Transformed Companion Matrices as a Theoretical Tool in the Numerical Analysis of Differential Equations

Winfried Auzinger

Vienna University of Technology
(work in progress, with O. Koch and G. Schranz-Kirlinger)
CBC Workshop, Széchenyi István University, Györ October 22, 2004

Contents

- Companion matrix
- Algorithmic relevance
- Companion matrix as a theoretical tool
- Linear Multistep Methods
- Example: Stability of BDF 2 (model problem, stiff)
- Bidiagonal and Bidiagonal-Frobenius form, confluent divided differences
- Stability of Linear Multistep Methods (stiff case)
- Further applications, Remarks

Companion matrix

- Companion (or Frobenius) matrix (nonderogatory):

$$
C=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
-\gamma_{0} & -\gamma_{1} & \ldots & -\gamma_{n-2} & -\gamma_{n-1}
\end{array}\right) \in \mathbb{C}^{n \times n}
$$

- ... associated with characteristic polynomial

$$
\operatorname{charpoly}(C)=p(\zeta)=\sum_{i=0}^{n} \gamma_{i} \zeta^{i} \quad\left(\gamma_{n}:=1\right)
$$

in monomial (or ‘Taylor’) representation

Algorithmic relevance

- Solving the eigenvalue problem for C (lower Hessenberg) gives the zeros of p
- Monomial representation of p may be numerically unfavorable
- Use other representations (Lagrange, Newton, ...)
\rightarrow transformed companion matrix
- Literature: "Numerical Polynomial Algebra", by Hans J. Stetter (SIAM Press, 2004)
... multivariate polynomial systems
- We do not consider such algorithmic aspects here
- Rather: Companion matrices as a theoretical tool

Companion matrix as a theoretical tool

- Example 1: n-step Linear Multistep Method
- characterized by a polynomial p of degree n
(p not identical with stability function)
- Companion matrix C represents equivalent one-step method in a higher dimensional space
- Example 2: Linear ODE of order n

Companion matrix C represents equivalent 1st order system

- In such cases, the characteristic polynomial p is a 'symbol' for the method or the problem
- Stability estimates reduce to norm estimates for $\varphi(C)$, e.g.

$$
\varphi(C)=C^{\nu} \text { or } \varphi(C)=\exp (t C)
$$

(= constant coefficient case)

Linear Multistep Methods

- ODE: $y^{\prime}(t)=f(t, y(t))$
- n-step linear multistep method (stepsize h)

$$
\sum_{k=0}^{n} \alpha_{k} y_{\nu+k}=h \sum_{k=0}^{n} \beta_{k} f\left(t_{\nu+k}, y_{\nu+k}\right)
$$

$$
\left(y_{\nu+k} \approx y\left(t_{\nu+k}\right)\right)
$$

- Backward Differentiation Formulas (BDF):

$$
\beta_{k}=0, k<n, \text { and } \beta_{n}=1
$$

- simplest cases ($n=1, n=2$, A-stable $)$:
- $-y_{\nu}+y_{\nu+1}=h f\left(t_{\nu+1}, y_{\nu+1}\right) \quad$ (Backward Euler)
- $\frac{1}{2} y_{\nu}-2 y_{\nu+1}+\frac{3}{2} y_{\nu+2}=h f\left(t_{\nu+2}, y_{\nu+2}\right) \quad$ (BDF2)

Example: Stability of BDF 2 (i)

- To begin with: model problem $y^{\prime}=\lambda y, \operatorname{Re} \lambda<0$, stiff
- Note: BDF2 is A-stable \Rightarrow
- $\left|y_{\nu}\right| \rightarrow 0$ for $\nu \rightarrow \infty$
- But: Estimates for finite ν not directly available
- ? $\left|y_{\nu}\right| \leq$?
- ... This is not an open problem ...
- Write BDF 2 as a one-step method in \mathbb{C}^{2} using companion matrix
- Apply the Kreiss Matrix Theorem, or
- Estimate using G-stability
- But: Both approaches have a very restricted scope

Example: Stability of BDF 2 (ii)

- Let $\mu:=h \lambda, \quad Y_{\nu}:=\left(y_{\nu}, y_{\nu+1}\right)^{T}$
- BDF2 $\Longleftrightarrow Y_{\nu+1}=C(\mu) Y_{\nu}$, with companion matrix

$$
C(\mu)=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{3-2 \mu} & \frac{4}{3-2 \mu}
\end{array}\right), \quad|\mathrm{EV}| \leq 1 \quad(\operatorname{Re} \mu \leq 0)
$$

- Wanted: Estimate $\|C(\mu)\| \leq 1$, uniformly for $\operatorname{Re} \mu \leq 0$
- For $\|\cdot\|=\|\cdot\|_{2}$ this does not hold (consider $\mu=0$)
- G-stability: Estimate O.K. for $\|Y\|=\langle G Y, Y\rangle_{2}, G=\ldots$
- But: \nexists G-stable n-step LMM for $n>2$
- \Rightarrow not generalizable
- Kreiss Matrix Theorem: Restricted to const. coeff.

