However, many experiments show, that DFT gives at least a good
estimate, even for properties involving electronically excited states such as absorption
spectra. However the excitiation energy is not directly accessible using a standard
calculation. These energies can be calculated by either performing two calculations
(ground state and excited state) and taking the mean value, or by performing one
calculation involving Slater’s Transition State [58], which is equivalent to a partial
core hole of 0.5 electrons.

1.9.5 Beyond these simple concepts . . .

Since I began my work on electron energy loss spectra, there have been many new
developments. Today new codes or addition to codes appear that implement concepts
that are better suited for the description of excited states than standard DFT. These
include e.g. the response based method of time dependent DFT, perturbational
methods like GW or the Bethe-Salpeter equation or the density matrix approach.
Furthermore there is work going on in the improvement of ground state calculations
by implementing Exact Exchange functionals. However, none of these have been
utilized in the work presented here, because at the time of performing the calculations
they were not available.



Programs

Program complexity grows until it exceeds
the capability of the programmer who must maintain it.

from Murphy’s Laws
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2 Programs

2.1 WIEN2k

In this work the calculations were performed with the program package WIEN2k [4].
This program package for the calculation of electronic properties of crystals is an
implementation of the (L)APW+lo method (see 1.5) and is based on the original
WIEN code [6].

The program package was developed over the past 25 years by Karlheinz Schwarz and
Peter Blaha and many co-workers. At present it is used by more than 900 groups all
over the world.

In the following section the different parts of the program package will be briefly
described. An extended description can be found in [51, 50] and in the user’s guide [4].

2.1.1 Introduction

The program package WIEN2k consists of a number of programs that are linked
together with csh shell-scripts and features a web-based graphical interface called
w2web. The programs are mainly written in FORTRAN90. Only a few utility pro-
grams were written in C. There are many utilites and scripts included to simpilfy the
work with the package, partly as csh-shell or as perl scripts.

2.1.2 Input

In principle ab-initio programs would only require the knowledge of the nuclear charge
of the atoms involved. In practice at least the crystal structure is needed to arrive at
a solvable problem.

During the initialization process WIEN2k generates a number of input files for the
different programs. For very simple cases it is sufficient to use the pre-selected
default values. However, for more sophisticated problems it is possibe to vary certain
parameters, such as e.g. the occupation number of core states, which will be necessary
for the calculation of spectra with a core hole, as will be described later.
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2.1.3 Initialization

Before a calculation can be started an initial electron density has to be known in order
to calculate the potential. During this setup phase the following programs are run:

nn calculates the distances of the nearest neighbors and tests for overlapping spheres.
It also generates a shell structure which can be useful for constructing supercells.

sgroup determines the spacegroup as well as all pointgroups of non-equivalent sites.
It produces a proper case.struct file if necessary.

lstart solves the Schrödinger (Dirac) equation for the free atoms and calculates their
electron densities.

symmetry generates the symmetry operations for the given atomic position and
crystal structure, it further determines the point group of the atomic positions
and generates the corresponding LM combinations for the lattice harmonics
(see 1.5.5).

kgen generates a k-mesh in the irreducible part ot the Brillouin zone.
dstart calculates a starting density by superposition of electron densities with the

crystal density.

2.1.4 SCF cycle

In the SCF cycle the calculation is repeated until given convergence criteria are met.
During the SCF cycle the following programs are executed:

lapw0 calculates the total potential Vtot as the sum of Coulomb Vcoul and exchange
correlation potential Vxc (see 1.5.5), which are generated from the input density.

lapw1 calculates Hamilton- and overlap matrix elements. By diagonalizing the gen-
eral eigenvalue problem the eigenvectors and energy eigenvalues are calculated.
To speed up the calculation an (optional) iterative diagonalization is imple-
mented.

lapw2 calculates the Fermi level and the valence charge density from Kohn-Sham
orbitals specified by the the eigenvectors.

lcore calculates the eigenvalues and charge-densities for the core states.
mixer calculates the total electron density from the core and valence states for the

following cycle. The output density is mixed with the old input density using
the Pratt or Broyden-II scheme to ensure convergence during the SCF cycle.

For a schematic drawing of the SCF cycle see fig. 2.1.
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Figure 2.1: Schematic drawing of the SCF-cycle in WIEN2k
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2.2 XSPEC

With xspec it is possible to calculate both emission and absorption X-ray near edge
structures depending on the input. It is strictly limited to dipole allowed transitions.

