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Asymptotic normality for a class of subspace algorithms, which estimate the state in a xrst step, is

derived. Expressions for the asymptotic variance are given.

Abstract

Linear systems with unobserved white noise inputs are considered. A class of subspace estimates for the system matrices obtained

by estimating the state in the "rst step is analyzed. The main result presented here states asymptotic normality of subspace estimates.

In addition, a consistency result for the system matrix estimates is given. An algorithm to compute the asymptotic variances of the

estimates is presented. In a "nal section the implications of the result are discussed. ( 1999 Elsevier Science Ltd. All rights reserved.
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systems

1. Introduction

Subspace algorithms for the identi"cation of linear

dynamic systems recently have attained great attention

(Larimore, 1983; Van Overschee and DeMoor, 1994;

Verhaegen, 1994; Peternell, 1995; Deistler et al., 1995).

The advantage of subspace methods compared to

methods based on optimization of a criterion function

such as the likelihood or the prediction error lies in their

numerical properties. They can be implemented numer-

ically e$ciently and use only standard reliable numerical

tools such as the singular-value decomposition. Subspace

algorithms make use of the structure of the realization

problem (see e.g. Akaike, 1975; Lindquist and Picci,

1985). In addition to classical realization of course in
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identi"cation model reduction has to be performed (see

e.g. Glover, 1984; Desai et al., 1985).

On the other hand the statistical properties of these

algorithms are not fully understood yet. In Deistler et al.

(1995) consistency has been proved. Simulation studies

e.g. in Peternell (1995) and Bauer et al. (1997) indicate,

that the relative e$ciency of some subspace methods,

compared to the maximum likelihood estimates, is close

to one. Up to now no general analytical results concern-

ing the asymptotic e$ciency of subspace algorithms have

been obtained. In Viberg et al. (1993) the asymptotic

distribution of the estimates of the poles of the system has

been derived. These lines have been further developed in

Wahlberg and Jansson (1994) and Jansson (1995). In

a frequency domain setting results are given in McKelvey

(1995). Our contribution (for more details see Bauer

(1998)) is a further step towards an analytical under-

standing of this problem. In this paper, asymptotic nor-

mality for the estimates of the system matrices

(A, B, C, D) described below is derived.

The paper is organized as follows: In the next section,

the class of subspace algorithms under consideration is

presented. In the third section some de"nitions and nota-

tions are introduced as well as some preliminary facts,

which are proved in the appendix. In the fourth section

0005-1098/99/$ - see front matter ( 1999 Elsevier Science Ltd. All rights reserved
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asymptotic normality of the parameter estimates is

stated. The proof is given in Section 5. In Section 6 the

implications of the result are discussed.

2. Model set and algorithms

In this paper, linear, time invariant, "nite-dimensional

state-space systems are considered. Only the case is con-

sidered, where the inputs are unobserved white noise.

The system considered is of the form

x
t`1

"Ax
t
#Be

t
,

(1)
y
t
"Cx

t
#De

t
,

where (y
t
)
t|Z

denotes the s-dimensional measured output,

(e
t
)
t|Z

denotes s-dimensional zero mean white noise with

variance equal to the identity. x
t
denotes the n-dimen-

sional state. A3Rn]n, B3Rn]s, C3Rs]n and D3Rs]s

are parameter matrices. The transfer function of the sys-

tem is given by: k(z)"D#C(zI!A)~1B"+=
j/0

K( j)z~j,

where K(0)"D and K ( j)"CAj~1B, j'0. It will al-

ways be assumed that D is nonsingular. Throughout the

paper the system will be assumed to be minimal, stable

(i.e. Dj
.!9

(A) D(1 holds) and strictly minimum-phase (i.e.

Dj
.!9

(A!BD~1C) D(1 holds). Here j
.!9

(.) denotes an

eigenvalue of maximum modulus. Thus the system is

assumed to be in innovation form. The spectrum f of the

stationary process (y
t
)
t|Z

is equal to f (j)"(1/2n)k(e*j)

k*(e*j). Here* denotes conjugate transpose. Since it is

assumed, that the noise (e
t
) is not observed, the stability

and the strict minimum-phase assumption exclude only

spectra, which have zeros on the unit circle. The factoriz-

ation of the spectrum is only unique, if a unique represen-

tative for the matrix D from the class MDQ: QTQ"IN is

chosen. Therefore, D is restricted to be lower triangular

with positive entries on the diagonal throughout the

paper.

The subspace algorithms considered here, use the

fact that the state represents, in a certain sense, the

interface between the past and the future of the process

(y
t
)
t|Z

. Let >`
t

"[yT
t
, yT

t`1
,2]T, >~

t
"[yT

t~1
, yT

t~2
,2]T

and let E`
t

be the analogously de"ned vector of the

future of the noise. Using system equations (1) it is easy

to show that >`
t

"Ox
t
#EE`

t
and x

t
"K>~

t
holds,

where O"[CT, ATCT, (A2)TCT,2]T denotes the

observability matrix, K"[BD~1, (A!BD~1C) BD~1,

(A!BD~1C)2BD~1,2] and "nally

E"

D

CB D 0

CAB CB D

F } }

.

Both equations together give

>`
t

"OK>~
t

#EE`
t

. (2)

Thus, since the future of the noise and the past of the

process (y
t
)
t|Z

are uncorrelated, OK>~
t

is the orthogonal

projection of >`
t

onto the space spanned by the elements

of >~
t
. (Here projection has to be understood in the

context of the Hilbert space spanMy
t, i

: t3Z, i"1,2 , sN
endowed with the inner product Sa, bT"Eab where

E denotes expectation.)

Now commence from a process (y
t
)
t|Z

rather than from

the system representation (1). Every decomposition of the

linear operator attaching to the past (>~
t
) the projection

OK>~
t

into two rank n operators, O and K then

"xes a basis in the state space. Using such a decom-

position, x
t
"K>~

t
, ∀t3Z is a state sequence, which

then de"nes the system matrices via projecting y
t

on

x
t

and x
t`1

on x
t

and e
t

i.e. C"EMy
t
xT
t
N(EMx

t
xT
t
N)~1,

A"EMx
t`1

xT
t
N(EMx

t
xT
t
N)~1, B"EMx

t`1
eT
t
N(EMe

t
eT
t
N)~1. D

can be calculated as the lower triangular Cholesky factor

of c (0)!CPCT'0, where c(0) denotes the variance of

y
t
and P the variance of x

t
.

For given sample size ¹ the (in"nite dimensional)

eq. (2) cannot be used and thus a decision on the number

of block rows, f say, and the number of block columns,

p say, which are included, has to be made. In the follow-

ing these integers are called truncation indices. Through-
out the paper it is assumed, that f5n holds. Let

>`
t,f

"[yT
t
, yT

t`1
,2, yT

t`f~1
]T and >~

t,p
"[yT

t~1
, yT

t~2
,

2, yT
t~p

]T be "nite-dimensional vectors of stacked out-

puts. De"ne O
f
"[CT, ATCT,2, (Af~1)TCT]T, K

p
"

[BD~1, (A!BD~1C) BD~1,2, (A!BD~1C)p~1BD~1].

E
f

denotes the "rst f block rows of E. Then, of course,

eq. (2) gives the following equation:

>`
t,f

"O
f
K

p
>~

t,p
#O

f
(A!BD~1C)pK>~

t~p
#E

f
E`
t

.

hij

/xt~p
Using this equation, the subspace methods considered

here can be decomposed into three main steps (comp.

Peternell, 1995):

(1) Regress >`
t,f

on >~
t,p

to get an estimate bK
f,p

of O
f
K

p
.

If !K ~
p

and HK
f,p

denote the sample variance of

>~
t,p

and the sample covariance between >`
t,f

and

>~
t,p

, respectively, then this estimate is given by

bK
f,p

"HK
f,p

(!K ~
p
)~1.

(2) Approximate b)
f,p

by a rank n matrix and decompose

this approximation into the product OK
f
KK

p
of two

rank n matrices to get an estimate KK
p

of K
p
.

(3) Use the estimate of the state xL
t
"KK

p
>~

t,p
to estimate

C by regressing y
t
on xL

t
. In the next step estimate

[A, BD~1] by regressing xL
t`1

on xL
t
and eJ

t
, the resid-

uals of the "rst regression. Finally, the estimate of D is

calculated as the lower triangular Cholesky factor of

the sample covariance of eJ
t
.

The approximation step (2) is performed by a singular-

value decomposition of the matrix =K `
f
bK
f,p
=K ~

p
"

;K &) <K T";K
n
&)
n
<K T

n
#RK , where=K `

f
and=K ~

p
are weighting
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matrices, ;K
n
3Rfs]n, <K

n
3Rps]n and &)

n
is a diagonal

matrix containing the n largest singular values as its

diagonal entries (in decreasing order). The remaining

singular values contribute to RK and thus are neglected.

This corresponds to approximating bK
f,p

, which will typi-

cally be of full rank due to "nite data length, by a rank

n approximation OK
f
KK

p
"[(=K `

f
)~1;K

n
(&)

n
)1@2][(&K

n
)1@2

<K T
n
(=K ~

p
)~1]. Note, that the singular vectors, i.e. the col-

umns of the matrix ;K
n
, are unique up to sign changes, if

the singular values are distinct. This corresponds to

a basis transformation of the form diag($1,2, $1).

This will be further discussed in the next section.

Throughout the paper it is assumed that the

state dimension n is known. In practice the SVD is

also used to determine the model order, either by in-

spection of the singular values and user's choice or by

means of a criterion function (see Fuchs, 1990; Peternell,

1995).

The choice of the weighting matrices is essential. Dif-

ferent choices lead to algorithms, which have di!erent

asymptotic properties. Larimore's CCA procedure (Lari-

more, 1983) is obtained by choosing=K `
f

"(!K `
f
)~1@2 and

=K ~
p

"(!K ~
p

)1@2, where !K `
f

denotes the sample variance of

>`
t,f

. A variant of N4SID (Van Overschee and DeMoor,

1994) corresponds to =K `
f

"I
f

and =K ~
p

"(!K ~
p
)1@2. In

the following the discussion will be restricted to these

two particular choices of the weighting matrices. Note

that the estimates of (A, B, C, D) do not depend on

the particular choice of the square root (!K ~
p
)1@2,

(!K ~
p
)1@2(!K ~

p
)T@2"!K ~

p
or (!K `

f
)1@2, (!K `

f
)1@2(!K `

f
)T@2"!K `

f
.