Example: Stability of BDF 2 (iii)

- ... look for general, more flexible approach to stability
- Jordan canonical form for $C=C(\mu)$:
- C is diagonalizable for $\mu \neq-1 / 2, C=X \Xi X^{-1}$
- $X=$ Vandermonde matrix $\left(\begin{array}{cc}1 & 1 \\ \xi_{1} & \xi_{2}\end{array}\right), \xi_{k}=\mathrm{EV}$ of C
- X becomes singular (confluent) for $\mu \rightarrow-1 / 2$
- Estimate $\|C\| \leq\|X\|\|\Xi\|\left\|X^{-1}\right\|$ useless near $\mu=-1 / 2$
- Note $\left(\operatorname{charpoly}(C)=p(\zeta)=\left(\zeta-\xi_{1}\right)\left(\zeta-\xi_{2}\right)\right)$:
- Jordan form of C is discontinuous w.r.t. parameter μ
- corresponds to Lagrange representation of p for $\xi_{1} \neq \xi_{2}$
- undefined for $\xi_{1}=\xi_{2}(\mu=-1 / 2)$

Example: Stability of BDF 2 (iv)

- Our approach:
- Consider LU-decomposition of $X, X=L U$, with

$$
L=\left(\begin{array}{ll}
1 & 0 \\
\xi_{1} & 1
\end{array}\right)
$$

- Then, for all $\mu: C=L J L^{-1}$, with

$$
J=\left(\begin{array}{cc}
\xi_{1} & 1 \\
0 & \xi_{2}
\end{array}\right)
$$

- ... "Bidiagonal canonical form" of C
- continuous w.r.t. parameter μ
- cond (L) uniformly bounded for $\operatorname{Re} \mu \leq 0$

Example: Stability of BDF 2 (v)

- We can prove:
- After appropriate diagonal scaling, $J \rightarrow \tilde{J}=D J D^{-1}$,

$$
\|\tilde{J}\|_{\infty} \leq 1 \quad \forall \operatorname{Re} \mu \leq 0
$$

- \Rightarrow uniform stability estimate

$$
\left\|C^{\nu}\right\|_{\infty} \leq K, \quad \forall \nu>0, \quad \forall \operatorname{Re} \mu \leq 0
$$

- but: ... does not work for $\|\cdot\|=\|\cdot\|_{2}$
- Generalization: Transform C to "Bidiagonal-Frobenius form", $C=L H L^{-1}$, with appropriate η_{1}, η_{2} and

$$
H=\left(\begin{array}{cc}
\eta_{1} & 1 \\
-p\left[\eta_{1}\right] & -p\left[\eta_{1}, \eta_{2}\right]+\eta_{2}
\end{array}\right), \quad L=\left(\begin{array}{cc}
1 & 0 \\
\eta_{1} & 1
\end{array}\right)
$$

Example: Stability of BDF 2 (vi)

- We can prove:
- With $\eta_{1}=\eta_{2}=\frac{1}{2}$ trace (C), and after appropriate diagonal scaling, $H \rightarrow \tilde{H}=D H D^{-1}$,

$$
\|\tilde{H}\|_{2} \leq 1 \quad \forall \operatorname{Re} \mu \leq 0
$$

(and: scaled version \tilde{L} of L uniformly well-conditioned)

- Proof: Apply the Cohn-Schur-criterion to $\tilde{H}^{T} \tilde{H}$
- Interpretation in terms of $p=\operatorname{charpoly}(C)$:
- \tilde{H} is associated with a (scaled)

Newton-Taylor representation of p

- = Newton representation allowed to be confluent (always well-defined)

Bidiagonal-Frobenius form (i)

