Defect-based a-posteriori error estimation for implicit ODEs and DAEs

W. Auzinger

Institute for Analysis and Scientific Computing Vienna University of Technology

Workshop on Innovative Integrators for Differential and Delay Equations (Innsbruck, 2006)

Outline

- A-posteriori estimation via defect correction
 - Introduction
 - Fundamentals
- 2 Explicit ODEs
 - Collocation methods
 - Defect definition
 - Modification: Integral means of defect
- 3 Linearly implicit systems
 - Collocation, auxiliary scheme and integrated defect
- 4 Application to Differential-Algebraic Equations (DAEs)
 - Collocation and QDeC/BEUL or mixed estimate
 - Index 1 problems
 - Index 2 problems

Introduction Fundamentals

Abstract setting (nonlinear) Original problem, working scheme, auxiliary scheme

Consider

- $F^*(u) = 0 \dots$ original problem, solution u^*
- $\hat{F}(u) = 0$... working scheme, solution \hat{u}
- $\tilde{F}(u) = 0$... auxiliary scheme, solution \tilde{u}

Note: $F^* \approx \hat{F} \approx \tilde{F}$

- De facto we are in discrete setting, i.e., F*(u) = 0 is a very accurate (possibly very expensive) discretization of a continous problem which we wish do not wish to solve
- \hat{u} is computed by solving $\hat{F}(u) = 0$

... wish to estimate the (global) error $\hat{e} := \hat{u} - u^*$

F is assumed to be 'cheaply to solve', plays auxiliary role in error estimation

Introduction Fundamentals

Defect-based a-posteriori error estimation DeC approach: Estimate global error using auxiliary scheme

Basic idea due to Zadunaisky, Stetter:

To estimate $\hat{e} = \hat{u} - u^*$, proceed as follows

• Compute defect (residual) $\hat{d} := F^*(\hat{u})$

• Solve
$$\tilde{F}(u) = 0 \longrightarrow \tilde{u}$$

- Solve $\tilde{F}(u) = \hat{d} \longrightarrow \tilde{u}_{def}$
- Estimate ê:

$$\hat{e} = \hat{u} - u^* = F^{*-1} \underbrace{F^*(\hat{u})}_{=\hat{d}} - F^{*-1} \underbrace{F^*(u^*)}_{=0}$$

$$\approx \tilde{F}^{-1}(\hat{d}) - \tilde{F}^{-1}(0) = \tilde{u}_{def} - \tilde{u}$$

- I.e.: error estimate $\hat{\epsilon} := \tilde{u}_{def} \tilde{u} \approx \hat{u} u^* = \text{error}$
- Linear case: Simply compute $\hat{\epsilon} := \tilde{F}^{-1} \hat{d}_{-1}$

Collocation methods Defect definition Modification: Integral means of defect

Collocation for explicit ODE system

- \hat{F} = collocation method
 - *F̂*(u) = 0 ... high order discretization for explicit ODE system y'(t) = f(t, y(t)) (IVP od BVP) In particular: Consider piecewise polynomial collocation

 $\hat{u} = (\dots, \hat{u}(t_{i,j}), \dots), \quad \text{where} \quad \hat{u}'(t_{i,j}) = f(t_{i,j}, \hat{u}(t_{i,j})) \quad \forall i, j$

- [Non]equidistant mesh {τ₀,..., τ_N}, collocation intervals *I_i* := [τ_{i-1}, τ_i]
- Collocation (degree *m*) at nodes $t_{i,j} \in \mathcal{I}_i, j = 1 \dots m$

$$\tau_0 \qquad \dots \qquad \tau_{i-1} = t_{i,0} \qquad \tau_i = t_{i,m} \qquad \dots \qquad \tau_N$$