3. The set M`(n)

In order to state a central limit theorem for the esti-

mates (AK
T
, BK

T
, CK

T
, DK

T
) of the system matrices, "rst the

particular representation of the true transfer function k
0
,

which is the limit of the estimates for ¹PR, has to be

determined. As is well known, for minimal state-space

representations, the class of all observationally equiva-

lent system matrices corresponding to the transfer func-

tion k is given by di!erent choices of the basis in the state

space. In the algorithms considered here, the choice of the

basis is done implicitly by decomposing the rank n ap-

proximation to bK
f,p

into OK
f
KK

p
. This decomposition is

performed using the SVD of =K `
f
bK
f,p

(!K ~
p
)1@2 and is

unique, if the "rst n singular values of this matrix have

multiplicity one and if the orientation of the singular

vectors is "xed. Let !~ denote the population variance of

>~
t

and let H
f

denote the population covariance be-

tween >`
t,f

and >~
t
. As will be shown in the proof in

Section 5, the matrix XK
p
"=K `

f
bK
f,p

(!K ~
p
)bK T

f,p
(=K `

f
)T"

=K `
f
HK

f,p
(!K ~

p
)~1HK T

f,p
(=K `

f
)T converges to XM "

=`
f
H

f
(!~)~1HT

f
(=`

f
)T"=`

f
O

f
K!~KTOT

f
(=`

f
)T

a.s., if the index p is a function of the sample size ¹, which

tends to in"nity at a certain rate (see Theorem 1). Here

=`
f

"(!`
f

)~1@2 for the CCA algorithm and=`
f

"I for

the N4SID algorithm and !`
f

denotes the population

variance of >`
t,f

. Thus if the n nonzero eigenvalues of

XM are distinct, then for ¹ large enough, the n largest

singular values of (=K `
f
)bK

f,p
(!K ~

p
)1@2 will be distinct too, by

the continuity of the singular values (see the forthcoming

Lemma 7).

Let M(n) denote the set of all rational, stable, strictly

minimum-phase transfer functions k of McMillan degree

n with a constant term, which is lower diagonal and

has strictly positive diagonal entries. Furthermore, let

M`(n)LM (n) denote the subset of all transfer functions

k3M(n), for which XM has n distinct (non zero) eigen-

values. This subset M`(n) is generic in the sense that it is

an open and dense subset of M(n), where M(n) is en-

dowed with the so-called pointwise topology. Since the

proof of the genericity of M`(n) is lengthy and not

essential for the understanding of the rest of the paper, it

is shifted to the appendix. Note, that the set M`(n)

depends on the choice of the index f as well as on the

choice of the weighting matrix=`
f

, thus in particular on

the choice of either CCA or N4SID, however, for the sake

of notational simplicity, this will not be explicitly in-

dicated in the notation.

Now for each transfer function k
0
3M`(n) a particular

representation may be obtained as follows. Note that the

eigenvalue decomposition of XM ";
n
&2

n
;T

n
"xes a basis

in the state space by the choice O
f
"(=`

f
)~1;

n
&1@2

n
,

K"&~1@2
n
;T

n
=`

f
H

f
(!~)~1, and x

t
"K>~

t
. Since the

eigenvalues of XM are distinct, the eigenvectors ;
n

are

unique up to sign changes. Now the choice of the basis in

the state space is uniquely de"ned if in each column of

;
n
a nonzero entry is chosen to be strictly positive. In this

way a unique realization of k
0
3M`(n) is constructed. By

"xing the elements in the same positions in ;K
n

to be

positive, a unique algorithm is obtained. This can be

done from a certain ¹
0

onwards, since XK
p

converges to

XM a.s. under our assumptions.

4. A central limit theorem

In this section the main result of this paper, i.e. asymp-

totic normality will be stated. In Deistler et al. (1995)

consistency of the algorithms was shown in the sense of

convergence of the estimated transfer function to the true

transfer function rather than convergence of the system

matrix estimates. Here it is proved, that the estimates of

the system matrices are consistent. To achieve consis-

tency in our framework, the truncation index p has to

tend to in"nity. This is essentially due to the fact, that in

the "rst step a regression is performed, neglecting in-

formation from the far past (contained in x
t~p

). For

a central limit theorem convergence of the estimates of

order J¹ is needed, thus a lower bound on the increase

of the index p has to be imposed in order to ensure that
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the e!ect of neglecting the far past does not show up in

the limiting distribution. On the other hand, the limited

amount of data imposes upper bounds for the increase of

p in order to ensure a uniform convergence of the esti-

mates of the covariances.

The following theorem contains the main result of the

paper:

Theorem 1. ¸et (y
t
)
t|

Z be generated by a true transfer

function k
0
3M`(n), where the ergodic white noise (e

t
)
t|Z

ful,lls the following conditions:

EMe
t
DF

t~1
N"0,

EMe
t
eT
t
DF

t~1
N"EMe

t
eT
t
N"I,

EMe
t,a

e
t,b

e
t, c

DF
t~1

N"u
a,b, c

,

EMe4
t, i

N(R,

where E denotes expectation, F
t
the p-algebra spanned by

the past and present of the noise and additional subscripts

here indicate components of the vector e
t
. u

a,b,c
is a con-

stant not depending on t and f5n is a ,xed integer.

If p ful,lls the following conditions:

(1) p5!(d log ¹)/(2 logDo
0
D), ∀¹'¹

0
for some d'1,

where o
0

is a zero of k
0

of maximum modulus,

(2) p/(log¹)aP0 for some a(R.

then

J¹ vec[AK
T
!A

0
, BK

T
!B

0
, CK

T
!C

0
, DK

T
!D

0
] $PZ,

where Z is a multivariate normal random variable with zero

mean and variance <h
f
, and P$ denotes convergence in

distribution. Here (A
0
, B

0
, C

0
, D

0
) denotes the particular

realization of k
0

described in Section 3.

The asymptotic variance <h
f

depends on f, k
0

and on

the choice of the weighting matrices. However, this is not

emphasized in the expressions for notational conveni-

ence. Note, that the assumptions on the noise process are

exactly the same as those given in Hannan and Deistler

(1988), where the asymptotic normality of maximum like-

lihood estimates is derived.

Note that the lower bound of the increase of the

truncation index p depends on the true system. However,

it is possible to estimate this bound consistently as fol-

lows: Fit a (long) autoregression to the sample data and

estimate the order of this AR model by the BIC criterion.

If the true process is ARMA, then the estimated order

pL
BIC

will ful"ll lim
T?=

!(2pL
BIC

logDo
0
D)/(log ¹)"1 a.s.

(see e.g. Hannan and Deistler, 1988). Therefore dpL
BIC

(or

dpL
AIC

), for some d'1 seems to be a reasonable choice for

the truncation index p.

The central limit theorem for the system matrix

estimates also implies a central limit theorem for other

quantities, which are derived from the system matrix

estimates:

Corollary 2. ¸et g :RnÈ`2ns`(sÈ`s)@2PRm be a mapping

attaching the vector x3Rm to the matrices (A, B, C, D). If,

under the assumptions of ¹heorem 1, (A
0
, B

0
, C

0
, D

0
) de-

notes the realization of k
0
3M`(n) described in Section 3

and if g is di+erentiable at (A
0
, B

0
, C

0
, D

0
), then the follow-

ing holds:

J¹(g (AK
T
, B]

T
, C]

T
, D]

T
)!g (A

0
, B

0
, C

0
, D

0
)) P$ Z, (3)

where Z is a multivariate normally distributed random

variable with mean zero and variance<"J
g
<h

f
JT
g
3Rm]m,

where J
g

denotes the matrix of partial derivatives of

g evaluated at (A
0
, B

0
, C

0
, D

0
).

In particular, three applications of this corollary are of

interest:

f The poles of the system depend di!erentiably on the

entries in the matrix A, if the eigenvalues are distinct

(see Lemma 7). Thus a CLT for the estimates of the

system poles is obtained on some generic subset of

M(n) (comp. Wahlberg and Jansson, 1994). The same

statement is true for the estimates of the system zeros.

f For "xed frequency u the transfer function evaluated

at u is equal to k
0
(e*u)"D

0
#C

0
(e*uI!A

0
)~1B

0
.

Thus a central limit theorem for the estimates of the

transfer function at "xed frequency points is obtained.

This can be used, to compare di!erent choices of

procedures (i.e. di!erent choices of f and of =`
f
) for

a given system.

f For given system matrices the transformation to Eche-

lon coordinates is di!erentiable for system matrices

corresponding to a transfer function in the generic

neighborhood corresponding to the Echelon par-

ametrization. Thus a CLT for the Echelon parameter

estimates on a generic neighborhood holds (since the

intersection of two generic sets is still a generic set).

This can also be used to compare di!erent procedures

correponding to their asymptotic behaviour.

Note that the algorithm has been made unique by

restricting certain elements in each column of ;]
n

to be

positive. However, the actual implementation of the SVD

algorithm may use a di!erent selection of the signs of

the singular vectors. Thus, the system obtained by the

algorithm may be related to (A]
T
, B]

T
, C]

T
, D]

T
) as de"ned

above by a basis transformation corresponding to

diag($1,2, $1). Consistency and asymptotic nor-

mality for the estimates of the actually implemented SVD

will hold, if this SVD of XM is continuous at the true

system. The results of Corollary 2 will hold, if g depends

only on the transfer function k, even if the actual SVD is
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not continuous at the true transfer function k
0
. (In this

case the estimates of the system matrices may not con-

verge to a single point, but to the equivalence class

M(¹A
0
¹~1, ¹B

0
, C

0
¹~1, D

0
): ¹"diag($1,2, $1)N).

5. Proof of the theorem

To simplify the notation, in the proof only the case of

Larimore's procedure will be considered, i.e. the case

where =K `
f

"(!) `
f
)~1@2. The N4SID algorithm can be

treated in a completely analogous manner. In fact for

the N4SID algorithm some steps simplify. In the proof

extensive use of the following notation will be

made: g (¹)"o ( f (¹)) means lim
T?=

g (¹)/f (¹)"0 a.s.,

g(¹)"O( f (¹)) means sup
T|N

Dg(¹)/f (¹)D(M a.s. for

some constant M(R. g (¹)"o
P
( f (¹)) means that

for every e'0, PMDg(¹)/f (¹)D'eNP0 for ¹PR. The

Frobenius norm of a matrix X is denoted by

EXE"JtrXTX and the l1-norm of a (possibly in"nite

dimensional) vector is denoted with EXE
1
"+

i
DX

i
D.

5.1. Preliminaries

For the class of algorithms considered in this paper it is

straightforward to see, that the estimates (A]
T
, B]

T
, C]

T
, D]

T
)

are a nonlinear function of the sample autocovariances.

For given indices f and p the estimates depend only on

the sample covariances up to lag f#p!1 i.e. on

cL (0), cL (1),2, cL ( f#p!1), where cL ( j) denotes the estimate

1/¹+T
t/j`1

y
t
yT
t~j

of c( j)"Ey
t
yT
t~j

, j50. For consistency

the column truncation index p has to tend to in"nity at

a certain rate (Deistler et al., 1995). Thus also the number

of included covariance estimates tends to in"nity, which

causes the main technical complication in the proof.