- For each $n \times n$ companion matrix $C: C=L H L^{-1}$,

$$
H=\left(\begin{array}{ccccc}
\eta_{1} & 1 & & & \\
& \eta_{2} & 1 & & \\
& & \ddots & \ddots & \\
& & & \eta_{n-1} & 1 \\
-p_{[1]} & -p_{[1 \cdots 2]} & \cdots & -p_{[1 \cdots n-1]} & -p_{[1 \cdots n]}+\eta_{n}
\end{array}\right)
$$

- $\quad \eta_{1}, \ldots, \eta_{n}$ arbitrary (not necessarily distinct)
- $p_{[j \cdot k]} \ldots$ [confluent] divided differences of p w.r.t. the η_{j}
- L from LU-decomposition of Vandermonde matrix
$X=X\left(\eta_{1}, \ldots, \eta_{n}\right)$

Confluent divided differences

- $\quad \eta_{1}, \ldots, \eta_{n}$ arbitrary (not necessarily distinct)
- [Confluent] divided differences (φ smooth enough, $j \leq k$):

$$
\begin{aligned}
& \varphi\left[\eta_{j}, \ldots, \eta_{k}\right]:= \\
& \left\{\begin{array}{cc}
\frac{\varphi\left[\eta_{j+1}, \ldots, \eta_{k}\right]-\varphi\left[\eta_{j}, \ldots, \eta_{k-1}\right]}{\eta_{k}-\eta_{j}}, & \eta_{j} \neq \eta_{k} \\
\lim _{\varepsilon \rightarrow 0} \frac{\varphi\left[\eta_{j+1}, \ldots, \eta_{k}+\varepsilon\right]-\varphi\left[\eta_{j}, \ldots, \eta_{k-1}\right]}{\varepsilon}, & \eta_{j}=\eta_{k}
\end{array}\right.
\end{aligned}
$$

- Includes all possible combinations of confluent ('derivative-like') and nonconfluent cases

Bidiagonal-Frobenius form (ii)

- BF-form always well-defined, continuous w.r.t. varying C
- L (lower triangular):

$$
L=\left(\begin{array}{ccccc}
\mid & \mid & & & \mid \\
x\left[\eta_{1}\right] & x\left[\eta_{1}, \eta_{2}\right] & \ldots & \ldots & x\left[\eta_{1}, \ldots, \eta_{n}\right] \\
\mid & \mid & & & \mid
\end{array}\right)
$$

where $x[\eta]=\left(1, \eta, \ldots, \eta^{n-1}\right)^{T}, x\left[\eta_{j}\right]=j$-th column of X

- Interpretation in terms of $p=\operatorname{charpoly}(C)$:
- H associated with Newton-Taylor representation of p
- = Newton representation allowed to be confluent

Bidiagonal-Frobenius form (iii)

- Special case: $\eta_{j} \equiv \xi_{j}=\mathrm{EV}$ of $C \Rightarrow$ Bidiagonal form:

$$
H=J=\left(\begin{array}{ccccc}
\xi_{1} & 1 & & & \\
& \xi_{2} & 1 & & \\
& & \ddots & \ddots & \\
& & & \xi_{n-1} & 1 \\
& & & & \xi_{n}
\end{array}\right)
$$

- Remark: Matrix functions $\varphi(J)$ are upper tridiagonal, with

$$
(\varphi(J))_{j, k}=\varphi\left[\xi_{j}, \ldots, \xi_{k}\right]
$$

- Trivial case: $\eta_{j} \equiv 0 \Rightarrow H=C$
- BF-form can be generalized to companion matrix w.r.t. arbitrary basis polynomials

Stability of Linear Multistep Methods

- Approach much more versatile than G-stability or Kreiss Matrix Theorem
- Bidiagonal canonical form has been used for stability analysis of $\mathrm{A}(\alpha)$-stable BDF methods applied to stiff ODEs
- $y^{\prime}=\lambda(t) y$
- $y^{\prime}=A(t) y+\phi(t, y)$
(A. Eder, G. Schranz-Kirlinger)
- To be done: Stability/convergence analysis for highly nonlinear problems

Further applications, Remarks

- Sharp growth estimates for higher order ODEs
- [Numerical] analysis of singular ODE systems:
- Well-posedness of BVP depends on Jordan structure of boundary conditions
- ... Use of bidiagonal form simplifies the analysis, e.g. for parameter-dependent problems
- General linear methods: [generalized] companion matrices play a role in the analysis - may be worth considering (Example: Butcher, Wright - ESIRK methods characterized by doubly companion matrices)
- General matrices: Frobenius canonical form \rightarrow can be transformed blockwise