• Coll. nodes • may be nonequidistant; $h_{i,j} := t_{i,j} - t_{i,j-1}$

Collocation methods Defect definition Modification: Integral means of defect

Auxiliary scheme and pointwise defect

 \tilde{F} = BEUL (backward Euler); use pointwise defect \hat{d} of \hat{u}

$$\frac{\tilde{u}_{i,j}-\tilde{u}_{i,j-1}}{h_{i,j}} = f(t_{i,j},\tilde{u}_{i,j}) \quad \forall i,j$$

- F^* is 'implicitly' defined by specifying the defect \hat{d} :
 - Compute pointwise (differential) defect of û w.r.t. ODE at all grid points t_{i,j}

 $\hat{d}_{i,j} := \hat{u}'(t_{i,j}) - f(t_{i,j}, \hat{u}(t_{i,j})) \longrightarrow \hat{d} = (\dots, \hat{d}_{i,j}, \dots)$

• ... i.e.: $F^* \sim$ collocation scheme of higher order m+1

 Auxiliary step: Solve BEUL scheme, with additional inhomogeneity defined by defect *d*

Use of pointwise defect makes non sense

 \hat{d} vanishes at collocation nodes

• But: This makes no sense, because BEUL evaluates \hat{d} at collocation nodes, i.e. at the zeros of $\hat{d}(t)$:

By definition of \hat{u} ,

- $\hat{d}_{i,j} = 0$ at collocation nodes \implies error estimate $\equiv 0$
- However, $\hat{d}(t) \neq 0$; in particular, $\hat{d}_{i,0} \neq 0$ at left endpoint $\tau_{i-1} = t_{i,0}$ of \mathcal{I}_i :

$$\begin{array}{c} \dots t_{i,j} \dots \\ \bullet \bullet \bullet \bullet \bullet \\ \tau_{i-1} = t_{i,0} \quad \tau_i = t_{i,m} \end{array}$$

- ullet \Longrightarrow We have to use defect information in another way
- Note: Use of forward Euler or box scheme instead of BEUL does not help us.

Collocation methods Defect definition Modification: Integral means of defect

Defect-defining scheme *F*^{*} is not appropriate Heuristic argument

- Collocation error satisfies $\hat{e}(t) := (\hat{u} u^*)(t)$ satisfies $\hat{e} = \mathcal{O}(h^m), \quad \hat{e}' = \mathcal{O}(h^m), \quad \hat{e}'' = \mathcal{O}(h^{m-1}),$
- Note:
 - *F*^{*} corresponds to collocation scheme (of higher order), involves a term with 1st derivative (like in ODE)

 - ⇒ *F̃* − *F*^{*} depends on second derivative *ê*["] of error function *ê*(*t*)
 - \hat{e}'' is of reduced order $\mathcal{O}(h^{m-1})$
 - \implies $\tilde{F} F^*$ is not small enough asymptotically

・ロン ・回 と ・ ヨン ・ ヨー

How to make the estimate work: QDeC approach Use local integral means of $\hat{d}(t)$

- The consequence: modify defect, i.e.
- Modify F^* in such a way that $\tilde{F} F^*$ sufficiently 'similar'
- I.e.: Replace pointwise (differential) defect values $\hat{d}_{i,j} = \hat{u}'(t_{i,j}) - f(t_{i,j}, \hat{u}(t_{i,j}))$ by local integral means $\hat{\overline{d}}_{i,j} := \int_{t_{i,j-1}}^{t_{i,j}} \hat{d}(t) dt = \frac{\hat{u}_{i,j} - \hat{u}_{i,j-1}}{h_{i,j}} - \int_{t_{i,j-1}}^{t_{i,j}} f(t, \hat{u}(t)) dt$
- In practice: Use appropriate quadrature formula for *∱*− coefficients related to Runge-Kutta formalism
- ... corresponds to a re-formulation of F^* as a difference scheme involving a 1st difference just like in \tilde{F}

