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Abstract setting (nonlinear)

Original problem, working scheme, auxiliary scheme

Consider
» F*(u) = 0 ... original problem, solution u*
» F(u) = 0 ... working scheme, solution
» F(u) = 0 ... auxiliary scheme, solution

Note: F*~F ~ F
» De facto we are in discrete setting, i.e., F*(u) = 0 is a very
accurate (possibly very expensive) discretization of a
continous problem which we wish do not wish to solve
» (i is computed by solving F(u) =0
. wish to estimate the (global) error é := (i — u*

» F is assumed to be ‘cheaply to solve’,
plays auxiliary role in error estimation
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Defect-based a-posteriori error estimation

DeC approach: Estimate global error using auxiliary scheme
Basic idea due to Zadunaisky, Stetter:

To estimate € = (0 — u*, proceed as follows
» Compute defect (residual) d := F*({)
» Solve F(u)=0 — 0
» Solve F(u)=d — (iger

» Estimate é :

& = 0-u" = F*1F*(0) —F* 1F*(u)
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» le.: error estimate & := (g — U ~ O —u* = error

» Can also proceed using local error estimates
(similar procedure)
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Collocation for boundary value problems

F = collocation method

» F(u) =0 ...high order discretization scheme of boundary
value problem (BVP) for nonlinear ODE y’(t) = f(t,y(t))

In particular: Consider piecewise polynomial collocation
a=(.., LAJ(tLj), ...), Wwhere l,,\ll(tid') = f(ti7ja G(ti,j)) Vi,j
» Nonequidistant mesh, collocation at interior nodes of

A= {t|’J:7-|+J5|, IZO,,N—]_’J:O,,m_i_l}’

with ‘outer’ and ‘inner’ stepsizes hj and § = -
di
e
| F————— |
T0 e TiN Ti4+1 e ™

» Collocation degree m ;
nodes may also be nonequidistant
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Collocation for boundary value problems

F = box scheme; defect via higher order interpolation of G

» F(u) =0 ...low order discretization scheme
In particular: Consider box scheme w.r.t. collocation grid,
Gi,j — C'i,j—l ~ ~ .
= = 2l Giyea) (6 Ty)
» F* is ‘implicitly’ defined by specifying the defect d:
» Interpolate ( by piecewise polynomial V(t)
of higher degree m +1
» Compute pointwise (differential) defect w.r.t. given ODE,
am = \A//(ti’j)—f(ti,j,\/}(ti,j)) — d= (...,au,...)
» ... i.e.. F* ~ collocation scheme of higher order

> Auxiliary step: Solve box scheme, with additional
inhomogeneity defined by defect d
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Collocation for boundary value problems

Straightforward idea does not work. ¢, What has gone wrong ?

» We know a-priori: € =0(h™) (h ... maximal stepsize)
» Implementation of error estimate described above yields
€ =0(hM), but
-8 #0(h%) with k >m,
i.e., error estimate is not asymptotically correct
» What has gone wrong? — Note:
» F* corresponds to collocation scheme, involves a term
with 1st derivative (like in ODE)
» F is difference scheme, involves 1st difference quotient
» — F — F* depends on second derivative of error function
(t) = (G —u")(t)
(G — u*)" is of reduced order O(h™-1)
— F —F* is not ‘small enough’ asymptotically
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Collocation for boundary value problems

How to make the estimate work: QDeC approach

>

>

>

The consequence: modify defect, i.e.
Modify F* in such a way that F — F* sufficiently similar

— Replace pointwise (differential) defect values
dij = V/'(ti;) —f(ti;,V(t;)) by their local integral means

o G )
o :—][ ayde = Vi Vi V"J-l_]l " £ (t,0(t)) dt
tij—1 o Gij—1

In practice: Use sufficiently accurate quadrature formulas;
coefficients related to Runge-Kutta formalism

This corresponds to a re-formulation of F* as a difference
scheme involving a 1st difference just like in F

— F —F* is only a weighted sum of f - values
Proof of asymptotic correctness: O.K.
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Collocation for boundary value problems

Numerical example: QDeC estimator asymptotically correct

» Example: Boundary value problem on [0, 1]

» Collocation (

v = § 5

10

oo

0 0]u(0)+ [(1) 8]u(1)

m = 4) + QDeC error estimate :

0
exp(t)

).

