Dear readers,

This is the second SNE issue with new layout, and we are glad, that we got positive reactions for changes in SNE layout and for opening the publication strategy of SNE. Together with this issue, we are proud to announce the first SNE Special Issue ‘Parallel and Distributed Simulation Methods and Environments’. First born as idea in ASIM - ASIM Working Groups intend to publish alternately a Special Issue each year; the SNE Special Issues are open for all societies and conference organisers. The Special Issues cause a change in numbering the SNE issues: this regular SNE issue, SNE 46, is now identified as SNE 16/1 (Volume 16, Number 1), the first Special Issue as SNE 16/2; the next regular SNE double issue (SNE 47/48) will be numbered SNE 16/3-4. This remembers, that we are running SNE since 16 years, and we thank our faithful readers.

Together with the new layout, both editorial boards are being reorganised and will be enlarged for the future. We are also working on a new infrastructure for running an editorial office, together with tasks for SNE on the web. We hope, the readers enjoy this issue, and the contributors appreciate the new editorial structure (more strict, but hopefully more efficient). Three Technical Notes and three Short Notes in this issue show the broad variety of modelling and simulation. The Technical Notes are special ones: based on a post-conference review procedure via Internet for contributions to MATHMOD 2006 Vienna, papers were selected for publication in SNE (to appear also in the next SNE issues). Furthermore, as first reaction on the ARGESIM / MATHMOD Yo-yo Challenge, the Technical Note by Leon Zlajpah introduces into mechanical mysteries of Yo-yo control. The Comparison Section publishes an updated version of Comparison C13 ‘Crane and Embedded Control’, reflecting the developments in this area of modelling and simulation; furthermore, seven comparison solutions concentrate on modelling issues and alternative approaches.

The News Section reports about progress in new structures for EUROSIM, and about activities in EUROSIM member societies and in Societes related to Modelling and Simulation. We thank all contributors, members of the editorial boards, and people of our ARGESIM staff for co-operation in producing this SNE issue.

Felix Breitenecker, editor-in-chief; Felix.Breitenecker@tuwien.ac.at

SNE 16-1 / SNE 46 in Five Minutes

Process Modelling in a Sterilisation Tunnel (TN) - presents modelling and simulation for temperature profiles in an industrial production process – page 3

Modelling and Control of Yo-yo (TN) – deals with the classical Yo-yo toy: mathematical models for control and for haptic interfaces, control strategies, and verification by a robot – page 9

XML in DEVS (TN) – introduces XML as model basis for discrete event models for simulation via WWW and presents a prototype implementation – page 16

Real-time Simulation with DSPs (SN) - reports about a connection of two DSPs, one identifying the plant, the other performing Kalman Filter and LQ control – page 21

Simulation of Blood Glucose Regulation (SN) – presents MATLAB models glucose status together with a graphical interface for educational use – page 23

Modelling and Control of a 2DOF - Robot (SN) – outlines modelling and simulation of a simple robot for E-learning of simulation and control via WWW – page 25

ARGESIM Comparison Section – defines a revised benchmark C13 Crane and Embedded Control (implicit modelling, digital control, sensor action), followed by a sample solution with Modelica/Dymola – page 27

– seven Comparison Solutions for discrete comparisons (Dining Philosophers, Emergency Department), continuous comparisons (Switching States, SCARA Robot) and general comparisons (Cellular Automata, Identification) show efficient implementations using MATLAB/Simulink, Dymola, DSOL/Java, Maxima and special Petri Net tools – page 31 - 38

Book Reviews and Journal News – Eleven book reviews and one book news

Introduction of the SNE Special Issue Parallel and Distributed Simulation Methods and Environments

Call for next SNE Special Issue Validation and Verification – page 39 - 47

Young Simulationists – introduction of simulationists from Germany and Austria – page 48

EUROSIM Society Reports – 20 pages reports from EUROSIM societies, followed by 8 pages from International Societies and Groups (ECMS/SCS, MATHMOD, Modelica, etc.) and 2 pages Industry News in the News Section
Content

Modelling of Temperature Conditions in Sterilisation Tunnel;
A. Knoll, M. Atanasijevic-Kunc, R. Karba ... 3

Modelling and Control of YoYo; L. Zlajpah ... 9

Using XML in the Domain of Discrete Event Modelling and Simulation; M. Gyimesi ... 16

Real - time Simulation with Kalman Filter and LQ Control using Connected Signal Processing Boards; Z. Sehic, J. Osmic, N. Prljaca ... 21

