

Defect correction as a family of iterative techniques for ODEs

CBC Workshop, Vienna University of Technology, July 13, 2004

Winfried Auzinger

joint with H. Hofstätter, W. Kreuzer and E. Weinmüller

w.auzinger@tuwien.ac.at.

Vienna University of Technology

Conclusion

Problem class: ODE systems (IVP, BVP)

ODE system:

$$y'(t) = f(t, y(t)), \quad t \in [t_{start}, t_{end}]$$

- with initial or boundary conditions
- exact solution $y^*(t)$

'Classical' smoothness assumptions (non-stiff, non-singular)

Test problem (autonomous, non-stiff)

IVP:

$$y'(t) = f(t, y(t)),$$

 $y(0) = y_{start}$

with

$$f(t,y) = \begin{pmatrix} -y_2 + y_1(1 - y_1^2 - y_2^2) \\ y_1 + 3y_2(1 - y_1^2 - y_2^2) \end{pmatrix}$$

Solution: $y^*(t) = (\cos t, \sin t)^T$

Classical IDeC = Iterated Defect Correction

- η_h^[0]...basic approximation (e.g. by Euler scheme)
 Iteration [ν] ↦ [ν + 1]:
 - Interpolate: $\eta_h^{[\nu]} \mapsto p^{[\nu]}(t)$ (degree *m*)
 - Compute defect of $p^{[\nu]}(t)$ w.r.t. given ODE:

$$d^{[\nu]}(t) := \frac{d}{dt} p^{[\nu]}(t) - f(t, p^{[\nu]}(t))$$
 (small)

- Solve modified ODE: $y' = f(t, y) + d^{[\nu]}(t)$ (exact solution $p^{[\nu]}(t)$!) by basic scheme $\rightarrow \hat{\eta}_h^{[\nu]}$

- New approximation: $\eta_h^{[\nu+1]} := \eta_h^{[\nu]} - (\hat{\eta}_h^{[\nu]} - \eta_h^{[0]})$ estimate for $\eta_h^{[\nu]} - y^*$

Grid, interpolation intervals

- ► $t_{j,\ell}$... grid points (basic scheme, interpolation), $h_{j,\ell} := t_{j,\ell} - t_{j,\ell-1}$
- $\mathbf{I}_j = [\mathbf{t}_{j-1}, \mathbf{t}_j] \dots$ interpolation intervals, $\mathbf{h}_j := \mathbf{t}_j - \mathbf{t}_{j-1}$

Tables to follow: degree m = 4

IDeC on equidistant grid: O.K.

Basic scheme: Backward Euler (BEUL) TARGET = iteration limit ($\nu \rightarrow \infty$ on fixed grid) Global error (at t = 3), observed order:

h	BEUL	IDeC 1	IDeC 2	IDeC 3	IDeC 4	TARGET
0.200	9.00E-03	5.37E-04	6.74E-05	6.89E-06	1.06E-06	1.45E-06
0.100	4.50E-03	1.42E-04	9.37E-06	4.75E-07	7.92E-08	9.11E-08
0.050	2.25E-03	3.64E-05	1.24E-06	3.10E-08	5.36E-09	5.70E-09
0.025	1.13E-03	9.22E-06	1.59E-07	1.98E-09	3.34E-10	3.56E-10
0.200						
0 100	1.00	1.92	2.85	3.86	3.74	4.00
0.050	1.00	1.96	2.92	3.94	3.89	4.00
0.050	1.00	1.98	2.96	3.97	4.00	4.00
0.025						

 $\mathbf{h} \downarrow 0$: order limited by $\mathcal{O}(\mathbf{h}^m)$ (*m*... polynom.degree)

IDeC on nonequidistant grid: iteration stalls

Basic scheme: Backward Euler (BEUL)

Global error (at t = 3), observed order:

h	BEUL	IDeC 1	IDeC 2	IDeC 3	IDeC 4	TARGET
0.200	1.19E-02	1.26E-03	4.20E-03	3.31E-03	3.71E-04	1.07E-06
0.100	6.07E-03	3.42E-04	1.36E-03	1.55E-03	2.04E-04	6.68E-08
0.050	3.06E-03	1.03E-04	4.81E-04	7.64E-04	1.04E-04	4.17E-09
0.025	1.54E-03	3.66E-05	1.94E-04	3.83E-04	5.88E-05	2.61E-10
0.200						
0.100	0.98	1.88	1.63	1.10	0.87	4.00
0.050	0.99	1.73	1.50	1.02	0.96	4.00
0.050	0.99	1.49	1.31	1.00	0.83	4.00
0.025						

(grid points $t_{j,\ell}$ chosen at random)

