
Theory, Solution Techniques

and Applications

of

Singular Boundary Value

Problems

W. Auzinger

O. Koch
E. Weinmüller

Vienna University of Technology,
Austria

Othmar Koch PPAM 2001



Problem Class

z′(t) =
M(t)

t
z(t) + f (t, z(t))

︸ ︷︷ ︸
=:F (t,z(t))

, t ∈ (0, 1],

Baz(0) + Bbz(1) = β.

Remark: 2nd order problems of the form

y′′(t) =
A1(t)

t
y′(t) +

A0(t)

t2
y(t) + f (t, y(t))

can be transformed to the first order form by

setting

z(t) := (y(t), ty′(t)).

Applications:

• Chemical reactor theory

• Physics — theory of lasers, computational

material science

• Mechanics — buckling of (spherical) shells

• Ecology — run-up of avalanches
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Earlier Results

• Order reductions of high-order methods

– de Hoog, Weiss (1985) — Explicit

Runge-Kutta schemes

– Weinmüller (1986) — standard three-

point discretization for 2nd order

– Frommlet, Weinmüller (2001) — acceler-

ation techniques fail for this scheme

• Local error estimates fail

– Gräff, Weinmüller (1986) — standard

three-point discretization

– Kofler (1998) — Runge-Kutta methods
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Our Current Approaches

• Shooting + IDeC based on backward Euler

– Advantages

∗ Classical convergence order

∗ Forward integration only

∗ Different strategies along interval

– Disadvantage

∗ Restriction of problem class

• Collocation

– Advantages

∗ Stage order holds for general class

∗ Uniform approximation

– Disadvantages

∗ No superconvergence

∗ Computational effort

Fixed points of IDeC are collocation solutions!
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Analytical Properties — BVPs

z′(t) =
M(t)

t
z(t) + f (t, z(t)), (1a)

Baz(0) + Bbz(1) = β, (1b)

z ∈ C[0, 1]. (1c)

Note:

• (1c) ⇔ n− q lin. indep. conditions on z(0)

• (1b) ⇒ (locally) unique solution

Theorem 1: Assume that an isolated solution

z(t) of (1) exists and f ∈ Cp, M ∈ Cp+1 in a

neighborhood of z.

If

• M(0) has no eigenvalues with positive real

parts or

• all positive real parts of M(0) are > p + 1

then

z ∈ Cp+1[0, 1].
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Analytical Properties — IVPs

z′(t) =
M(t)

t
z(t) + f (t, z(t)), (2a)

Baz(0) = β, (2b)

z ∈ C[0, 1]. (2c)

Note:

• (2c) ⇔ z(0) ∈ ker M(0) = span(Ẽ)

• ((2b) ⇒ unique solution)

⇐⇒ BaẼ nonsingular.

Theorem 2: Assume f ∈ Cp, M ∈ Cp+1.

Then,

• if M(0) has no eigenvalues with positive real

parts ⇒ ∃! z ∈ Cp+1[0, 1],

• otherwise (2) does not define a unique

continuous solution.
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Shooting Methods

IVP equivalent to BVP:

z′s(t) =
M(t)

t
zs(t) + f (t, zs(t)),

zs(0) = Ẽs ∈ ker M(0),

where s is chosen such that

BaẼs + Bbzs(1) = β.

s is determined using Newton’s method ⇒ this

requires the solution of a set of singular IVPs!

Koch, Weinmüller (2001) —

• Process is well-defined and convergent

if IVPs are well-posed.

• Numerical method of order O(hp) for IVP

⇒ O(hp) solution for BVP.

Drawback: Restriction of problem class.

Required: High-order integrator for IVPs.
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Iterated Defect Correction

z′(t) =
M(t)

t
z(t) + f (t, z(t)),

z(0) = β ∈ ker M(0).

Numerical solution: z
[0]
h = (z

[0]
0 , . . . , z

[0]
N ).

Piecewise polynomial interpolant: p[0](t).

