A Collocation Solver for Singular Boundary Value Problems

W. Auzinger **O. Koch** E. Weinmüller

Vienna University of Technology, Austria

Othmar Koch

SciCADE 2001

Problem Class

$$z'(t) = \underbrace{\frac{M(t)}{t} z(t) + f(t, z(t))}_{=:F(t, z(t))}, \quad t \in (0, 1],$$
$$B_a z(0) + B_b z(1) = \beta.$$

Remark: 2^{nd} order problems of the form

$$y''(t) = \frac{A_1(t)}{t}y'(t) + \frac{A_0(t)}{t^2}y(t) + f(t, y(t))$$

can be transformed to the first order form by setting

$$z(t) := (y(t), ty'(t)).$$

Applications:

- chemical reactor theory
- physics theory of lasers, computational material science
- mechanics buckling of (spherical) shells
- ecology run-up of avalanches

The Solution Method

- Collocation at **equidistant** or **Gaussian** points.
- New global error estimate
 in mesh points + collocation points:
 Defect Correction Principle!
- Equidistribution of the global error.

Motivation

- Order reductions for singular problems occur for various standard methods:
 - explicit Runge-Kutta methods
 - Multistep methods
 - Acceleration techniques
 (IDeC, extrapolation)
 for general class of BVPs
- Shooting + IDeC based on the backward Euler method works, but:

Only for a restricted class of BVPs!

• Estimates of the local error do not work for singular problems in general,

e.g. when using:

- standard three-point discretization for $2^{\rm nd}$ order problems
- explicit Runge-Kutta pairs

Collocation

The stage order is retained, but there is **no superconvergence** in general.

However, the order reduction is actually not observed for most singular problems \Longrightarrow

- even number of equidistant (interior) collocation pointsdefault
- Gaussian points optional

Interior collocation points:

- No evaluation at the singular point t = 0
- Error estimate requires $t_{i,m} \neq \tau_{i+1}$

Global Error Estimation

- We construct a **neighboring problem** using the **Defect Correction Principle**.
- Then we solve for j = 1, ..., m + 1, i = 0, ..., N - 1, the backward Euler schemes

$$\frac{\pi_{i,j} - \pi_{i,j-1}}{t_{i,j} - t_{i,j-1}} = F(t_{i,j}, \pi_{i,j}) + \bar{d}_{i,j},$$

$$B_a \pi_{0,0} + B_b \pi_{N-1,m+1} = \beta,$$

$$\frac{\xi_{i,j} - \xi_{i,j-1}}{t_{i,j} - t_{i,j-1}} = F(t_{i,j}, \xi_{i,j}),$$

$$B_a \xi_{0,0} + B_b \xi_{N-1,m+1} = \beta,$$

where

$$t_{i,m+1} := \tau_{i+1}$$

denotes the endpoint of each interval.

The estimate for the global error is given by

$$\mathcal{E}_{i,j} := \pi_{i,j} - \xi_{i,j}.$$

Global Error Estimation (2)

The defect is chosen as

$$\bar{d}_{i,j} := \frac{p(t_{i,j}) - p(t_{i,j-1})}{t_{i,j} - t_{i,j-1}} - \sum_{k=1}^{m+1} \alpha_{j,k} F(t_{i,k}, p(t_{i,k})).$$

Here, the $\alpha_{j,k}$ define a quadrature rule,

$$\frac{1}{t_{i,j}-t_{i,j-1}} \int_{t_{i,j-1}}^{t_{i,j}} \varphi(\tau) \, d\tau = \sum_{k=1}^{m+1} \alpha_{j,k} \varphi(t_{i,k}) + O(h_i^{m+1}).$$

Theorem: For regular problems and collocation at an even number of interior points, this estimate is asymptotically correct,

$$|(p(t_{i,j}) - z(t_{i,j})) - (\pi_{i,j} - \xi_{i,j})| = O(h_i^{m+1}),$$

$$j = 0, \dots, m+1, \ i = 0, \dots, N-1.$$

Proof: Auzinger, Koch, Weinmüller (2001).

Adaptive Mesh Selection

Monitor function $\Theta_{i,j}$ based on our error estimate,

$$\mathcal{E}_{i,j} := \pi_{i,j} - \xi_{i,j},$$
$$\Theta_{i,j} := \sqrt[m]{|\mathcal{E}_{i,j}|}.$$

Remark: Actually, a smoothed version of $\Theta_{i,j}$ is used.