Modelling the Human Blood Glucose Regulation - a MATLAB GUI for Educational Purposes;
A. Ernst, F. Judex, J. Höbarth ... 23

Simulation of a Control for a Robot with Two Degrees of Freedom – an E-learning Example;
J. Kropf, O. Andryushchenko ... 25

ARGESIM Comparison ‘Crane and Embedded Control’ – Definition of a Benchmark with Implicit Modelling, Digital Control and Sensor Action. Revised Definition – Comparison 13rev.;
A. Schiftner, F. Breitenecker ... 27

A Modelica Approach to ARGESIM Comparison C13Rev ‘Crane and Embedded Control’ using the Simulator Dymola; A. Schiftner ... 30

Petri Net Modelling to ARGESIM Comparison C4 ‘Dining Philosophers’ with Petrinetz-Tool, with Integrated Net Analyzer INA, and Peneca / CHROMOS; R. Hohmann ... 31

A Numerical MBTY-Solution of ARGESIM Comparison C5 ‘Two State Model’
O. Kozlov, K. Timofeev, S. Petukhov ... 32

A Programmed Solution to ARGESIM Comparison C 6 ‘Emergency Department’ with DSOL, a Java - based Suite; R. Lenzio, F. Breitenecker ... 33

A Cellular Automata – Approach to ARGESIM Comparison C 10 ‘Dining Philosophers II’ using MATLAB; G. Höfinger ... 34

A Classical ODE-based approach to ARGESIM Comparison C 11 ‘SCARA Robot’ using DESIRE; S. Seichter ... 35

An Analytic Approach to ARGESIM Comparison C15 ‘Renal Clearance Identification’ using Maxima/LISP, P. Schrammel, F. Judex ... 36

A Matrix-oriented Approach to CA Modelling in ARGESIM Comparison C17 ‘SIR-type Epidemic’ with MATLAB;
D. Leitner, M. Moczydlowska, L. Lapinski ... 38

Book Reviews and Journal Reviews ... 39

Book and Journal News ... 45

Simulationists: Ch. Deactu, F. Judex ... 48

News on EUROSIM and EUROSIM Societies, International Societies and Industry News ... 32 pages

SNE Editorial Boards

SNE - Simulation News Europe – is advised by two Editorial Boards. The SNE Editorial Board is taking care on reviewing and handling of Technical Notes, Shortnotes, Software Notes, Book and Journal Review, and of Comparison and Benchmark Notes. The SNE News Editorial Board (News Section) is responsible for reports from EUROSIM, EUROSIM societies, International Societies, and for Industry News.

Editorial board

Felix Breitenecker (Editor-in-Chief), Vienna Univ. of Technology, Felix.Breitenecker@tuwien.ac.at

Peter Breedveld, University of Twente, Div. Control Engineering, P.C.Breedveld@el.utwente.nl

Francois Cellier, ETH Zurich, Inst. f. Computational Science / University of Arizona, fcellier@inf.ethz.ch,

Russell Cheng, Fac. of Mathematics / OR Group, Univ. of Southampton, rch@maths.soton.ac.uk

Rihard Karba, University of Ljubljana, Fac. Electrical Engineering, rihard.karba@fe.uni-lj.si

David Murray-Smith, University of Glasgow, Fac. Electrical & Electronical Engineering; d.murray-smith@elec.gla.ac.uk

Horst Ecker, Vienna Univ. of Technology.
Inst. f. Mechanics, Horst.Ecker@tuwien.ac.at

Thomas Schriber, University of Michigan, Business School

Sigr Reid, University Kassel, Inst. f. Production Technique and Logistics, S.Wenzel@uni-kassel.de

Contact

SNE - Editors /ARGESIM
c/o Inst. for Scientific Computation, TU Vienna,
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria, and
ASIM (German Simulation Society),
c/o Wohlfartstr. 21b, D-80939 Munchen

Tel + 43 - 1- 58801-11015 or 11455, Fax - 42098

sne@argesim.org; WWW.ARGESIM.ORG

Editorial Info - Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).

Scope: Information on development in modelling and simulation, comparisons and benchmarks on modelling and simulation, membership information for EUROSIM and Simulation Societies.