Neighboring problem (NP):

y′(t) =
M(t)

t
y(t) + f (t, y(t)) + d[0](t),

y(0) = p[0](0) = β,

where

d[0](t) = p[0]′(t)− M(t)

t
p[0](t)− f (t, p[0](t)).

Numerical solution: p
[0]
h .

Yields

• Error estimate p[0](tj)− p
[0]
j

• Improved solution z
[1]
j = z

[0]
j +p[0](tj)−p

[0]
j .

This process can be iteratively continued!
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IDeC — Convergence Results

Theorem 3: If IDeC based on the backward

Euler method is used for singular IVPs, then

|z[k]
j − z(tj)| = O(hk+1), k = 0, . . . , m− 1,

if piecewise polynomials of degree m are used.

Proof: Koch, Weinmüller (2000).

The update also yields an asymptotically cor-

rect estimate of the global error.
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Reconsidering IDeC

Q: What happens for k →∞ when h is fixed?

A: Quite frequently, a fixed point of the

iteration is reached.

Q: What is the advantage of considering

this type of asymptotics?

A: In situations where Theorem 3 is not

applicable and the classical order sequence

is not observed, the fixed point yields a

high-order solution.

Typically, this coincides with a

collocation solution.
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Fixed Points of IDeC

Theorem 3 is not applicable because BVPs are

considered instead of IVPs.

z′(t) =
1

t

(
0 1

1 0

)
z(t)

+

(
0

3t cos(t)− t2 sin(t)

)
,

(
0 1

0 0

)
z(0) +

(
0 0

1 0

)
z(1) =

(
0

sin(1)

)
,

with exact solution

z(t) = (t sin(t), t sin(t) + t2 cos(t))T .

h err0 p0 err1 p1 err2 p2 err3 p3

0.0833 2.6e−02 8.9e−03 1.0e−03 1.3e−03

0.0417 1.2e−02 1.09 2.3e−03 1.95 2.1e−04 2.28 3.4e−04 1.89

0.0208 6.0e−03 1.03 5.8e−04 1.98 5.2e−05 1.97 8.7e−05 1.96

0.0104 3.0e−03 1.01 1.4e−04 1.99 1.4e−05 1.85 2.2e−05 1.98

0.0052 1.5e−03 1.00 3.6e−05 1.99 3.7e−06 1.95 5.5e−06 1.99

0.0026 7.4e−04 1.00 9.1e−06 1.99 9.4e−07 1.98 1.4e−06 1.99
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Fixed Points of IDeC (2)

Theorem 3 is not applicable because the box

scheme serves as basic method.

z′(t) =
1

t

(
0 1

0 0

)
z(t)

−
(

0

9t cos(3t) + 3 sin(3t)

)
,

(
0 1

0 0

)
z(0) +

(
0 0

1 0

)
z(1) =

(
0

cos(3)

)
,

with exact solution

z(t) = (cos(3t),−3t sin(3t))T .

h err0 p0 err1 p1 err2 p2 err3 p3

0.0833 3.4e−02 1.7e−03 8.8e−05 4.7e−05

0.0417 1.0e−02 1.70 4.4e−04 1.93 1.3e−05 2.80 4.6e−07 6.65

0.0208 3.1e−03 1.75 1.1e−04 1.97 3.2e−06 2.00 6.6e−09 6.13

0.0104 8.9e−04 1.79 2.8e−05 1.99 8.0e−07 1.99 1.3e−10 5.63

0.0052 2.5e−04 1.81 7.0e−06 1.99 2.0e−07 1.99 3.8e−11 1.79

0.0026 7.1e−05 1.83 1.7e−06 1.99 5.0e−08 2.00 8.7e−11
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Fixed Points of IDeC (3)

In both cases, however, fixed point conver-

gence was observed.

Auzinger, Koch, Weinmüller (2001) — these

fixed points coincide with collocation solutions

of order 6, respectively.

Thus, a high order solution could be obtained

eventually!