This module consists of four programs which are linked by a csh-script which is itself
called xspec. These programs are

initxspec generates the input file (case.int) for the subsequent run of the program
tetra; the input is chosen such that the partial DOS for the L + 1 and the
L− 1 contributions (for edges higher than K) are calculated.

tetra calculates the partial DOS
txspec uses the generated partial DOS and multiplies them with the radial transition

probability derived from eq. 1.79 and the transition matrix elements according
to eq. 1.80. This step is done for both the L + 1 and the L − 1 contribution
to the spectrum (intermediate results can be found in the files case.m1 for the
L+1 component and in case.m2 for L−1) and finally both are added to yield
the theoretical spectrum. It should be noted, that the program automatically
selects core states with the spin s = +1 (i.e. p3/2 or d5/2 states) and thus
yields only LIII or MV spectra.

lorentz to compare the theoretical spectra obtained by txspec one has to broaden
the spectra to account for lifetime effects and the finite resolution of the spec-
trometer. Life-time broadening of core states is introduced by folding the spec-
trum with a Lorentzian of fixed FWHM. For the lifetime of the valence states
an energy-dependent Lorentzian is chosen; in the current implementation of
lorentz valence-broadening is only applied in the case of emission spectra. Fi-
nally spectrometer broadening is introduced by folding the obtained spectrum
with a Gaussian of constant FWHM. The original lorentz program was later
improved and extended, which is described in section 2.5, where also a detailed
description of the formulae used for broadening is given.

In order to use this module, self consistent results are indeed needed.

2.3 ELNES

Note: ELNES is no longer part of the WIEN2k distribution. It has been replaced by
TELNES.2. Nonetheless we describe it here because the simulations presented in this
thesis were performed using this program module. The results presented here can be
reproduced using TELNES.2 by turning off the relativistic correction.

The module elnes is used for the calculation of electron energy-loss near edge struc-
tures (ELNES). In contrast to xspec it also includes non-dipole contributions and is
further able to calculate orientation dependent spectra.
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Much like xspec it is a set of programs linked by the script elnes, which connects
the following programs:

initelnes generates the input file (case.int) for the subsequent run of the program
tetra. It should be noted that for orientation dependent spectra the partial
DOS must be split into lm contributions when using eq. 1.63 (generated by
setting ISPLIT=88 in case.struct) or into the called cross-DOS (see [37])
when using eq. 1.64 (by setting ISPLIT=99).

tetra calculates the partial DOS
telnes calculates the electron energy loss spectrum according to eq. 1.62 for poly-

crystalline samples, or for orientation dependent spectra according to eq. 1.63.
For highly anisotropic samples (i.e. with symmetries lower orthorhombic) the
calculation is done according to eq. 1.64. telnes includes a simple broadening
routine, which corrects for finite instrumental resolution using a Gaussian with
fixed FWHM. No life-time effects are included in this program. They can be
applied by the program broadening

2.4 TELNES.2

Equations 1.72 and 1.74 as described in [21, 22] are implemented in the program
TELNES.2, the successor of the TELNES module. The TELNES.2 program is avail-
able as a module of the WIEN2k package. In this chapter we describe very briefly
how certain ingredients for the DDSCS (see section 1.7.6) are calculated, and how
the DDSCS itself is processed into a useful spectrum.

The radial APW basis functions uls and the core radial function wnljs are calculated
from the spherical part of the crystal potential given by WIEN2k.

As the WIEN2k code uses atomic spheres, and we limit our radial integrals to this
sphere according to the discussion of eq. 1.67, care must be taken that the atomic
sphere radius (ASR) is chosen large enough so that the initial and final state wave
functions fulfill the appropriate orthogonality conditions inside the sphere. If this is
not done, unphysical dependencies might occur in the DDSCS [16].

How the cross-DOS can be obtained from an LAPW calculation has been discussed
earlier [19]. For the calculation of cross terms in the DOS, until now it was not possible
to exploit the symmetry of the lattice to map the Brillouin zone onto its irreducible
wedge. In collaboration with other WIEN2k developers [39] we have recently solved
this problem, so that the full lattice symmetry can now be used. This can considerably
speed up calculations.

