Software Development for Singular BVPs

Ewa B. Weinmüller

joint with Winfried Auzinger, Othmar Koch and Dirk Praetorius

Vienna University of Technology

Contents

- Problem class
- Numerical approach
- Theoretical results
- Collocation software: MATLAB 6 code sbvp
- Applications
- Conclusions and outlook

Problem class

Singular boundary value problems in ODEs

$$
\begin{aligned}
& z^{\prime}(t)=\frac{1}{t^{\alpha}} f(t, z(t)), \quad t \in(0,1], \quad \alpha \geq 1, \\
& z^{\prime}(\tau)=\tau^{\beta} f(\tau, z(\tau)), \quad \tau \in[1, \infty), \quad \beta \geq-1 .
\end{aligned}
$$

Problems on unbounded intervals: Transformation $t:=1 / \tau$ yields

$$
z^{\prime}(t)=-\frac{1}{t^{\beta+2}} f(1 / t, z(1 / t)), \quad t \in(0,1] .
$$

Well-posedness related to boundary conditions \checkmark

Bounded solutions

- Linear system, constant coefficient matrix

$$
z^{\prime}(t)=\frac{M}{t} z(t)+f(t), t \in(0,1], f \text { smooth. }
$$

- Linear system, variable coefficient matrix

$$
z^{\prime}(t)=\frac{M+t C(t)}{t} z(t)+f(t), \quad t \in(0,1], f \text { smooth. }
$$

- Nonlinear problem

$$
z^{\prime}(t)=\frac{M+t C(t)}{t} z(t)+f(t, z(t)), \quad t \in(0,1], f \text { smooth. }
$$

F. de Hoog and R. Weiss (1976)

Numerical approach

- Collocation based on continuous, piecewise polynomial functions
- Error estimation
- Defect correction + backward Euler for singularity of the first kind ($\alpha=1$)
- Defect correction + box scheme for essential singularity ($\alpha>1$, unbounded intervals)
- Mesh halving for general purpose (higher order, implicit, DAEs)
- Adaptive mesh selection based on equidistribution of the global error

Collocation methods

$$
z^{\prime}(t)-F(t, z(t))=0 \text { plus } \mathrm{BC}
$$

- Globally continuous, piecewise polynomial function $p(t)$ of maximal degree m satisfying

$$
p^{\prime}\left(t_{i, j}\right)-F\left(t_{i, j}, p\left(t_{i, j}\right)\right)=0 \text { plus } \mathrm{BC} .
$$

Convergence regular case:

- stage order: $\|p-z\|_{\infty}=O\left(\mathrm{~h}^{m}\right)$,
- superconvergence at τ_{i}.

Error estimate

$$
p^{\prime}\left(t_{i, j}\right)-F\left(t_{i, j}, p\left(t_{i, j}\right)\right)=0 \text { plus } \mathrm{BC}
$$

- Classical idea due to Zadunaisky, Frank, Stetter (1975-1978)

Modification: Auzinger, Koch, Weinmüller (2001-2002).

- Auxiliary scheme for OP: BEUL

$$
\frac{\xi_{i, j}-\xi_{i, j-1}}{\delta_{i, j}}=F\left(t_{i, j}, \xi_{i, j}\right)+\mathrm{BC} .
$$

Neighboring scheme: BEUL

$$
\frac{\pi_{i, j}-\pi_{i, j-1}}{\delta_{i, j}}=F\left(t_{i, j}, \pi_{i, j}\right)+\bar{d}_{i, j}+\mathrm{BC} .
$$

- Error estimate: $p\left(t_{i, j}\right)-z\left(t_{i, j}\right) \approx \pi_{i, j}-\xi_{i, j}, \quad \forall i, j$

Theoretical results

- Convergence of collocation of degree m
- Singularity of first kind: $O\left(\mathrm{~h}^{m}\right) \quad \checkmark$
- Essential singularity: $O\left(\mathrm{~h}^{m}\right)$
- Asymptotical correctness of error estimates
- Singularity of first kind: $O\left(\mathrm{~h}^{m+1}\right) \quad \checkmark$
- Essential singularity:

$$
O\left(\mathrm{~h}^{m+\gamma}\right), \quad 0<\gamma=\gamma(\alpha)<1
$$

- Asymptotical equidistribution of the global error $\max _{t \in J_{i}}(p(t)-z(t))=\operatorname{const}(1+O(\mathrm{~h})) \quad \checkmark$

