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Companion matrix

I Companion (or Frobenius) matrix (nonderogatory):

C =



















































0 1

0 1

. . . . . .

0 1

−γ0 −γ1 . . . −γn−2 −γn−1



















































∈ C
n×n

I . . . associated with characteristic polynomial

charpoly(C) = p(ζ) =
∑n

i=0
γi ζ

i (γn := 1)

in monomial (or ‘Taylor’) representation
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Algorithmic relevance

I Solving the eigenvalue problem for C (lower Hessenberg)

gives the zeros of p

I Monomial representation of p may be numerically

unfavorable

I Use other representations (Lagrange, Newton, . . . )

→ transformed companion matrix

I Literature: “Numerical Polynomial Algebra”,

by Hans J. Stetter (SIAM Press, 2004)

. . . multivariate polynomial systems

I We do not consider such algorithmic aspects here

I Rather: Companion matrices as a theoretical tool
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Companion matrix as a
theoretical tool

I Example 1: n - step Linear Multistep Method

• characterized by a polynomial p of degree n

( p not identical with stability function )

• Companion matrix C represents equivalent one-step

method in a higher dimensional space

I Example 2: Linear ODE of order n

Companion matrix C represents equivalent 1st order system

I In such cases, the characteristic polynomial p is a ‘symbol’

for the method or the problem

I Stability estimates reduce to norm estimates for ϕ(C), e.g.

ϕ(C) = Cν or ϕ(C) = exp(tC)

( = constant coefficient case)
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Linear Multistep Methods

I ODE: y′(t) = f(t, y(t))

I n - step linear multistep method (stepsize h)

n
∑

k=0

αk yν+k = h

n
∑

k=0

βkf(tν+k, yν+k)

( yν+k ≈ y(tν+k) )

I Backward Differentiation Formulas (BDF):

βk = 0, k < n, and βn = 1

I simplest cases ( n = 1, n = 2 , A-stable ):

• −yν + yν+1 = hf(tν+1, yν+1) (Backward Euler)

• 1
2 yν − 2 yν+1 + 3

2 yν+2 = hf(tν+2, yν+2) (BDF 2)
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Example: Stability of BDF 2 (i)

I To begin with: model problem y′ = λ y , Reλ < 0 , stiff

I Note: BDF 2 is A - stable ⇒

• |yν | → 0 for ν → ∞

• But: Estimates for finite ν not directly available

• ? |yν | ≤ ?

I . . . This is not an open problem . . .

• Write BDF 2 as a one-step method in C
2

using companion matrix

• Apply the Kreiss Matrix Theorem, or

• Estimate using G-stability

I But: Both approaches have a very restricted scope
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Example: Stability of BDF 2 (ii)

I Let µ := hλ, Yν := (yν , yν+1)
T

I BDF 2 ⇐⇒ Yν+1 = C(µ) Yν , with companion matrix

C(µ) =





















0 1

−
1

3−2µ

4

3−2µ





















, |EV| ≤ 1 (Reµ ≤ 0)

I Wanted: Estimate ‖C(µ) ‖ ≤ 1 , uniformly for Reµ ≤ 0

• For ‖ · ‖ = ‖ · ‖2 this does not hold (consider µ = 0)

• G-stability: Estimate O.K. for ‖Y ‖ = 〈G Y, Y 〉2 , G = . . .

• But: 6 ∃ G-stable n - step LMM for n > 2

• ⇒ not generalizable

• Kreiss Matrix Theorem: Restricted to const. coeff.
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Example: Stability of BDF 2 (iii)

I . . . look for general, more flexible approach to stability

I Jordan canonical form for C = C(µ):

• C is diagonalizable for µ 6= −1/2 , C = X Ξ X−1

• X = Vandermonde matrix















1 1

ξ1 ξ2















, ξk = EV of C

• X becomes singular (confluent) for µ → −1/2

• Estimate ‖C‖ ≤ ‖X‖ ‖Ξ‖ ‖X−1‖ useless near µ = −1/2

I Note ( charpoly(C) = p(ζ) = (ζ − ξ1)(ζ − ξ2) ) :

• Jordan form of C is discontinuous w.r.t. parameter µ

• corresponds to Lagrange representation of p for ξ1 6= ξ2

• undefined for ξ1 = ξ2 ( µ = −1/2 )
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Example: Stability of BDF 2 (iv)

I Our approach:

• Consider LU-decomposition of X, X = L U , with

L =















1 0

ξ1 1















• Then, for all µ : C = L J L−1 , with

J =















ξ1 1

0 ξ2















• . . . “Bidiagonal canonical form” of C

• continuous w.r.t. parameter µ

• cond(L) uniformly bounded for Reµ ≤ 0
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Example: Stability of BDF 2 (v)

I We can prove:
• After appropriate diagonal scaling, J → J̃ = D J D−1 ,

‖ J̃ ‖
∞

≤ 1 ∀ Reµ ≤ 0

• ⇒ uniform stability estimate

‖Cν ‖
∞

≤ K, ∀ ν > 0 , ∀ Reµ ≤ 0

• but: . . . does not work for ‖ · ‖ = ‖ · ‖2

• Generalization: Transform C to “Bidiagonal-Frobenius

form”, C = L H L−1 , with appropriate η1, η2 and

H =















η1 1

−p[η1] −p[η1, η2] + η2















, L =















1 0

η1 1
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Example: Stability of BDF 2 (vi)

I We can prove:

• With η1 = η2 = 1
2 trace(C) , and after appropriate

diagonal scaling, H → H̃ = D H D−1 ,

‖ H̃ ‖2 ≤ 1 ∀ Reµ ≤ 0

( and: scaled version L̃ of L uniformly well-conditioned )

• Proof: Apply the Cohn-Schur-criterion to H̃TH̃

I Interpretation in terms of p = charpoly(C) :

• H̃ is associated with a (scaled)

Newton-Taylor representation of p

• = Newton representation allowed to be confluent

(always well-defined)
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Bidiagonal-Frobenius form (i)

I For each n×n companion matrix C : C = L H L−1,

H =



















































η1 1

η2 1

. . . . . .

ηn−1 1

−p[1] −p[1··2] . . . −p[1··n−1] −p[1··n]+ηn



















































I η1, . . . , ηn arbitrary (not necessarily distinct)

I p[j··k] . . . [confluent] divided differences of p w.r.t. the ηj

I L from LU-decomposition of Vandermonde matrix

X = X(η1, . . . , ηn)
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Confluent divided differences

I η1, . . . , ηn arbitrary (not necessarily distinct)

I [Confluent] divided differences (ϕ smooth enough, j ≤ k ):

ϕ[ηj , . . . , ηk] :=



















ϕ[ηj+1, . . . , ηk] − ϕ[ηj , . . . , ηk−1]

ηk − ηj

, ηj 6= ηk

lim
ε→0

ϕ[ηj+1, . . . , ηk+ε] − ϕ[ηj , . . . , ηk−1]

ε
, ηj = ηk

I Includes all possible combinations of confluent

(‘derivative-like’) and nonconfluent cases
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Bidiagonal-Frobenius form (ii)

I BF-form always well-defined, continuous w.r.t. varying C

I L (lower triangular):

L =

































x[η1] x[η1, η2] . . . . . . x[η1, . . . , ηn]

































where x[η] = (1, η, . . . , ηn−1)T , x[ηj ] = j - th column of X

I Interpretation in terms of p = charpoly(C) :

• H associated with Newton-Taylor representation of p

• = Newton representation allowed to be confluent
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Bidiagonal-Frobenius form (iii)

I Special case: ηj ≡ ξj = EV of C ⇒ Bidiagonal form :

H = J =



















































ξ1 1

ξ2 1

. . . . . .

ξn−1 1

ξn



















































I Remark: Matrix functions ϕ(J) are upper tridiagonal, with

(ϕ(J))j,k = ϕ[ξj , . . . , ξk]

I Trivial case: ηj ≡ 0 ⇒ H = C

I BF-form can be generalized to companion matrix

w.r.t. arbitrary basis polynomials
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Stability of Linear Multistep
Methods

I Approach much more versatile than G-stability or

Kreiss Matrix Theorem

I Bidiagonal canonical form has been used for stability

analysis of A(α)-stable BDF methods applied to stiff ODEs

• y′ = λ(t)y

• y′ = A(t)y + φ(t, y)

(A. Eder, G. Schranz-Kirlinger)

I To be done: Stability/convergence analysis for highly

nonlinear problems
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Further applications, Remarks

I Sharp growth estimates for higher order ODEs

I [Numerical] analysis of singular ODE systems:

• Well-posedness of BVP depends on Jordan structure

of boundary conditions

• . . . Use of bidiagonal form simplifies the analysis,

e.g. for parameter-dependent problems

I General linear methods: [generalized] companion matrices

play a role in the analysis – may be worth considering

(Example: Butcher, Wright – ESIRK methods

characterized by doubly companion matrices)

I General matrices: Frobenius canonical form →

can be transformed blockwise
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