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Problem class

Singular boundary value problems in ODEs

z′(t) =
1

tα
f(t, z(t)), t ∈ (0, 1], α ≥ 1,

z′(τ) = τβf(τ, z(τ)), τ ∈ [1,∞), β ≥ −1.

Problems on unbounded intervals: Transformation
t := 1/τ yields

z′(t) = −
1

tβ+2
f(1/t, z(1/t)), t ∈ (0, 1].

Well-posedness related to boundary conditions X
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Bounded solutions

◮ Linear system, constant coefficient matrix

z′(t) =
M

t
z(t) + f(t), t ∈ (0, 1], f smooth.

◮ Linear system, variable coefficient matrix

z′(t) =
M + tC(t)

t
z(t) + f(t), t ∈ (0, 1], f smooth.

◮ Nonlinear problem

z′(t) =
M + tC(t)

t
z(t) + f(t, z(t)), t ∈ (0, 1], f smooth.

F. de Hoog and R. Weiss (1976)
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Numerical approach

◮ Collocation based on continuous, piecewise
polynomial functions

◮ Error estimation
– Defect correction + backward Euler for

singularity of the first kind (α = 1)
– Defect correction + box scheme for essential

singularity (α > 1, unbounded intervals)
– Mesh halving for general purpose (higher order,

implicit, DAEs)

◮ Adaptive mesh selection based on equidistribution
of the global error
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Collocation methods

z′(t) − F (t, z(t)) = 0 plus BC

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN

δi,j
︷︸︸︷

︸ ︷︷ ︸

hi ≤ h

◮ Globally continuous, piecewise polynomial function
p(t) of maximal degree m satisfying

p′(ti,j) − F (ti,j , p(ti,j)) = 0 plus BC.

Convergence regular case:

◮ stage order: ‖p − z‖∞ = O(hm
),

◮ superconvergence at τi.
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Error estimate

p′(ti,j) − F (ti,j , p(ti,j)) = 0 plus BC

• Classical idea due to Zadunaisky, Frank, Stetter (1975-1978)

Modification: Auzinger, Koch, Weinmüller (2001-2002).

◮ Auxiliary scheme for OP: BEUL

ξi,j − ξi,j−1

δi,j
= F (ti,j , ξi,j) + BC.

◮ Neighboring scheme: BEUL

πi,j − πi,j−1

δi,j
= F (ti,j , πi,j) + d̄i,j + BC.

◮ Error estimate: p(ti,j) − z(ti,j) ≈ πi,j − ξi,j , ∀i, j
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Theoretical results

◮ Convergence of collocation of degree m

– Singularity of first kind: O(hm) X

– Essential singularity: O(hm)

◮ Asymptotical correctness of error estimates

– Singularity of first kind: O(hm+1) X

– Essential singularity:
O(hm+γ), 0 < γ = γ(α) < 1

◮ Asymptotical equidistribution of the global error
maxt∈Ji

(p(t) − z(t)) = const(1 + O(h)) X
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Collocation software

◮ sbvp – MATLAB code for explicit first order
problems, available from
http://www.math.tuwien.ac.at/˜ewa/
– Error estimation and mesh selection
– Variable collocation degree m = 1 . . . 8

– Runge-Kutta basis for polynomial
representation – reduction of roundoff error

– Efficient, Newton-based solver for nonlinear
collocation equations

– Rescaling of linear equations for favorable
conditioning

– Vectorization for efficient computations
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Collocation software(2)

◮ Further development – sbvp
– Eigenvalue problems
– “Pathfollowing” (turning points)
– Implicit formulation, DAEs

◮ New development – MATLAB collocation solver
– Mixed order ODEs (order zero to four)
– Unknown parameters
– Implicit formulation, DAEs
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Applications – NLS

Cubic nonlinear Schrödinger equation

i
∂u

∂t
+ ∆u + |u|2u = 0, t > 0, u(x, 0) = u0(x), x ∈ R

d.

Applications: Plasma physics, nonlinear optics
Self-similar blow-up solutions can be computed from

z′′(τ) +
2

τ
z′(τ) − z(τ) + ia(τz(τ))′ + |z(τ)|2z(τ) = 0, τ > 0.

◮ Transformation to nine first order ODEs on (0, 1]

◮ Slowly varying solutions ⇒ Singularity of first kind
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Applications – NLS(2)

Numerical solution from our MATLAB code sbvp:
• AbsTol = RelTol = 5 · 10−5

• 256 subintervals on [0, 1]
• step-size ratio 9.71
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Applications – Parab. Eqns.

Quasilinear parabolic problem

∂u

∂t
=

∂

∂x

(

uσ ∂u

∂x

)

+ uβ, t > 0.