Introduce the shorthand notation Sa
t
, b

t
T"

1/¹+T
t/1

a
t
bT
t
. Then the regressions in step 3 can be writ-

ten as follows:

C]
T
"Sy

t
, xL

t
TSxL

t
, xL

t
T~1, (4)

D]
T
"(cL (0)!C]

T
SxL

t
, xL

t
TC] T

T
)1@2, (5)

A]
T
"SxL

t`1
, xL

t
TSxL

t
, xL

t
T~1, (6)

B]
T
"SxL

t`1
, eL

t
T"(SxL

t`1
, y

t
T!SxL

t`1
, xL

t
TC] T

T
)D] ~T

T
, (7)

where the innovations e
t

are estimated by eL
t
"

D] ~1
T

(y
t
!C]

T
xL
t
). Note that the estimated residuals are

orthogonal to the estimates of the state, i.e. SxL
t
, eL

t
T"0,

and thus A]
T

and B]
T

may be obtained by the two separate

regressions (6) and (7).

In the following, the above expressions will be further

analyzed. The estimates of the states are de"ned by

xL
t
"KK

p
>~

t,p
and xL

t`1
"KK

p
>~

t`1,p
. The matrix KK

p
is ob-

tained from the matrix X]
p
"H)

f,p
(!) ~

p
)~1H) T

f,p
in the

following way: Recall from Section 3, that &)
n
contains the

square roots of the largest n eigenvalues of the matrix

(!) `
f
)~1@2X]

p
(!) `

f
)~T@2 and ;]

n
contains the corresponding

eigenvectors, i.e.

((!) `
f

)~1@2X]
p
(!) `

f
)~T@2) ;]

n
";]

n
&) 2

n
and ;] T

n
;]

n
"I

n
.

The matrices O]
f

and KK
p

are de"ned as

O]
f
"(!) `

f
)1@2;]

n
&) 1@2
n

,

K]
p
"&) 1@2

n
<] T

n
(!) ~

p
)~1@2"&) ~1

n
O) T
f
(!) `

f
)~1H]

f,p
(!) ~

p
)~1.

Furthermore, let

E
k
"

I
s

0

F

0

3Rks]s and S
p
"

0 2

I
s

0

0 I
s

0

} } }

I
s

0

3Rps]ps.

Using the identities y
t
"ET

f
>`

t,f
"ET

p
>~

t`1,p
and

>~
t`1,p

"E
p
ET
f
>`

t,f
#S

p
>~

t,p
it is straightforward to de-

rive the following expressions:

SxL
t
, xL

t
T"&)

n
, (8)

Sy
t
, xL

t
T"ET

f
O]
f
&)

n
, (9)

Sy
t
, xL

t`1
T"ET

p
H) T

f,p
(!) `

f
)~1O)

f
&) ~1
n

, (10)

SxL
t`1

, xL
t
T"&) ~1

n
O) T
f
(!) `

f
)~1(H)

f,p
(!) ~

p
)~1E

p
)ET

f
O)
f
&)

n

#&) ~1
n

O) T
f
(!) `

f
)~1(H)

f,p
(!) ~

p
)~1S

p
H) T

f,p
)

](!) `
f
)~1O)

f
&) ~1
n

. (11)

From the expressions given above it can be seen that the

estimates of the true parameter matrices (A
0
, B

0
, C

0
, D

0
)

are obtained via a nonlinear map attaching to

cL (0), 2 , cL ( f ) and the "nite-dimensional matrices

X]
p
"H)

f,p
(!) ~

p
)~1H) T

f,p
, >]

p
"H)

f,p
(!) ~

p
)~1S

p
H) T

f,p
and

Z]
p
"H)

f,p
(!) ~

p
)~1E

p
the corresponding matrices

(A]
T
, B]

T
, C]

T
, D]

T
).

In order to outline the proof of the CLT some further

notation is introduced:

hK
T
"vec(AK

T
, BK

T
, CK

T
, DK

T
),

h
0
"vec(A

0
, B

0
, C

0
, D

0
),

mL
p
"vec(c9 (0), 2 , c9 ( f ), XK

p
, >K

p
, Z)

p
),

m
p
"vec(c(0), 2 , c( f ), X

p
, >

p
, Z

p
),

m
0
"lim

p?=
m

p
"vec(c(0), 2, c( f ), X

0
, >

0
, Z

0
),

gL
T,h

"vec(c9 (0), 2, c9 (h!1)),

g
h
"vec(c(0), 2, c(h!1)).
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Here e.g. X
p

is de"ned as X
p
"H

f,p
(!~

p
)~1HT

f,p
and

X
0
"lim

p?=
X

p
"H

f
(!~)~1HT

f
. >

p
, >

0
, Z

p
, Z

0
are

de"ned analogously, vec will be used to denote

the vector of stacked vectorizations of several matrices

with slight abuse of notation. It will be part of the proof

to show the existence of all the required limits. As has
been stated already mL

p
is a function of the sample

autocovariances gL
T,f`p

, mL
p
"/ (gL

T,f`p
) say. Their popu-

lation counterparts are given by m
p
"/ (g

f`p
). The esti-

mates hKL
T

of the system matrices are obtained as a func-

tion hK
T
"t(mL

p
). Then the proof of the CLT may be

decomposed into the following four steps:

(1) A central limit theorem for the covariances gL
T,h

, with

h"( f#p)PR at a suitable rate for ¹PR (see

Section 5.2).

(2) The proof, that J¹(m
p
!m

0
)P0, and that

t (m
0
)"h

0
where h

0
corresponds to the particular

realization of the true system described in Section

3 (see Section 5.3).

(3) A central limit theorem for mL
p
i.e. J¹(mL

p
!m

0
) P$ Z,

where Z is multivariate normally distributed with

mean zero and variance <m, for pPR at a suitable

rate for ¹PR (see section 5.4).

(4) The proof of the di!erentiability of the mapping t at

the point m
0

(see Section 5.5). In other words it is

proved that t (m
0
#dm)!t (m

0
)"Jtdm#o (EdmE)

and thus one obtains

J¹(hK
T
!h

0
)"J¹(t(mL

p
)!t (m

0
)) P$ Z,

where Z is multiviariate normally distributed with

zero mean and variance <h
f
"(Jt) <m(Jt)T. Here

Jt denotes the Jacobian of t evaluated at m
0
.

Note that the &intermediate' variable mL
p
has been intro-

duced since mL
p
opposed to gL

T,h
is of "xed "nite dimension

as p tends to in"nity.

5.2. A CLT for the covariance estimates

As has already been stated, the main technical com-

plication lies in the fact, that the index p and thus also the

dimension of the stacked vector of autocovariances

gL
T,f`p

has to tend to in"nity. Tools to handle the growth

of dimensions are provided in Lewis and Reinsel (1985).

Their techniques are used to prove the following

lemma:

Lemma 3. For ,xed h let <g
h
3RhsÈ]hsÈ denote the

covariance matrix of J¹(gL
T,h

!g
h
) de,ned above. ¸et

h depend on ¹ such that h"o ((log¹)a) for some a(R.

¹hen under the assumptions on the process (y
t
) and on the

noise sequence (e
t
) given in ¹heorem 1, for every sequence

of vectors l (¹)3RhsÈ satisfying 0(c
1
4l (¹)T<g

h
l(¹) and

El(¹)E
1
4c

2
(R it follows that

J¹
l (¹)T(gL

T,h
!g

h
)

(l(¹)T<g
h
l (¹))1@2

P$ Z, (12)

where Z is scalar normally distributed with zero mean and

unit variance.

Proof. In a "rst step the lemma is proved for the case

y
t
"e

t
. Note that in this case

J¹(gL
T,h

!g
h
)"1/J¹

T
+
t/1

vec[e
t
eT
t
!I, e

t
eT
t~1

,2, e
t
eT
t~h`1

]

"vec[e
0
, e

1
,2, e

h~1
],

where

e
i
"1/J¹

T
+
t/1

e
t
eT
t~i

, i"1,2, h!1

and

e
0
"1/J¹C

T
+
t/1

e
t
eT
t
!ID.

Now let l (¹)3RhsÈ be a sequence of vectors satisfying

0(c
1
4l (¹)T<e

h
l (¹), where the notation indicates, that

<e
h

corresponds to y
t
"e

t
. Furthermore, let v2

T,h
"

l(¹)T<e
h
l (¹) denote the variance of J¹l(¹)T(gL

T,h
!g

h
),

which is bounded due to El(¹)E
1
4c

2
(R (see also

Remark 4). Then following the proof of Theorem 3 in

Lewis and Reinsel (1985) J¹l (¹)T(gL
T,h

!g
h
)/v

T,h
"

+T
t/1

X
t
(¹)"+T

t/1
1/J¹l (¹)Tvec[e

t
eT
t
!I,2, e

t
eT
t~h`1

]/

v
T,h

. The assumptions on e
t
imply that X

t
(¹) and X

s
(¹)

are uncorrelated for tOs with expectation equal to zero

and that the variance of X
t
(¹) is equal to 1/¹.

+ n
t/1

X
t
(¹), n"1,2, ¹ is a martingale sequence for

each ¹. In order to prove the convergence of

J¹l (¹)T(gL
T,h

!g
h
)/v

T,h
to a normal distribution, it is

su$cient to show, that

(a) sup
t4T

X2
t
(¹) P1 0 for ¹PR,

(b) +xqTy
t/1

X2
t
(¹) P1 q, 0(q41 for ¹PR,

where P1 denotes convergence in probability and xq¹y
denotes the integer part of q¹. Write

X
t
(¹)"X

t,0
(¹)#X

t,1
(¹),

where

X
t,0

(¹)"(1/J¹v2
T,h

)l
0
(¹)T vec(e

t
eT
t
!I),

where l
0
(¹) denotes the vector of the "rst s2 elements of

l(¹). Then sup
t4T

X
t,0

(¹)2P1 0, since sup
t4T

X
t,0

(¹)24

sup
t4T

X
t,0

(t)2 and EX
t,0

(t)2P0 for tPR (compare

Hannan and Deistler, 1988, p. 149). sup
t4T

X
t,1

(¹)2P1 0

follows from the arguments in Lewis and Reinsel (1985).

Thus the convergence of sup
t4T

X
t
(¹)2 to zero follows

from X
t
(¹)242(X

t,0
(¹)2#X

t,1
(¹)2).
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For condition (b) note, that +X
t,0

(¹)2 converges due

to ergodicity of e
t

and thus of (e
t
eT
t
!I)2 and the as-

sumption of "nite fourth moments. The convergence of

+X
t,1

(¹)2 can be seen, using the arguments of Lewis and

Reinsel (1985). Finally, the contribution of the mixed

terms +X
t,0

(¹)X
t,1

(¹)P1 0, which can be seen as follows:
D+X

t,0
(¹)X

t,1
(¹)D4sup

t4T
DX

t,0
(¹)D+DX

t,1
(¹)D. Now

sup
t4T

DX
t,0

(¹) D converges in probability to zero, since

sup
t4T

X
t,0

(¹)2 does, and PM+DX
t,1

(¹)D'dN4

+PMDX
t,1

(¹) D'dN4+PMX
t,1

(¹)2'd2NP0 (see the

proof in Lewis and Reinsel, 1985). This shows the conver-

gence in distribution to a random variable, which is

normally distributed with mean zero and of unit vari-

ance. Note, that the normalization by v
T,h

is necessary

here, if no conditions on the limiting behaviour of

l(¹)T<e
h
l (¹) except for its boundedness are imposed.

