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Abstract setting (nonlinear)
Original problem, working scheme, auxiliary scheme

Consider

I F ∗(u) = 0 . . . original problem, solution u∗

I F̂ (u) = 0 . . . working scheme, solution û

I F̃ (u) = 0 . . . auxiliary scheme, solution ũ

Note: F ∗ ≈ F̂ ≈ F̃

I De facto we are in discrete setting, i.e., F ∗(u) = 0 is a very
accurate (possibly very expensive) discretization of a
continous problem which we wish do not wish to solve

I û is computed by solving F̂ (u) = 0
. . . wish to estimate the (global) error ê := û − u∗

I F̃ is assumed to be ‘cheaply to solve’,
plays auxiliary role in error estimation
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Defect-based a-posteriori error estimation
DeC approach: Estimate global error using auxiliary scheme

Basic idea due to Zadunaisky, Stetter:

To estimate ê = û − u∗ , proceed as follows

I Compute defect (residual) d̂ := F ∗(û)

I Solve F̃ (u) = 0 −→ ũ

I Solve F̃ (u) = d̂ −→ ũdef

I Estimate ê :

ê = û − u∗ = F ∗−1 F ∗(û)︸ ︷︷ ︸
= d̂

−F ∗−1 F ∗(u∗)︸ ︷︷ ︸
= 0

≈ F̃−1(d̂) − F̃−1(0) = ũdef − ũ

I I.e.: error estimate ε̂ := ũdef − ũ ≈ û − u∗ = error

I Can also proceed using local error estimates
(similar procedure)
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Collocation for boundary value problems
F̂ = collocation method

I F̂ (u) = 0 . . . high order discretization scheme of boundary
value problem (BVP) for nonlinear ODE y ′(t) = f (t , y(t))

In particular: Consider piecewise polynomial collocation

û = (. . . , û(ti,j), . . .), where û′(ti,j) = f (ti,j , û(ti,j)) ∀ i , j

I Nonequidistant mesh, collocation at interior nodes of

∆ :=
{

ti,j = τi + jδi , i = 0, . . . , N − 1, j = 0, . . . , m + 1
}

,

with ‘outer’ and ‘inner’ stepsizes hi and δi = hi
m+1

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN

δi︷︸︸︷
︸ ︷︷ ︸

hi

I Collocation degree m ;
nodes may also be nonequidistant
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Collocation for boundary value problems
F̃ = box scheme; defect via higher order interpolation of û

I F̃ (u) = 0 . . . low order discretization scheme

In particular: Consider box scheme w.r.t. collocation grid,

ũi,j − ũi,j−1

δi
= 1

2

(
f (ti,j−1, ũi,j−1) + f (ti,j , ũi,j)

)
∀ i , j

I F ∗ is ‘implicitly’ defined by specifying the defect d̂ :
I Interpolate û by piecewise polynomial v̂(t)

of higher degree m +1
I Compute pointwise (differential) defect w.r.t. given ODE,

d̂i,j := v̂ ′(ti,j)− f (ti,j , v̂(ti,j)) −→ d̂ = (. . . , d̂i,j , . . .)

I . . . i.e.: F ∗ ∼ collocation scheme of higher order

I Auxiliary step: Solve box scheme, with additional
inhomogeneity defined by defect d̂
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Collocation for boundary value problems
Straightforward idea does not work. ¿ What has gone wrong ?

I We know a-priori: ê = O(hm) ( h . . . maximal stepsize )
I Implementation of error estimate described above yields

ε̂ = O(hm) , but
ε̂− ê 6= O(hk ) with k > m ,

i.e., error estimate is not asymptotically correct
I What has gone wrong? −→ Note:

I F ∗ corresponds to collocation scheme, involves a term
with 1st derivative (like in ODE)

I F̃ is difference scheme, involves 1st difference quotient
I =⇒ F̃ − F ∗ depends on second derivative of error function

ê(t) = (û − u∗)(t)
I (û − u∗)′′ is of reduced order O(hm−1)

I =⇒ F̃ − F ∗ is not ‘small enough’ asymptotically
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Collocation for boundary value problems
How to make the estimate work: QDeC approach

I The consequence: modify defect, i.e.

I Modify F ∗ in such a way that F̃ − F ∗ sufficiently similar

I −→ Replace pointwise (differential) defect values
d̂i,j = v̂ ′(ti,j)− f (ti,j , v̂(ti,j)) by their local integral means

D̂i,j := ∼
∫ ti,j

ti,j−1

d̂(t) dt =
v̂i,j − v̂i,j−1

δi
− ∼

∫ ti,j

ti,j−1

f (t , v̂(t)) dt

I In practice: Use sufficiently accurate quadrature formulas;
coefficients related to Runge-Kutta formalism

I This corresponds to a re-formulation of F ∗ as a difference
scheme involving a 1st difference just like in F̃

I =⇒ F̃ − F ∗ is only a weighted sum of f - values

I Proof of asymptotic correctness: O.K.
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Collocation for boundary value problems
Numerical example: QDeC estimator asymptotically correct

