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Abstract

The boundary concentrated finite element method is a variant of the hp-version of the finite
element method that is particularly suited for the numerical treatment of elliptic boundary
value problems with smooth coefficients and low regularity boundary conditions. For this
method we present two multilevel preconditioners that lead to preconditioned stiffness ma-
trices with condition numbers that are bounded uniformly in the problem size N . The cost
of applying the preconditioners is O(N). Numerical examples illustrate the efficiency of the
algorithms.

1 Introduction

The boundary concentrated finite element method, introduced in [KM03], is a version of the hp-
FEM that is particularly suited for solving second order elliptic boundary value problems where
the differential equation has analytic coefficients but the boundary conditions have low regularity
or the geometry is non-smooth. A further possible application includes its use as a subdomain
solver in domain decomposition methods. The main idea of the boundary concentrated finite
element method is to exploit the interior regularity of the solution by applying special types of
meshes and polynomial distributions, namely, small elements with low order polynomials near the
boundary and large elements with high order polynomials in the interior. Detailed analyses of the
approximation properties of the boundary concentrated FEM are given in [KM03, EM04]; it is
also shown in [KM03] that the stiffness matrix can be set up in optimal complexity.

The present paper focuses on efficient solution techniques for the boundary concentrated FEM. To
the knowledge of the authors efficient solution methods have only been designed for two special
cases, namely, two-dimensional problems and boundary value problems where Dirichlet boundary
conditions are prescribed on the whole boundary. Specifically, for two-dimensional problems, it
is shown in [KM02] how the LU -factorization of the stiffness matrix can be performed with work
O(N log8N), where N is the problem size. [KM03] briefly discusses a preconditioner that relies
on the fast realization of H1/2(∂Ω)-like norms on the space of piecewise linear functions; in the
two-dimensional case, this can be effected by Fast Fourier Transform techniques. The case of
Dirichlet boundary conditions has also been recognized as being special in [KM03], since the
condition number of the diagonally scaled stiffness matrix is shown to be bounded by O(logβ N)
for some β ≥ 0 (the precise value of β depends on the specific choice of the polynomial basis).
These preconditioners lead to condition numbers that grow polylogarithmically in the problem
size N and the work per iteration is O(N logN) instead of the desirable O(N). Here, we present
two multilevel preconditioners that are freed from the above mentioned limitations. They are
conceptually dimension independent and applicable to a wide range of boundary conditions since
they rely merely on the equivalence of the bilinear form under consideration with the H1(Ω) inner
product. For two- and three-dimensional problems, we will show that the preconditioned stiffness
matrices have condition numbers bounded uniformly in the problem size N . The alphanumerical
work to apply the preconditioners is O(N).
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Our preconditioners are based on the additive Schwarz framework as discussed, for example, in
[Nep86, Osw94, TW05]. The finite element space VN is decomposed as VN = (

∑
v∈VM

Sv) +(∑M
m=0

∑
v∈Im

Vm
v

)
. Here, the spaces Sv consist of all functions of VN that are supported

by the patch associated with the vertex v; the second term,
∑M

m=0

∑
v∈Im

Vm
v comprises one-

dimensional spaces of piecewise linear functions on different levels and may be viewed as a form of
BPX/multilevel-level diagonal scaling [BPX91, Zha92] treatment of the relevant piecewise linear
functions on the finest mesh TM .
The analysis of our preconditioners proceeds along well-established lines by exhibiting a stable
splitting and by bounding the spectral radius ρ(E) of the matrices E containing the angles between
the subspaces. The construction of stable splittings in the present context of hp-FEM relies on
recent work [SMPZ05, EM04] for two- and three-dimensional problems. Our analysis of the angle
between the subspaces makes use of the special refinement structure of the meshes utilized in the
boundary concentrated FEM. This allows us to present simple, self-contained proofs of the fact
that the spectral radius ρ(E) is bounded uniformly in the problem size N ; we mention that the
techniques employed and the results obtained are similar to the multilevel analysis of the classical
FEM or the BEM on locally refined meshes in [DK92, BY93, AM03]. As we will discuss in more
detail in Remark 3.2 the special structure of the meshes employed in the boundary concentrated
FEM links our preconditioners also to existing Schur complement based approaches that rely on
solving Dirichlet problems on the domain and realizing a discreteH1/2(∂Ω)-norm on the boundary.
The paper is organized as follows: We start with a brief description of the boundary concentrated
FEM. Thereafter we introduce two preconditioners, formulate the main theorems concerning the
properties of these preconditioners and present some numerical examples. The remainder of the
paper is devoted to the proofs of the main theorems.

2 Model problem and FE-discretization

Let Ω ⊂ R
d, d ∈ {2, 3} be a polygonal or polyhedral Lipschitz domain, which we assume to be

scaled such that diamΩ ≤ 1. Let ΓD ⊂ ∂Ω be a union of edges (for d = 2) or faces (for d = 3);
the case ΓD = ∅ is allowed. Upon setting

H1
D(Ω) := {u ∈ H1(Ω) |u|ΓD

= 0}

we consider the following model problem:

Problem 2.1 (model problem). Find u ∈ H1
D(Ω) such that

a(u, v) :=

∫

Ω

〈
∇u, Â(x)∇v

〉
+ a0(x)uvdΩ = f(v) ∀ v ∈ H1

D(Ω). (1)

Throughout the paper we assume a0 ∈ L∞(Ω) and Â ∈ L∞(Ω,Rd×d) is pointwise symmetric
positive definite. Furthermore, we require the existence of a constant C > 0 such that

C−1‖u‖2
H1(Ω) ≤ a(u, u) ≤ C‖u‖2

H1(Ω) ∀u ∈ H1(Ω). (2)

The discretization of Problem 2.1 is based on the hp-version of the finite element method. For
d ∈ {2, 3} we consider shape-regular meshes T (see, e.g., [Cia76]) consisting of triangles (in 2D)

or tetrahedra (in 3D). The elements K ∈ T are images of a reference element K̂ under the affine

element maps FK : K̂ → K. With each element K ∈ T we associate a polynomial degree pK ∈ N

and collect all polynomials in the degree vector p. The hp-FEM is then based on the following
spaces:

Sp(Ω, T ) := {u ∈ H1(Ω) | u ◦ FK ∈ PpK
(K̂) ∀K ∈ T }, (3a)

Sp
D(Ω, T ) := Sp(Ω, T ) ∩H1

D(Ω), (3b)

2



where Pp denotes the vector space of all polynomials of degree p.
The boundary concentrated hp-FEM is a variant of the hp-FEM where the meshes T and the
polynomial degree distribution p have a special structure (see Figs. 1, 2 for typical meshes):

Definition 2.2 (geometric mesh with boundary mesh size h and linear degree vector). A shape
regular mesh T is called a geometric mesh with boundary mesh size h if there exist C1, C2 > 0
such that for all elements K ∈ T the element size hK = diam(K) is given by

1. h ≤ hK ≤ C2h for all K ∈ T with K ∩ ∂Ω 6= ∅,

2. C1 inf
x∈K

dist(x, ∂Ω) ≤ hK ≤ C2 sup
x∈K

dist(x, ∂Ω) for all K ∈ T with K ∩ ∂Ω = ∅.

A polynomial degree vector p = (pK)K∈T is said to be a linear degree vector if

⌊
1 + C′

1 log
hK

hmin

⌋
≤ pK ≤

⌈
1 + C′

2 log
hK

hmin

⌉
(4)

for some C′
1, C

′
2 > 0 and hmin := minK∈T hK .

Remark 2.3. For linear polynomial degree vectors we have the additional property that there
exists a constant C > 0 such that

C−1 ≤ pK/pK′ ≤ C ∀K,K ′ ∈ T with K ∩K ′ 6= ∅. (5)

The discretization of Problem 2.1 via boundary concentrated FEM then reads:

Problem 2.4 (boundary concentrated FE-problem). For Ω ⊂ R
d (d = 2, 3) let T be a geometric

mesh with boundary mesh size h and p be a linear polynomial degree vector. Find u ∈ Sp
D(Ω, T )

such that

a(u, v) = F (v) ∀ v ∈ Sp
D(Ω, T ).