In order to extend this result to the autocovariances of

a process (y
t
)
t|Z

, generated by model (1), note that

y
t
"+=

i/0
K(i)e

t~i
holds, and that the Markov para-

meters K (i) converge exponentially to zero i.e.

EK(i)E4c (o
p
@)i for some constants c'0 and

1'o@
p
'Dj

'
(A) D. Now substituting this expression for

y
t
in cL (j) and in c(j) one obtains

J¹(cL (j)!c( j ))"
a
+

i, l/0

K (i )eN
j`l~i

K(l )T#r ( j), (13)

where eN
j
"e

j
for j50 and eN

j
"eT

~j
for j(0. The term

r( j) may be decomposed into four components: The "rst

one is due to the replacement of EcL ( j)"((¹!j)/¹)c( j) by

c( j). This term may be bounded by ch/¹.

To obtain a bound for the other contributions the

following assessment will be heavily used:

E KK+
t|I

(e
t
eT
t~i

!d
0, i

I) KK
2
4+

t|I
EE(e

t
eT
t~i

!d
0, i

I)E24cDID.

(14)

Here DID denotes the number of elements of the indexset

I. The above inequlatities follow from the fact that the

terms vec (e
t
eT
t~i

!d
0, i

I) and vec(e
s
eT
s~i

!d
0, i

I) are uncor-

related for tOs.

The second contribution is due to the approximation

of the process y
t
by the "nite sums +a

i/0
K (i)e

t~i
. Because

of Eq. (14) and the exponential decrease of the Markov

parameters the expectation of the Frobenius norm of this

term is bounded by c (o@
p
)a. Therefore, this term converges

to zero if a converges to in"nity faster than

!log ¹/(2 logDo@
p
D).

The third term is due to the fact, that sums of the form

+T~i
t/j`1~i

(e
t
eT
t~j~l`i

!d
0,j`l~i

I) are replaced by e
j`l~i

,

i.e. by sums where the summation index runs from

1, 2 , ¹. The di!erence is the sum of at most (2a#1)

summands. Therefore by eq. (14) and by the exponential

decrease of the Markov parameters the expectation of the

Frobenius norm of this term may be bounded by cJa/¹.

The last contribution stems from the replacement of

e
i
with eT

~i
for i(0. Now e

i
and eT

~i
di!er only in the "rst

i and last i sumands. Therefore, by the same reasoning as

above this term may be bounded by cJ(a#h)/¹.

Putting together these considerations imply that

EEr( j)E4c
1S

a#h

¹
#c

2
(o@

p
)a, (15)

where the constants c
1
, c

2
do not depend on j.

Now the "rst term in eq. (13) will be analyzed in more

detail. De"ne Ma
l
"+.*/(a,a~l)

i/'(0,~l)
K (l#i)?K(i) and

M
l
"lim

a?=
Ma

l
"+=

i/' (0,~l)
K (l#i)?K(i), then

vecA
a
+

i, l/0

K(i)eN
j`l~i

K(l)TB"
a
+

l/~a

Ma
l
vec(eN

j`l
).

Note that M"(2 , M
~1

, M
0
, M

1
, 2) has rows which

are elements of l
2

and Ma"(2, Ma
~1

, Ma
0
, Ma

1
, 2)

converges to M, since it can be shown that

EMa!ME4c (o
p
@)a. Here the sequence Ma

l
is extended

on both sides with zeros, i.e. Ma
l
"03RsÈ]sÈ for DlD'a.

Now let the permutation matrix P3RsÈ]sÈ be de"ned

such that P vec(H)"vec(HT) for every matrix H3Rs]s.

Then it follows that the linear term in eq. (13) can be

written as

vecA
a
+

i, l/0

K(i)eN
j`l~i

K(l)TB"
a`h
+
l/0

¸a
j, l

vec(e
l
)

"¸a,h
j

vec(e
0
, e

1
, 2, e

a`h
),

where ¸a
j, l

"Ma
~j

for l"0 and ¸a
j, l

"Ma
l~j

#Ma
~l~j

P

for l'0. Clearly, the rows of the matrix ¸a,h
j

, when

extended with zeros, converge in the l
2

sense to the rows

of the (s2]R) matrix ¸
j
"(¸

j,0
, ¸

j,1
, 2), where

¸
j, l

"lim
a?=

¸a
j, l

. In fact by the convergence of MaPM,

it follows that E¸a
j
!¸

j
E4c(o@

p
)a holds, where the con-

stant does not depend on j.

Assembling the expressions for the covariances

J¹(cL ( j)!c( j)) in the vector J¹(gL
T,h

!g
h
) then leads to

J¹(gL
T,h

!g
h
)"¸a,h vec(e

0
, e

1
, 2, e

a`h
)

#vec(r(0), r(1), 2, r(h)),

where the matrix ¸a,h3RhsÈ](a`h)sÈ has as its jth block

row the matrix ¸a,h
j

. By the convergence of the rows of
¸a,h and by the block diagonal structure of <e

a`h
it

follows that, for "xed h, the variance of J¹(gL
T,h

!g
h
)

exists and is given by <g
h
"lim

a?=
¸a,h<e

a`h
(¸a,h)T, see

Remark 4 below.

Finally, let l(¹)3RhsÈ be a sequence of vectors full"ll-

ing 0(c
1
4l(¹)T<g

h
l (¹)T and El (¹)E

1
4c

2
(R. Then

J¹l (¹)T(gL
T,h

!g
h
)"l (¹)T¸a,hvec(e

0
, e

1
, 2, e

a`h
)

#o
P
(1),
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where the second term on the right hand side is equal to

l(¹)T vec(r(0), 2, r(h)) and converges to zero in probabil-

ity, as follows from eq. (15). The convergence of ¸a
j

to

¸
j
and the bounded l1-norm of l (¹) imply ( for h4a)

lim

a,h?=

(l (¹)T¸a,h<e
a`h

(¸a,h)Tl(¹)!l (¹)T<g
h
l(¹))"0.

Finally, it follows that l(¹)T¸a,h<e
a`h

(¸a,h)Tl (¹) is a se-

quence bounded from below and above and thus the "rst

part of the proof gives the desired result. K

Remark 4. Recall, that the variance matrix <g
h

can be

calculated as follows: <g
h
"lim

a?=
¸a,h<e

h`a
(¸a,h)T. This

limit exists due to the structure of <e
x

and ¸a,h and due

to the convergence of ¸a,h for "xed h. Now the variance

of vec[e
0
,2, e

x~1
], which has been denoted as

<e
x
3RxsÈ]xsÈ, where x is an arbitrary integer, has as

its [ js2#(b!1)s#a, is2#(d!1) s#c] entry the
following expression: 1/¹+T

t,s/1
[E (e

t,a
e
t~j,b

!d
j0

d
ab
)

(e
s,c

e
s~i,d

!d
i0
d
cd
)], where d denotes the Kronecker

delta function. For s(t (t(s) conditional expectation

on F
t~1

( F
s~1

) shows, that the contribution is zero.

Thus only the contribution for t"s has to be examined.

If jOi, then again taking the expectation conditional on

F
t~.*/(i,j)

shows, that the expectation is zero (here the

assumption on the third order moments is needed to

simplify the expressions). Thus <e
x

is blockdiagonal. In

order to calculate the blockdiagonal entries, we distin-

guish the two cases i"j'0 and i"j"0. As can

easily be seen, for j'0, the expectation E (e
t,a

e
t~j,b

)

(e
t,c

e
t~j,d

)"d
ac
d
bd

, which is equal to 1, if a"c and b"d

and zero else. Thus the variance matrix in this case

is equal to the identity. For j"0, the expectation

E(e
t,a

e
t,b

!d
ab
) (e

t,c
e
t,d

!d
cd
)"Ee

t,a
e
t,b

e
t,c

e
t,d

!d
ab
d
cd
. Now

for Gaussian e
t
, the fourth moment Ee

t,a
e
t,b

e
t,c

e
t,d

is equal

to d
ab

d
cd

#d
ac
d
bd

#d
ad

d
bc
. Thus the expectation

d
ac
d
bd

#d
ad
d
bc

is equal to 2, if a"b"c"d, equal to 1, if

aOb and a"c'b"d or aOb and a"d'b"c, and

equal to zero else.

Remark 5. The lemma also shows, that the condition

¸
h
<g

h
¸T
h
P<, ¸

h
3Rm]hsÈ (m "xed and "nite) is a su$-

cient condition for J¹¸
h
(gL

T,h
!g

h
) $PZ, where here Z

is multivariate normally distributed with mean zero and

variance equal to < (see e.g. Anderson, 1971, Theorem

7.7.7). Since <g
h

is a matrix with elements of bounded

in"nity norm for a stable system, where the bound is

independent of h, it is straightforward to see, that a su$-

cient condition for ¸
h
<g

h
¸T
h
P< to hold for some < is

that the rows of ¸
h

embedded in l2 converge in the

l2 norm to an in"nite-dimensional vector, having ele-

ments decreasing exponentially. This will be the condi-

tion used in the sequel. Note, that the requirement

l(¹)T<g
h
l (¹)'0 is only needed for the normalization of

the variance and thus can be dropped for our purposes.

5.3. Convergence of m
p

to m
0

First, it will be proved that Em
p
!m

0
E"O(Do@

0
Dp),

where 1'o@
0
'Do

0
D and o

0
denotes an eigenvalue of

(A!BD~1C), i.e. a zero of the transfer function, of

maximum modulus. For this purpose the following

lemma is proved:

Lemma 6. EH
f,p

(!~
p
)~1!O

f
K

p
E"O(Do@

0
Dp).

Proof. The equality H
f
(!~)~1"O

f
K implies that

[H
f,p

(!~
p
)~1, 0](!~)

p
!O

f
K(!~)

p
"0, where (!~)

p
de-

notes the "rst p block columns of the in"nite-dimensional

matrix !~. From this it follows, that H
f,p

(!~
p

)~1!

O
f
K

p
"O

f
(A!BD~1C)pKHI

p
(!~

p
)~1. Here HI

p
denotes

the matrix obtained by omitting the "rst p block rows in

(!~)
p
, which is a (reordered) part of the covariance Han-

kelmatrix H"E>`
t
(>~

t
)T and thus has "nite Frobenius

norm, independently of p. The Frobenius norm of O
f

can

also be bounded (independently of f ), !~
p

has bounded

eigenvalues independently of p and "nally K is of "nite

Frobenius norm. Thus, the Frobenius norm of the error

can be bounded by the Frobenius norm of (A!BD~1C)p

times a constant, which depends only on the underlying

system and not on the choice of the truncation indices.

