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Introduction
Fundamentals

Abstract setting (nonlinear)
Original problem, working scheme, auxiliary scheme

Consider
F ∗(u) = 0 . . . original problem, solution u∗

F̂ (u) = 0 . . . working scheme, solution û

F̃ (u) = 0 . . . auxiliary scheme, solution ũ

Note: F ∗ ≈ F̂ ≈ F̃
De facto we are in discrete setting, i.e., F ∗(u) = 0 is a very
accurate (possibly very expensive) discretization of a
continous problem which we wish do not wish to solve

û is computed by solving F̂ (u) = 0
. . . wish to estimate the (global) error ê := û − u∗

F̃ is assumed to be ‘cheaply to solve’,
plays auxiliary role in error estimation
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Fundamentals

Defect-based a-posteriori error estimation
DeC approach: Estimate global error using auxiliary scheme

Basic idea due to Zadunaisky, Stetter:
To estimate ê = û − u∗ , proceed as follows

Compute defect (residual) d̂ := F ∗(û)

Solve F̃ (u) = 0 −→ ũ
Solve F̃ (u) = d̂ −→ ũdef

Estimate ê :
ê = û − u∗ = F ∗−1 F ∗(û)︸ ︷︷ ︸

= d̂

−F ∗−1 F ∗(u∗)︸ ︷︷ ︸
= 0

≈ F̃−1(d̂) − F̃−1(0) = ũdef − ũ

I.e.: error estimate ε̂ := ũdef − ũ ≈ û − u∗ = error
Linear case: Simply compute ε̂ := F̃−1d̂
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Collocation for explicit ODE system
F̂ = collocation method

F̂ (u) = 0 . . . high order discretization for explicit ODE
system y ′(t) = f (t , y(t)) (IVP od BVP)
In particular: Consider piecewise polynomial collocation

û = (. . . , û(ti,j), . . .), where û′(ti,j) = f (ti,j , û(ti,j)) ∀ i , j

[Non]equidistant mesh {τ0, . . . , τN} ,
collocation intervals Ii := [τi−1, τi ]

Collocation (degree m) at nodes • ti,j ∈ Ii , j =1 . . . m

• • • • •
τ0 . . . τi−1 = ti,0

. . . ti,j . . .

τi = ti,m . . . τN︸ ︷︷ ︸
Ii

Coll. nodes • may be nonequidistant; hi,j := ti,j − ti,j−1
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Auxiliary scheme and pointwise defect
F̃ = BEUL (backward Euler); use pointwise defect d̂ of û

F̃ (u) = 0 . . . low order discretization scheme
In particular: Consider BEUL over collocation nodes,

ũi,j − ũi,j−1

hi,j
= f (ti,j , ũi,j) ∀ i , j

F ∗ is ‘implicitly’ defined by specifying the defect d̂ :
Compute pointwise (differential) defect of û w.r.t. ODE
at all grid points ti,j

d̂i,j := û′(ti,j)− f (ti,j , û(ti,j)) −→ d̂ = (. . . , d̂i,j , . . .)

. . . i.e.: F ∗ ∼ collocation scheme of higher order m+1

Auxiliary step: Solve BEUL scheme, with additional
inhomogeneity defined by defect d̂
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Use of pointwise defect makes non sense
d̂ vanishes at collocation nodes

But: This makes no sense, because BEUL evaluates d̂ at
collocation nodes, i.e. at the zeros of d̂(t) :

By definition of û ,
d̂i,j = 0 at collocation nodes • =⇒ error estimate ≡ 0

However, d̂(t) 6≡ 0 ; in particular, d̂i,0 6= 0 at left endpoint
τi−1 = ti,0 • of Ii :

• • • • • •
τi−1 = ti,0

. . . ti,j . . .

τi = ti,m

=⇒ We have to use defect information in another way

Note: Use of forward Euler or box scheme instead of BEUL
does not help us.

7 / 24



A-posteriori estimation via defect correction
Explicit ODEs

Linearly implicit systems
Application to Differential-Algebraic Equations (DAEs)

Collocation methods
Defect definition
Modification: Integral means of defect

Defect-defining scheme F ∗ is not appropriate
Heuristic argument

Collocation error satisfies ê(t) := (û − u∗)(t) satisfies

ê = O(hm), ê′ = O(hm), ê′′ = O(hm−1),

Note:

F ∗ corresponds to collocation scheme (of higher order),
involves a term with 1st derivative (like in ODE)

F̃ = difference scheme (BEUL or any one-step scheme),
involves 1st difference quotient

=⇒ F̃ − F ∗ depends on second derivative ê′′ of
error function ê(t)

ê′′ is of reduced order O(hm−1)

=⇒ F̃ − F ∗ is not small enough asymptotically
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How to make the estimate work: QDeC approach
Use local integral means of d̂(t)