We propose to solve the linear system of equations corresponding to the variational formulation
of Problem 2.4 by the preconditioned conjugate gradient method, where the preconditioners are
of the type discussed in Section 3.2.

3 Multilevel preconditioning

3.1 Setting

The preconditioner is based on the additive Schwarz framework (see, e.g., [TW05]). We decompose

the hp-FEM space Sp
D(Ω, T ) =

∑K
i=0 Vi for subspaces Vi that will be specificed below. The action

of the preconditioner B−1 : (Sp
D(Ω, T ))

∗ → Sp
D(Ω, T ) is defined as B−1f :=

∑K
i=0 ui, where the

functions ui ∈ Vi are the solutions of

a(ui, vi) = 〈f, vi〉 ∀vi ∈ Vi.

For the purpose of the analysis, it is useful to note that the linear operator B−1 is invertible
(see, e.g., [TW05, Lemma 2.5]), and its inverse B : Sp

D(Ω, T ) → (Sp
D(Ω, T ))

∗
induces a sym-

metric positive definite bilinear form b : Sp
D(Ω, T ) × Sp

D(Ω, T ) → R given by (see, e.g., [TW05,
Lemma 2.5]):

b(u, u) = inf
ui∈Vi

u=
P

i ui

a(ui, ui). (6)

The constants λmin, λmax in the two-sided bound

λmina(u, u) ≤ b(u, u) ≤ λmaxa(u, u) ∀u ∈ Sp
D(Ω, T ) (7)
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allow us to estimate the convergence behavior of the preconditioned conjugate gradient method,
namely, the iterates uk ∈ Sp

D(Ω, T ) satisfy the well-known bounds (see, e.g., [TW05, Appendix
C.5])

‖u− uk‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖u− u0‖A, κ =
λmax

λmin
, (8)

where u ∈ Sp
D(Ω, T ) is the sought solution, u0 is the initial guess, and the energy norm ‖v‖A is

given by ‖v‖A =
√
a(v, v). Thus, the goal of the design of the preconditioner is to get bounded

condition number κ.

3.2 Two preconditioners for the boundary concentrated FEM

To construct a preconditioner for the linear system of equations arising in Problem 2.4 we start
from a sequence of nested geometric meshes

T0 ⊂ T1 ⊂ . . . ⊂ TM = T (9)

with element sizes hK = diam(K) for K ∈ Tm given by

hK ∼
{
h02

−m : K ∩ ∂Ω 6= ∅
dist(K, ∂Ω) : otherwise.

(10)

Furthermore, we assume that the refinement Tm 7→ Tm+1 is a regular (“red”) refinement for all
element at the boundary, i.e.,

K ∈ Tmand K ∩ ∂Ω 6= ∅ =⇒ Tm+1contains the 2d sons of K obtained by regular refinement
(11)

By Vm we denote the set of all free vertices of Tm; that is, Vm contains all vertices of Tm without
vertices of the Dirichlet part ΓD of the boundary. We associate a patch

ωm
v := ∪{K ∈ Tm | v ∈ K} (12)

with each vertex v ∈ Vm. For our subspace splitting of Sp
D(Ω, TM ) we introduce the spaces of hat

functions

Vm
v = {u ∈ S1

D(Ω, Tm) | u(v′) = 0 ∀v′ ∈ Vm\{v}}, ∀m ∈ {0, . . . ,M}, ∀v ∈ Vm (13)

and the patch spaces

Sv = {u ∈ Sp
D(Ω, TM ) | suppu ⊂ ωM

v } ∀v ∈ VM . (14)

Now we are in the position to formulate the first preconditioner for the boundary concentrated
FEM:

Theorem 3.1. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

p = (pK)K∈TM
be a linear polynomial degree vector. Let the patches ωm

v and the spaces Vm
v , Sv

be defined as in (12)—(14). Set IB
m := {v ∈ Vm | v ∈ ∂Ω}. Then the splitting

Sp
D(Ω, TM ) =

∑

v∈VM

Sv +
M∑

m=0

∑

v∈IB
m

Vm
v (15)

determines an ASM-preconditioner whose associated bilinear form b satisfies for some C > 0
independent of the problem size N :

C−1a(u, u) ≤ b(u, u) ≤ Ca(u, u) ∀u ∈ Sp
D(Ω, T ).

The cost of applying the preconditioner is O(N).
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Proof. See Section 5.

Remark 3.2. One popular technique to construct preconditioners is based on distinguishing be-
tween boundary and internal degrees of freedom. The building blocks in these approaches are
a) a solver/preconditioner for the domain problem with homogeneous Dirichlet boundary con-
ditions; b) a solver/preconditioner for the Schur complement that arises from eliminating the
internal degrees of freedom; c) a stable extension operator E from the boundary. To see the re-
lation of such a procedure to the preconditioner of Theorem 3.1, consider the case ΓD = ∅ and
assume that all elements at the boundary have polynomial degree 1. As is shown in this pa-
per below an optimal preconditioner for the Dirichlet problem is described by the stable splitting
Sp

D(Ω, TM ) ∩ H1
0 (Ω) =

∑
v(Sv ∩ H1

0 (Ω)). The preconditioner for the Schur complement could
be realized by a multilevel splitting of BPX type. Finally, in view of the special structure of the
geometric meshes, the extension operator E can be chosen as the hierarchical extension operator
of [HN97]. This extension operator essentially maps into

∑M
m=0

∑
v∈IB

m
Vm

v , which may there-
fore serve as a motivation to choose it as a component for the domain-based preconditioner of
Theorem 3.1. Closely related work includes [Kuz95] (and the references there) and [BELep].

To introduce our second preconditioner we assign two numbers to each patch ωm
v ,

l(ωm
v ) := ⌈− log2 diamωm

v ⌉, g(ωm
v ) := min

{
k ∈ {0, . . . ,M} | ωk

v = ωm
v

}
. (16)

The first number, the level of the patch ωm
v , is a measure of the size of the patch ωm

v . The second
number specifies the mesh Tg(ωm

v ) in which the patch ωm
v appears first. Note that by our scaling

assumption diamΩ ≤ 1 and by the assumption on hK

0 ≤ l(ωm
v ) ≤ L := max{l(ωm

v ) | m = 0, . . . ,M, v ∈ Vm} ≤ CM. (17)

Furthermore, for the subspaces Vm
v and Sv we define the numbers l and g in terms of the corre-

sponding patch, viz.,

l(Vm
v ) := l(ωm

v ), l(Sv) := l(ωM
v ), g(Vm

v ) := g(ωm
v ), g(Sv) := g(ωM

v ).

Theorem 3.3. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

p = (pK)K∈TM
be a linear polynomial degree vector. Let the patches ωm

v , the spaces Vm
v , Sv and

the numbers l(·), g(·) be defined as in (12)–(14), (16). Set Im := {v ∈ Vm | g(ωm
v ) = m} and

assume the existence of a constant C1 > 0 with

g(ωm
v ) ≤ l(ωm

v ) + C1 ∀m ∈ {0, . . . ,M}, ∀v ∈ Im. (18)

Then the splitting

Sp
D(Ω, TM ) =

∑

v∈VM

Sv +
M∑

m=0

∑

v∈Im

Vm
v (19)

determines an ASM-preconditioner whose associated bilinear form b satisfies for some C > 0
independent of the problem size N :

C−1a(u, u) ≤ b(u, u) ≤ Ca(u, u) ∀u ∈ Sp
D(Ω, T ).

The cost of applying the preconditioner is O(N).

Proof. See Section 5.

Remark 3.4. Due to the definition of g(·), the decomposition (19) could also be written in the form

Sp
D(Ω, TM ) =

∑
v∈VM

Sv +
(∑M

m=0

∑
v∈Vm

Vm
v

)′

, where the prime indicates that the summation

is only over pairwise distinct spaces Vm
v .

Remark 3.5. Assumption (18) is satisfied if the refinement procedure Tk 7→ Tk+1 affects only
elements at or in a limited neighborhood of the boundary.
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Remark 3.6. The preconditioner of Theorem 3.3 may be motivated from the splitting Sp
D(Ω, TM ) =(∑

v∈VM
Sv

)
+VM , where VM ⊂ Sp

D(Ω, TM ) is the space of piecewise linear functions on TM . The
first term represents a stable splitting as shown in this paper. For the second part, VM , the pre-
conditioner of Theorem 3.3 may be viewed as realizing a stable multilevel decomposition of VM .
This stability result could also be inferred from the work [DK92, BY93, AM03].