Now E(A!BD~1C)pE can be bounded by Do@
0
Dp, for all

1'o@
0
'Do

0
D. h

This lemma immediately implies EZ
p
!Z

0
E"

EH
f,p

(!~
p
)~1E

p
!H

f
(!~)~1E

=
E"O(Do@

0
Dp). Furthermore,

it is easy to see that

EX
p
!X

0
E"EH

f,p
(!~

p
)~1HT

f,p
!H

f
!~1HT

f
E

4E(H
f,p

(!~
p

)~1!O
f
K

p
) HT

f,p
E

#EO
f
(A!BD~1C)pKEEHT

f
E

is of the desired order O (Do@
0
Dp). Applying the techniques

of Lemma 6 it follows that E>
p
!>

0
E"

EH
f,p

(!~
p
)~1S

p
HT

f,p
!H

f
(!~)~1S

=
HT

f
E"O(Do@

0
Dp).

Now in order to prove J¹Em
p
!m

0
EP0 it is su$-

cient that J¹Do@
0
DpP0 holds, which is guaranteed by the

condition p5!(d log ¹)/(2 log Do
0
D) for some d'1.

These considerations show, that one has to impose

a lower bound on the convergence rate of pPR to

ensure J¹-consistency of the estimate.

Next, it is proved that t (m
0
)"h

0
. In other words the

subspace algorithms considered give a realization algo-

rithm, if the true autocovariances are used and p"R.

First note that by construction the eigenvalue decompo-

sition (!`
f
)~1@2X

0
(!`

f
)~T@2";

n
&2
n
;T

n
gives a factoriz-

ation H"O
f
CM and H(!~)~1"O

f
K, where

O
f
"(CT

0
, AT

0
CT

0
, (A2

0
)TCT

0
, 2)T,

CM "(M
0
, A

0
M

0
, A2

0
M

0
, 2),
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K"(B
0
D~1

0
, (A

0
!B

0
D~1

0
C

0
) B

0
D~1

0
,
2

),

D
0
DT

0
"c (0)!C

0
&
n
CT

0
,

M
0
"A

0
&
n
CT

0
#B

0
DT

0
,

and the matrices (A
0
, B

0
, C

0
, D

0
) are the realization of the

transfer function k
0
, explained in Section 3. Now the

mapping t evaluated at the point m
0

is considered. From

eqs. (4) and (9) one obtains that C"ET
f
O
f
"C

0
and thus

from eq. (5) that D"D
0
. Term (11) simpli"es to

&~1
n

OT
f
(!`

f
)~1[H

f
(!~)~1E

=
ET
f
O
f
&

n

#(H
f
(!~)~1S

=
HT

f
) (!`

f
)~1O

f
&~1
n

]

"&~1
n

OT
f
(!`

f
)~1[O

f
B

0
D~1

0
C

0
&
n

#O
f
(A

0
!B

0
D~1

0
C

0
)&

n
]"A

0
&
n

since H
f
(!~1)E

=
"O

f
K

1
"O

f
B
0
D~1

0
, ET

f
O
f
"C

0
,

H
f
(!~)~1S

=
"O

f
(A

0
!B

0
D~1

0
C

0
) K and "nally

KHT(!`
f
)~1O

f
"&2

n
and OT

f
(!`

f
)~1O

f
"&

n
. Thus it fol-

lows that A"A
0
. Now eq. (10) gives Sy

t
, x

t`1
TP$ M

0
,

which implies that B"B
0
.

5.4. A CLT for mL
p

In this subsection the results of the previous subsection

will be used to prove a central limit theorem for the

vector mL
p
"vec(c9 (0), 2, c9 ( f ), XK

p
, >K

p
, ZK

p
). This will be

done by linearizing the map / attaching mL
p

to the

sample covariances gL
T,f`p

. It will be shown that

mL
p
"m

p
#¸

p
(gL

T,p`f
!g

T,p`f
)#o

P
(¹~1@2). In order to

apply Lemma 3 it then remains to show, that the rows of

¸
p

converge in the l2 norm to vectors with elements

decreasing exponentially.

First the term XK
p
"HK

f,p
(!) ~

p
)~1H] T

f,p
is considered. By

linearizing this expression one obtains that

J¹(HK
f,p

(!K ~
p
)~1HK T

f,p
!H

f,p
(!~

p
)~1HT

f,p
)

"(J¹(HK
f,p

!H
f,p

)) (!~
p

)~1HT
f,p

!H
f,p

(!~
p

)~1(J¹(!K ~
p

!!~
p

)) (!~
p
)~1HT

f,p

#H
f,p

(!~
p

)~1(J¹(HK
f,p

!H
f,p

)T)

#higher-order terms. (16)

In order to prove that the higher-order terms are of

order o
P
(1), the uniform convergence of the sample

autocovariances has to be used: Under the upper bound

on the increase of p as a function of ¹, it follows

that max
@j@4f`p~1

EcL ( j)!c( j)E"O(Q
T
), where Q

T
"

Jlog log ¹/¹ (see e.g. Hannan and Deistler, 1988). This

result implies that EHK
f,p

!H
f,p

E"O(pQ
T
),

E!K ~
p

!!~
p

E"O(p2Q
T
). In addition, it can be shown that

E(!~
p
)~1E and E(!K ~

p
)~1E are of order O(p). Using these

bounds some simple but tedious calculations show that

the higher-order terms are of order J¹pkQj
T
, j52, k46

and thus converge to zero in probability under the

assumptions on the increase of p.

It remains to show that the rows of ¸
p

corresponding

to the term XK
p

converge in the l2 norm to vectors with

elements decreasing exponentially. This follows immedi-

ately from Lemma 6.

The terms >K
p
"HK

f,p
(!K ~

p
)~1S

p
HK T

f,p
and ZK

p
"

HK
f,p

(!K ~
p
)~1E

p
can be analyzed in a completely analog-

ous manner, by showing that EH
f,p

ST
p
(!~

p
)~1!

(H
f
ST
=
(!~)~1)

p
E converges to zero and that H

f
ST
=
(!~)~1

has rows with exponentially decreasing entries.

5.5. Diwerentiability of t

The last part of the proof consists of the proof

of the di!erentiability of t at the value m
0
"

vec[c(0), 2 , c( f ), X
0
, >

0
, Z

0
]. Thus it remains to show,

that in the neighborhood of m
0
, the approximation

t(m
0
#dm)"t (m

0
)#Jtdm#o(EdmE) holds. For this

purpose the essential steps for the computation of t are

repeated.

First, a Cholesky factorization (!`
f

)1@2 of !`
f

and the

inverse of !`
f

and of (!`
f
)1@2 have to be computed. Since

!`
f

is positive de"nite, these computations are di!erenti-

able. Corresponding to the Cholesky decomposition this

can be seen from the recursions de"ning the Cholesky

factor (see e.g. Golub and Van Loan, 1989). The entries of

the inverse of a matrix X depend di!erentiably on the

entries of X, if X is nonsingular, which is straightforward

to see.

Next the n largest eigenvalues and the corresponding

eigenvectors of the matrix (!`
f
)~1@2X (!`

f
)~T@2 have to be

computed. The di!erentiability of the mapping attaching

the eigenvectors and the eigenvalues to the matrix

(!`
f
)~1@2X (!`

f
)~T@2 holds for k

0
3M`(n), due to the fol-

lowing result, which can be found e.g. in

Chatelin (1983):

Lemma 7. If j
i

is an eigenvalue of multiplicity one of

a symmetric matrix X3Rm]m, which has a basis of

eigenvectors, with corresponding eigenvector u
i
, then the

eigenvalue jI
i
and the corresponding eigenvector uJ

i
of the

perturbed matrix X#eX
1

are given for ,rst-order ap-

proximation by

jI
i
Gj

i
#uT

i
eX

1
u
i
, (17)

uJ
i
Gu

i
#

m
+

j/1, jEi

uT
j
eX

1
u
i

j
i
!j

j

u
j
. (18)

Here u
1
,2, u

m
are the eigenvectors of X and G means,

that the error is o (e).

Although the theorem only states the existence of the

directional derivatives in direction X
1
, the di!erentiabil-

ity follows from the fact, that the directional derivatives

are continuous in X
1
. This result can be found in stan-

dard textbooks on analysis (see e.g. Kowalsky, 1974).
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Thus the singular values p
i

and the corresponding

singular vectors u
i
depend di!erentiably on the entries

in the matrix (!`
f

)~1@2X (!`
f
)~T@2. This shows, that

OK
f
"(=K `

f
)~1;K

n
&K 1@2
n

depends di!erentiably on mL
p
. The

remaining steps are easily analyzed using eqs. (4)}(11).

One only has to keep in mind that &
n
and (c (0)!C&

n
CT)

are positive de"nite and thus the Cholesky factorizations

and the inverses, which have to be computed, are di!er-

entiable with respect to the entries of m
p
.

5.6. Calculation of the asymptotic variance

The main result of this paper states asymptotic nor-

mality of the estimates. The asymptotic variance can be

written formally as <h
f
"lim

p?=
¸
f,p
<g

f,p
¸T
f,p

as follows

from Section 5.4, where ¸
f,p

"Jt¸
p
(¸

p
is de"ned in the

"rst paragraph of Section 5.4 and Jt denotes the matrix

of partial derivatives of the function t). The resulting

formulas are too complicated to be investigated analyti-

cally. However, actual computations provide approxima-

tions to <h
f
, where the approximation error can be made

arbitrarily small by choosing a and p suitably large. This

approximation can be calculated along the following

lines:

Recall, that the asymptotic variance <g
h

of

J¹[gL
T,h

!g
h
] for "xed h (see Lemma 3) is the limit

lim
a?=

¸a,h<e
a`h

(¸a,h)T, where the evaluation of <e
h`a

is

documented in Remark 4. Expressions for ¸a,h can be

found in the proof of Lemma 3. The convergence of this

expression is related to the magnitude of oa
p
(see the proof

of Lemma 3). Corresponding to the asymptotic variance,

<m say, of J¹[mL
p
!m

0
] it has been shown, that

J¹[mL
p
!m

0
]"J¹¸

p
[gL

T,p`f
!g

p`f
]#o

P
(1). Thus

<m"lim
p?=

¸
p
<g

f`p
(¸

p
)T, where the existence of the

limit has been shown in Section 5.4. ¸
p
can be found from

eq. (16). Lemma 6 shows, that the convergence of ¸
p
and

thus of <m depends heavily on Dop
0
D. Finally, t is a map-

ping between two "nite-dimensional vector spaces and

thus the derivative of t can be calculated without any

approximation using the results of Lemma 7 and eqs.

(4)}(11). Thus the approximation of <h
f

can be found as

Jt¸p
¸a,f`p<|

a`h
(¸a,f`p)T¸T

p
JTt by taking a and p large,

where the meaning of large depends on the location of the

systems zeros (for p) and poles (for a).

