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Companion matrix

» Companion (or Frobenius) matrix (nonderogatory):

( )

0 1
0 1
C = e Cctn
0 1
L 70 T e Y2 -1
» ... associated with characteristic polynomial

charpoly(C) = p(¢) = Z::o % ¢ (Y= 1)

In monomial (or ‘Taylor’) representation
=
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Algorithmic relevance

Solving the eigenvalue problem for C' (lower Hessenberq)
gives the zeros of p

Monomial representation of p may be numerically
unfavorable

Use other representations (Lagrange, Newton, ...)
— transformed companion matrix

Literature: “Numerical Polynomial Algebra”,
by Hans J. Stetter (SIAM Press, 2004)
. multivariate polynomial systems

We do not consider such algorithmic aspects here

Rather: Companion matrices as a theoretical tool
=
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Companion matrix as a
theoretical tool

Example 1: n-step Linear Multistep Method

e characterized by a polynomial p of degree n
(p not identical with stability function)

e Companion matrix C' represents equivalent one-step
method in a higher dimensional space

Example 2: Linear ODE of order n
Companion matrix C represents equivalent 1st order system

In such cases, the characteristic polynomial p is a ‘symbol’
for the method or the problem

Stability estimates reduce to norm estimates for ¢(C'), e.qg.
p(C) =C¥ or ¢(C) = exp(tC)

(= constant coefficient case) =
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Linear Multistep Methods

ODE: y'(t) = f(t,y(t))

n - step linear multistep method (stepsize h)
n n
Z Ok Yy+k — h Z 6kf(tu—l—k7 yl/-l—k)
k=0 k=0

(Yotr = yY(tvsr))

Backward Differentiation Formulas (BDF):
Or,=0, k<n,and g, =1

simplest cases (n =1, n = 2, A-stable):
® —Yu T Y1 = hf(ty—|—1, yl/—|—1) (BaCk\Nard EU'GI’)
o 2y —2Yut1+ 5 Yvi2 = hf(tuto,yv12) (BDF2)
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Example: Stability of BDF 2 (i)

To begin with: model problem " = Ay, ReX < 0, stiff
Note: BDF2 is A-stable =

ly,| — 0 for v —
But: Estimates for finite v not directly available

? |y < ?

... Thisis not an open problem ...

Write BDF 2 as a one-step method in C?
using companion matrix

Apply the Kreiss Matrix Theorem, or
Estimate using G-stability

But: Both approaches have a very restricted scope
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» Let u:=hA, Y, = (yuayu+1)T

Example: Stability of BDF 2 (ii)

» BDF2 <— Y, =C(p)Y,, with companion matrix

2

0
Cp) = 1

1
4

. 3—2u 3—-2u

\

, |EV| <1 (Repu <0)

» Wanted: Estimate || C(u)|| <1, uniformly for Rep <0

For || - || = ||- ||z this does not hold (consider ;. = 0)
G-stability: Estimate O.K. for |[Y || =(GY,Y)s, G=...

But: A G-stable n-step LMM for n > 2
= not generalizable

Kreiss Matrix Theorem: Restricted to const. coeff. B
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Example: Stability of BDF 2 (i)

» ... look for general, more flexible approach to stability
» Jordan canonical form for C' = C'(u):

e C isdiagonalizable for  # —1/2, C = X=X !
1 1
&1 &2

e X becomes singular (confluent) for p — —1/2
e Estimate |C]| < || X||IZ]| ||X Y| useless near = —1/2

> Note (charpoly(C) = p(¢) = (¢ —&)(¢ —&2)):
e Jordan form of C' is discontinuous w.r.t. parameter

e X =Vandermonde matrix [ ] , & = EVof C

e corresponds to Lagrange representation of p for & # &
e undefinedfor & =& (p=-1/2)
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Example: Stability of BDF 2 (iv)