Remark 3.7. The preconditioners of Theorems 3.1, 3.3 are based on splittings into high order
parts on patches of the finest mesh and one-dimensional spaces associated with vertices of different
meshes. The effectivity of the preconditioners depends on number of nodes of the coarsest mesh T0,
which is clearly visible in the numerical examples in Figs. 1, 2. To mitigate this effect, one could
include a coarse space V0 = S1

D(Ω, T0) in the preconditioner. The condition number estimates of
Theorems 3.1, 3.3 remain valid. The total cost of the preconditioner is then, of course, increased
by the cost of solving the coarse grid problem on T0.

Remark 3.8. The proofs of our Theorems reveal that the O(1) condition numbers are special
features of the boundary concentrated hp-FEM and stem from the special structure of our meshes.
However, for some applications these meshes may be considered over-refined at the boundary.

4 Numerical examples

In this section we present some numerical examples in two dimensions to confirm the theoretical
results and to demonstrate the efficiency of our preconditioners. In all examples we start with a
coarse grid T0 of the given domain and we create a sequence of hierarchically nested geometric
meshes {Tl}l=0,1,... with boundary mesh sizes hl ∼ 2−lh0 by applying the following algorithm.

Algorithm 4.1 (boundary concentrated mesh refinement).
input: mesh Ti; output: mesh Ti+1

1. Subdivide all K ∈ Ti with K ∩ ∂Ω 6= ∅ into four congruent sons (red refinement).

2. Subdivide all K ∈ Ti with more than one hanging node into four congruent sons (red re-
finement), and repeat this procedure as long as there exists a triangle with more than one
hanging node.

3. Subdivide all K ∈ Ti with one hanging node into two sons (green refinement).

Algorithm 4.1 refines the elements near the boundary and afterwards performs a “green closure”
to reach a regular mesh. The following lemma shows that the green closure does not spread very
far into the domain. This ensures then the following: firstly, the meshes Ti, i = 1, . . . generated
with Algorithm 4.1 remain shape regular (with shape regularity constants depending only on the
initial triangulation T0) and secondly, Assumption (18) in Theorem 3.3 is valid.

Lemma 4.2 (boundary concentrated refinement). Let T0 be an arbitrary coarse grid and denote
by {Ti}i=0,1,2,... the sequence of meshes created by applying Algorithm 4.1. Let Vi be the set of all
vertices of Ti and Ei the set of all edges of Ti. For each edge e ∈ Ei we denote its endpoints by
va(e), ve(e) ∈ Vi and for each K ∈ Ti we denote its corners by v1(K), v2(K), v3(K) ∈ Vi. With

W l(Ti) :=
{
(v0, . . . , vl) ∈ (Vi)

l+1
∣∣∣ ∃ej ∈ Ei with {va(ej), ve(ej)} = {vj, vj+1} ∀ 0 ≤ j < l

}

we denote the set of all paths of length l in Ti and with vj(w), 0 ≤ j ≤ l we denote the j-th vertex
of the path w = (v0, . . . , vl) ∈W l. Let

D(v, Ti) := min{l | ∃w ∈W l(Ti) with v0(w) ∈ ∂Ω, vl(w) = v}

be the discrete distance of v ∈ Vi to the boundary ∂Ω. Then:

• K ∈ Ti with
∑3

k=1D(vk(K), Ti) ≥ 5 implies K ∈ Ti+1.
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• if K ∈ Ti is subdivided into KS1,KS2 ∈ Ti+1 (green refinement) then KS1,KS2 ∈ Tj for all
j > i.

Proof. See [Eib06].

We apply the two preconditioners of Theorem 3.1, 3.3 to two problems. The first example is a
boundary value problem on the L-shaped domain:

Example 4.3. We consider

−∆u = f on Ω = (0, 1)2\([0, 1]× [−1, 0])

∂u

∂n
= 0 on ΓN = ({−1} × [−1, 1]) ∪ ([−1, 1]× {1})

u = 0 on ΓD = ∂Ω\ΓN

with a right-hand side f , such that the exact solution is given by

u = r
2
3 sin

(
2

3
ϕ

) (
1 − r2 cos2 ϕ

) (
1 − r2 sin2 ϕ

)
(1 + r cosφ)(1 − r sinφ).

In the second example we verify our theoretical results for a domain with a more complicated
boundary:

Example 4.4. On the snow flake domain (Fig. 2) we consider the boundary value problem

−∆u = 1 on Ω
∂u

∂n
= 0 on ΓN = {(x, y) ∈ ∂Ω | y < 0}

u = 0 on ΓD = ∂Ω\ΓN .

We apply the preconditioners of Theorem 3.1, 3.3 to the boundary value problems of Examples 4.3,
4.4. The numerical results are displayed in Figs. 1, 2, respectively. In these figures, CG stands for
the classical, unpreconditioned CG method, PCG-1 represents the preconditioner of Theorem 3.1,
and PCG-2 indicates the preconditioner of Theorem 3.3. All iterations are started with the zero
vector. We show the number of iterations required to reduce the residual by a given factor; as
expected, the number of iterations of the PCG method remains practically bounded.

4.1 Complexity

We now turn to the complexity of the preconditioner. The application of the preconditioners
discussed in Theorems 3.1 and 3.3 depends on solving the subdomain problems associated with the
splittings (15), (19). We note that the subdomain problems associated with the one-dimensional
spaces Vm

v are trivial to solve; the contribution of these problems to the total cost can be bounded
by the number of vertices of all meshes. To estimate this, it suffices to bound the number of
elements of all meshes:

T =

M∑

m=0

∑

K∈Tm

1.

Arguing as in Lemma 4.5 below, we have
∑

K∈Tm
1 ≤ Ch

−(d−1)
m . Recalling hm ∼ h02

−m, we can

bound T = O(h
−(d−1)
M ); since the number of elements on mesh TM is likewise O(h

−(d−1)
M ), we

conclude that T is bounded by a multiple of the number of elements of TM ; thus T ≤ CN .
The solution of the subdomain problems associated with the spaces VM

v is more delicate. We show
in the following Lemma 4.5 that the cost to solve these problems based on a Cholesky factorization
is still O(N):
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Figure 1: (Example 4.3) Left: mesh on level 4. Right: iteration numbers to achieve ‖rk‖2/‖r0‖2 ≤
10−12

L elements pmax DoF CG PCG-1 PCG-2
0 12 1 6 4 4 4
1 48 1 24 14 14 11
2 168 1 84 29 25 18
3 392 1 196 46 36 22
4 840 2 525 87 44 24
5 1736 3 1181 195 51 25
6 3528 3 2657 263 55 27
7 7112 4 5818 368 60 27
8 14280 5 12114 474 63 28
9 28616 6 25070 581 66 29

10 57288 6 51202 691 69 30
11 114632 7 103843 884 71 31
12 229320 8 209003 1120 74 31
13 458696 8 419807 1316 77 31
14 917448 9 841904 1596 79 33
15 1834952 10 1685928 — 81 33

Figure 2: (See Example 4.4) Left: domain on levels 0 & 1. Right: iteration numbers to reach
‖rk‖2/‖r0‖2 ≤ 10−10

L elements pmax DoF CG PCG-1 PCG-2
0 298 1 149 63 44 44
1 1054 3 619 185 78 57
2 3346 4 2096 318 79 62
3 8398 5 5227 477 104 65
4 18826 5 12963 659 106 70
5 40006 6 30024 927 112 78
6 82690 7 66228 1156 120 79
7 168382 7 141311 1644 128 80
8 340090 8 296938 2321 133 81
9 683830 9 613767 3282 138 81

10 1371634 10 1253012 4638 142 81

Lemma 4.5. Let TM be a geometric mesh with boundary mesh size hM and p be a linear degree
vector. Then the work W to compute the Cholesky factors of all subdomain stiffness matrices
associated with the subspaces Sv as well as the memory requirement Mem to store the Cholesky
factors is O(N).