6. Conclusions

In this paper the asymptotic properties of the estimates

of system matrices are discussed, when the estimation is

performed using a particular class of subspace algo-

rithms. Here only the case, where no observed inputs are

included, is treated. The discussion centers on the asymp-

totic distribution of the estimates. The paper contains

a new consistency result, which states consistency for the

system matrices. The main result states a central limit

theorem for the estimates of the system matrices, if the

true system is contained in a generic set (see Section 3).

The estimates are found to be asymptotically normal and

the variance may be calculated, since the proof of the

CLT hinges on the linearization of the mapping attach-

ing system matrix estimates to covariance estimates. This

makes it possible, to compare for a given system the

e!ects of di!erent weighting matrices=`
f
, which is done

in Bauer et al. (1997). It is also possible to compare for

a given system the asymptotic variance to the optimal

asymptotic variance, as obtained by the maximum likeli-

hood approach. This is also done for some examples in

Bauer et al. (1997).

An important condition for the central limit theorem is

that the truncation index p has to tend to in"nity at

a certain rate, which depends on the true system. How-

ever, as has been stated already, this rate can be consis-

tently estimated. The truncation index f however is "xed

and has to ful"ll f5n in order for our result to hold.

Simulation evidence suggests, that in some situations the

choice of this index is rather important for the N4SID-

type procedure, whereas it seems to be less critical for

CCA.

Appendix: Genericity of the set M`(n)

In order to simplify the notation, here only the case of

the CCA weighting =`
f

"(!`
f
)~1@2 is considered. The

case of N4SID can be treated in a completely analogous

way.

Let #-R(n`s)È~s(s~1)@2 denote the set of quadruples

(A, B, C, D), where A and A!BD~1C are stable and D is

lower triangular with strictly positive diagonal elements.

Furthermore, let #
n
L# denote the set of all minimal

realizations. It is easy to see, that the set of all realizations

# is an open and nonvoid subset of R(n`s)È~s(s~1)@2 and

that the set of all minimal realizations #
n
is an open and

dense subset of #.

Recall the de"nition of the central matrix

XM "(!`
f

)~1@2H
f
(!~)~1HT

f
(!`

f
)~T@2 (see Section 3) and

consider the set #`
n

L#, where the corresponding

matrix XM has n distinct (nonzero) eigenvalues. Clearly

#`
n

is a subset of #
n

and the next step is to prove that

#`
n

is open and dense in #.

First note that H
f
(!~)~1HT

f
"O

f
K!~KTOT

f
"

O
f
CCTOT

f
, where C"(B, AB, A2B, 2) is the controlla-

bility matrix. Therefore, the n nonzero eigenvalues

of XM are equal to the eigenvalues of ZM "

[OT
f
(!`

f
)~1O

f
][CCT]. Since A is stable P"CCT"

+AjBBT(Aj)T is an analytic function of (A, B). This im-

plies that the autocovariances c (0)"CPCT#DDT,

c( j)"CAj~1(APCT#BDT), j'0 are analytic functions

of (A, B, C, D). Finally, since D has full rank and by the

strict minimum phase assumption it follows that the

entries of ZM are analytic functions of (A, B, C, D) on #.
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The characteristic polynomial a (j)"det(ZM !jI) and

its derivative b (j)"(d/dj)a(j) have a common root i!

ZM has some eigenvalues of multiplicity larger than one.

Thus the determinant of the corresponding Sylvester

matrix

R"

a
0

a
1

2 2 a
n

0 2 0

0 a
0

a
1

2 2 a
n

} } 0

0 2 0 a
0

a
1

2 2 a
n

b
0

2 2 b
n~1

0 2 0

0 } }

} 0

0 2 0 b
0

2 2 2 b
n~1

3R(2n~1)](2n~1)

is zero for all (A, B, C, D)3#
n
C#`

n
and nonzero for all

(A, B, C, D)3#`
n
. Since det R is an analytic function of

the parameters (A, B, C, D) it follows that #`
n

is open in

#
n
and thus in #. Now suppose that #`

n
were not dense

in #
n
. Then detR is zero on an open subset VL#

n
.

Now from the analycity of detR it follows that detR is

zero on the largest pathwise connected subset of #,

which contains V. Since # is pathwise connected, one

may conclude that detR is zero on #.

To "nd the desired contradiction now it is su$cient to

construct an element in #`
n
, i.e. to prove that #`

n
is not

empty. This is done in a recursive manner. Clearly, for

n"1, #`
1

"#
1

is nonvoid. Now suppose that the con-

jecture is true for n!1. Therefore, there exists a transfer-

function k
0
3M(n!1) for which ZM has n!1 nonzero

distinct eigenvalues. Now let (A
0
, B

0
, C

0
, D

0
)3# be

a (nonminimal) realization of k
0

with n states. Then

ZM
0

corresponding to (A
0
, B

0
, C

0
, D

0
) has one zero eigen-

value and n!1 distinct eigenvalues larger than zero.

Since #
n

is dense in #, there exists a sequence

(A
k
, B

k
, C

k
, D

k
)3#

n
which converges to (A

0
, B

0
, C

0
, D

0
).

Furthermore, by the continuity of the eigenvalues of ZM , it

follows that the eigenvalues of ZM
k
converge to the eigen-

values of ZM
0
. Thus, there must exist an index k such that

ZM
k
has n distinct nonzero eigenvalues, which proves that

(A
k
, B

k
, C

k
, D

k
)3#`

n
.

Now let M`(n)"n(#`
n
)LM(n), where n: #PM(n)

denotes the mapping attaching the transfer function

k(z)"D#C(zI!A)~1B to matrix quadrupels

(A, B, C, D). In the following, it is proved that M`(n) is an

open and dense subset of M(n). Here M (n) is endowed

with the so-called pointwise topology, which is de"ned as

follows: The transfer function is identi"ed with the se-

quence of its Markov parameters (K( j)D j3Z`). The set

(Rs]s)Z` is endowed with the product topology and the

pointwise topology is the corresponding relative topol-
ogy for transfer functions (comp. Hannan and Deistler,

1988). Consider a k
0
3M(n) and let V-M(n) be

a neighbourhood of k
0

with a continuous parametriz-

ation, i.e. with a mapping u: V>#
n
, k>(A, B, C, D),

which is continuous. (One possibility is to use e.g. the

overlapping parametrizations presented in Hannan and

Deistler (1988, Chap. 2). Now consider the concatenated

mapping kPu (k)PdetR. Since u is continuous this

mapping is continuous. Thus if k
0
3M`(n) then

detRO0 holds in a neighbourhood of k
0
, which gives

the openess of M`(n). If k
0
3M(n)CM`(n), then by the

denseness of #`
n

and by the continuity of n, one can

construct a sequence of transfer functions in M`(n),

which converges to k
0
. Thus M`(n) is dense in M (n).
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In this paper consistency and asymptotic normality of the estimates of MOESP type of subspace

algorithms are established under fairly general assumptions on the input process.

Abstract

The MOESP type of subspace algorithms are used for the identi"cation of linear, discrete time, "nite-dimensional state-space

systems. They are based on the geometric structure of covariance matrices and exploit the properties of the state vector extensively. In

this paper the asymptotic properties of the algorithms are examined. The main results include consistency and asymptotic normality

for the estimates of the system matrices, under suitable assumptions on the noise sequence, the input process and the underlying true

system. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Subspace methods; Linear systems; Asymptotic analysis; Identi"cation

1. Introduction

Subspace algorithms are used for the estimation of
linear, time-invariant, "nite-dimensional, discrete time,

state-space systems. They are an alternative to the more

classical maximum likelihood and prediction error
methods. The main advantages of subspace algorithms

are their conceptual simplicity and their numerical prop-

erties. The main idea of these algorithms lies in the
observation that the predictions of a time series from the

whole past of the outputs and possibly the whole series of
observed exogenous inputs for di!erent time horizons are
a function of the state vector and the future of the

exogenous inputs: Every optimal (in the least-squares

sense) predictor of the future of the process based on the

qThis paper was not presented at any IFAC meeting. This paper

was recommended for publication in revised form by Associate Editor

B. Ninness under the direction of Editor T. SoK derstroK m.

*Corresponding author.

E-mail addresses: dietmar.bauer@tuwien.ac.at (D. Bauer),

magnus.jansson@s3.kth.se (M. Jansson)

1On leave from S3-Automatic Control, Royal Institute of

Technology (KTH), Stockholm, Sweden.

entire past of the output process and the whole input
process is a linear function of the state and the future of

the exogenous inputs under appropriate assumptions on

the noise and the data generating process. This fact can
be used for estimation of the state (cf. Larimore, 1983;
Peternell, Scherrer & Deistler, 1996) or the estimation of

the linear mapping attaching the predictions to the state

vectors and the future of the exogenous inputs (cf. Van
Overschee & De Moor, 1994, 1996; Verhaegen, 1994).

The statistical properties of the "rst type of algorithms

are clari"ed to a large extent by Deistler, Peternell and
Scherrer (1995), Peternell et al. (1996), Bauer, Deistler

and Scherrer (1999) and Bauer (1998). Within the second

type of algorithms, the MOESP class of algorithms is
very popular. MOESP has been developed by Verhaegen
and coworkers in a series of papers (Verhaegen &

Dewilde, 1992a,b; Verhaegen & Dewilde, 1993; Ver-
haegen, 1994). The numerical properties of the latter
algorithms have been investigated thoroughly in these

papers. The consistency of this approach has been inves-
tigated in Jansson and Wahlberg (1997, 1998). The main

conclusion from these papers is that, in general, it is not
enough to impose persistence of excitation type of condi-

tions on the exogenous inputs in order to guarantee
consistency. However, there are some special cases (see

0005-1098/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
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Jansson & Wahlberg, 1998). Asymptotic normality of the

estimates of the poles of the transfer function has been
established in Viberg, Ottersten, Wahlberg and Ljung
(1993). In the current paper the asymptotic properties of

the subspace estimates using various conditions on the
exogenous inputs are considered. The analysis will center
on conditions ensuring consistency of the approach in

generic situations, and on asymptotic normality of the

system matrix estimates.
The paper is organized as follows: Section 2 introduces

the model class used for identi"cation and presents some
standard assumptions. Section 3 presents the class of

algorithms considered. Section 4 then contains the main
results of this paper, namely consistency and asymptotic

normality of the system matrix estimates. Section 5
presents some numerical examples and "nally Section 6
concludes the paper.

Throughout the paper the following notation will be
used: Bold face symbols are used for matrices and vec-

tors, lower case latin and greek symbols are used for
scalars. As usual P will denote convergence for deter-

ministic quantities and P a.s. stands for almost sure

convergence of stochastic quantities. $P will denote con-

vergence in distribution. Also the notation Sa
t
, b

t
T"

(1/¹)+T
t/1

a
t
bT
t
, where ¹ denotes the sample size, is intro-

duced. Here the initial conditions are such that

Sa
t
, b

t
T"Sa

t`j
, b

t`j
T holds for D jD4a#b, where a and

b are integers to be speci"ed in the following section.