Collocation = target scheme of IDeC iteration

Defect $d(t_{j,\ell}) = p'(t_{j,\ell}) - f(t_{j,\ell}, p(t_{j,\ell})) = 0$ if evaluated for collocation solution $p(t) = p^{[coll]}(t)$ $\rightarrow p^{[coll]}(t) = fixed point of IDeC iteration$ I.e.: Collocation is target scheme of IDeC Collocation equations:

$$\frac{d}{dt} p^{[coll]}(t_{j,\ell}) = f(t_{j,\ell}, p^{[coll]}(t_{j,\ell}))$$

equivalent to Runge-Kutta equations:

$$\frac{p_{j,\ell}^{[coll]} - \mathbf{p}_{j-1}^{[coll]}}{\mathbf{h}_j} = \sum_{\mu=1}^m a_{\ell,\mu} f(t_{j,\mu}, p_{j,\mu}^{[coll]})$$

Collocation and (modified) Runge-Kutta

... equivalent to modified Runge-Kutta equations, i.e. Runge-Kutta rewritten as

$$\frac{p_{j,\ell}^{[coll]} - p_{j,\ell-1}^{[coll]}}{h_{j,\ell}} = \sum_{\mu=1}^{m} \alpha_{\ell,\mu} \underbrace{f(t_{j,\mu}, p_{j,\mu}^{[coll]})}_{= \frac{d}{dt} p_{j}^{[coll]}(t_{j,\mu})}$$

- $\{\alpha_{\ell,\mu}\}$... set of local quadrature coefficients
- Important: Form of the left hand side above is the same as in basic scheme (BEUL):

$$\frac{\eta_{j,\ell} - \eta_{j,\ell-1}}{h_{j,\ell}} = f(t_{j,\ell}, \eta_{j,\ell})$$

IQDeC: IDeC with defect Quadrature

- Basic scheme: BEUL, iteration as before, but: use (modified) Q-defect $\bar{d}_{j,\ell}^{[\nu]}$...
- = residual w.r.t. modified Runge-Kutta equations
- equivalent to defect Quadrature =
 - = local weighting with quadrature coefficients $\alpha_{\ell,\mu}$:

$$\begin{split} \bar{d}_{j,\ell}^{[\nu]} &= \frac{\eta_{j,\ell}^{[\nu]} - \eta_{j,\ell-1}^{[\nu]}}{h_{j,\ell}} - \sum_{\mu=1}^{m} \alpha_{\ell,\mu} f(t_{j,\mu}, \eta_{j,\mu}^{[\nu]}) \\ &= \sum_{\mu=1}^{m} \alpha_{\ell,\mu} \underbrace{d^{[\nu]}(t_{j,\mu})}_{\uparrow} \\ & \text{ classical (pointwise) defect} \end{split}$$

all other algorithmic details as before

IQDeC on nonequidistant grid: O.K.

Basic scheme: Backward Euler (BEUL)

Global error (at t = 3), observed order:

h	BEUL	IQDeC 1	IQDeC 2	IQDeC 3	IQDeC 4	TARGET
0.200	1.19E-02	2.44E-03	7.31E-05	7.98E-06	1.10E-06	1.07E-06
0.100	6.07E-03	5.99E-04	8.10E-06	4.94E-07	6.66E-08	6.68E-08
0.050	3.06E-03	1.48E-04	9.65E-07	3.07E-08	4.15E-09	4.17E-09
0.025	1.54E-03	3.69E-05	1.18E-07	1.91E-09	2.60E-10	2.61E-10
0.200						
0.100	0.98	2.03	3.17	4.01	4.05	4.00
0.050	0.99	2.01	3.07	4.01	4.01	4.00
0.050	0.99	2.01	3.03	4.01	4.00	4.00
0.025						

IQDeC-convergence: Sketch of proof (shorthand notation)

Let $\partial_h \eta_h = \text{difference quotient } \frac{\eta_{j,\ell} - \eta_{j,\ell-1}}{h_{s,\ell}}$ Basic scheme = BEUL on *arbitrary* grid: $\partial_{h} \eta_{h}^{[0]} = f(\eta_{h}^{[0]})$ Target scheme (= collocation =) = modified Runge-Kutta: $\partial_h p^{[coll]} = Q f(p^{[coll]})$ ▶ Q-defect of $\eta_h^{[0]}$: $\bar{d}_{h}^{[0]} := \partial_{h} \eta_{h}^{[0]} - Qf(\eta_{h}^{[0]}) = (f - Qf)(\eta_{h}^{[0]})$ **Neighboring BEUL:** $\partial_h \hat{\eta}_h^{[0]} = f(\hat{\eta}_h^{[0]}) + \bar{d}_h^{[0]}$ New approximation: $\eta_{h}^{[1]} := \eta_{h}^{[0]} - (\hat{\eta}_{h}^{[0]} - \eta_{h}^{[0]})$

IQDeC - convergence: Sketch of proof (2)

IQDeC - convergence: Sketch of proof (3)