Proof. We recall that the memory requirement for the Cholesky factors of an n×n matrix is O(n2)
and the number of floating point operations for the factorization is O(n3). Since the mesh TM is
assumed to be shape regular, the number of elements sharing a vertex v ∈ VM is bounded by a
constant that depends solely on the shape regularity constant of the mesh. Further, by (5), the
polynomial degrees pK of all elements K ⊂ ωM

v are comparable. Hence, the size nv of the stiffness
matrix associated with the subspace Sv is bounded by nv ≤ Cpd

K for an arbitrarily chosen element
K ⊂ ωM

v . We conclude

Mem ≤
∑

v∈VM

(Cpd
K)2 ≤ C

∑

K∈TM

p2d
K , W ≤

∑

v∈VM

(Cpd
K)3 ≤ C

∑

K∈TM

p3d
K .

In order to bound the sums
∑

K∈TM
p2d

K and
∑

K∈TM
p3d

K , we proceed as in [KM03, Prop. 2.7]. We

8



will only consider the estimate for the work and write

∑

K∈TM

p3d
K =

∑

K∈TM ,K∩∂Ω6=∅

p3d
K +

∑

K∈TM ,K∩∂Ω=∅

p3d
K .

Since pK ≤ C for all K ∈ TM with K ∩ ∂Ω 6= ∅ and TM |∂Ω is a quasi uniform mesh with mesh
size hM we obtain

∑

K∈TM ,K∩∂Ω6=∅

p3d
K ≤

∑

K∈TM ,K∩∂Ω6=∅

1 ≤ Ch1−d
M = O(N)

for the first sum. The second sum extends over all elements K with dist(K, ∂Ω) > 0. For these
elements, we can exploit pK ≤ 1+C log(hK/hM ) together with hK ∼ r(x) := dist(x, ∂Ω) uniformly
in x ∈ K to arrive at

p3d
K ≤

∫

K

(1 + C log(hK/hM ))3d

vol(K)
dΩ ≤ C

∫

K

(1 + C log(r(x)/hM ))3d

(r(x))d
dΩ, ∀K ∈ TM , K ∩∂Ω = ∅.

Arguing as in [KM03, Prop. 2.7] we obtain

∑

K∈TM ,K∩∂Ω=∅

p3d
K ≤ C

∫

x∈Ω,r(x)≥ChM

(1 + C log(r(x)/hM ))3d

(r(x))d
dΩ ≤ Ch1−d

M = O(N).

Lemma 4.5 shows that the number of subdomain problems of large size is so small that recomputing
the Cholesky factorization of these problems in each step of the preconditioned conjugate gradient
method does not destroy the optimal complexity O(N). An alternative would be to precompute
the Cholesky factors before calling the PCG method. This improves the execution time of the
PCG method (since only the forward and backward substitutions have to be performed) at the
expense of an O(N) memory requirement for the Cholesky factors. Table 1 compares the two
approaches in more detail for Example 4.3. The column “assemb” gives the time for setting up
the stiffness matrix; the column “CG” contains the timings for the unpreconditioned CG method;
the column “PCG–memory opt.” shows the timings for PCG method with respect to splitting (19)
where the Cholesky factors are recomputed in each step; the column “PCG–runtime opt.” finally
has the timings for the PCG method where the Cholesky factors are precomputed before the PCG
iteration. The columns “total” gives the total computing time for the PCG-method including the
application of the preconditioner. The column “precond” shows the execution time for calling
the preconditioner including the time for computing or precomputing the Cholesky factors. The
column “Mem” contains the additional memory requirement to store the Choleky factors. As we
can see for the case of the mesh T15 with 1685928 unknowns, precomputing the Cholesky factors
leads to a significant speedup of the solution procedure from 373 seconds to 149 seconds.

Remark 4.6. We solve the subdomain problems for the spaces Sv by Cholesky factorization. An
alternative would be replace this direct solver with a preconditioner based on a further splitting of
the spaces Sv as discussed in [SMPZ05].

5 Proof of Theorems 3.1, 3.3

The proofs of the Theorems 3.1 and 3.3 rely on the following theorem from the abstract additive
Schwarz theory (see [Osw94, TW05, Zha92]):
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Table 1: Computing time [sec.] and additional memory [kB] for Example 4.3 and ‖rk‖2/‖r0‖2 ≤
10−12

PCG - memory opt. PCG - runtime opt.
L DOF assemb. CG total precond. total precond. Mem
0 6 7.74e-04 4.10e-05 1.45e-04 1.08e-04 1.38e-04 1.01e-04 <1
1 24 2.85e-03 1.25e-04 4.32e-04 3.33e-04 3.81e-04 2.80e-04 <1
2 84 9.92e-03 3.35e-04 1.18e-03 9.62e-04 8.64e-04 6.38e-04 <1
3 196 2.33e-02 8.29e-04 2.59e-03 2.06e-03 1.74e-03 1.21e-03 <1
4 525 5.27e-02 3.59e-03 1.50e-02 1.35e-02 7.72e-03 6.24e-03 7
5 1181 1.12e-01 1.99e-02 6.10e-02 5.32e-02 2.01e-02 1.35e-02 31
6 2657 2.34e-01 2.65e-01 2.31e-01 1.92e-01 9.35e-02 5.37e-02 123
7 5818 4.86e-01 1.63e+00 6.48e-01 5.08e-01 2.78e-01 1.38e-01 457
8 12114 9.93e-01 5.66e+00 1.58e+00 1.21e+00 7.15e-01 3.40e-01 1174
9 25070 2.02e+00 1.62e+01 3.74e+00 2.84e+00 1.71e+00 7.99e-01 3105

10 51202 4.06e+00 4.17e+01 8.42e+00 6.42e+00 3.77e+00 1.75e+00 7435
11 103843 8.22e+00 1.12e+02 1.89e+01 1.46e+01 8.19e+00 3.82e+00 17198
12 209003 1.64e+01 2.92e+02 3.98e+01 3.09e+01 1.69e+01 7.88e+00 36577
13 419807 3.29e+01 6.98e+02 8.38e+01 6.55e+01 3.45e+01 1.64e+01 77033
14 841904 6.60e+01 1.73e+03 1.85e+02 1.46e+02 7.39e+01 3.50e+01 160464
15 1685928 1.32e+02 ≈4.40e+03 3.73e+02 2.95e+02 1.49e+02 7.13e+01 326792

Proposition 5.1. Let V be a Hilbert space and a(·, ·) : V × V 7→ R symmetric positive definite.
Let

V =

K∑

i=0

Vi (20)

be a not necessarily direct splitting of V into subspaces Vi and E ∈ R
K×K be the symmetric matrix

whose entries eij, 1 ≤ i, j ≤ K, are given by

eij = sup
u∈Vi

sup
v∈Vj

|a(u, v)|√
a(u, u)

√
a(v, v)

∈ [0, 1].

Furthermore, let C0 > 0 be a constant such that

min

{
K∑

i=0

a(ui, ui)
∣∣∣ u =

K∑

i=0

ui, ui ∈ Vi

}
≤ C2

0a(u, u) ∀ u ∈ V .

Then, the splitting (20) defines an ASM preconditioner corresponding to a bilinear form b that
satisfies

a(u, u)

1 + ρ(E))
≤ b(u, u) ≤ C2

0a(u, u) ∀u ∈ V , (21)

where ρ(E) denotes the spectral radius of E.

Proposition 5.1 reduces the analysis of the preconditioners defined in Theorems 3.1, 3.3 to esti-
mating the spectral radii ρ(E) and the constants C0 that correspond to the splittings. Getting
bounds on these quantities is the purpose of the present section.
Since Assumption (11) ensures

IB
m ⊂ Im for m = 0, . . . ,M, (22)

where the sets IB
m, Im are defined in Theorems 3.1, 3.3, respectively, the proofs of Theorem 3.1

and Theorem 3.3 can be unified. Due to (22) it suffices to construct a stable splitting for the case
of Theorem 3.1 and to prove a uniform bound for the spectral radius ρ(E) for the decomposition
of Theorem 3.3. This will be done in Theorem 5.13, Corollary 5.14, and Theorem 5.18.
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Remark 5.2. In the two-dimensional situation, Assumption (11) is automatically enforced by
Algorithm 4.1. We remark further that it is not difficult to design a similar refinement procedure
for the three-dimensional case.