In practice, one usually studies single differential cross sections. Therefore we offer
the option to either integrate the DDSCS in eq. 1.72 over energy (and study the cross
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section as a function of scattering angle or impuls transfer), or to integrate it over
scattering angle, and obtain an energy differential cross-section.

In the latter case, we integrate over a collection and convergence angle numerically.
In principle, the DDSCS should be integrated over the set of k allowed by the con-
vergence angle, and then again integrated over the set of k′ allowed by the collection
angle. However, experimental conditions in the microscope restrict these angles to
less than 50 mrad in all practical cases. The dependence of the cross section on
sample to beam orientation is situated on a larger scale. A 50 mrad tilt of a crystal
under the beam has practically no influence on the ELNES. We therefore do not in-
tegrate over the two k-distributions separately, but only over the correlation of these
two distributions, i.e. over a set of allowed q.

Finally, the energy differential cross sections are broadened in three steps: Lorentzian
broadening for the core hole life time; energy-dependent Lorentzian broadening for the
final state life time; and Gaussian broadening to simulate all instrumental broadening
processes.

All calculational parameters for the telnes.2 program can be set in an intuitive
way through the user interface w2web of WIEN2k (in regular mode only a limited
set of input parameters are shown, however, there exists also an ”ELNES expert
more” in which all parameters can be set through the interface). The sample to
beam orientation is defined by three Euler angles. Specific input options as well as
detailed output facilitate interpretation of the spectrum, especially in terms of the
l,m,s character of the final state. We also provide extensive documentation for both
users and developers [20].

2.5 BROADENING

Since recently the broadening program is part of the WIEN2k distribution. It was
derived from the lorentz prorgram, which is part of the xspec package. However,
the latter had a few short-commings. With broadening it is now possible to specify
different smearing parameters for L2 and L3 spectra without using external programs.
Furthermore a routine for broadening valence states in absoprtion mode has been
added. Depending on the choice of input two variants of energy-dependent broadening
of valence states can be utilized:

E/10 an empirical broadening, where Γ = (E − EF −Wshift)/10. By using Wshift

this broadening can also be applied to systems containing a gap [59].
E2 a broadening similar to the one applied to the emission spectra as described by

Muller [34]. We implemented the following formula:

Γ =
π2 ∗

√
3

128
∗ ωplasma ∗

( E

E0

)2
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where E0 is the bottom of the valence band and ωplasma (E1 in the input file)
the plasma frequency.

The version of broadening included now in WIEN2k can be used in conjunction with
with both the xspec and the telnes2 telnes packages.



Results

Prediction is very difficult,
especially about the future.

Niels Bohr
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To investigate the effect of a (partial) core hole on the simulated ELNES, we selected
a few materials for this work. The requirements for selection were as follows:

(1) the materials must consist of p- or d-elements to show the localisation of the final
state, (2) metal and and its oxide must be available for the investigation to show
the difference between metallic and insulating behaviour, and (3) the edge must be
accsessible for analysis with TEM/EELS, i.e. less than 2000 eV.

Therefore the following systems were selected:

• Al metal and Al2O3 (Al-K edge at 1560 eV)
• Mg metal and MgO (Mg-K edge at 1305 eV)
• Ti metal and TiO2 (Ti-L23 edges at 456 and 462 eV)
• Cu metal and Cu2O (Cu-L23 edges at 931 and 951 eV)
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Figure 3.1: Partial core hole in the aluminum Al-K spec-
trum, varying the core hole from no (0.0) to a full missing
electron (1.0)

For the systematic investigation of each system mentioned calculations with a partial
core hole (from no to a full core hole in steps of 0.1 electrons) in the single cell were
performed. For some systems also a 2x2x2 supercell calculation with one full core
hole was performed. For Al2O3 (a low symmetry structure) the supercell simulation
could not be performed because of lack of computer time. For the Mg metal the
2x2x2 supercell could not be converged. A much smaller mixing factor might have
helped but that would have again required more CPU time than was available.

3.1 Aluminum

3.1.1 Aluminum metal

Metallic aluminum crystalizes in the cubic face centered space group 255 Fm3̄m with
lattice parameters of a = b = c = 7.637 Bohr. Calculational parameters were 5000
k-points in the IBZ and a cut-off of Rmt ∗ kmax= 8.0.