The consequence: modify defect, i.e.
Modify F ∗ in such a way that F̃ − F ∗ sufficiently ‘similar’
I.e.: Replace pointwise (differential) defect values
d̂i,j = û′(ti,j)− f (ti,j , û(ti,j)) by local integral means

d̂ i,j := ∼
∫ ti,j

ti,j−1

d̂(t) dt =
ûi,j − ûi,j−1

hi,j
− ∼

∫ ti,j

ti,j−1

f (t , û(t)) dt

In practice: Use appropriate quadrature formula for ∼
∫

–
coefficients related to Runge-Kutta formalism
. . . corresponds to a re-formulation of F ∗ as a difference
scheme involving a 1st difference just like in F̃

=⇒ F̃ − F ∗ is merely a weighted sum of f - values
Proof of asymptotic correctness: O.K.:
Error of estimate: ε̂− ê = O(hm+1)

√
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Collocation, auxiliary scheme and integrated defect

Linear implicit system with varying mass matrix
Generalization of the above procedure

Consider linear case:
A(t) y ′(t) + B(t) y(t) = g(t)

Collocation:
A(t i,j) û′(ti,j) + B(ti,j) û(ti,j) = g(ti,j) at ti,j •

• • • • • •
τ0 . . . τi−1

. . . ti,j . . .

τi = ti,m . . . τN︸ ︷︷ ︸
IiPointwise defect:

d̂(t) := A(t) û′(t)−B(t) û(t)−g(t) 6= 0 at t = τi−1 = ti,0 •

Integrated defect:

d̂ i,j := ∼
∫ ti,j

ti,j−1

d̂(t) dt
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Integrated defect and auxiliary scheme
Attention: A = A(t)

Note:

d̂ i,j = ∼
∫ ti,j

ti,j−1

d̂(t) dt =∼
∫ ti,j

ti,j−1

A(t) û′(t) dt + . . .

= ∼
∫ ti,j

ti,j−1

( (A û′)(t)− A′(t) û(t) ) dt + . . .

=
(A û)(ti,j)− (A û)(ti,j−1)

ti,j − ti,j−1
− ∼

∫ ti,j

ti,j−1

A′(t) û(t) dt + . . .

¿ What auxiliary scheme is appropriate ?
Analysis shows: Any stable, consistent one-step scheme is
O.K., e.g. BEUL: Error estimate ε̂ ≈ ê computed from

Ai,j
ε̂i,j − ε̂i,j−1

hi,j
+ Bi,j ε̂i,j = d̂ i,j

is asymptotically correct
√
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Collocation for DAEs
Use stiffly stable collocation scheme

Now consider DAE case ( A(t) singular) :
Use of right end node τi = ti,m for collocation means: the
scheme is stiffly stable – usually the most beneficial choice
in the DAE case
Analysis of QDeC estimate cited above:
No explicit assumption about rank of A(t) , but we need

ê(t) = O(hm), ê′(t) = O(hm)

Numerical tests in Maple 10 –
programming is simple: collocation equations are set up
symbolically, system to be solved is extracted using coeff

Note: Here, defect is integrated exactly (effect of
quadrature is masked, but will also have to be considered)
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A simple numerical example
Index 1 DAE with constant coefficients

Initial value problem 0 0
1 1

u′(t) +

 1 2
2 3

u(t) =

 sin(10 t)
cos(t)

,

with consistent initial condition

Equidistant collocation (m=3) + QDeC/BEUL estimate;
results displayed for ‖ · ‖2 at t = 1 :

N errcoll ordcoll errest ordest

4 1.364e−02 7.750e−03
8 1.570e−03 3.1 5.966e−05 7.0

16 1.927e−04 3.0 2.224e−06 1.4
32 2.399e−05 3.0 1.944e−07 3.5
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Index 1 DAE with constant coefficients
2-norm of error and QDeC/BEUL estimate

m = 3 , N = 32

error ‖ê(t)‖2 = ‖û(t)− u∗(t)‖2

error estimate ‖ε̂(t)‖2

error of error estimate ‖ε̂(t)− ê(t)‖2
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Index 1 DAEs with constant coefficients
Stiffly stable scheme exact in algebraic component

Note: For stiffly stable collocation, algebraic equation is
exactly reproduced at collocation nodes

=⇒ Integration of defect (essential for differential com-
ponent !) is not really reasonable for algebraic component
Asymptotic order is O.K (interpolation error), but overall
reduced accuracy is to be expected

=⇒ Use mixed strategy, with pointwise defect (= 0 at
collocation nodes) in algebraic component

We see: Heuristic idea behind DeC estimator is simple –
but precise definition of the defect is essential,
also depends on the auxiliary scheme used

More general DAEs: discussed below
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Index 1 DAE with constant coefficients
Results for mixed DeC/BEUL estimate

Example from above ( m = 3 )

Mixed DeC/BEUL estimate: Error estimate is more precise,
asymptotic order

ε̂− ê = O(hm+1)

is clearly visible:

N errcoll ordcoll errest ordest

4 1.364e−02 2.105e−03
8 1.570e−03 3.1 1.176e−04 4.2

16 1.927e−04 3.0 7.214e−06 4.0
32 2.399e−05 3.0 4.504e−07 4.0
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Index 1 DAE with constant coefficients
2-norm of error and mixed DeC/BEUL estimate

m = 3 , N = 32

error ‖ê(t)‖2 = ‖û(t)− u∗(t)‖2

error estimate ‖ε̂(t)‖2

error of error estimate ‖ε̂(t)− ê(t)‖2
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Index 1 DAEs with variable coefficients
Properly stated formulation