5.1 Auxiliary lemmas

In this subsection we recapitulate elementary statements from linear algebra and prove some
lemmas concerning the number of overlapping patches ωm

v . Since the geometric meshes Tm have
elements of greatly differing size, we have introduced the level l(ωm

v ) of a patch ωm
v as a measure

of its diameter in (16); the superscript m indicates that ωm
v is a patch of mesh Tm.

Lemma 5.3 (spectral norm estimates).

(i) Let A ∈ R
n,m and P ∈ R

n,n,Q ∈ R
m,m orthogonal. Then ‖A‖2 = ‖PAQ‖2 = ‖AT ‖2.

(ii) Let A ∈ R
n,m and Nc the number of non-zero entries per column. Then

‖A‖2 ≤ √
Nc maxi=1,...,n ‖Ai,·‖2.

(iii) Let A = [Aij ]
N,M
i,j=1 with Aij ∈ R

ni,mj . Then

‖A‖2 ≤
∥∥∥∥
[
‖Aij‖2

]N,M

i,j=1

∥∥∥∥
2

.

Proof. Well-known.

Lemma 5.4. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

the patches ωm
v and the numbers l(·), g(·) be as defined in (12), (16). Then there exists a constant

C ≥ 0 depending only on the shape regularity constants of the meshes and the boundary mesh size
h0 of T0 such that for all ωm

v , 0 ≤ m ≤M , v ∈ Vm

l(ωm
v ) ≤ g(ωm

v ) + C.

Proof. From the definition of g(ωm
v ) together with (10) follows the existence of C > 0 depending

only on the shape regularity constants of the meshes such that diamωm
v ≥ Ch02

−g(ωm
v ). This

implies

− log2 (diamωm
v ) ≤ − log2

(
Ch02

−g(ωm
v )

)
= g(ωm

v ) − log2(Ch0).

Lemma 5.5. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

the patches ωm
v and the numbers l(·), g(·) be as defined in (12), (16). Let Assumption (18) be

valid. Then there exists a constant C > 0, depending only on the dimension d, the shape regularity
constants of the meshes, h0, and the constant of Assumption (18) such that for 0 ≤ l ≤ l′ ≤ L
and any ωm′

v′ with l(ωm′

v′ ) = l′, g(ωm′

v′ ) = m′

#{ωm
v | l(ωm

v ) = l, g(ωm
v ) = m, ωm

v ∩ ωm′

v′ 6= ∅, m ∈ {0, . . . ,M}, v ∈ Vm} ≤ C.

Proof. We proceed by a packing argument and by exploiting the shape regularity of the meshes.
We consider a fixed patch wm′

v′ and define the set of all patches of mesh Tm that are on level l and

intersect ωm′

v′ by

Pm := {ωm
v | v ∈ Vm, l(ω

m
v ) = l, ωm

v ∩ ωm′

v′ 6= ∅}, m ∈ {0, . . . ,M}.

From the definition of l(ω) follows

2−(l′+1) ≤ diam(ωm′

v′ ) ≤ 2−l′ and 2−(l+1) ≤ diam(ωm
i ) ≤ 2−l.

11



Hence, ⋃

ωm
v ∈Pm

ωm
v ⊂ Bl,

where Bl is a suitably chosen ball with diameter

2−l ≤ diam(Bl) ≤ 2−l′ + 2 · 2−l ≤ 3 · 2−l.

Using the shape regularity of the mesh Tm and denoting by χE the characteristic function of a set
E, we estimate the cardinality of Pm as follows:

#Pm =
∑

ωm
v ∈Pm

1 =
∑

ωm
v ∈Pm

1

vol(ωm
v )

∫

Bl

χωm
v

≤
∑

ωm
v ∈Pm

C2dl

∫

Bl

χωm
v

≤ C2dl

∫

Bl

∑

ωm
v ∈Pm

χωm
v
,

where C > 0 is a constant depending only on the dimension d. We now use the fact that the patches
ωm

v ∈ Pm are all patches of the same mesh Tm. Hence, if we deal with triangles/tetrahedra, any
point x ∈ Ω, is contained in at most d + 1 patches. Therefore, the sum under the integral is
bounded pointwise by d+ 1, and we arrive at

#Pm ≤ C2dl

∫

Bl

(d+ 1) ≤ C2dl(2−l)d ≤ C.

Thus a fortiori,

P̂m := {ωm
v | v ∈ Vm, l(ω

m
v ) = l, g(ωm

v ) = m,ωm
v ∩ ωm′

v′ 6= ∅} ≤ C, ∀m ∈ {0, . . . ,M}.

Additionally, due to Lemma 5.4 and Assumption (18) we have

g(ωm
v ) − C ≤ l(ωm

v ) ≤ g(ωm
v ) + C ∀ωm

v . (23)

Hence, #P̂m = 0 for |m− l(ωm
v )| > C, and the claim follows from

{ωm
v | l(ωm

v ) = l, g(ωm
v ) = m, ωm

v ∩ ωm′

v′ 6= ∅, m ∈ {0, . . . ,M}, v ∈ Vm} =

M⋃

m=0

P̂m.

Lemma 5.6. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

the patches ωm
v and the numbers l(·), g(·) be as defined in (12), (16). Let Assumption (18) be valid

and fix l ∈ {0, . . . , L}. Then there exists a constant C > 0, depending only on the shape regularity
constants of the meshes, h0, and the constant of Assumption (18) such that for any ωM

v′ :

#{ωm
v | 0 ≤ m ≤M, v ∈ Vm, l(ω

m
v ) = l, g(ωm

v ) = m, ωm
v ∩ ωM

v′ 6= ∅} ≤ C.

Proof. We define

Pm := {ωm
v | v ∈ Vm, l(ω

m
v ) = l, g(ωm

v ) = m,ωm
v ∩ ωM

v′ 6= ∅}, m ∈ {0, . . . ,M}.

Due to shape regularity ωM
v′ consists of at most C′ elements, where C′ depends only on the shape

regularity constant of the mesh TM . Since ωM
v′ is a patch on the finest mesh and since we assume

nestedness of the meshes Tm (cf. (9)) we can conclude that for each mesh Tm and every K ⊂ ωM
v′

there exists a unique K ′ ∈ Tm with K ⊂ K ′. Hence

#{K ′ ∈ Tm | K ′ ∩ ωM
v′ 6= ∅} ≤ C′.

Noting that an element K ′ ∈ Tm is contained in at most d+ 1 patches of Tm, we get

#Pm ≤ (d+ 1)C′ for all m ∈ {0, . . . ,M}.

12



Moreover, from (23) we obtain #Pm = 0 for |m− l(ωm
i )| > C̃ and hence the claim follows from

#{ωm
v | 0 ≤ m ≤M, v ∈ Vm, l(ω

m
v ) = l, g(ωm

v ) = m, ωm
v ∩ ωM

v′ 6= ∅} =

M∑

m=0

#Pm.

Lemma 5.7. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

the patches ωm
v and the numbers l(·), g(·) be defined as in (12), (16). Then there exists a constant

C > 0, depending only on the constants of the meshes such that for all ωm
v , 0 ≤ m ≤ M , v ∈ Vm

and wM
v′ , v′ ∈ VM

l(ωm
v ) − l(ωM

v′ ) > C ⇒ ωm
v ∩ ωM

v′ = ∅.

Proof. We consider a fixed patch ωM
v′ and distinguish two cases.

• Let ωM
v′ ∩ ∂Ω = ∅. Then from l(ωM

v′ ) = l′ ∈ {0, . . . , L} follows

2−(l′+1) ≤ diam(ωM
v′ ) ≤ 2−l′

and by shape regularity of the mesh TM together with (10) we obtain

inf
x∈ωM

v′

dist(x, ∂Ω) ≥ C12
−l′ .

On the other hand, l(ωm
v ) = l ∈ {0, . . . , L} implies

sup
x∈ωm

v

dist(x, ∂Ω) ≤ C22
−l.

Hence, the condition ωm
v′ ∩ ωM

v 6= ∅ requires

C12
−l′ ≤ C22

−l ⇔ 2l−l′ ≤ C2C
−1
1 ⇔ l − l′ ≤ log2(C2) − log2(C1) =: C′.