Application: Model for a temperature profile of a fusion
reactor plasma with one source term.
Self-similar blow-up solutions:

(zσ(τ)z′(τ))′ − mτz′(τ) −
1

β − 1
z(τ) + zβ(τ) = 0, τ > 0.

This ODE can be solved directly by our new code!
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Applications – Parab. Eqns.

Correct solution profile by our approach:
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Conclusions

We can currently solve

1. Singularity of the first kind (α = 1)

2. Essential singularity (α > 1)

3. Unbounded intervals

◮ With error estimation and mesh selection
– Explicit first order problems

◮ By collocation on fixed grid
– Mixed order up to four
– Implicit problems
– DAEs
– Unknown parameters
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Outlook

◮ Equip the new solver with error estimation (mesh
halving) and mesh selection

◮ Pathfollowing for parameter-dependent problems,
pseudo-arclength parametrization!

◮ Complex Ginzburg-Landau equation –
perturbation of NLS, turning points!

◮ Further applications
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Conv. proof - difficulties

Case study: Consider linear system

z′(t) −
D

t
z(t) = f(t), t ∈ (0, 1], D = diag(−1, 2)

z1(0) = 0, z2(1) = β.

Box scheme on equidistant mesh, h = 1/N :

ξi − ξi−1

h
−

D

ti−1/2

ξi + ξi−1

2
= fi−1/2, i = 1, . . . , N

ξ1,0 = 0, ξ2,N = β.

Question! Convergence limh→0 ‖ξh − z∆h
‖ = 0?

ξh := (ξ0, . . . , ξi, . . . , ξN )
z∆h

:= (z(0), . . . , z(ti), . . . , z(1)).

Vienna, January 12, 2005 – p. 18/25



Conv. proof - difficulties(2)

Classical approach:
Stability + Consistency = Convergence!

◮ Write the scheme as

Φh[ξh] = fh, Φh : R
2(N+1) → R

2(N+1).

◮ Show that Φ−1
h exists.

◮ Show stability: ‖ξh − ηh‖ ≤ S ‖Φh[ξh] − Φh[ηh]‖
for h sufficiently small and S 6= S(h).
Means that Φh is one to one mapping.

◮ Consistency: For z sufficiently smooth

z(ti) − z(ti−1)

h
− D

z(ti) + z(ti−1)

2
= fi−1/2 + O(h2).
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Conv. proof - difficulties(3)

◮ Consequently, Φh[ξh] = fh, Φh[z∆h
] = fh + O(h2) ⇒

◮ Stability + Consistency = Convergence!

‖ξh − z∆h
‖ ≤ S ‖Φh[ξh] − Φh[z∆h

]‖ ≤ S h2.

◮ Difficulty in singular case:

z(ti) − z(ti−1)

h
−

D

ti−1/2

z(ti) + z(ti−1)

2
= fi−1/2 + O

(

h2

ti−1/2

)

.

◮ Remedy: (1) Invert Φh : Φh[ξh] = fh ⇒ ξh = Φ−1
h fh

(2) ξh−z∆h
= Φ−1

h (Φh[ξh]−Φh[z∆h
]) = Φ−1

h O
(

h2

ti−1/2

)

= O(h2).
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Bounded solutions

Case study α = 1: Consider linear scalar problem

z′(t) =
λ

t
z(t) + f(t)
︸ ︷︷ ︸

F (t,z(t))

, t ∈ (0, 1], λ ∈ R, f ∈ C[0, 1].

We are interested in bounded solutions

z ∈ C[0, 1] : z(t) = zh(t) + zp(t).

Difficulties:

◮ F (t, z(t)) is not Lipschitz continuous uniformly in t.

◮ It depends on λ whether bounded nontrivial
solution exists.
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Bounded solutions(2)

General solution of the homogeneous problem:

zh(t) = c tλ, λ > 0
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Bounded solutions(3)

General solution of the homogeneous problem:

zh(t) = c tλ ⇒ zh(t) = c, λ = 0
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Bounded solutions(4)

General solution of the homogeneous problem:

zh(t) = c tλ ⇒ zh(t) = 0, λ < 0
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Bounded solutions(5)

Particular solution of the inhomogeneous problem:

z′(t) =
λ

t
z(t) + f(t), t ∈ (0, 1], λ ∈ R, f ∈ C[0, 1].

λ and f ∈ C[0, 1] ⇒ zp ∈ C[0, 1] and zp(0) = 0.

◮ λ ≥ 0 z(t) = c tλ + zp(t) ∈ C[0, 1]

Prescribe z(1) := ζ to fix c.

In general z ∈ C1(0, 1].

◮ λ < 0 z(t) = zp(t) ∈ C[0, 1]

Require z(0) := 0 for z ∈ C[0, 1].

In general z ∈ C1[0, 1].
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