From figure 3.1 we see that the shoulder of the first peak is more pronounced if there
is no core hole present. The first peak at approx. 6 eV increases in height whereas
the second peak at approx. 15 eV decreases in height in the presence of a core hole.

Comparing the theoretical edge onset derived from the energy level of the aluminum
1s states shows, that the experimental value of 1560 eV is very close to the value
derived for a partial core hole of 0.4.
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PCH 1s (Ry) EF (Ry) Edge (Ry) Edge (eV)

0,0 -110,18438 0,52520 110,71 1506,31
0,1 -111,15117 0,51560 111,67 1519,34
0,2 -112,12021 0,50531 112,63 1532,38
0,3 -113,11019 0,49304 113,60 1545,69

0,4 -114,08157 0,48135 114,56 1558,74

0,5 -115,05798 0,46878 115,53 1571,86
0,6 -116,02895 0,45593 116,48 1584,89
0,7 -117,00430 0,44219 117,45 1597,98
0,8 -117,97244 0,42808 118,40 1610,96
0,9 -118,94774 0,41245 119,36 1624,01
1,0 -119,90980 0,39685 120,31 1636,89

Table 3.1: Core levels and calculated K edge onset in alu-
minum with a partial core hole
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Figure 3.2: Al-K ELNES of aluminum metal with no, half
and a full core hole, and the experimental spectrum
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Figure 3.3: ELNES of the aluminum K edge in a 2x2x2
supercell and comparison with results from the single cell
calculation (no and half core hole) as well as the experi-
mental spectrum

The comparison of the Al-K ELNES of aluminum with no, half and a full core hole, and
the experimental spectrum in figure 3.2 shows best agreement between experiment
and simulation for half a core hole.

A 2x2x2 supercell was constructed with lattice parameters of a = b = c = 15.274 Bohr.
The supercell simulation was performed with 1000 k-points in the IBZ and a cut-off
parameter of Rmt ∗ kmax= 7.0.

Figure 3.3 shows the comparison of the aluminum K edge in aluminum for the single
cell (no and half core hole), the experimental spectrum und the spectrum for a 2x2x2
supercell with a full core hole. Here we clearly see that the supercell calculation would
be favorable in respect to peak positions, but with regard to relative peak heights,
the calculation using half a core hole is superior.

3.1.2 Aluminum oxide

Aluminum oxide Al2O3 in the form of corundum crystalizes in the rhombohedral space
group 167 R3̄c with lattice parameters of a = b = 8.989 Åand c = 24.546 Å. In
the calculation a cut-off parameter of Rmt ∗ kmax= 8.0 and 1500 k-points were used.

In figure 3.4 we see that the shoulderd structure of the calculated Al-K ELNES
disappears by introducing a (partial) core hole and the peak maximum shifts from
approx. 17 eV for no core hole to approx. 12 eV for a full core hole.
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Figure 3.4: Partial core hole (0.0 to 1.0) in the Al-K ELNES
for aluminum oxide
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Figure 3.5: Al-K ELNES of aluminum oxide with no, half
and a full core hole, and the experimental spectrum
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Figure 3.6: Partial core hole in the magnesium Mg-K spec-
trum, varying the core hole from no (0.0) to a full missing
electron (1.0)

Figure 3.5 plots the calculated Al-K ELNES in aluminum oxide for no, half and a full
core hole as well as the experimental spectrum. We see that the experiment exhibits a
clear double peak structure, whereas the simulation can at best generate a shouldered
structure in the case of no core hole. It seems that this system needs to be simulated
in a supercell to get better agreement with the experiment. However simulating an
aluminum oxide supercell would require much more CPU time than was available, as
it has to be simulated in a low symmetry structure.

3.2 Magnesium

3.2.1 Magnesium metal

Metallic magnesium crystalizes in the hexagonal spacegroup 194 P63̄/mmc, with
lattice parameters of a = b = 6.053 Bohr and c = 9.827 Bohr. In the calculation we
used 3000 k-points in the IBZ and a cut-off parameter of Rmt ∗ kmax= 8.0.