• Let ωM
v′ ∩ ∂Ω 6= ∅. Then, since all elements at the boundary are of similar size, l(ωM

v′ ) = l′ ∈
{L− C̃, . . . , L} and we always have l(ωm

v ) − l(ωM
v′ ) ≤ L− (L − C̃) = C̃.

Taking C := max{C′, C̃} allows us to conclude the proof.

5.2 Estimating the angles between the spaces

Lemma 5.8. Let {Tm}M
m=0 be a sequence of nested geometric meshes that satisfy (9)–(11). Let

the patches ωm
v be defined as in (12). Then there exists a constant C > 0 depending only on the

shape regularity constants of the meshes and the coefficients Â, a0 of the bilinear form a(·, ·) such
that for any U,U ′ ∈ {Sv | v ∈ VM} ∪ {Vm

v | m = 0, . . . ,M, v ∈ Vm} with corresponding patches
ωm

v and ωm′

v′ (i.e., supp{u ∈ U} = ωm
v , supp{u′ ∈ U ′} = ωm′

v′ ) we have

e2UU ′ := sup
u∈U

sup
u′∈U ′

|a(u, u′)|2
a(u, u)a(u′, u′)

≤ min

{
1, C

vol(ωm
v ∩ ωm′

v′ )

vol(wm
v )

p2d

}
,

where p denotes the maximum polynomial degree of u ∈ U .

Proof. By the standard Cauchy-Schwarz inequality, we get

|a(u, u′)|2 ≤ aωm
v ∩ωm′

v′

(u, u)a(u′, u′), (24)
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with

aωm
v ∩ωm′

v′

(u, u) =

∫

ωm
v ∩ωm′

〈∇u,A∇u〉 + a0uu dΩ

≤ max
{
‖a0‖L∞(Ω), ‖A‖L∞(Ω)

}(
‖∇u‖2

L2(ωm
v ∩ωm′

v′
)
+ ‖u‖2

L2(ωm
v ∩ωm′

v′
)

)

≤ C
Â,a0

vol
(
ωm

v ∩ ωm′

v′

) (
‖∇u‖2

L∞(ωm
v ) + ‖u‖2

L∞(ωm
v )

)
.

Since u is a piecewise polynomial of degree p on ωm
v and since the mesh Tm is assumed to be shape

regular, we may apply an inverse estimate to arrive at

‖u‖2
L∞(ωm

v ) ≤ Cp2d (vol (ωm
v ))

−1 ‖u‖2
L2(ωm

v ),

which in turn yields

aωm
v ∩ωm′

v′

(u, u) ≤ C
Â,a0

p2d
vol

(
ωm

v ∩ ωm′

v′

)

vol (ωm
v )

‖u‖2
H1(ωm

v ) ≤ C
Â,a0

p2d
vol

(
ωm

v ∩ ωm′

v′

)

vol (ωm
v )

a(u, u).

The claim follows from inserting this bound in (24).

5.3 Estimating the spectral radius

In this section we want to derive a bound for the spectral radii ρ(E) and ρ(Ẽ), where E denotes the
matrix containing the angles between the subspaces of splitting (19) and Ẽ the matrix containing
the angles between the subspaces of splitting (15). We proceed as follows: We rearrange and
subdivide the matrix E into submatrices Ell′

∗∗ and bound the norms of these submatrices. Thus,
by means of Lemma 5.3, a bound for ρ(E) follows. The bound for ρ(Ẽ) follows from the fact that
Ẽ is a submatrix of E.

Lemma 5.9. Let the assumptions of Theorem 3.3 be valid. Let l ≤ l′ and denote by Ell′

SS =
[
eSvSv′

]

the matrix containing the angles between the subspaces Sv ∈ {Sv | v ∈ VM , l(Sv) = l} and
Sv′ ∈ {Sv′ | v′ ∈ VM , l(Sv′) = l′}. Then there exist constants C, C′ > 0 depending only on the
shape regularity constant of TM such that

∥∥∥Ell′

SS

∥∥∥
2
≤

{
C : l′ − l ≤ C̃

0 : l′ − l > C̃

where C̃ denotes the constant of Lemma 5.7. In particular,
∥∥∥Ell′

SS

∥∥∥
2
≤ C′2(l−l′)/2,

Proof. For l′−l > C̃ the claim follows directly from Lemma 5.7. For the case l′−l ≤ C̃ we observe,
that each row of Ell′

SS corresponds to a subspaces Sv with supp(Sv) ⊂ ωM
v and each column of

Ell′

SS corresponds to a subspace Sv′ with supp(Sv′) ⊂ ωM
v′ . Thus, since ωM

v and ωM
v′ are patches

of the same mesh and due to shape regularity, each row and each column of Ell′

SS has at most
O(1) non-zero entries, where the constant O(1) depends only on the shape regularity constant of
TM .

Lemma 5.10. Let the assumptions of Theorem 3.3 be valid. Let l ≤ l′ and denote by Ell′

SV =
[eSvVm′

v′

] the matrix containing the angles between the spaces Sv ∈ {Sv | v ∈ VM , l(Sv) = l} and

Vm′

v′ ∈ {Vm′

v′ | 0 ≤ m′ ≤ M, v ∈ Vm, l(Vm′

v′ ) = l′, g(Vm′

v′ ) = m′}. Then there exists a constant
C > 0 depending only on the shape regularity constants of the meshes such that

∥∥∥Ell′

SV

∥∥∥
2
≤

{
C : l′ − l ≤ C̃

0 : l′ − l > C̃
≤ C2(l−l′)/2,

where C̃ denotes the constant of Lemma 5.7.
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Proof. The supports of the spaces Sv and Vv′ correspond to the patches ωM
v and ωm′

v′ with l(ωM
v ) =

l, l(ωm′

v′ ) = l′. Thus the claim for l′ − l > C̃ follows from Lemma 5.7. For l′ − l ≤ C̃ each row of

Ell′

SV corresponds to a subspaces Sv with supp(Sv) ⊂ ωM
v and each column of Ell′

SV corresponds to

a subspaces Vm′

v′ with supp(Vm′

v′ ) ⊂ ωm′

v′ . If we consider a fixed subspace Sv, Lemma 5.6 implies

that there are only O(1) non zero elements per row of Ell′

SV . On the other hand, if we consider a

fixed column, i.e., a fixed subspace Vm′

v′ , then there are, due to l(Sv) ≤ l(Vv′) ≤ l(Sv) + C̃ and an
argument analogous to that of Lemma 5.5, at most O(1) non zero elements in that column. Thus
by Lemma 5.3 ∥∥∥Ell′

SV

∥∥∥
2
≤ Cmax

v
‖Ell′

Sv·‖2 ≤ C.

Lemma 5.11. Let the assumptions of Theorem 3.3 be valid. Let l ≤ l′ and denote by Ell′

VS =[
eVm

v Sv′

]
the matrix containing the angles between the spaces Vm

v ∈ {Vm
v | 0 ≤ m ≤ M, v ∈

Vm, l(Vm
v ) = l, g(Vm

v ) = m} and Sv′ ∈ {Sv′ | v′ ∈ VM , l(Sv′) = l′}. Then there exists a constant
C > 0 depending only on the shape regularity constants of the meshes such that

∥∥∥Ell′

VS

∥∥∥
2
≤ C2(l−l′)/2.

Proof. Each column of Ell′

VS corresponds to a fixed subspace Sv′ with l(Sv′) = l′ ≥ l and support

ωM
v′ . Thus, due to Lemma 5.5 the number of non-zero entries per column of Ell′

VS is bounded by C
which depends only on the shape regularity constants of the mesh. In order to apply Lemma 5.3
we now bound the l2-norm of the row corresponding to Vm

v with l(Vm
v ) = l. We have

‖Ell′

Vm
v ,·‖2

2 ≤
∑

Sv′ :l(Sv′ )=l′

|eVm
v Sv′

|2

The support of the functions of Sv′ is the patch ωM
v′ . Since all patches ωM

v′ are patches of the same
mesh not more than d + 1 can overlap. Furthermore, we observe that all patches of level l′ are
confined to an O(2−l′) neighborhood of ∂Ω. Noting that the spaces Vm

v are spaces of piecewise
polynomials of degree p = 1, Lemma 5.8 implies

∑

Sv′ :l(Sv′ )=l′

|eVm
v Sv′

|2 ≤ C
vol(ωm

v ∩ {x ∈ Ω | dist(x, ∂Ω) ≤ 2−l′})
vol(ωm

v )
.