• \implies $\tilde{F} - F^*$ is merely a weighted sum of f-values

• Proof of asymptotic correctness: O.K.: Error of estimate: $\hat{\epsilon} - \hat{e} = \mathcal{O}(h^{m+1})$ $\sqrt{1 + (B + 1)^{m+1}}$

Linear implicit system with varying mass matrix Generalization of the above procedure

• Consider linear case:

$$A(t) y'(t) + B(t) y(t) = g(t)$$

Collocation:

 $oldsymbol{A}(oldsymbol{t}_{i,j})\,\hat{u}'(oldsymbol{t}_{i,j})+B(oldsymbol{t}_{i,j})\,\hat{u}(oldsymbol{t}_{i,j})\,=\,g(oldsymbol{t}_{i,j})$ at $oldsymbol{t}_{i,j}$ •

Pointwise defect:

 $\hat{d}(t) := A(t) \hat{u}'(t) - B(t) \hat{u}(t) - g(t) \neq 0$ at $t = \tau_{i-1} = t_{i,0} \bullet$

Integrated defect:

$$\hat{\overline{d}}_{i,j} := \int_{t_{i,j-1}}^{t_{i,j}} \hat{d}(t) dt$$

Collocation, auxiliary scheme and integrated defect

Integrated defect and auxiliary scheme

Attention: A = A(t)

- Note: $\hat{\overline{d}}_{i,j} = \oint_{t_{i,j-1}}^{t_{i,j}} \hat{d}(t) dt = \oint_{t_{i,j-1}}^{t_{i,j}} A(t) \hat{u}'(t) dt + \dots \\
 = \oint_{t_{i,j-1}}^{t_{i,j}} ((A \hat{u}')(t) - A'(t) \hat{u}(t)) dt + \dots \\
 = \frac{(A \hat{u})(t_{i,j}) - (A \hat{u})(t_{i,j-1})}{t_{i,j} - t_{i,j-1}} - \oint_{t_{i,j-1}}^{t_{i,j}} A'(t) \hat{u}(t) dt + \dots$
- ¿ What auxiliary scheme is appropriate ? Analysis shows: Any stable, consistent one-step scheme is O.K., e.g. BEUL: Error estimate $\hat{\epsilon} \approx \hat{e}$ computed from $A_{i,j} \frac{\hat{\epsilon}_{i,j} - \hat{\epsilon}_{i,j-1}}{h_{i,j}} + B_{i,j} \hat{\epsilon}_{i,j} = \hat{\overline{d}}_{i,j}$ is asymptotically correct $\sqrt{}$

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Collocation for DAEs

Use stiffly stable collocation scheme

• Now consider DAE case (A(t) singular):

Use of right end node $\tau_i = t_{i,m}$ for collocation means: the scheme is stiffly stable – usually the most beneficial choice in the DAE case

 Analysis of QDeC estimate cited above: No explicit assumption about rank of A(t), but we need

 $\hat{\boldsymbol{e}}(t) = \mathcal{O}(h^m), \quad \hat{\boldsymbol{e}}'(t) = \mathcal{O}(h^m)$

- Numerical tests in Maple 10 programming is simple: collocation equations are set up symbolically, system to be solved is extracted using coeff
- Note: Here, defect is integrated exactly (effect of quadrature is masked, but will also have to be considered)

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

A simple numerical example

Index 1 DAE with constant coefficients

Initial value problem

$$\left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right)u'(t) + \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right)u(t) = \left(\begin{array}{c} \sin(10\,t) \\ \cos(t) \end{array}\right),$$

with consistent initial condition

 Equidistant collocation (m=3) + QDeC/BEUL estimate; results displayed for || · ||₂ at t = 1:

N	err _{coll}	ord_{coll}	err _{est}	ord _{est}
4	1.364e-02		7.750e-03	
8	1.570e-03	3.1	5.966e-05	7.0
16	1.927e-04	3.0	2.224e-06	1.4
32	2.399e-05	3.0	1.944e-07	3.5

