Dear readers,
This is the second SNE issue with new layout, and we are glad, that we got positive reactions for changes in SNE layout and for opening the publication strategy of SNE. Together with this issue, we are proud to announce the first SNE Special Issue 'Parallel and Distributed Simulation Methods and Environments'. First born as idea in ASIM - ASIM Working Groups intend to publish alternately a Special Issue each year; the SNE Special Issues are open for all societies and conference organisers. The Special Issues cause a change in numbering the SNE issues: this regular SNE issue, SNE 46, is now identified as SNE 16/1 (Volume 16, Number 1), the first Special Issue as SNE 16/2; the next regular SNE double issue (SNE 47/48) will be numbered SNE 16/3-4. This remembers, that we are running SNE since 16 years, and we thank our faithful readers.

Together with the new layout, both editorial boards are being reorganised and will be enlarged for the future. We are also working on a new infrastructure for running an editorial office, together with tasks for SNE on the web. We hope, the readers enjoy this issue, and the contributors appreciate the new editorial structure (more strict, but hopefully more efficient). Three Technical Notes and three Short Notes in this issue show the broad variety of modelling and simulation. The Technical Notes are special ones: based on a post-conference review procedure via Internet for contributions to MATHMOD 2006 Vienna, papers were selected for publication in SNE (to appear also in the next SNE issues). Furthermore, as first reaction on the ARGESIM / MATHMOD Yo-yo Challenge, the Technical Note by Leon Zlajpah introduces into mechanical mysteries of Yo-yo control. The Comparison Section publishes an updated version of Comparison C13 'Crane and Embedded Control', reflecting the developments in this area of modelling and simulation; furthermore, seven comparison solutions concentrate on modelling issues and alternative approaches. The News Section reports about progress in new structures for EUROSIM, and about activities in EUROSIM member societies and in Societies related to Modelling and Simulation. We thank all contributors, members of the editorial boards, and people of our ARGESIM staff for co-operation in producing this SNE issue.

Felix Breitenecker, editor-in-chief; Felix.Breitenecker@tuwien.ac.at
Content

Modelling of Temperature Conditions in Sterilisation Tunnel; A. Knoll, M. Atanasijevic-Kunc, R. Karba ... 3
Modelling and Control of Yoyo; L. Zlajpah ... 9
Using XML in the Domain of Discrete Event Modelling and Simulation; M. Gyimesi ... 16
Real - time Simulation with Kalman Filter and LQ Control using Connected Signal Processing Boards; Z. Sehic, J. Osmic, N. Prljaca ... 21
Modelling the Human Blood Glucose Regulation - a MATLAB GUI for Educational Purposes; A. Ernst, F. Judex, J. Höbarth ... 23
Simulation of a Control for a Robot with Two Degrees of Freedom – an E-learning Example; J. Kropf, O. Andryushchenko ... 25
ARGESIM Comparison ‘Crane and Embedded Control’ – Definition of a Benchmark with Implicit Modelling, Digital Control and Sensor Action. Revised Definition – Comparison 13rev.; A. Schiftner, F. Breitenecker ... 27
A Modella Approach to ARGESIM Comparison C13Rev ‘Crane and Embedded Control’ using the Simulator Dymola; A. Schiftner ... 30
Petri Net Modelling to ARGESIM Comparison C4 ‘Dining Philosophers’ with Petrinetz-Tool, with Integrated Net Analyzer INA, and Peneca / CHROMOS; R. Hohmann ... 31
A Numerical MBTY-Solution of ARGESIM Comparison C5 ‘Two State Model’ O. Kozlov, K. Timofeev, S. Petukhov ... 32
A Programmed Solution to ARGESIM Comparison C 6 ‘Emergency Department’ with DSOL, a Java - based Suite; R: Lezuo, F. Breitenecker ... 33
A Cellular Automata – Approach to ARGESIM Comparison C 10 ‘Dining Philosophers II’ using MATLAB; G. Höfinger ... 34
A Classical ODE-based approach to ARGESIM Comparison C 11 ‘SCARA Robot’ using DESIRE; S. Seichter ... 35
An Analytic Approach to ARGESIM Comparison C15 ‘Renal Clearance Identification’ using Maxima/LISP; P. Schrammel, F. Judex ... 36
A Matrix-oriented Approach to CA Modelling in ARGESIM Comparison C17 ‘SIR-type Epidemic’ with MATLAB; D. Leitner, M. Moczydlowska, L. Lapinski ... 38
Book Reviews and Journal Reviews ... 39
Book and Journal News ... 45
Simulationists: Ch. Deactu, F. Judex ... 48
News on EUROSIM and EUROSIM Societies, International Societies and Industry News 32 pages

SNE Editorial Boards

SNE - Simulation News Europe – is advised by two Editorial Boards. The SNE Editorial Board is taking care on reviewing and handling of Technical Notes, Shortnotes, Software Notes, Book and Journal Review, and of Comparison and Benchmark Notes. The SNE News Editorial Board (News Section) is responsible for reports from EUROSIM, EUROSIM societies, International Societies, and for Industry News.