As can be seen from figure 3.6, the shoulder of the spectrum is more pronounced if
no core hole is present. Varying the core-hole from zero to a full electron, the first
peak increases in height, whereas the second decreases by almost the same amount,
thus giving equal peak heights for the case of half a core hole. The third peak height,
however, is not affected in height but the position shifts by 5 eV towards lower energy
with increasing core-hole strength. The fourth peak shifts by approx. 2 =eV towards
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PCH 1s (Ry) EF (Ry) Edge (Ry) Edge (eV)

0,0 -92,03064 0,26304 92,29 1255,75
0,1 -92,89166 0,26050 93,15 1267,43
0,2 -93,76005 0,26914 94,03 1279,36
0,3 -94,62246 0,25434 94,88 1290,89

0,4 -95,49036 0,25104 95,74 1302,66

0,5 -96,35930 0,24761 96,61 1314,43
0,6 -97,22874 0,24369 97,47 1326,21
0,7 -98,09909 0,23935 98,34 1337,99
0,8 -98,96551 0,23484 99,20 1349,72
0,9 -99,82983 0,23007 100,06 1361,41
1,0 -100,69561 0,22438 100,92 1373,12

Table 3.2: Core levels and calculated K edge onset in mag-
nesium with a partial core hole

lower energy and noticeably decreases its heigt drastically.

From these calculations the energy levels of the 1s states were extracted. Together
with the Fermi level the theoretical edge onset could be calculated. The calculated
value for the 0.4 partial core hole is very close the the experimental value of 1305 eV
(see table 3.2.1).

In figure 3.7 a comparision of the Mg-K ELNES of magnesium with no, half and a full
core hole, and the experimental spectrum is shown. As is readily visible the calculated
spectrum without core hole resembles the experimental spectrum best. Introducing
even a partial core hole cannot repoduce the first part of the spectrum.

3.2.2 Magnesium oxide

Magnesium oxide crystalizes in a face centered cubic structure, space group Fm3̄m,
with a = b = c = 7.962 Bohr. In the calculation 5000 K-points in the IBZ and a
cut-off parameter of Rmt ∗ kmax= 8.0 were used.

Figure 3.8 shows that the soulder of the main peak in the ELNES of MgO is less
pronounced in the calculation with a core hole, but still visible as a shoulder. The
main peak shifts by 3 eV to lower energy with a full in comparison to no core hole.
The second peak shifts by approx. 2eV and is almost completely supressed in the
presence of the core hole.

Comparing the Mg-K ELNES of magnesium oxide with no, half and a full core hole,
and the experimental spectrum in figure 3.9 one immediately sees, that the shoulder
in the simulated spectra is a separated peak in the experiment.

In figure 3.10 the ELNES of a the 2x2x2 supercell is shown together with the exper-
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Figure 3.7: Mg-K ELNES of magnesium metal with no,
half and a full core hole, and the experimental spectrum
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Figure 3.8: Partial core hole in the Mg K ELNES in mag-
nesium oxide, varying the core hole from no (0.0) to a full
missing electron (1.0)



3.2. MAGNESIUM 56

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50

0.0
0.5
1.0

Exp

Figure 3.9: Mg-K ELNES of magnesium oxide with no, half
and a full core hole, and the experimental spectrum
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Figure 3.10: Mg-K ELNES of magnesium oxide in a 2x2x2
supercell with full core hole in comparison with the experi-
ment and a single cell with no and a full core hole
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Figure 3.11: Partial core hole in the titanium Ti-L3 ELNES,
varying the core hole from no (0.0) to a full missing electron
(1.0)

imental spectrum and the comparison with corresponding spectra of the single cell
with no and a full core hole. The experimental spectrum lies between the spectra
of the single and the supercell with a full core hole, however, the first peak in the
calculations is always much smaller than the experimental one.

3.3 Titanium

3.3.1 Titanium metal

Metallic titanium crystalizes in the space group P 6̄2m. The lattice parameters are
a = b = 5.576 and c = 8.850 Bohr. For the calculation a plane wave cut-off of
Rmt ∗ kmax= 8.0 and 3000 k-points were used.

From figure 3.11 we see a shouldered double peak structure in the calculated ELNES.
The shoulders, which are not present in the experimental spectrum, disappears by
introducing a (partial) core hole. From figure 3.12 we see that the relative peak
heights of the experimental spectrum are best reproduced by a calculation with half
a core hole.