 $(\bar{\tau}_0, \ldots, \bar{\tau}_{\bar{N}}) \ldots$ grid aiming at the equidistribution of the integral of the monitor function on the interval [0, 1]:

$$I := \int_{0}^{1} \Theta(s) \, ds := \sum_{i,j} \frac{\Theta_{i,j} + \Theta_{i,j-1}}{2} (t_{i,j} - t_{i,j-1}),$$
$$\int_{\bar{\tau}_{i}}^{\bar{\tau}_{i+1}} \Theta(s) \, ds = \frac{I}{\bar{N}}, \ i = 0, \dots, \bar{N} - 1.$$

Damped Newton Iteration

Let

$$x := x_{i,j}, \ j = 1, \dots, m+1, \ i = 0, \dots, N-1$$

be the vector of the coefficients of the collocation solution w.r.t. a basis of piecewise polynomial functions,

$$p(t) = \sum_{j=1}^{m+1} x_{i,j} \varphi_j\left(\frac{t-\tau_i}{h_i}\right), \ t \in [\tau_i, \tau_{i+1}],$$

e. g. Lagrange basis, Runge-Kutta basis.
 n-th approximation $x^{(n)}$:

$$x^{(n)} = x^{(n-1)} + \lambda^{(n)} \Delta x^{(n)},$$

See Deuflhard, Hohmann (1995).

Example

$$z'(t) = \frac{1}{t} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} z(t) - \begin{pmatrix} 0 \\ tz_1^5(t) \end{pmatrix},$$
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} z(0) + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} z(1) = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ 0 \end{pmatrix}.$$

Exact solution:

$$z(t) = (z_1(t), z_2(t))^T = \left(\frac{1}{\sqrt{1+t^2/3}}, -\frac{t^2}{3\sqrt{(1+t^2/3)^3}}\right)^T.$$

n	$\operatorname{res}^{(n)}$	$ \Delta x^{(n)} $	$p^{(n)}$	$\lambda^{(n)}$
1	6.34e + 01	1.88e + 00		0.500
2	3.17e + 01	$9.35e{-01}$	-0.19	0.125
3	2.77e + 01	1.07e+00	-3.02	0.250
4	2.08e+01	7.17e - 01	1.70	0.500
5	1.04e+01	$3.64 \mathrm{e}{-01}$	2.51	1.000
6	$3.94e{-}01$	$6.65 \mathrm{e}{-02}$	1.01	1.000
7	$4.01 \mathrm{e}{-02}$	1.20e - 02	2.30	1.000
8	9.40e - 04	$2.38e{-}04$	1.92	1.000
9	4.23 e - 07	1.25e - 07	2.01	1.000
10	$1.07 e{-13}$	$3.25e{-}14$		1.000

Conditioning of the Jacobian

The nonlinear system of equations for $x = x_{i,j}$ leads to a Newton iteration with a Jacobian with the following sparse structure:

Conditioning (2)

Bad scaling \implies the condition number grows quadratically with the dimension.

Remedy: Preconditioner restores linear growth,

$$A = \begin{pmatrix} \frac{1}{h_1} I_n & & & \\ & I_{mn} & & \\ & & \frac{1}{h_1} I_n & & \\ & & & I_{mn} & \\ & & & & \frac{1}{h_2} I_n & \\ & & & & & \ddots & \\ & & & & & & I_{mn} \end{pmatrix}$$

N	cond_1	p_1	cond_2	p_2
4	5.13e + 02		1.91e+03	
8	7.50e+02	0.54	5.54e + 03	1.53
16	1.22e + 03	0.70	1.80e+04	1.69
32	2.17e + 03	0.82	6.37e + 04	1.82
64	4.08e + 03	0.90	2.38e+05	1.90
128	7.88e + 03	0.95	9.22e + 05	1.94
256	1.55e+04	0.97	3.62e + 06	1.97
512	3.07e + 04	0.98	1.43e+07	1.98
1024	6.11e+04	0.99	5.71e+07	1.99

Influence on the maximal attainable accuracy!

Choice of the Basis

The choice of the polynomial basis φ_j also has an important influence on the maximal attainable accuracy of the collocation solution.