Since the patch ωm
v is on level l ≤ l′, elementary geometric considerations give

vol(ωm
v ∩ {x ∈ Ω | dist(x, ∂Ω) ≤ 2−l′}) ≤ C(2−l)d−12−l′ , vol(ωm

v ) ∼ (2−l)d.

We conclude

∑

Sv′ :l(Sv′ )=l′

|eVm
v Sv′

|2 ≤ C
vol(ωm

v ∩ {x ∈ Ω | dist(x, ∂Ω) ≤ 2−l′})
vol(ωm

v )
≤ C2(l−l′).

Making use of Lemma 5.3 allows us to conclude the proof.

Lemma 5.12. Let the assumptions of Theorem 3.3 be valid. Let l ≤ l′ and denote by Ell′

VV =[
eVm

v Vv′

]
the matrix containing the angles between the spaces Vm

v ∈ {Vm
v | 0 ≤ m ≤ M, v ∈

Vm, l(Vm
v ) = l, g(Vm

v ) = m} and Vm′

v′ ∈ {Vm′

v′ | 0 ≤ m′ ≤ M, v′ ∈ Vm′ , l(Vm′

v′ ) = l, g(Vm′

v′ ) =
m′}. Then there exists a constant C > 0 depending only on the shape regularity constants of the
meshes such that ∥∥∥Ell′

VV

∥∥∥
2
≤ C2(l−l′)/2.
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Proof. Each column of Ell′

VV corresponds to a fixed subspace Vm′

v′ with l(Vm′

v′ ) = l′ ≥ l. Thus, due

to Lemma 5.5 the number of non-zero entries per column of Ell′

VV is bounded by a constant C
which depends only on the shape regularity constants of the mesh. Completely analogous to the
proof of Lemma 5.11 we bound the l2-norm of the rows of Ell′

VV by

‖Ell′

Vm
v ,·‖2

2 ≤
∑

Vm′

v′
:l(Vm′

v′
)=l′

|eVm
v Vm′

v′

|2 ≤ C2(l−l′),

and the desired estimates follow again by Lemma 5.3.

Theorem 5.13 (spectral radius). Let the assumptions of Theorem 3.3 be valid and let E be
the matrix containing the angles between the subspaces with respect to the splitting (19). Then
ρ(E) ≤ C.

Proof. With the matrices Ell′

∗∗ defined as in Lemmas 5.9–5.12 we rearrange the symmetric matrix
E as follows:

E =




[
E00

VV E00
VS

E00
SV E00

SS

]
. . .

[
E0L

VV E0L
VS

E0L
SV E0L

SS

]

...
. . .

...[
EL0

VV EL0
VS

EL0
SV EL0

SS

]
. . .

[
ELL

VV ELL
VS

ELL
SV ELL

SS

]



.

With the abbreviations ell′

∗∗ := ‖Ell′

∗∗‖2 Lemma 5.3 gives:

ρ(E) ≤
∥∥∥∥∥

[[
ell′

VV ell′

VS

ell′

SV ell′

SS

]]L

l,l′=0

∥∥∥∥∥
2

.

For l ≤ l′ we have (see Lemmas 5.9—5.12)

ell′

∗∗ ≤ C2(l−l′)/2

and due to the symmetry of E we obtain

ell′

∗∗ ≤ C
(√

2
)−|l−l′|

∀ l, l′ ∈ {0, . . . , L}.

Now, the assertions follow from

ρ(E) ≤ L
max
l=0

L∑

l′=0

C
√

2
−|l−l′| ≤ C.

Corollary 5.14 (spectral radius). Let the assumptions of Theorem 3.1 be valid and let Ẽ be
the matrix containing the angles between the subspaces with respect to the splitting (15). Then
ρ(Ẽ) ≤ C.

Proof. Since (22) the matrix Ẽ is a submatrix of the non-negative matrix E of Theorem 5.13 and
ρ(Ẽ) ≤ ρ(E) ≤ C follows.

5.4 Construction of a stable splitting

The aim of this subsection is to prove a stable splitting for the case of Theorem 3.1.
We proceed as follows: First we construct a stable splitting for u ∈ S1

0(Ω, TM ). Thereafter
we construct a stable splitting for u ∈ S1

D(Ω, TM ), and finally we expand our splitting to u ∈
Sp

D(Ω, TM ).

16



Lemma 5.15 (stable splitting for u ∈ S1
0(Ω, TM )). Let Ω ⊂ R

d, d = 2, 3. Let TM be a geometric
mesh with boundary mesh size h and u ∈ S1

0(Ω, TM ) := S1(Ω, TM )∩H1
0 (Ω). Denote by VM the set

of all vertices of TM and by φv the standard hat function on TM corresponding to v ∈ VM . Then
the decomposition of a u ∈ S1,1

0 (Ω, TM ) into hat functions satisfies

u =
∑

v∈VM

uv, with uv ∈ VM
v ⊂ Sv and

∑

v∈VM

a(uv, uv) ≤ Ca(u, u),

where C > 0 is independent of h.

Proof. The function u ∈ S1,1
0 (Ω, TM ) can be (uniquely) written as sum of hat functions u =∑

v∈VM
uvφv. With hv := diam(suppφv) we rearrange this sum as

u =
∑

v∈VM

h(d/2−1)
v uvh

(1−d/2)
v φv

and set
wv := h(d/2−1)

v uv, ψv := h(d/2−1)
v φv.

Now we proceed in several steps.
1. step: We consider a fixedK ∈ TM with vertices v(K,1), . . . , v(K,d+1). Then u|K =

∑d+1
j=1 wv(K,j)

ψv(K,j)
|K .

Due to shape regularity we can bound

d+1∑

j=1

|wv(K,j)
|2 ≤ Ch

(d−2)
K

d+1∑

j=1

|u(v(K,j))|2 ≤ Ch
(d−2)
K (d+ 1)‖u‖2

L∞(K),

where C > 0 depends solely on the shape regularity constant γ. Now, let K̂ be the reference
element and let the pull back of a function to the reference element be marked by a hat. Then we
get

d+1∑

j=1

|wv(K,j)
|2 ≤ Ch

(d−2)
K (d+ 1)‖û‖2

L∞(K̂)
≤ Ch

(d−2)
K (d+ 1)‖û‖2

L2(K̂)
≤ Ch−2

K ‖u‖2
L2(K). (25)

2. step: Let v ∈ VM and K ∈ TM with K ⊂ suppψv. Then we have

‖∇ψv‖2
L2(K) ≤ Ch

(d−2)
K ‖∇ψ̂v‖2

L2(K̂)
≤ Ch

(d−2)
K h

(2−d)
K ≤ C

and
‖ψv‖2

L2(K) ≤ Chd
K‖ψ̂v‖2

L2(K̂)
≤ Chd

Kh
(2−d)
K ≤ Ch2

K ≤ C

with C > 0 depending solely on the shape regularity constant.
3. step: We recall Hardy’s inequality

∥∥∥∥
v

dist(x, ∂Ω)

∥∥∥∥ ≤ C‖∇v‖L2(Ω) ∀v ∈ H1
0 (Ω).

Then, we combine this estimate with (25) and the assumptions on hK to arrive at

∑

v∈VM

|wv|2 ≤
∑

K∈TM

d+1∑

j=1

|wv(K,j)
|2 ≤ C

∑

K∈TM

h−2
K ‖u‖2

L2(K) ≤ C‖u/dist(·, ∂Ω)‖2
L2(Ω) ≤ C‖∇u‖2

L2(Ω).

Since a(·, ·) ∼ ‖ · ‖2
H1(Ω) and due to the bounds of the second step we get the desired result

∑

v∈VM

a(uv, uv) =
∑

v∈VM

a(wvψv, wvψv) =
∑

v∈VM

w2
va(ψv, ψv) ≤ C

∑

v∈VM

w2
v ≤ C‖∇u‖2

L2(Ω) ≤ Ca(u, u).
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Remark 5.16. A proof for the two-dimensional case of Lemma 5.15 can also be found in [Yse99,
Mel01].