From the calculations given in tables 3.3.1 and 3.4 the energy levels of the Ti L2 and
L3 states were extracted. Together with the Fermi level the theoretical edge onset
was calculated. The calculated values for the 0.5 partial core hole is very close the
the experimental values of 456 eV for the L2 and 462 eV for the L3 edge of Ti.
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PCH 2p1/2 (Ry) EF (Ry) Edge (Ry) Edge (eV)

0,0 -31,41758 0,67139 32,09 436,60
0,1 -31,70357 0,65289 32,36 440,24
0,2 -31,98794 0,63413 32,62 443,86
0,3 -32,27068 0,61518 32,89 447,44
0,4 -32,55192 0,59589 33,15 451,01

0,5 -32,83177 0,57621 33,41 454,55

0,6 -33,10997 0,55633 33,67 458,06
0,7 -33,38639 0,63645 34,02 462,91
0,8 -33,66143 0,51619 34,18 465,02
0,9 -33,93495 0,49581 34,43 468,46
1,0 -34,20739 0,47523 34,68 471,89

Table 3.3: Core levels and calculated L2 edge onset in
titanium with a partial core hole

PCH 2p3/2(Ry) EF (Ry) Edge (Ry) Edge (eV)

0,0 -31,84177 0,67139 32,51 442,37
0,1 -32,12949 0,65289 32,78 446,04
0,2 -32,41621 0,63413 33,05 449,68
0,3 -32,70099 0,61518 33,32 453,30
0,4 -32,98428 0,59589 33,58 456,89

0,5 -33,26620 0,57621 33,84 460,46

0,6 33,54647 0,55633 34,10 464,00
0,7 -33,82496 0,63645 34,46 468,88
0,8 -34,10209 0,51619 34,62 471,02
0,9 -34,37771 0,49581 34,87 474,49
1,0 -34,65224 0,47523 35,13 477,94

Table 3.4: Core levels and calculated L3 edge onset in
titanium with a partial core hole
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Figure 3.12: ELNES of titanium Ti-L3 edge with no, half
and a full core hole, and the experimental spectrum

3.3.2 Titanium oxide

Titanium oxide, T iO2 as rutile crystalizes in the tetragonal space group 136 P42/mnm
with lattice parameters of a = b = 8.682 Bohr and c = 5.592 Bohr. In the calculation
a cut-off parameter of Rmt ∗ kmax=8.0 and 2500 k-points were used.

Figure 3.13 shows the effect of a (partial) core hole on the Ti-L3 ELNES in titanium
oxide. By increasing the core hole from 0.0 to 1.0 the spectrum shifts by approx. 2
eV towards the Fermi level. Except for a more and more pronounced shoulder on the
first peak, the (partial) core hole does not influce other features in the spectrum.

In figure 3.14 we compare the experimental spectrum with the simulation for no,
half and full core hole. The simulated spectra are generally too broad and cannot
reproduce the relative peak heights.

From figure 3.15 we see that the supercell calculation with core hole can reproduce
very well the width of the first peak, as well as the positions of the second and third.
The relative peake heights, however, are not given correctly, just as in the simulation
using the simple cell.
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Figure 3.13: Partial core hole in Ti-L3 ELNES of titanium
oxide varying the core hole from no (0.0) to a full missing
electron (1.0)
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Figure 3.14: Ti-L3 ELNES of titanium oxide with no, half
and a full core hole, and the experimental spectrum
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Figure 3.15: Ti-L3 ELNES of titanium oxide in a 2x2x2
supercell and the experimental spectrum

3.4 Copper

3.4.1 Copper metal

In the simulation a face centred cubic cell (Fm3̄m, space group 225) with lattice
parameters of a = b = c = 3.607 Åwere used. Calculational parameters were 5000
k-points in the IBZ and a cut-off parameter of Rmt ∗ kmax= 8.0.

Figure 3.16 shows that in copper the presence of a core hole influences only the height
of the peaks in the ELNES but not their respective positions. The decrease in height
of the first peak is much more pronounced, such that for a full core hole the first
peak is smaller than the third, whereas in the case of no core hole the first peak is
the dominant feature in the ELNES.

From the calculations given in tables 3.4.1 and 3.4.1 the energy levels of the Cu L2

and L3 states were extracted. Together with the Fermi level the theoretical edge
onset was calculated. The calculated values for the 0.5 partial core hole is very close
to the experimental values of 931 eV for the L2 and 951 eV for the L3 edge of Cu.

The comparison between experiment and simulation in figure 3.17 gives an almost
perfect agreement for the simulation with the half (0.5) core hole.