Finally f
n
"o(g

n
) means lim

n?=
f
n
/g

n
"0.

2. Model set

In this paper the model class is restricted to linear,

"nite-dimensional, discrete time, time-invariant, state-
space systems of the form

x
t`1

"Ax
t
#Bu

t
#Ke

t
,

(1)
y
t
"Cx

t
#Du

t
#Ee

t
,

where t3Z, y
t
3Rs is the s-dimensional observed output,

e
t
3Rs, denotes the s-dimensional white noise with zero

mean and covariance matrix equal to unity. u
t
3Rm de-

notes the m-dimensional exogenous input series, which is

assumed to be independent of the noise e
t
in an appropri-

ate sense to be de"ned below. Finally, x
t
3Rn denotes the

n-dimensional state, and A3RnCn, B3RnCm, C3RsCn,

D3RsCm, E3RsCs and K3RnCs are parameter matrices.
The matrix E is assumed to be lower triangular with

strictly positive entries on the main diagonal. In particu-

lar, it is thus assumed that E is nonsingular. Throughout
the paper it will also be assumed that the matrix A is
stable, i.e. that Dj

.!9
(A)D(1, where j

.!9
(A) denotes an

eigenvalue of A of maximum modulus, and that

Dj
.!9

(A!KE~1C)D(1. Using the forward-shift operator

z, the output y
t
can be written as

y
t
"Du

t
#

=
+
j/1

CAj~1Bu
t~j

#Ee
t
#

=
+
j/1

CAj~1Ke
t~j

"
=
+
j/0

L( j)z~ju
t
#

=
+
j/0

K( j)z~je
t
.

Here zu
t
"u

t`1
, ze

t
"e

t`1
and the Markov parameters

K( j) and L( j) are de"ned by the above equality. Using

this notation the transfer functions k(z)"+=
j/0

K( j)z~j"

E#C(zI!A)~1K, and l(z)"+=
j/0

L( j)z~j"D#

C(zI!A)~1B can be de"ned. Note that the bound on the

eigenvalues of A implies the convergence of the series
de"ning k(z) on the complement of the open unit disc.

The assumption on the eigenvalues of A!KE~1C im-
plies that the inverse of k exists and is analytic on the
complement of the open unit disc.

De5nition 1 (Standard assumptions). The process y
t
, t3Z

is generated by a system of the form (1), where (A,C) is
observable and (A,[B,K]) is reachable. The white noise

e
t
is independently identical distributed (i.i.d.) with mean

zero and covariance equal to unity. Furthermore, the
third- and the fourth-order moments of the noise exist

and thus are "nite. The input process u
t
is assumed to be

independent of the noise.

Note that it is not assumed that the system is reachable

from the exogenous inputs only, i.e. that the pair (A,B) is
reachable. Also, note that it is assumed that the matrix
A describes the dynamics of k and of l, i.e. the matrix

A contains the dynamics due to the exogenous inputs as
well as the dynamics due to the noise. Therefore
(A,B,C,D) may be a nonminimal realization of l. The

assumptions on the white noise are overly strong. How-
ever, the authors decided to keep the assumptions on the
noise simple, since it will be clear from the exposition,

which properties of the noise indeed are needed. The

results will obviously hold also for much weaker require-
ments on the noise. Concerning the inputs, there will be
di!erent sets of assumptions for the results on consist-

ency and on the asymptotic normality.

3. The algorithms

In this section a brief presentation of the algorithms
considered in this paper will be given. The main fact that

is used by subspace algorithms can be formulated as
follows: Let Y

t,b
"[yT

t~1
, yT

t~2
, 2, yT

t~b
]T be the vector

of the stacked ("nite) past of the process and let

Y
t,a

"[yT
t
, yT

t`1
, 2, yT

t`a~1
]T be the vector of the stacked

("nite) future of the output process. De"ne U
t,b

and
U

t,a
analogously from u

t
, and let P

t,b
"[YT

t,b
, UT

t,b
]T.

In what follows, it is assumed that a'n and b5n.
Furthermore, let C

a
"[CT,ATCT, 2, (AT)a~1CT]T denote
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the extended observability matrix. Then the following

equation can easily be shown to hold:

Y
t,a

"C
a
x
t
#U

a
U

t,a
#N

t,a
. (2)

Here N
t,a

is equal to the contribution due to the future of

the noise and U
a

is de"ned as

U
a
"C

D 0 2 0

CB D } F

F } } 0

CAa~2B 2 CB DD.
Now the MOESP type of algorithms can be described as
follows. The discussion will be restricted to PO-MOESP

"rst (Verhaegen, 1994). At the end of Section 4 also the

algorithm denoted by PI-MOESP (Verhaegen and Dew-
ilde, 1993) will be dealt with.

Remark 2. The notation &MOESP type' is introduced in
order to emphasize that the considered class of algo-

rithms is obtained from direct modi"cations of the orig-

inal procedure proposed in Verhaegen (1994). From the
discussion it will be clear that there are several possibili-

ties to compute the intermediate steps in the estimation
algorithm. Di!erent choices lead to variations of the

algorithm, which also change the asymptotic properties
of the corresponding estimates. In order to avoid dealing
with all variants of the original algorithm MOESP, one

particular version (which is chosen somewhat arbitrarily)

is analyzed. However, the tools used in the analysis below
are the basis of the analysis for some of the variants

proposed in the literature.

In a "rst step, de"ne [HK
a,b

, UK
a
] from the regression of

Y
t,a

onto P
t,b

and U
t,a

:

[HK
a,b

, UK
a
]"TY

t,a
,A

P
t,b

U
t,a
BUTA

P
t,b

U
t,a
B,A

P
t,b

U
t,a
BU

~1
.

Note that the column space of H
a,b

, the population
analog to HK

a,b
, is contained in the column space of C

a
(cf. Verhaegen, 1994, see also below).

Remark 3. A more complex method can be obtained
easily using a similar approach as proposed in Peternell
et al. (1996): Note that U

a
is a lower triangular block

Toeplitz matrix, i.e. a matrix of the form

L
a
"C

L
0

0 2 0

L
1

L
0

} F

F } 0

L
a~1

2 L
1

L
0
D,

where L
i
3RsCm. These restrictions can be imposed in the

regression given above. Introducing more of the structure

of the problem, it is hoped to obtain better estimates (see
Peternell et al., 1996, for some simulation studies).

In a second step, the singular value decomposition
(SVD) of a weighted version of the matrix HK

a,b
is used:

Let WK `
a

HK
a,b

WK ~
b

"UK RK VK T"UK
n
RK
n
VK T

n
#RK . The diagonal

matrix RK
n
3RnCn contains the largest n singular values

contained in the diagonal matrix RK , and UK
n
3RasCn and

VK
n
3Rb(m`s)Cn denote the matrices containing the corre-

sponding singular vectors as columns. Here WK `
a

and

WK ~
b

are weighting matrices, which are assumed to be

nonsingular (for some comments on this, see Jansson
& Wahlberg, 1998). Common choices for WK `

a
are I,

(SY
t,a

!UK
a
U

t,a
,Y

t,a
!UK

a
U

t,a
T)~1@2, (SY

t,a
,Y

t,a
T!

SY
t,a

,U
t,a

TSU
t,a

,U
t,a

T~1SU
t,a

,Y
t,a

T)~1@2 or WK `
a

"W`
a

lower triangular block Toeplitz and independent of

the data. For WK ~
b

the restriction that either

WK ~
b

"(SP
t,b

,P
t,b

T)1@2 or

WK ~
b

"(SP
t,b

, P
t,b

T!SP
t,b

,U
t,a

TSU
t,a

,U
t,a

T~1

]SU
t,a

,P
t,b

T)1@2

is imposed. Here X"(Y)1@2 denotes any square root of
a positive-de"nite matrix Y such that XXT"Y. It is

straightforward to see, that the particular choice of the
square root does not a!ect the estimates.

In this second step also the order of the system has to

be determined. For the construction of order estimation
procedures in the context of subspace identi"cation
methods, see Bauer (1998). Given the true order n an

estimate of C
a

is de"ned by CK
a
"(WK `

a
)~1UK

n
. Then an

estimate of (A,C) is obtained by using the shift-invariance

property of C
a
: Note that C

a~1
A"Ct

a
, where Ct

a
is

obtained from C
a

by omitting the "rst block row, i.e.

Ct
a
"[ATCT,(AT)2CT,2,(AT)a~1CT]T. Replacing true

quantities with estimates, the least-squares estimate
AK

T
"CK s

a~1
CK t
a

is obtained. Here CK s
a~1

denotes the

Moore}Penrose pseudoinverse of CK
a~1

. CK
T

is estimated

as the "rst block row of CK
a
. There have been several

di!erent proposals on how to estimate the pair (A,C)

from an estimate of C
a

(see e.g. Viberg, Wahlberg &

Ottersten, 1997; Lovera, Falcetti & Bittanti, 1998). All
these methods basically lead to a (explicit or implicit)
de"nition of a mapping attaching estimates (AK

T
, CK

T
) to

the estimate CK
a
. It will be clear from the discussion in

Section 4, what the &key properties' of these mappings
are, in order to ensure consistency and asymptotic nor-

mality.
In the remaining step, the estimate CK

a
is used to obtain

estimates of B and D from Eq. (2). Note that U
a
is a linear

function of vec[B,D], i.e. vecU
a
"LB,D

vec[B,D], where

LB,D
depends only on C

a
. Let CM

a
3RasC(as~n) be a full-

rank matrix, such that CT
a
CM
a
"0, i.e. the columns of

CM
a

span the orthogonal complement of the space

spanned by the columns of C
a
. Then from Eq. (2) it

follows that (CM
a
)TY

t,a
"(CM

a
)TU

a
U

t,a
#(CM

a
)TN

t,a
. For the
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estimation it is tempting to replace the true quantity

CM
a

with a corresponding estimate CK M
a
3RasC(as~n), such

that CK T
a
CK M
a
"0. In this paper the choice CK M

a
"(WK `

a
)TUK

2
is

used, where UK
2
3RaC(as~n) is an orthonormal matrix

spanning the orthogonal complement of the space span-
ned by the columns of UK

n
. (Again, the choice for CK M

a
made

here is somewhat arbitrary.) Therefore, [B,D] can be
estimated as follows.2

vec[BK
T
,DK

T
]"argmin

B,D
DDvec[(CK M

a
)TSY

t,a
,U

t,a
TSU

t,a
,U

t,a
T~1]

!(I?[CK M
a
]T)LK B,D

vec[B,D]DD2

"[LK TB,D
(I?CK M

a
(CK M

a
)T)LK B,D

]~1LK TB,D

vec[CK M
a
(CK M

a
)TSY

t,a
,U

t,a
TSU

t,a
,U

t,a
T~1], (3)

where ? denotes the Kronecker product and DD ) DD the
Euclidean norm. LK B,D

denotes the matrix LB,D
, where the

estimate CK
a

is used rather than the matrix C
a
. Note that

the estimates of B and D depend on the choice of CK M
a
. Also

note that instead of using the estimate CK
a
in the de"nition

of LK B,D
the estimates AK

T
and CK

T
could be used. The

above approach of estimating B and D can be given
an instrumental variable (IV) interpretation. Since u

t
and e

t
are assumed to be uncorrelated, the IV vector

m
t
"SU

t,a
,U

t,a
T~1U

t,a
can be used to correlate out

the noise in the equation (CM
a
)TN

t,a
"(CM

a
)TY

t,a
!