Collocation software

- sbvp - MATLAB code for explicit first order problems, available from
http://www.math.tuwien.ac.at/~ewa/
- Error estimation and mesh selection
- Variable collocation degree $m=1 \ldots 8$
- Runge-Kutta basis for polynomial representation - reduction of roundoff error
- Efficient, Newton-based solver for nonlinear collocation equations
- Rescaling of linear equations for favorable conditioning
- Vectorization for efficient computations

Collocation software(2)

- Further development - sbvp
- Eigenvalue problems
- "Pathfollowing" (turning points)
- Implicit formulation, DAEs
- New development - MATLAB collocation solver
- Mixed order ODEs (order zero to four)
- Unknown parameters
- Implicit formulation, DAEs

Applications - NLS

Cubic nonlinear Schrödinger equation

$$
\mathrm{i} \frac{\partial u}{\partial t}+\Delta u+|u|^{2} u=0, t>0, \quad u(x, 0)=u_{0}(x), x \in \mathbb{R}^{d}
$$

Applications: Plasma physics, nonlinear optics Self-similar blow-up solutions can be computed from

$$
z^{\prime \prime}(\tau)+\frac{2}{\tau} z^{\prime}(\tau)-z(\tau)+\mathrm{i} a(\tau z(\tau))^{\prime}+|z(\tau)|^{2} z(\tau)=0, \quad \tau>0
$$

- Transformation to nine first order ODEs on (0,1]
- Slowly varying solutions \Rightarrow Singularity of first kind

Applications - NLS(2)

Numerical solution from our MATLAB code sbvp:

- AbsTol $=$ RelTol $=5 \cdot 10^{-5}$
- 256 subintervals on $[0,1]$
- step-size ratio 9.71

Applications - Parab. Eqns.

Quasilinear parabolic problem

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(u^{\sigma} \frac{\partial u}{\partial x}\right)+u^{\beta}, \quad t>0 .
$$

Application: Model for a temperature profile of a fusion reactor plasma with one source term. Self-similar blow-up solutions:

$$
\left(z^{\sigma}(\tau) z^{\prime}(\tau)\right)^{\prime}-m \tau z^{\prime}(\tau)-\frac{1}{\beta-1} z(\tau)+z^{\beta}(\tau)=0, \quad \tau>0 .
$$

This ODE can be solved directly by our new code!

Applications - Parab. Eqns.

Correct solution profile by our approach:

Shooting approach and truncated interval:

Conclusions

We can currently solve

1. Singularity of the first kind ($\alpha=1$)
2. Essential singularity ($\alpha>1$)
3. Unbounded intervals

- With error estimation and mesh selection
- Explicit first order problems
- By collocation on fixed grid
- Mixed order up to four
- Implicit problems
- DAEs
- Unknown parameters

Outlook

- Equip the new solver with error estimation (mesh halving) and mesh selection
- Pathfollowing for parameter-dependent problems, pseudo-arclength parametrization!
- Complex Ginzburg-Landau equation perturbation of NLS, turning points!
- Further applications

Software Development for Singular BVPs

Ewa B. Weinmüller

joint with Winfried Auzinger, Othmar Koch and Dirk Praetorius

Vienna University of Technology

Conv. proof-difficulties

Case study: Consider linear system

$$
\begin{gathered}
z^{\prime}(t)-\frac{D}{t} z(t)=f(t), \quad t \in(0,1], \quad D=\operatorname{diag}(-1,2) \\
z_{1}(0)=0, \quad z_{2}(1)=\beta .
\end{gathered}
$$

Box scheme on equidistant mesh, $h=1 / N$:

$$
\begin{gathered}
\frac{\xi_{i}-\xi_{i-1}}{h}-\frac{D}{t_{i-1 / 2}} \frac{\xi_{i}+\xi_{i-1}}{2}=f_{i-1 / 2}, i=1, \ldots, N \\
\xi_{1,0}=0, \xi_{2, N}=\beta .
\end{gathered}
$$

Question! Convergence $\lim _{h \rightarrow 0}\left\|\xi_{h}-z_{\Delta_{h}}\right\|=0$?
$\xi_{h}:=\left(\xi_{0}, \ldots, \xi_{i}, \ldots, \xi_{N}\right)$
$z_{\Delta_{h}}:=\left(z(0), \ldots, z\left(t_{i}\right), \ldots, z(1)\right)$.

Conv. proof - difficulties(2)

Classical approach:
 Stability + Consistency = Convergence!