Editor-in-Chief: Felix Breitenecker, Mathematical Modelling and Simulation, Inst. f. Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; Felix.Breitenecker@tuwien.ac.at

Layout: A. Breitenecker, ARGESIM TU Vienna / Linz;Anna.Breitenecker@liwest.at

Printed by: Grafisches Zentrum, TU Wien, Wiedner Hauptstrasse 8-10, A-1040, Wien

Publisher: ARGESIM and ASIM
ARGESIM, c/o Inst. for Scientific Computation, TU Vienna,
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria, and
ASIM (German Simulation Society),
c/o Wohlfartstr. 21b, D-80939 Munchen

© ARGESIM / ASIM 2006
Modelling the Human Blood Glucose Regulation -
 a MATLAB GUI for Educational Purposes
Andreas Ernst, Florian Judex, Juliane Höbarth, Vienna University of Technology; efelo@fsmat.at

This contribution presents a MATLAB GUI (Graphical User Interface) for controlling experiments with basic physiological models simulating the human blood glucose regulation. The GUI interfaces to three models, from simple glucose regulation by the kidney until more complex glucose regulation by the kidney and by the hormones insulin glucagone. The GUI is intended for educational purposes in medical and physiological engineering. Predefined parameter settings allow simulating classic diseases.

Introduction
In the course of [2] a software, more exactly a MATLAB GUI with basic physiological models from [1], for comparing and analysing different models for the blood glucose regulation was developed. In this work the models were also analysed for the properties of observability, controllability and stability, but we will not go into these details here.

The human body gets his energy from glucose (= sugar) which is extracted from carbohydrates. Hence the time of ingestion (= input of carbohydrates) and the time the glucose is needed is not the same and thus there are mechanisms in the body that can save glucose and also keep the glucose level in the blood constant. The storage of the energy (in liver, muscles and fat) can only happen when the glucose is transformed in glycogen. For this transformation the hormone insulin, which is produced in the pancreas, is needed. The antagonist of insulin is glucagon. It is also produced in the pancreas and is secreted when the glucose concentration in the blood falls under a certain level.

In the following three different models are presented which include different influencing factors mentioned above. Due to the developed software it is easily possible to compare these different models and see the effects of the neglected or included factors.

1 Basic Models

GLUKID model. GLUCID is a simple first order model for the blood glucose regulation by the kidney. All other system components involved in blood glucose regulation remain neglected. The disease juvenile diabetes mellitus (type 1 diabetes) justifies the design of a model based on blood glucose regulation by the kidney alone. In this type of diabetes the endocrine pancreas does no longer produce insulin. Dangerously high blood glucose concentrations may occur, which can only be removed from the blood by the kidneys over the urine.

INSUL model. In the model INSUL the blood glucose regulation is modelled only through the hormone insulin. It is a one-compartment model with an additional feedback loop. The compartment contains two substances, insulin and glucose. This results in a second order model with two states (Figure 1). In this model it is also possible, by setting parameters, to simulate juvenile diabetes where the pancreas is unable to produce insulin.

PANKID model. The model PANKID is the most complex model for blood glucose regulation discussed in [2]. It is a combination of the known models and represents the blood glucose regulation in the human body by the kidney, the hormone insulin and the hormone glucagone. The whole process of blood glucose regulation is extremely complex and even this model is a strong simplification. This model contains three state variables, the concentration of glucose, insulin and glucagon. The model is described through three first order linear ordinary differential equations - one for each substance.

The system analysis gives that the model is controllable and observable in all settings. All occurring parameters are due to physiological reasons ≥ 0 and thus the system is asymptotically stable. In this model it is also possible, by setting appropriate parameters, to simulate several diseases like juvenile diabetes mellitus, liver diseases.
where the liver does not respond to glucagon in providing the blood with glucose or special types of tumours that secrete insulin constantly.

2 GUI - Graphical User Interface

The MATLAB GUI - developed with MATLAB standard features - offers menus for choosing models and setting parameters (Figure 3). In the pulldown menu the user can select one of the implemented models for glucose regulation. According to the chosen model it is possible to set parameter values in the appropriate fields.

If a user is not yet experienced with the parameter settings of the models, he can push the button default setting to obtain values to simulate a healthy person’s blood glucose regulation. The GUI offers either to plot a graph with new parameter settings in an empty plotting window, or - by using the Add Plot button - to plot a graph with different settings in the same window, so that different parameter settings can be compared directly.

Figure 4 and Figure 5 show results for model INSUL and for model PANKID. Similar experiments (identical glucose input and insulin input into both models, additional glucagon input into PANKID model) show qualitative similar results for glucose concentration, but quantitative differences because of additional glucagon state in the PANKID model.

References

Corresponding Author: Florian Judex
Andreas Ernst, Florian Judex, Juliane Höbath, Vienna Univ. of Technology, Inst. f. Analysis and Scientific Computing, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria efelo@fsmat.at

Received: January 20, 2006
Revised: April 15, 2006; July 5, 2006
Accepted: July 20, 2006