Editorial board

Felix Breitenecker (Editor-in-Chief), Vienna Univ. of Technology, Felix.Breitenecker@tuwien.ac.at
Peter Breedveld, University of Twenty, Div. Control Engineering, P.C.Breedveld@el.utwente.nl
Francois Cellier, ETH Zurich, Inst. f. Computational Science / University of Arizona, fcellier@inf.ethz.ch, Russell Cheng, Fac. of Mathematics / OR Group, Univ. of Southampton, rche@maths.soton.ac.uk
Rihard Karba, University of Ljubljana, Fac. Electrical Engineering, rihard.karba@fe.uni-lj.si
David Murray-Smith, University of Glasgow, Fac. Electrical & Electronic Engineering; d.murray-smith@elec.gla.ac.uk
Horst Ecker, Vienna Univ. of Technology. Inst. f. Mechanics, Horst.Ecker@tuwien.ac.at
Thomas Schriber, University of Michigan, Business School schriber@umich.edu
Sigrid Wenzel, University Kassel, Inst. f. Production Technique and Logistics, S.Wenzel@uni-kassel.de

Contact

SNE - Editors /ARGESIM c/o Inst. for Scientific Computation Vienna University of Technology Wiedner Hauptstrasse 8-10, 1040 Vienna, AUSTRIA
Tel +43 -1 - 58801-10115 or 11455, Fax - 42098 sne@argesim.org; WWW.ARGESIM.ORG

Editorial Info - Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).
Scope: Information on development in modelling and simulation, comparisons and benchmarks on modelling and simulation, membership information for EUROSIM and Simulation Societies.
Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria; Felix.Breitenecker@tuwien.ac.at
Layout: A. Breitenecker, ARGESIM TU Vienna / Linz; Anna.Breitenecker@liwest.at
Printed by: Grafisches Zentrum, TU Wien, Wiedner Hauptstrasse 8-10, A-1040, Wien
Publisher: ARGESIM and ASIM
ARGESIM, c/o Inst. for Scientific Computation, TU Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria, and ASIM (German Simulation Society), c/o Wohlfartstr. 21b, D-80939München
© ARGESIM / ASIM 2006
Simulation of a Control for a Robot with Two Degrees of Freedom – an E-learning Example

Johannes Kropf, Vienna University of Technology; jkropf@osiris.tuwien.ac.at
Oleg A. Andryushchenko, National Polytechnic University of Odessa, Ukraine

This contribution shows the modelling, simulation and control of a robot of two degrees of freedom. It is part of a large e-learning project where we want to offer a database of mathematical modelling examples for demonstration and studying online. The main audience are students of electrotechnical engineering and technical mathematics, but also other students might be skilled in modelling in simulation.

Introduction

With our mechatronic models students should be able to ‘play’ to get to know how control works, but they should also be trained in development of small own models. Here it might be possible to offer to develop own control algorithms of the certain robot.

The system is based on MATLAB and Java, combined with a comfortable experimentation environment

1 Modelling

Modelling the Robot Mechanics. The robot with two degrees of freedom consists of two arms, one moves rotational in the vertical plane around axis o1 (arm 1) and the other one performs a linear movement (arm 2). On arm 2 a grab for taking up loads is fixed, its mass is included in mass of arm 2, \(m_2 \) (Figure 1).

The positions are described through the angle \(\varphi \) and the distance \(x \). Velocities and accelerations are given through \(\omega, \varepsilon \) and \(V, a \) respectively. The basic geometry is given in Figure 1. For the description of the robot mechanics we need to define its inertial forces, named \(J_{01} \) for arm 1. For arm 2 we also have to consider the position of the grab.

The whole robot dynamics with drive is shown in Figure 2, where the basic equations of balance are given in the central box.

In our model friction is neglected for clearer presentation but it should be able to experiment with different electrical engines and so mechanical conversion is regarded. For the actuation of the robot arms we have conversions; the following equations complete the model, giving conversion parameter for arm 1 and for arm 2:

\[
i_\beta = \frac{\omega_{01}}{\omega}, \quad R_{\beta} = \frac{V}{\omega_{02}}
\]

Modelling the electrical drive. In our example also the drive of the electrical engine is modelled including the digital-analog converter and amplifiers. All parameters are taken from real parts, so students can make studies with different kind of engines, for example. It should also be possible to experiment with different kind of electrical engines to understand the differences in its control.

2. Digital controller

The implemented digital controller supports linear and circular movements of the robot grab, realised by a P-control mechanism. The path the robot grab should follow, can be defined by the student and the change of position and velocity of each arm can be observed. Also the error in position and velocity can be studied.
A simulation result is shown in Figure 3, where the positions of the arms can be observed. Also the overall position of the grab, here performing a circle, is shown.

In further development students can also develop there on controls, following an ellipsoid for example.

3 Implementation

The model was implemented in MATLAB, but also in Java, what makes it available easier on the net for E-learning purposes.

The additionally developed graphical user interface is shown in Figure 3. Everything is implemented by an object oriented approach what makes our model adaptable easily for other parts or for more sophisticated features of the robot.

Summary

Summarizing we have developed a user friendly tool to experiment with a robot of two degrees of freedom online. The example is not too complex consciously. It should transport the main ideas and principles of modelling and simulation.

At end of the project, software will be available at the web.

Corresponding author:
Johannes Kropf
Vienna Univ. of Technology,
Inst. f. Analysis and Scientific Computing
Wiedner Hauptstrasse 8-10,
1040 Vienna, Austria
jkropf@osiris.tuwien.ac.at

Oleg A. Andryushchenko,
National Polytechnic University of Odessa, Ukraine

Received: March 2006
Revised: June 3, 2006
Accepted: July 15, 2006