Consider variable coefficient Index 1 case

A(t) u′(t) + B(t) u(t) = g(t)

¿ ‘Index = 1 for variable coefficients ? ’ –
. . . Most natural definition due to R. März et.al.:

‘Properly stated form’ with ‘tractability index’ i t = 1 :

Assume that A(t) can be written as

A(t) = E(t) D(t), where E(t) ∈ Rn×s, D(t) ∈ Rs×n in C1,

with
ker E(t)⊕ im D(t) = Rs ,

and such that ∃ C1 projector R(t) with

ker R(t) = ker E(t), im R(t) = im D(t).
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Properly stated formulation, i t = 1
Use stiffly stable scheme

DAE has tractability index i t = 1 if (essentially; omit some
technical details) it can be decoupled into the equivalent
form

E(t) (Rv)′(t) + B(t) u(t) = g(t),
D(t) u(t) = v(t),

with an inherent ODE and a purely algebraic equation.
Important: Application of stiffly stable scheme is equivalent
to direct application to (U = (u, v) ) 0 E(t)

0 0

U ′(t) +

 B(t) 0
D(t) −I

U(t) =

 g(t)
0

 .

Convergence theory:
√

with stage order in general. (Here:
We do not discuss possible superconvergence effects.)
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Properly stated formulation, i t = 1
Stiffly stable scheme and QDeC/BEUL or mixed estimator

Numerical evidence is the same as for constant coefficients:
QDeC/BEUL estimate is asymptotically correct,

ε̂− ê = O(hm+1)
√

Stiffly stable collocation scheme does not propagate any
error in the algebraic component, i.e.

D(ti,j) ûi,j ≡ v̂i,j

=⇒ it makes sense to use the mixed estimate, with zero
defect in the algebraic component: Again, asymptotic order
is the same, accuracy of estimator is slightly better
Analysis (including nonlinear problems) will be based on a
combination of our argument for the implicit case and the
convergence theory for stiffly stable collocation schemes
by Higueras / März.
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Index 2 case:
Preliminary analysis: Consider simple model

Simplest index 2 DAE: Solution obtained by differentiation
of a given data function g(t) , or slighly more general:

A u′(t) + B u(t) =

 f (t)
g(t)

,

with

A =

 0 1
0 0

, B =

−1 0
0 1


Stiffly stable collocation yields stage order O(hm) , but
QDeC/BEUL or mixed estimate is not asymptotically
correct for m > 1
However: For m = 1 we obtain

ε̂− ê = O(h2) = O(hm+1)
√
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Index 2 case: Model problem analysis
QDeC/BEUL or mixed estimate asymptotically correct for m = 1

Explanation: Consider special case f (t) = 0 and mixed
estimator
Algebraic equation u2(t) = g(t) is exactly reproduced by
collocation: û2(ti,j) = g(ti,j) , pointwise defect = 0

. . . equivalent to piecewise linear interpolation, with
(û2 − g)(t) = O(h2) , (û′2 − g′)(t) = O(h)

(Integrated) Qdefect in first component reads

(d̂1)i,j = ∼
∫ ti,j

ti,j−1

(û′2(t)− û1(t)) dt

=
gi,j − gi,j−1

hi,j
− ∼

∫ ti,j

ti,j−1

û1(t) dt

−→
22 / 24



A-posteriori estimation via defect correction
Explicit ODEs

Linearly implicit systems
Application to Differential-Algebraic Equations (DAEs)

Collocation and QDeC/BEUL or mixed estimate
Index 1 problems
Index 2 problems

Index 2 case: Model problem investigation
Mixed estimate asymptotically correct for m = 1

−→ Mixed estimator, first component of BEUL scheme:
(ε̂2)i,j − (ε̂2)i,j−1

hi,j
− (ε̂1)i,j =

gi,j+1 − gi,j

hi,j
− ∼

∫ ti,j

ti,j−1

û1(t) dt

with (ε̂2)i,j ≡ 0 (≡ (ê2)i,j) =⇒ error estimate ε̂ satisfies

(ε̂1)i,j = ∼
∫ ti,j

ti,j−1

(û1(t)− g′(t)) dt

Compared with error ê = û − u∗ to be estimated,
(ê1)i,j = (û1)i,j − (u∗1)i,j = (û1)(ti,j)− g′(ti,j),

we conclude

ε̂1 − ê1 = O(h2)
√

because û1 − g′ = O(h) .

�
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Index 2 case: Numerical evidence and outlook
QDeC/BEUL estimate O.K. for m = 1 ; ¿ m > 1 ?

Numerical evidence shows:
– Again, mixed estimate performs slightly better than pure
QDeC estimate; asymptotic order is the same
– Behavior observed for model problem carries over to
more general (variable coefficient) examples
Case m > 1 : Possible remedy: Choose

F̃ = F̂ ,

i.e. the estimator is computed from a second application of
the underlying collocation scheme, with defect added
(currently being tested).
More experiments and analysis are under preparation.

*** Many thanks for your attention! ***
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