Note: In the second case the fixed point was

even reached in a finite number of steps. In some

situations, such a behavior can in fact be shown

analytically!
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Direct Approach — Collocation

Collocation equations:

q′(ti,j) =
M(ti,j)

ti,j
q(ti,j) + f (ti,j, q(ti,j)),

j = 1, . . . , p, i = 0, . . . , N − 1,

Baq(0) + Bbq(1) = β.

q(t) . . . continuous piecewise polynomial func-

tion of maximal degree p.

ti,j . . . collocation points distributed equiva-

lently in every subinterval.

de Hoog, Weiss (1978) — (linear) first order sys-

tems which are equivalent to a well-posed IVP:

The stage order O(hp) is retained, but there

is no superconvergence in general.

Consequently, we choose equidistant colloca-

tion at an even number of interior points.
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Global Error Estimation

• We construct a NP similarly as for IDeC.

• Then we solve for j = 1, . . . , p + 1,

i = 0, . . . , N − 1, the backward Euler

schemes
πi,j − πi,j−1

ti,j − ti,j−1
= F (ti,j, πi,j) + d̄i,j,

Baπ0,0 + BbπN−1,p+1 = β,

ξi,j − ξi,j−1

ti,j − ti,j−1
= F (ti,j, ξi,j),

Baξ0,0 + BbξN−1,p+1 = β,

where

{ti,j : j = 0 . . . , p + 1, i = 0, . . . , N − 1}
are the collocation nodes plus the endpoints

of each interval.

The estimate for the global error is given by

εi,j := πi,j − ξi,j.
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Global Error Estimation (2)

However, in contrast to the IDeC, the defect is

chosen in locally integrated form:

d̄i,j :=
q(ti,j)− q(ti,j−1)

ti,j − ti,j−1
−

−
p+1∑

k=1

αj,kF (ti,k, q(ti,k)).

Here, the αj,k define a quadrature rule,

1
ti,j−ti,j−1

∫ ti,j

ti,j−1

ϕ(τ ) dτ =

p+1∑

k=1

αj,kϕ(ti,k)+O(hp+1
i ).

Theorem 4: For regular problems, this esti-

mate is asymptotically correct,

|(q(ti,j)− z(ti,j))− (πi,j − ξi,j)| = O(hp+1
i ),

j = 0, . . . , p + 1, i = 0, . . . , N − 1.

Proof: Auzinger, Koch, Weinmüller (2001).
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Conclusions & Future Work

A Fortran 90 shooting code is currently being

developed:

• (equidistant) IDeC near the singular point.

• Embedded Runge-Kutta pairs with local

step-size control away from singularity.

The IDeC subroutine will also be employed

for the solution of a singular IVP occurring

in the modeling of the run-up amd run-out of

avalanches due to

McClung, Mears (1995).
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Conclusions & Future Work (2)

We have recently developed a Matlab BVP

solver based on collocation, see

Auzinger, Kneisl, Koch, Weinmüller (2001).

Our global error estimation procedure is used

for adaptive mesh selection which is robust with

respect to the singularity.
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Example

z′(t) =
1

t

(
0 1

1 + α2t2 0

)
z(t) +

+

(
0

ctk−1e−αt(k2 − 1− αt(1 + 2k))

)

(
0 1

0 0

)
z(0) +

(
0 0

1 0

)
z(1) =

(
0

ce−α

)
,

where α = 40, k = 36 and c =
(

α
k

)k
ek.
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Mixed tolerance with rTOL=aTOL=10−6.

Polynomial degree p = 4.

Final mesh:

Evaluation on final mesh: ? exact global error,

• error estimate.
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Conclusions & Future Work (3)

At the moment we try to use our knowledge of

singular IVPs to speed up calculations for the

solution of the

radial Schrödinger equation

in the context of

computational material science

— Walter Kohn’s

Density Functional Theory,

see for example Eschrig (1996).

Aim: Performance comparison of

• IDeC,

• Collocation,

• Transformation to a regular problem on a

large interval (employed in a standard

Fortran 77 code).
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