For the 2x2x2 supercell lattice parameters of a = b = 13.552 Åand c = 6.776 Åwere
used.

Figure 3.18 shows the comparison of the copper L3 edge in copper for the single cell
(no and half core hole), the spectrum for a 2x2x2 supercell with a full core hole and
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Figure 3.16: Partial core hole in copper Cu L3 ELNES,
varying the core hole from no (0.0) to a full missing electron
(1.0)

PCH 2p1/2 (Ry) EF (Ry) Edge (Ry) Edge (eV)

0,0 -66,17040 0,59948 66,77 908,47
0,1 -66,52161 0,57939 67,10 912,98
0,2 -66,87405 0,56069 67,43 917,52
0,3 -67,22791 0,54349 67,77 922,10
0,4 -67,58217 0,52810 68,11 926,71

0,5 -67,93844 0,51405 68,45 931,36

0,6 -68,29685 0,50139 68,80 936,07
0,7 -68,65759 0,48987 69,15 940,82
0,8 -67,02101 0,47928 67,50 918,41
0,9 -69,38656 0,46962 69,86 950,46
1,0 -69,75551 0,46064 70,22 955,36

Table 3.5: Core levels and calculated L2 edge onset in cop-
per with a partial core hole
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PCH 2p3/2 (Ry) EF (Ry) Edge (Ry) Edge (eV)

0,0 -67,67662 0,59948 68,28 928,96
0,1 -68,03307 0,57939 68,61 933,54
0,2 -68,39076 0,56069 68,95 938,15
0,3 -68,74988 0,54349 69,29 942,81
0,4 -69,10940 0,52810 69,64 947,49

0,5 -69,47095 0,51405 69,98 952,22

0,6 -69,83463 0,50139 70,34 956,99
0,7 -70,20066 0,48987 70,69 961,82
0,8 -70,56938 0,47928 71,05 966,69
0,9 -70,94023 0,46962 71,04 966,56
1,0 -71,31453 0,46064 71,40 971,48

Table 3.6: Core levels and calculated L3 edge onset in cop-
per with a partial core hole
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Figure 3.17: Cu L3 ELNES of copper with no, half and a
full core hole, and the experimental spectrum
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Figure 3.18: ELNES of the Cu L3 edge in a copper 2x2x2
supercell in comparison with results from the single cell
calculation (no and half core hole) and the experiment.

the experimental spectrum. Here we see that the experimental spectrum would be
best approximated by mixing the calculated spectra from the single cell with no core
hole and the 2x2x2 supercell with a full core hole. A very good approximation is also
given by the line from the calculation with half a core hole.

3.4.2 Copper oxide

Copper oxide Cu2O crystalizes in the cubic space group 224 Pn3̄m with lattice
parameters of a = b = c = 8.064 Bohr. As calculational parameters 5000 k-points
and a cut-off parameter of Rmt ∗ kmax= 8.0 were used.

Figure 3.19 shows the effect of a (partial) core hole on the Cu-L3 ELNES in copper
oxide. By going from no to a full core hole the first peak decreases dramatically in
height and shifts from approx. 2.5 eV for no core hole to approx. 5 eV for a full core
hole. Comparing with the experiment in figure 3.20 we see that a good agreement
between simulation and experiment can be achieved for half a core hole.

For the 2x2x2 supercell lattice parameters of a = b = c = 16.127 Bohr were chosen.
We see in figure 3.21 that the shape and relative height of the experimental spectrum
is best approximated by the simulation with half a core hole in the single cell. The
2x2x2 supercell would exagerate the first peak with respect to the rest of the spectrum.
For computational reasons only the L3 part of the supercell calculation is shown in
fig. 3.21.
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Figure 3.19: Partial core hole in Cu-L3 ELNES in copper
oxide
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Figure 3.20: Cu-L3 ELNES of copper oxide with no, half
and a full core hole, and the experimental spectrum
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Figure 3.21: Cu L3 ELNES of copper oxide in a 2x2x2
supercell and comparison with results from the single cell
calculation and the experiment



Conclusion

Facts are more mundane than fantasies,
but a better basis for conclusions.