» Our approach:

e Consider LU-decomposition of X, X = LU, with

I 1 0
& 1

e Then, forall u: C = LJL™!, with

1
=
0 &
e ... “Bidiagonal canonical form” of C -
e continuous w.r.t. parameter -
=
e cond(L) uniformly bounded for Re x < 0 o
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Example: Stability of BDF 2 (v)

» We can prove:
o After appropriate diagonal scaling, J — J=DJD !,

|J]l <1 VRep<0
e = Uniform stability estimate

|1 C" ] <K, VYvr>0, VRep<O0

e but: ... does not workfor ||| =1 -2

e Generalization: Transform C' to “Bidiagonal-Frobenius
form”, C = LH L', with appropriate n;, 72 and

1 1 0
H — 771 : L —
—plm] —plm,n2] +n2 mo 1 -
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Example: Stability of BDF 2 (vi)

» We can prove:

e With ny =ny = %trace(C) , and after appropriate
diagonal scaling, H - H=DH D!,

||ﬁ]‘|2§1 VRep <0

(and: scaled version L of L uniformly well-conditioned)
e Proof: Apply the Cohn-Schur-criterion to HTH

» Interpretation in terms of p = charpoly(C):

e M is associated with a (scaled)
Newton-Taylor representation of p

e = Newton representation allowed to be confluent

(always well-defined) O
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Bidiagonal-Frobenius form (i)

» For each nxn companion matrix C': C = LH L,

( )

m 1
2 1
H =
Mn—1 1
. —Pp) —Ppe2 --- TPRen-1 “PLen]TNn
» 11,...,n, arbitrary (not necessarily distinct)

> pj.i ---[confluent] divided differences of p w.r.t. the n;

» L from LU-decomposition of Vandermonde matrix

X=X, ,Mn) -
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Confluent divided differences

m, ..., N, arbitrary (not necessarily distinct)

[Confluent] divided differences (o smooth enough, 5 < k):

on;, .Mk =
( oMty Mkl — @Mys - Me—1]
15 7+ Nk
< N — 15
: it1y--- M tTE| — ey Me—1
I M+l — @ ]7 S
. ¢—0 £

Includes all possible combinations of confluent
(‘derivative-like’) and nonconfluent cases
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Bidiagonal-Frobenius form (ii)

BF-form always well-defined, continuous w.r.t. varying C

L (lower triangular):

L= am] znnl .. .z, ]

where z[n] = (1,n,...,7" YL, x[n;] = j-th column of X
Interpretation in terms of p = charpoly(C'):

e H associated with Newton-Taylor representation of p

e = Newton representation allowed to be confluent .
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Bidiagonal-Frobenius form (iii)

» Special case: n; =¢; = EVof C = Bidiagonal form:

( )

&1 1
E2 1

En1 1

\ En |

» Remark: Matrix functions ¢(.JJ) are upper tridiagonal, with
(e())jk = ©l&s-- - k]

» Trivialcase: 7, =0 = H=C

» BF-form can be generalized to companion matrix
w.r.t. arbitrary basis polynomials

=
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Stability of Linear Multistep
Methods

Approach much more versatile than G-stability or
Kreiss Matrix Theorem

Bidiagonal canonical form has been used for stability
analysis of A(«)-stable BDF methods applied to stiff ODEs

o ¥y =1y
o y =A()y+ ot y)
(A. Eder, G. Schranz-Kirlinger)

To be done: Stability/convergence analysis for highly
nonlinear problems
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Further applications, Remarks

Sharp growth estimates for higher order ODESs
[Numerical] analysis of singular ODE systems:

e Well-posedness of BVP depends on Jordan structure
of boundary conditions

Use of bidiagonal form simplifies the analysis,
e.g. for parameter-dependent problems

General linear methods: [generalized] companion matrices
play a role in the analysis — may be worth considering
(Example: Butcher, Wright — ESIRK methods
characterized by doubly companion matrices)

General matrices: Frobenius canonical form —

can be transformed blockwise N
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