13/24

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 1 DAE with constant coefficients

2-norm of error and QDeC/BEUL estimate

14/24

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 1 DAEs with constant coefficients

Stiffly stable scheme exact in algebraic component

- Note: For stiffly stable collocation, algebraic equation is exactly reproduced at collocation nodes
- Integration of defect (essential for differential component !) is not really reasonable for algebraic component
 Asymptotic order is O.K (interpolation error), but overall reduced accuracy is to be expected
- → Use mixed strategy, with pointwise defect (= 0 at collocation nodes) in algebraic component
- We see: Heuristic idea behind DeC estimator is simple but precise definition of the defect is essential, also depends on the auxiliary scheme used
- More general DAEs: discussed below

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 1 DAE with constant coefficients Results for mixed DeC/BEUL estimate

- Example from above (m = 3)
- Mixed DeC/BEUL estimate: Error estimate is more precise, asymptotic order

$$\hat{\epsilon} - \hat{\pmb{e}} = \mathcal{O}(h^{m+1})$$

is clearly visible:

N	err _{coll}	ord _{coll}	err _{est}	ord _{est}
4	1.364e-02		2.105e-03	
8	1.570e-03	3.1	1.176e-04	4.2
16	1.927e-04	3.0	7.214e-06	4.0
32	2.399e-05	3.0	4.504e-07	4.0

16/24

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 1 DAE with constant coefficients

2-norm of error and mixed DeC/BEUL estimate

17/24

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 1 DAEs with variable coefficients Properly stated formulation

• Consider variable coefficient Index 1 case

A(t) u'(t) + B(t) u(t) = g(t)

- ¿ 'Index = 1 for variable coefficients ? '
 - ... Most natural definition due to R. März et.al.:

'Properly stated form' with 'tractability index' $i_t = 1$:

• Assume that A(t) can be written as

A(t) = E(t) D(t), where $E(t) \in \mathbb{R}^{n \times s}$, $D(t) \in \mathbb{R}^{s \times n}$ in C^1 , with

 $\ker E(t) \oplus \operatorname{im} D(t) = \mathbb{R}^{s},$ and such that $\exists C^{1}$ projector R(t) with $\ker R(t) = \ker E(t), \qquad \operatorname{im} R(t) = \operatorname{im} D(t).$

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Properly stated formulation, $i_t = 1$

Use stiffly stable scheme

• DAE has tractability index $i_t = 1$ if (essentially; omit some technical details) it can be decoupled into the equivalent form

E(t) (Rv)'(t) + B(t) u(t) = g(t),D(t) u(t) = v(t),

with an inherent ODE and a purely algebraic equation.

• Important: Application of stiffly stable scheme is equivalent to direct application to (U = (u, v))

$$\left(egin{array}{cc} 0 & E(t) \\ 0 & 0 \end{array}
ight) U'(t) + \left(egin{array}{cc} B(t) & 0 \\ D(t) & -I \end{array}
ight) U(t) = \left(egin{array}{cc} g(t) \\ 0 \end{array}
ight).$$

 Convergence theory: √ with stage order in general. (Here: We do not discuss possible superconvergence effects.)

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Properly stated formulation, $i_t = 1$ Stiffly stable scheme and QDeC/BEUL or mixed estimator

Numerical evidence is the same as for constant coefficients:

• QDeC/BEUL estimate is asymptotically correct,

 $\hat{\epsilon} - \hat{\theta} = \mathcal{O}(h^{m+1}) \sqrt{1}$

• Stiffly stable collocation scheme does not propagate any error in the algebraic component, i.e.

 $D(t_{i,j}) \hat{u}_{i,j} \equiv \hat{v}_{i,j}$

 \implies it makes sense to use the mixed estimate, with zero defect in the algebraic component: Again, asymptotic order is the same, accuracy of estimator is slightly better

 Analysis (including nonlinear problems) will be based on a combination of our argument for the implicit case and the convergence theory for stiffly stable collocation schemes by Higueras/März.