Let

$$0 < \rho_1 < \cdots \rho_m < 1.$$

Lagrange basis:

$$\varphi_j(0) = \delta_{j,1}, \ \varphi_j(\rho_i) = \delta_{j,i+1}.$$

Runge-Kutta basis:

$$\varphi_j(0) = \delta_{j,1}, \ \varphi'_j(\rho_i) = \delta_{j,i+1}.$$

N	$m = 4, \mathrm{RK}$	m = 4, La	$m = 6, \mathrm{RK}$	m = 6, La
16	1.18e + 08	1.18e + 08	1.89e + 04	1.88e + 04
32	7.41e + 06	7.41e + 06	2.98e+02	1.37e+02
64	4.63e + 05	4.63e + 05	2.36e + 00	4.36e + 02
128	2.89e + 04	2.87e + 04	4.00e+00	8.79e + 02
256	1.81e+03	$1.31e{+}03$	$1.52e{+}00$	1.75e + 03
512	1.12e+02	8.95e+02	4.06e + 00	3.50e + 03
1024	8.00e+00	2.00e+03	4.51e+00	7.01e+03

Error in multiples of eps

Implementation Details

- Efficient storage and referencing of variables taking into account MATLAB's memory representation of arrays.
- Vectorization:

Avoid loops where possible!

Our implementation provides the possibility to specify the data functions for the righthand side and the boundary conditions of the BVP in a vectorized format.

• Indexing — use of precomputed indices.

Comparisons

- bvp4c (MATLAB 6.0 standard routine)
 - Collocation at 3 Lobatto points
 - (Fixed) order 4
 - Provides no error estimate
 - Modifications for singular problems: Definition of right-hand side at t = 0Jacobian by finite differences
- COLNEW (Fortran 90 package)
 - Collocation at Gaussian points
 - Orders 2–14
 - Estimate: h, h/2 principle \implies finer grid
- sbvp (our package)
 - Coll. at equidistant/Gaussian points
 - Orders 2–16
 - Estimate: $2 \times$ cheap auxiliary method

$\underline{\text{Comparisons } (2)}$

$$z'(t) = \frac{1}{t} \begin{pmatrix} 0 & 1 \\ 1 + \alpha^2 t^2 & 0 \end{pmatrix} z(t) + \\ + \begin{pmatrix} 0 \\ ct^{k-1} e^{-\alpha t} (k^2 - 1 - \alpha t (1 + 2k)) \end{pmatrix}, \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z(0) + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} z(1) = \begin{pmatrix} 0 \\ ce^{-\alpha} \end{pmatrix},$$

where $\alpha = 80$, k = 16 and $c = \left(\frac{\alpha}{k}\right)^k e^k$.

Exact solution:

$$z(t) = (ct^k e^{-\alpha t}, ct^k e^{-\alpha t} (k - \alpha t))^T.$$

Comparisons (3)

Hierher kommt die erste landscapeseite!

Comparisons (4)

 $\overline{2. \text{ landscape seite}}$

Comparisons (5)

Meshes to reach the tolerances

 $\mathrm{aTOL}{=}\mathrm{rTOL}{=}10^{-5}$

Comparisons (6)

$$z'(t) = \frac{1}{t} \begin{pmatrix} 0 & 1 \\ 2 & 6 \end{pmatrix} z(t) - \\ - \begin{pmatrix} 0 \\ 4k^4 t^5 \sin(k^2 t^2) + 10t \sin(k^2 t^2) \end{pmatrix}, \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z(0) + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} z(1) = \begin{pmatrix} 0 \\ \sin(k^2) \end{pmatrix},$$

where k = 5.

Exact solution:

 $z(t) = (t^2 \sin(k^2 t^2), 2k^2 t^4 \cos(k^2 t^2) + 2t^2 \sin(k^2 t^2))^T.$

$\underline{\text{Comparisons } (7)}$

3. landscape seite

Comparisons (8)

$$z'(t) = \frac{1}{t} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} z(t) + \\ + \begin{pmatrix} 0 \\ t\phi^2 z_1(t) \exp\left(\frac{\gamma\beta(1-z_1(t))}{1+\beta(1-z_1(t))}\right) \end{pmatrix}, \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z(0) + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} z(1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

where $\phi = 0.6, \ \gamma = 40, \ \beta = 0.2.$

This problem has multiple solutions!

Comparisons (9)

4. landscape seite!

Conclusions & Future Work

- sbvp is competitive for
 singular problems with
 smooth solutions
- The results are most favorable for linear problems.
- We encountered problems when solving singular problems with unsmooth solutions.
- Regular problems with steep slopes:
 We are experimenting with a new mesh selection strategy.

Conclusions & Future Work (2)

$$z'(t) = \begin{pmatrix} z_2(t) \\ n\sinh(nz_1(t)) \end{pmatrix},$$
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} z(0) + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} z(1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

where n = 8. aTOL=rTOL= 10^{-3} , m = 6.

Figure 5: New strategy, N = 38, $h_{\rm max}/h_{\rm min} = 6.78$