- Write the scheme as

$$
\Phi_{h}\left[\xi_{h}\right]=f_{h}, \quad \Phi_{h}: \mathbb{R}^{2(N+1)} \rightarrow \mathbb{R}^{2(N+1)}
$$

- Show that Φ_{h}^{-1} exists.
- Show stability: $\left\|\xi_{h}-\eta_{h}\right\| \leq S\left\|\Phi_{h}\left[\xi_{h}\right]-\Phi_{h}\left[\eta_{h}\right]\right\|$ for h sufficiently small and $S \neq S(h)$.
Means that Φ_{h} is one to one mapping.
- Consistency: For z sufficiently smooth
$\frac{z\left(t_{i}\right)-z\left(t_{i-1}\right)}{h}-D \frac{z\left(t_{i}\right)+z\left(t_{i-1}\right)}{2}=f_{i-1 / 2}+O\left(h^{2}\right)$.

Conv. proof - difficulties(3)

- Consequently, $\Phi_{h}\left[\xi_{h}\right]=f_{h}, \Phi_{h}\left[z_{\Delta_{h}}\right]=f_{h}+O\left(h^{2}\right) \Rightarrow$
- Stability + Consistency $=$ Convergence!

$$
\left\|\xi_{h}-z_{\Delta_{h}}\right\| \leq S\left\|\Phi_{h}\left[\xi_{h}\right]-\Phi_{h}\left[z_{\Delta_{h}}\right]\right\| \leq S h^{2} .
$$

- Difficulty in singular case:

$$
\frac{z\left(t_{i}\right)-z\left(t_{i-1}\right)}{h}-\frac{D}{t_{i-1 / 2}} \frac{z\left(t_{i}\right)+z\left(t_{i-1}\right)}{2}=f_{i-1 / 2}+O\left(\frac{h^{2}}{t_{i-1 / 2}}\right) .
$$

- Remedy: (1) Invert $\Phi_{h}: \Phi_{h}\left[\xi_{h}\right]=f_{h} \Rightarrow \xi_{h}=\Phi_{h}^{-1} f_{h}$
(2) $\xi_{h}-z_{\Delta_{h}}=\Phi_{h}^{-1}\left(\Phi_{h}\left[\xi_{h}\right]-\Phi_{h}\left[z_{\Delta_{h}}\right]\right)=\Phi_{h}^{-1} O\left(\frac{h^{2}}{t_{i-1 / 2}}\right)=O\left(h^{2}\right)$.

Bounded solutions

Case study $\alpha=1$: Consider linear scalar problem

$$
z^{\prime}(t)=\underbrace{\frac{\lambda}{t} z(t)+f(t)}_{F(t, z(t))}, t \in(0,1], \quad \lambda \in \mathbb{R}, f \in C[0,1] .
$$

We are interested in bounded solutions

$$
z \in C[0,1]: \quad z(t)=z_{h}(t)+z_{p}(t) .
$$

Difficulties:

- $\quad F(t, z(t))$ is not Lipschitz continuous uniformly in t. It depends on λ whether bounded nontrivial solution exists.

Bounded solutions(2)

General solution of the homogeneous problem:

$$
z_{h}(t)=c t^{\lambda}, \quad \lambda>0
$$

Bounded solutions(3)

General solution of the homogeneous problem:

$$
z_{h}(t)=c t^{\lambda} \Rightarrow z_{h}(t)=c, \quad \lambda=0
$$

Bounded solutions(4)

General solution of the homogeneous problem:

$$
z_{h}(t)=c t^{\lambda} \Rightarrow z_{h}(t)=0, \quad \lambda<0
$$

Bounded solutions(5)

Particular solution of the inhomogeneous problem:

$$
z^{\prime}(t)=\frac{\lambda}{t} z(t)+f(t), \quad t \in(0,1], \quad \lambda \in \mathbb{R}, f \in C[0,1] .
$$

λ and $f \in C[0,1] \Rightarrow z_{p} \in C[0,1]$ and $z_{p}(0)=0$.

- $\lambda \geq 0 \quad z(t)=c t^{\lambda}+z_{p}(t) \in C[0,1]$

Prescribe $z(1):=\zeta$ to fix c.
In general $z \in C^{1}(0,1]$.

- $\lambda<0 \quad z(t)=z_{p}(t) \in C[0,1]$

Require $z(0):=0$ for $z \in C[0,1]$.
In general $z \in C^{1}[0,1]$.