Index 2 case:

Preliminary analysis: Consider simple model

 Simplest index 2 DAE: Solution obtained by differentiation of a given data function g(t), or slighly more general:

$$Au'(t) + Bu(t) = \left(\begin{array}{c} f(t) \\ g(t) \end{array}
ight),$$

with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

- Stiffly stable collocation yields stage order $\mathcal{O}(h^m)$, but
- QDeC/BEUL or mixed estimate is not asymptotically correct for m > 1
- However: For m = 1 we obtain

$$\hat{\epsilon} - \hat{e} = \mathcal{O}(h^2) = \mathcal{O}(h^{m+1}) \checkmark$$

21/24

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 2 case: Model problem analysis QDeC/BEUL or mixed estimate asymptotically correct for m = 1

- Explanation: Consider special case f(t) = 0 and mixed estimator
- Algebraic equation $u_2(t) = g(t)$ is exactly reproduced by collocation: $\hat{u}_2(t_{i,j}) = g(t_{i,j})$, pointwise defect = 0

... equivalent to piecewise linear interpolation, with

$$(\hat{u}_2 - g)(t) = \mathcal{O}(h^2), \ (\hat{u}'_2 - g')(t) = \mathcal{O}(h)$$

(Integrated) Qdefect in first component reads

$$(\hat{\overline{d}}_{1})_{i,j} = \int_{t_{i,j-1}}^{t_{i,j}} (\hat{u}_{2}'(t) - \hat{u}_{1}(t)) dt$$

= $\frac{g_{i,j} - g_{i,j-1}}{h_{i,j}} - \int_{t_{i,j-1}}^{t_{i,j}} \hat{u}_{1}(t) dt$

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 2 case: Model problem investigation

Mixed estimate asymptotically correct for m = 1

- \longrightarrow Mixed estimator, first component of BEUL scheme: $\frac{(\hat{\epsilon}_2)_{i,j} - (\hat{\epsilon}_2)_{i,j-1}}{h_{i,j}} - (\hat{\epsilon}_1)_{i,j} = \frac{g_{i,j+1} - g_{i,j}}{h_{i,j}} - \int_{t_{i,j-1}}^{t_{i,j}} \hat{u}_1(t) dt$ with $(\hat{\epsilon}_2)_{i,j} \equiv 0 \ (\equiv (\hat{e}_2)_{i,j}) \Longrightarrow$ error estimate $\hat{\epsilon}$ satisfies $(\hat{\epsilon}_1)_{i,j} = \int_{t_{i,j-1}}^{t_{i,j}} (\hat{u}_1(t) - g'(t)) dt$
- Compared with error $\hat{e} = \hat{u} u^*$ to be estimated,

$$(\hat{e}_1)_{i,j} = (\hat{u}_1)_{i,j} - (u_1^*)_{i,j} = (\hat{u}_1)(t_{i,j}) - g'(t_{i,j}),$$

we conclude

 $\hat{\epsilon}_1 - \hat{e}_1 = \mathcal{O}(h^2) \checkmark$ because $\hat{u}_1 - g' = \mathcal{O}(h)$.

Collocation and QDeC/BEUL or mixed estimate Index 1 problems Index 2 problems

Index 2 case: Numerical evidence and outlook QDeC/BEUL estimate O.K. for m = 1; ; m > 1?

• Numerical evidence shows:

 Again, mixed estimate performs slightly better than pure QDeC estimate; asymptotic order is the same

 Behavior observed for model problem carries over to more general (variable coefficient) examples

• Case *m* > 1 : Possible remedy: Choose

i.e. the estimator is computed from a second application of the underlying collocation scheme, with defect added (currently being tested).

 $\tilde{F} = \hat{F}$.

• More experiments and analysis are under preparation.

*** Many thanks for your attention! ***

(a) < (a) < (b) < (b)