Amory Lovins
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4 Conclusion

Rez et al. [45] have claimed that whereas in oxides a core hole is needed for the
simulation of EELS and XANES, the effect of the core hole can be neglected in
metals due to screening by free electrons. We have shown in [29] that for pure
copper the core hole is not perfectly screened. In order to take into account this
inperfect screening, we have developed the method of the ”partial core screening”, in
which calculations are performed using a partial core hole caused by only a fraction
of an electron.

In this thesis we present a systematic study of the effect of the partial core hole in
the simulation of metals and oxides of Al, Mg, Ti and Cu and whenever possible also
performed a simulation using the ”core hole in a supercell” approach.

From the four investigated metals all except magnesium showed best agreement
between experiment and simulations for a partial core hole of 0.5 or 0.4. Only in
magnesium metal the ground state simulation shows better agreement.

For the oxides the simulations using a core hole generally gives worse results in the
simple unit cell using a full core hole. This fact is due to the periodic images of the
core hole and thus an artifical core hole – core hole interaction in the simulation.
By performing a calculation in a supercell this interaction can be diminished, if not
suppressed.

However, the agreement between experiment and simulation – at least for the systems
presented in this work – are generally better for the metals than for the oxides. This
is due to the fact that the relative peak heights are generally not in good agreement
with experiment, and are usually better for the metals.

In contrast to peak heights, the peak positions, i.e. the excitation energies, can be
very well reproduced using Slater’s transition state (as mentioned in 1.9.4), which is
equivalent to a partial core hole of 0.5 electrons.

We have shown that ”partial core screening” is a useful concept for the improvement
of simulted spectra, but it will never be an accurate description of excited states.
As of today there are codes available that implement newer theories that are better
suited for the simulation of excited state properties, like GW, TD-DFTE, BSE or
Current Density Functional Theory. These are, however not (yet) implemented in the
current WIEN2k package.
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Thanks

Art and science have their
meeting point in method.

Paul Dirac

Angels fly because they take themselves lightly. . . This sentence always showed up
whenever I received an email from my friend and collegue Dieter Kvasnicka. It was
he who constantly helped me whenever I had a problem with FORTRAN, regular
expressions, or whatever. I thank him for his patience in particular when debugging
my code. He still calls me an ”experimental programmer”. . .

A major part of thanks go to Peter Blaha and Karlheinz Schwarz. It was Peter who
initiated me into the secrets of the WIEN2k code (I think the first version I stumbled
over was some sort of WIEN95) and Karlheinz for giving me the necessary theoretical
understanding about solid state theory and DFT.

Not to forget Michel Nelhiebel, for the theoretical derivation of the original EELS
formulae, and Pierre Henry Louf for the first version of the telnes code. I want to
thank Peter Schattschneider for enabling these two to carry out their work and also
for employing my wife in his group. Also an important contribution to this work has
come from Kevin Jorissen, who has spent some time with us in Gablitz to develop
the theoretical foundation of the TELNES.2 code.

The first ideas of the partial core hole date back to a course on the ”theory of metallic
bonding” held in Graz in 2000 by Jorge Sofo and organized by Claudia Ambrosch
Draxl. I think it was during a late night Grappa session that Claudia said ”does it
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croscopy, submitted.

[49] Peter Schattschneider. Fundamentals of Inelastic Electron Scattering. Springer-
Verlag, Wien, New York, 1986.

[50] K. Schwarz. Dft calculations of solids with LAPW and WIEN2k. J. Solid State
Chem., 176:319–328, 2003.

[51] K. Schwarz and P. Blaha. Solid state calculations using WIEN2k. Comp. Mat.
Sci., 28:259–273, 2003.

[52] D. J. Singh. Phys. Rev. B, 43:6388, 1991.

[53] David Singh. Plane waves, pseudopotentials and the LAPW method. Kluver
Academic, 1994.

[54] David J. Singh. Planewaves, Pseudopotentials and the LAPW Method. Kluwer
Academic Publishers, Boston Dordrecht London, 1994.
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1988 Wissenschaftlicher Mitarbeiter bei Greenpeace Deuschland e.V., Schwer-
punkt: Analytik von Luftschadstoffen
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1997-2000 Wissenschaftlicher Angestellter im Rahmen des Sonderforschungsbereichs
”AURORA”, Universität Wien; Schwerpunkt: Weiterentwicklung des Pro-
grammpakets WIEN2k, insbesonders im Bereich der Parallelisierung
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2000- Konzessionsprüfung und Gewerbeberechtigung für Technische Büros für
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