Difference equation for
$$\varepsilon_h^{[1]} = \eta_h^{[1]} - p^{[coll]}$$
:
 $\partial_h \varepsilon_h^{[1]} = \partial_h \varepsilon_h^{[0]} - \partial_h \hat{\varepsilon}_h^{[0]}$
 $= Df \cdot \varepsilon_h^{[1]} + (f - Qf)(\varepsilon_h^{[0]}) + \mathcal{O}(\mathbf{h}^2)$

Estimate of inhomogeneous term: $\|(f - Qf)(\varepsilon_h^{[0]})\| \leq C \cdot \mathbf{h} \cdot \|\partial_h \varepsilon_h^{[0]}\| + \mathcal{O}(\mathbf{h}^2) = \mathcal{O}(\mathbf{h}^2)$

- Stability of BEUL \Rightarrow estimate for $\varepsilon_h^{[1]}$ and $\partial_h \varepsilon_h^{[1]}$: $\varepsilon_h^{[1]} = \mathcal{O}(\mathbf{h}^2), \quad \partial_h \varepsilon_h^{[1]} = \mathcal{O}(\mathbf{h}^2)$
- Induction \Rightarrow $\varepsilon_h^{[\nu]} = \mathcal{O}(\mathbf{h}^{\nu+1}), \ \partial_h \varepsilon_h^{[\nu]} = \mathcal{O}(\mathbf{h}^{\nu+1}), \quad \nu = 0, 1, 2, \dots$

IPDeC: IDeC with defect interPolation

Wanted: Algorithmic combination of equidistant nonequidistant grids, such that

- basic scheme works with constant step size h (most desirable for implicit schemes, IVP case)
- target scheme defined w.r.t. nonequidistant grid (superconvergent collocation)

Realization:

- basic scheme (e.g. BEUL) as before, on piecewise equidistant grid $\{t_{j,\ell}\}$
- Interpolate defect at nonequistant nodes $\{\tau_{j,k}\}$
- use interpolated defect $\tilde{d}(t)$ instead of d(t)
- \Rightarrow target scheme = collocation at the $\{\tau_{j,k}\}$!

Example: equidistant / Radau nodes

- ▶ $t_{j,\ell}$... grid points (for basic scheme)
- \blacktriangleright $\tau_{j,k}$... nodes for defect interpolation
- Interpolated defect $\tilde{d}(t) \equiv 0$ for Radau collocation
 - \Rightarrow Radau is target scheme
- ► Convergence: ✓ Proof: ✓

IPDeC using 'Radau' defect

Basic scheme: Backward Euler (BEUL) Target scheme: Radau IIa collocation, degree m = 3

Global error (at t = 3) ... superconvergence 2m - 1:

h	BEUL	IPDeC 1	IPDeC 2	IPDeC 3	IPDeC 4	RADAU
0.200	1.20E-02	9.13E-04	1.62E-04	1.50E-05	1.84E-06	1.22E-07
0.100	6.00E-03	2.47E-04	2.25E-05	1.14E-06	6.79E-08	3.86E-09
0.050	3.00E-03	6.41E-05	2.96E-06	7.82E-08	2.30E-09	1.21E-10
0.025	1.50E-03	1.63E-05	3.79E-07	5.10E-09	7.47E-11	3.78E-12
0.200						
0,100	1.00	1.89	2.85	3.71	4.76	4.99
0.050	1.00	1.95	2.93	3.87	4.88	5.00
0.050	1.00	1.97	2.96	3.94	4.94	5.00
0.025						

IPDeC: symmetric version using 'Gauss' defect

Basic scheme: Implicit Trapezoidal Rule (ITR) Target scheme: Gauss collocation, degree m = 3

Global error (at t = 3) ... superconvergence 2m:

h	ITR	IPDeC 1	IPDeC 2	IPDeC 3	GAUSS
0.200	1.11E-03	1.29E-06	2.07E-08	1.75E-09	1.79E-09
0.100	2.78E-04	8.06E-08	3.26E-10	2.87E-11	2.88E-11
0.050	6.94E-05	5.04E-09	5.10E-12	4.53E-13	4.54E-13
0.025	1.74E-05	3.15E-10	7.99E-14	5.59E-15	6.57E-15
0.200					
0.100	2.00	4.00	5.99	5.93	5.96
0.050	2.00	4.00	6.00	5.99	5.99
0.050	2.00	4.00	6.00	6.34	6.11
0.025					

Conclusion

General template for computing defects:
 by preconditioning (weighting), i.e.

$$d_{j,\ell}^{modified} = \sum_{\mu=1}^{m} \omega_{\ell,\mu} \underbrace{d^{[\nu]}(t_{j,\mu})}_{\uparrow}$$
classical (pointwise) defect

- Full grid flexibility
- Superconvergence
- Stiff problems \Rightarrow talk by H. Hofstätter
- Related material \Rightarrow talks by O. Koch, E. Weinmüller