Lemma 5.17 (stable splitting for u ∈ S1
D(Ω, TM )). Let Ω ⊂ R

d, d = 2, 3 and {Tm}m=0,...,M be a
sequence of nested geometric meshes that satisfy (9)–(11). Let IB

m := {v ∈ Vm | v ∈ ∂Ω}. Then
there exists for every u ∈ S1

D(Ω, TM ) a decomposition

u =
∑

v∈VM

uSv +
M∑

m=0

∑

v∈IB
m

um
v , with um

v ∈ Vm
v and uSv ∈ Sv ∩ S1

D(Ω, T ) (26)

such that
∑

v∈VM

a(uSv , u
S
v ) +

M∑

m=0

∑

v∈IB
m

a(um
v , u

m
v ) ≤ Ca(u, u),

where C > 0 is independent of u, hM , and M .

Proof. We proceed in several steps.
1. step: We choose a quasi uniform mesh T̃0 that coincides with T0 near the boundary, i.e.,

{K ∈ T0 | K ∩ ∂Ω 6= ∅} ⊂ T̃0. (27)

If the mesh T0 is deemed quasi-uniform, then we may choose T̃0 = T0. Alternatively, it is possible
to consider the set Ω′ := Ω\ ∪ {K | K ∈ T0 and K ∩ ∂Ω 6= ∅} and to extend the quasi uniform
triangulation of ∂Ω′ given by T0|∂Ω′ to a quasi uniform triangulation T ′

0 of Ω′. Then T̃0 :=
T ′

0 ∪ {K ∈ T0 | K ∩ ∂Ω 6= ∅} defines a quasi uniform mesh which satisfies (27).
2. step: Let T̃m be the mesh obtained from the triangulation T̃0 by m steps of uniform refinement.
The assumption (11) then implies that Tm and T̃m coincide for all elements abutting the boundary
∂Ω, that is

{K ∈ Tm | K ∩ ∂Ω 6= ∅} = {K ∈ T̃m | K ∩ ∂Ω 6= ∅}. (28)

We introduce the set Ṽm of all vertices of T̃m without the vertices on the Dirichlet boundary. The
functions φ̃m

v are taken to be the standard hat functions of the mesh T̃m corresponding to the
vertices v ∈ Ṽm. We set

Ṽm
v := span{φ̃m

v },
and point out that Ṽm

v = Vm
v for v ∈ IB

m by (27).
3. step: For u ∈ S1

D(Ω, TM ) it is easy to find a function ũ ∈ S1
D(Ω, T̃M ) := S1(Ω, T̃M ) ∩H1

D(Ω)
such that

ũ|∂Ω = u|∂Ω, ‖ũ‖H1(Ω) ≤ C‖u‖H1(Ω) (29)

and C > 0 independent of u. Moreover, from the classical theory (see [Zha92], [Osw94]) follows
the existence of a decomposition

ũ =

M∑

m=0

∑

v∈Ṽm

ũm
v , with ũm

v ∈ Ṽm
v ,

M∑

m=0

∑

v∈Ṽm

a(ũm
v , ũ

m
v ) ≤ Ca(ũ, ũ) (30)

and C > 0 independent of ũ and hM .
4. step: Due to IB

m ⊂ Vm ∩ Ṽm and (28) which implies Vm
v = Ṽm

v for all v ∈ IB
m, m ∈ {0, . . . ,M},

we have

uB :=

M∑

m=0

∑

v∈IB
m

ũm
v ⊂ S1

D(Ω, TM ) with uB|∂Ω = u|∂Ω. (31)

From (29) in combination with (30) we get

M∑

m=0

∑

v∈IB
m

a(ũm
v , ũ

m
v ) ≤ Ca(ũ, ũ) ≤ Ca(u, u). (32)
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Furthermore, we obtain

a(uB, uB) = a(
M∑

m=0

∑

v∈IB
m

ũm
v ,

M∑

m=0

∑

v∈IB
m

ũm
v )

≤ C

M∑

m=0

∑

v∈IB
m

M∑

m′=0

∑

v′∈IB
m′

emm′

vv′

√
a(ũm

v , ũ
m
v )

√
a(ũm′

v′ , ũm′

v′ ),

where emm′

vv′ denotes the angle between the spaces Ṽm
v ≡ Vm

v and Ṽm′

v′ ≡ Vm′

v′ . Defining the matrix

E := [emm′

vv′ ] which contains all the angles, we know from the previous section that ρ(E) ≤ C.
Thus, we arrive at

a(uB, uB) ≤ ρ(E)

M∑

m=0

∑

v∈IB
m

(√
a(ũm

v , ũ
m
v )

)2

≤ C

M∑

m=0

∑

v∈IB
m

(√
a(ũm

v , ũ
m
v )

)2

≤ Ca(u, u).

5. step: Consider u := uB + uH with uB given as above and uH := u− uB ∈ S1
0(Ω, TM ). Then

a(uH , uH) = a(u, u) + a(uB, uB) − 2a(u, uB) ≤ Ca(u, u) + 2
√
a(u, u)a(uB, uB) ≤ Ca(u, u)

and the stable splitting for u follows as a combination of the stable splitting for uH given by
Lemma 5.15 and the stable splitting of uB given by (31).

Now, in the final step we construct a stable splitting for u ∈ Sp
D(Ω, TM ).

Theorem 5.18 (stable splitting for u ∈ Sp
D(Ω, TM )). Let Ω ⊂ R

d, d = 2, 3 and {Tm}m=0,...,M be
a sequence of nested geometric meshes which satisfy (9)–(11). Let p = (pK)K∈TM

be a polynomial
degree distribution on TM that satisfies (5). Let the patches ωm

v and the spaces Vm
v , Sv be defined as

in Section 3.2. Set IB
m := {v ∈ Vm | v ∈ ∂Ω}. Then there exists C > 0 and for all u ∈ Sp

D(Ω, TM )
a decomposition

u =
∑

v∈VM

uSv
+

M∑

m=0

∑

v∈IB
m

um
v

with uSv
∈ Sv, u

m
v ∈ Vm

v such that

∑

v∈VM

a(uSv
, uSv

) +

M∑

m=0

∑

v∈IB
m

a(um
v , u

m
v ) ≤ Ca(u, u).

Proof. From [SMPZ05] (see Remark 5.19) we know the existence of a stable splitting

u = uD +
∑

v∈VM

uSv
with a(uD, uD) +

∑

v∈VM

a(uSv
, uSv

) ≤ Ca(u, u) ∀u ∈ Sp
D(Ω, TM ), (33)

where uD ∈ S1
D(TM ,Ω) and uSv

∈ Sv. From Lemma 5.17 we get for arbitrary uD ∈ S1
D(TM ,Ω)

uD =
∑

v∈VM

ûSv
+

M∑

m=0

∑

v∈IB
m

um
v , with

∑

v∈VM

a(ûSv
, ûSv

) +

M∑

m=0

∑

v∈IB
m

a(um
v , u

m
v ) ≤ Ca(uD, uD),

(34)
where ûSv

∈ Sv and um
v ∈ Vm

v . Thus

u =
∑

v∈VM

(uSv
+ ûSv

) +

M∑

m=0

∑

v∈IB
m

um
v
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with (ûSv
+ uSv

) ∈ Sv, um
v ∈ Vm

v and

∑

v∈VM

a(uSv
+ ûSv

, uSv
+ ûSv

) +

M∑

m=0

∑

v∈IB
m

a(um
v , u

m
v )

≤ 2
∑

v∈VM

a(uSv
, uSv

) + 2
∑

v∈VM

a(ûSv
, ûSv

) +

M∑

m=0

∑

v∈IB
m

a(um
v , u

m
v )

≤ Ca(uD, uD) + 2
∑

v∈VM

a(uSv
, uSv

) ≤ Ca(u, u).

Remark 5.19. [SMPZ05] considers only uniform polynomial degree distributions. However, a
consideration of the proofs reveals that an extension to non-uniform polynomial degree distributions
is possible.
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