<)

h elleol Or ol ElMest OrQest
1/4 | 1.740e—06 6.574e—08
1/8 | 1.064e—07 4.0 1.916e—09 5.1
1/16 | 6.617e—09 4.0 5.803e—11 5.1
1/32 | 4.130e—10 4.0 1.750e—12 5.0
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Singular ODEs

Performance of QDeC estimate in singular case

» Singular ODEs:
u’(t) =t A(t)u(t) + f(t,u(t))

» Collocation / QDeC estimate successfully applicable to
BVPs with singularity of the first kind (o = 1)

— Proof: O.K.

» Essential singularities (« > 1):

» O.K., butless accurate due to reduced smoothness of
collocation error

» Alternative: Mesh halving — slightly more robust but
significantly more expensive
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Singular ODEs

Numerical example: QDeC estimator in presence of essential singularity

» Example: Essential singularity (a = 3),
terminal value problem on [0, 1]

ut) = t3ut)+ (1 -t 3e', u@)=e

» Collocation (m = 4) + QDeC error estimate :

h erlcoll ordeol ellest Ordest

1/16 | 1.106e—10 2.814e-11

1/32 | 6.796e—12 4.0 1.203e-12 44
1/64 | 4.208e—13 4.0 4.266e—14 4.6
1/128 | 2.953e—-14 3.8 1.442e-14 4.8
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Implicit problems

Under consideration: Implicit ODEs (linear, nonlinear, DAEs, ...)

» F = collocation for implicit ODE systems,
e.g. linearly implicit with mass matrix M(t),
M(tij)u’(ti;) = f(tiju(ti;))
» F = box scheme:
i,j_;)uh’j_éiui’jl = 3(f(tij—n, Gijor) + 1 (8, Gij))
» Let V ... higher order interpolant of G ; pointwise defect
dij = M(tij)V'(t;) — f(ti, V()
» ...equivalent to explicit case if M(t) regular
» Interesting case: M(t) has reduced rank —

Question: How to modify defect and/or auxiliary scheme to
ensure asymptotic correctness of error estimate
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Implicit problems

Differential-algebraic systems

» Consider
A(Du)'(t) = f(t,u(t)), A,D ... fullrank
(A, D rectangular in general )

» ... with v := Du this is equivalent to implicit ODE system
with singular mass matrix:

0 0 u(t)] _ (Du(t) —v(t)
0 A vi(t) ) f(t,u(t))
» ... Collocation: O.K. e.g. with Radaulla nodes — ,9,d

» Error estimator:
— Use auxiliary scheme F = backward Euler on fine grid

— Use local quadrature means of defect d
(defect in algebraic component remains zero)

— For varying A, further modification may be necessary
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Collocation for boundary value problems

Numerical example: DAE, Radau lla

» Example: Boundary value problem on [0, 1]

[1] (ul(t) — up(t)) = [

1

0

(g(t) = sinht +t3(t>—1)cosht ),
ui1(0) = 0, uz(1) —uy(l) = coshl

» Radaulla collocation (m = 2):

1-t2
—t

02 ]u(t)+ [

h elleol Orckst
1/10 | 3.538e—06
1/20 | 4.465e—07 3.0
1/40 | 5.605e—08 3.0
1/80 | 7.019e—09 3.0

» Error estimator not yet implemented . ..
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Choice of auxiliary scheme and of defect

Defect needs to be defined carefully

>

Appropriate choice of auxiliary scheme and defect is
problem-dependent

Interpolation (as basis for defect definition) should be of
local type (efficiency!)

Approximation of derivatives should be similar for auxiliary
scheme F and defect-defining scheme F*

Must be applicable to non-uniform meshes — Adaptive
mesh selection aiming at equidistribution of global error

For PDEs, a number of error estimation principle exists
(e.g. residual-based, smoothing)

— Finite volume schemes, Finite element methods

— *DeC involves some additional effort —

— expect gain concerning reliability, robustness
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Conclusion, acknowledgments
NSDE group at Vienna University of Technology

» NSDE research group: MATLAB code sbvp ,
especially designed for singular BVPs,
collocation + adaptive mesh based on QDeC estimate

» See
» www.math.tuwien.ac.at/nsde/
» www.mathworks.com/matlabcentral/fileexchange/

(download)

» People:

» Ernst Karner
Othmar Koch
» Dirk Praetorius

» Ewa Weinmdller
> ..
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