I Example: Boundary value problem on [0, 1]

u′(t) =

 0 1
4 0

u(t) − 3

 0
exp(t)

,

 1 0
0 0

u(0) +

 0 0
1 0

u(1) =

 1
e


I Collocation ( m = 4 ) + QDeC error estimate :

h errcoll ordcoll errest ordest

1/4 1.740e−06 6.574e−08
1/8 1.064e−07 4.0 1.916e−09 5.1
1/16 6.617e−09 4.0 5.803e−11 5.1
1/32 4.130e−10 4.0 1.750e−12 5.0
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Singular ODEs
Performance of QDeC estimate in singular case

I Singular ODEs :

u′(t) = t−α A(t)u(t) + f (t , u(t))

I Collocation / QDeC estimate successfully applicable to
BVPs with singularity of the first kind (α = 1)

−→ Proof: O.K.

I Essential singularities (α > 1) :
I O.K., but less accurate due to reduced smoothness of

collocation error
I Alternative: Mesh halving – slightly more robust but

significantly more expensive
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Singular ODEs
Numerical example: QDeC estimator in presence of essential singularity

I Example: Essential singularity (α = 3),
terminal value problem on [0, 1]

u′(t) = t−3 u(t) + (1− t−3)et , u(1) = e

I Collocation ( m = 4 ) + QDeC error estimate :

h errcoll ordcoll errest ordest

1/16 1.106e−10 2.814e−11
1/32 6.796e−12 4.0 1.203e−12 4.4
1/64 4.208e−13 4.0 4.266e−14 4.6
1/128 2.953e−14 3.8 1.442e−14 4.8
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Implicit problems
Under consideration: Implicit ODEs (linear, nonlinear, DAEs, . . . )

I F̂ = collocation for implicit ODE systems,
e.g. linearly implicit with mass matrix M(t) ,

M(ti,j)u
′(ti,j) = f (ti,j , u(ti,j))

I F̃ = box scheme :

M(ti,j− 1
2
)

ũi,j − ũi,j−1

δi
= 1

2

(
f (ti,j−1, ũi,j−1) + f (ti,j , ũi,j)

)
I Let v̂ . . . higher order interpolant of û ; pointwise defect

d̂i,j = M(ti,j)v̂
′(ti,j)− f (ti,j , v̂(ti,j))

I . . . equivalent to explicit case if M(t) regular

I Interesting case: M(t) has reduced rank −→
Question: How to modify defect and/or auxiliary scheme to
ensure asymptotic correctness of error estimate
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Implicit problems
Differential-algebraic systems

I Consider

A(Du)′(t) = f (t , u(t)) , A, D . . . full rank

( A, D rectangular in general )

I . . . with v := D u this is equivalent to implicit ODE system
with singular mass matrix: 0 0

0 A

u′(t)
v ′(t)

 =

D u(t)− v(t)
f (t , u(t))


I . . . Collocation: O.K. e.g. with Radau IIa nodes → û, v̂ , d̂
I Error estimator:

– Use auxiliary scheme F̃ = backward Euler on fine grid
– Use local quadrature means of defect d̂

(defect in algebraic component remains zero)
– For varying A , further modification may be necessary
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Collocation for boundary value problems
Numerical example: DAE, Radau IIa

I Example: Boundary value problem on [0, 1] 1

1

(u′
1(t)− u′

2(t)) =

 1−t2 0

0 −t2

u(t) +

 g(t)
g(t)

,

( g(t) = sinh t + t2(t2−1) cosh t ) ,

u1(0) = 0 , u1(1)− u2(1) = cosh 1

I Radau IIa collocation ( m = 2 ) :

h errcoll ordest

1/10 3.538e−06
1/20 4.465e−07 3.0
1/40 5.605e−08 3.0
1/80 7.019e−09 3.0

I Error estimator not yet implemented . . .
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Choice of auxiliary scheme and of defect
Defect needs to be defined carefully

I Appropriate choice of auxiliary scheme and defect is
problem-dependent

I Interpolation (as basis for defect definition) should be of
local type (efficiency!)

I Approximation of derivatives should be similar for auxiliary
scheme F̃ and defect-defining scheme F ∗

I Must be applicable to non-uniform meshes −→ Adaptive
mesh selection aiming at equidistribution of global error

I For PDEs, a number of error estimation principle exists
(e.g. residual-based, smoothing)

– Finite volume schemes, Finite element methods
– *DeC involves some additional effort –
– expect gain concerning reliability, robustness
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Conclusion, acknowledgments
NSDE group at Vienna University of Technology

I NSDE research group: MATLAB code sbvp ,
especially designed for singular BVPs,
collocation + adaptive mesh based on QDeC estimate

I See
I www.math.tuwien.ac.at/nsde/
I www.mathworks.com/matlabcentral/fileexchange/

(download)

I People:
I Ernst Karner
I Othmar Koch
I Dirk Praetorius
I Ewa Weinmüller
I . . .
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