(CM
a
)TU

a
U

t,a
. Indeed, minimizing the IV criterion

+T~a
t/b`1

DD((CK M
a
)TY

t,a
!(UT

t,a
?[CK M

a
]T)LK B,D

vec[B,D])nT
t
DD2
F
,

where DD ) DD
F

denotes the Frobenius norm, with respect to
B and D leads to exactly the same solution as given in (3).

This is the original MOESP procedure proposed in Ver-

haegen (1994) Another, maybe more natural, choice of

the IV vector is n
t
"(SU

t,a
,U

t,a
T)~1@2U

t,a
. However, the

estimate given in (3) is chosen in the analysis that follows.

All the alternative approaches mentioned above are eas-

ily analyzed using the tools presented in this paper.
No attempt will be made to estimate the remaining

matrices E and K, the discussion rather concentrates on

the estimation of l. This is done mainly for two reasons:
First, most of the proposed methods for the estimation of

E and K result in consistent estimates only for bPR. In

this case, the analysis becomes much more complex, and

the assumptions on the input sequence have to be
adapted. Second, the original MOESP algorithm (Ver-

haegen, 1994) was developed for the estimation of l only.
Therefore, the analysis is restricted to the estimation of
(A,B,C,D). In the next section, the asymptotic properties

of the estimates (AK
T
, BK

T
, CK

T
, DK

T
) obtained by this algo-

rithm are investigated.

2Note that vec(ABC)"(CT?A) vec(B) for matrices of compatible

dimensions.

4. Asymptotic properties

The "rst part of this section will focus on the question

of consistency of the estimates. There will be two di!erent
concepts concerning the consistency, depending on

whether the estimate of the transfer function is con-

cerned, or whether the convergence of the system matrix

estimates is investigated. From the description of the
algorithm it can be seen that the system matrix estimates

are a nonlinear function of the sample covariances of the

joint process z
t
"[yT

t
, uT

t
]T up to lag a#b!1. Up to

now, no assumptions on the input process have been

introduced, except for the independence of the noise. The

assumptions needed for the consistency result are as
follows:

De5nition 4 (=eak assumptions on the inputs). The pro-

cess u
t
is pseudostationary, ful"lling (where these equa-

tions de"ne l and c
u,u

( j)):

lim

T?=

1

¹

T
+
t/1

u
t
"l,

lim

T?=

1

¹

T~j
+
t/1

u
t
uT
t`j

"c
u,u

( j)

for j50. Furthermore, the input process is assumed to

be persistently exciting of order a#b, i.e. the block
Toeplitz matrix

C
u,u

"C
c
u,u

(0) c
u,u

(1) 2 c
u,u

(a#b!1)

c
u,u

(!1) c
u,u

(0) }

} } c
u,u

(1)

c
u,u

(1!a!b) 2 c
u,u

(!1) c
u,u

(0) D
is of full rank (a#b)m. From these assumptions it fol-

lows (cf. e.g. Hannan & Deistler, 1988, Theorem 4.1.1)
that

lim

T?=

1

¹

T~j
+
t/1

u
t
eT
t`j

"0" lim

T?=

1

¹

T
+

t/1`j

u
t
eT
t~j

, j50

In this case, u
t

and e
t

will be called uncorrelated with

slight abuse of terminology.

Let c
z,z

( j)"Ez
t
zT
t`j

, where E has to be interpreted as

expectation for random variables and as a limit of the
sample covariances for expressions involving u

t
. It is well

known (see e.g. Hannan & Deistler, 1988, Chapter 4.1)

that the given assumptions are su$cient for these limits

to exist and also for the almost sure convergence of the
sample covariances c(

z,z
(j)"(1/¹)+T~j

t/1
z
t
zT
t`j

. This con-

vergence result will be the basis for the consistency proof.

Note that this result holds, e.g. if the input process is
a trajectory generated by an i.i.d. sequence of random

variables with "nite variance, which is "ltered using a lin-

ear "lter k
u
(z)"+=

j/0
K

u
( j)z~j, having the property that

+=
j/0

DDK
u
( j)DD(R. Additionally, also a term of the form
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+h
l/1

c
l
eijl t may be added, where c

l
3Cm,!p4j

l
(p,

14l4h are such that the corresponding process is real
valued. Note that this additional term includes a mean
value term as well as sinusoids. Thus the class of input

signals for which the given assumptions hold seems to
include many typical situations. However, the authors

want to emphasize that the examples given are by no

means the only signals satisfying the weak assumptions.

A central matrix in the evaluations is the matrix
WK `

a
HK

a,b
WK ~

b
, on which the SVD is performed. It will be

shown below that for the choices of WK `
a

and WK ~
b

given in

Section 3 the weighting matrices converge to the corre-

sponding matrices where sample estimates are replaced
by population moments. The same is true for the esti-

mates obtained in the regression, i.e. HK
a,b

PH
a,b

a.s., where H
a,b

"C
a
[Ex

t
(P%

t,b
)T][EP%

t,b
(P%

t,b
)T]~1. Here

P%
t,b

denotes the residual from a regression of P
t,b

onto

U
t,a

, i.e., P%
t,b

"P
t,b

!E[P
t,b

,U
t,a

]E[U
t,a

,U
t,a

]~1U
t,a

.
Using the persistence of excitation assumption on the

input sequence, it follows that the estimated covariance
matrix, PK

b
say, of P%

t,b
converges to the population ana-

log. Moreover, the assumptions on the noise ensure that

PK
b

is nonsingular almost sure for ¹ large enough. Thus,

in order to assess the rank of H
a,b

only the rank of
Ex

t
(P%

t,b
)T has to be considered. It is easy to see that

Ex
t
(P%

t,b
)T is of full rank i! the following matrix is of full

rank:

R
a,b

"EA
x
t

U
t,a
BA

P
t,b

U
t,a
B

T
.

From Jansson and Wahlberg (1997) it follows that the

weak assumptions on the input sequence are not su$-

cient for this matrix to be of full rank. Jansson and
Wahlberg (1997) actually constructs an ARMA input

process (which is persistent of any order) and a system,

such that the rank of R
a,b

is smaller than the order of the

system. It follows from the arguments in Peternell et al.
(1996) that the rank of R

a,b
will be equal to the order of

the true system if a and b are taken su$ciently large
(some su$cient conditions for the rank constraint to
hold are given in Jansson & Wahlberg, 1998). Another

reference in this respect is Chui (1997). However, in this

paper another route will be followed, by showing that the
set of transfer functions for which the full rank condition

is not satis"ed is &thin'. Here sets of transfer functions are

equipped with the pointwise topology (see e.g., Hannan
& Deistler, 1988), sets of "nite-dimensional vectors with
the Euclidean metric. Let SM

n
denote the set of all system

matrices (A,B,C, D,E,K), where the state dimension is
equal to n, E is lower triangular with positive entries on

the main diagonal, and A and A!KE~1C are stable. Let

S
n
LSM

n
denote the subset of SM

n
, where additionally (A,C)

is observable and (A, [B,K]) is reachable. Note that SM
n

is
not the closure of S

n
in the corresponding Euclidean

space, since the stability, the strict minimum-phase con-

dition and the nonsingularity of E is maintained also for

the systems in SM
n
. Let p denote the mapping attaching

transfer functions to system matrices. Finally, let
M

n
"p(S

n
) denote the set of all pairs of transfer functions

corresponding to S
n
. Then a &thin' set is a set whose

complement in M
n

is open and dense in M
n
.

Lemma 5. The set M
n
(u

t
, a,b)LM

n
of pairs of transfer

functions (k, l)3M
n
, such that the corresponding matrix

R
a,b

is of full rank (n#am), is open and dense in M
n
.

Proof. The proof uses similar techniques as have been

used in Bauer et al. (1999): First, it will be shown that
given the sequence of population covariances of the input

sequence, c
u,u

( j), the "nite-dimensional matrix R
a,b

is an

analytic function of the system matrices on SM
n
, which is

an open and pathwise connected set in the embed-

ding Euclidean space. Thus the determinant of

R
a,b

RT
a,b

3R(n`am)C(n`am) is an analytic function of the

system matrix entries. This shows that the determinant is
either identically zero on SM

n
, or generically nonzero. The

existence of a single pair of transfer functions such that

R
a,b

is of full rank then proves the lemma.
Thus consider the entries in R

a,b
more closely. Four

types of entries have to be considered: Ex
t
uT
t`j

,Ex
t
yT
t`j

,

Ey
t
uT
t`j

and Eu
t
uT
t`j

. Here D jD4a#b!1 in all cases.
Eu

t
uT
t`j

is independent of the system matrices and hence
is an analytic function of the entries in (A,B,C,D,E,K)3SM

n
.

Next consider Ex
t
uT
t`j

. Since e
t
and u

t
are assumed to be

completely uncorrelated, one obtains: Ex
t
uT
t`j

"

E+=
i/1

Ai~1Bu
t~i

uT
t`j

, which is an analytic function of the
entries in A and B due to the assumed stability of A.

This also shows the analyticity of Ey
t
uT
t`j

. Thus, it re-
mains to show the result for terms of the form
Ex

t
yT
t`j

"Ex
t
(Cx

t`j
#Du

t`j
#Ee

t`j
)T. Now Ex

t
uT
t`j

has been treated already, Ex
t
eT
t~j

"Aj~1Kd
j;0

, where
d
j;0

is equal to 1 for j'0 and zero else. Thus the

remaining term is equal to

Ex
t
xT
t`j

"EC
=
+
i/1

Ai~1Bu
t~i

#Ai~1Ke
t~iD

]C
=
+
i/1

Ai~1(Bu
t`j~i

#Ke
t`j~i

)D
T

"
=
+

r,s/1

[Ar~1BEu
t~r

uT
t`j~s

BT(As~1)T

#Ar~1KEe
t~r

eT
t`j~s

KT(As~1)T]

due to the assumed orthogonality of u
t

and e
s
. Now

again, the analyticity of this expression as a function of

the entries in A follows from the stability of A. Therefore,
each entry in R

a,b
is an analytic function of the entries in

the system matrices (A,B,C,D,E,K)3SM
n
. As has been

stated already, the lemma then follows from the existence
of one system with the property that the corresponding

matrix R
a,b

has full rank. This follows, for example, by
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choosing l"0 and k as an arbitrary transfer function of

order n. This completes the proof. h

As has been mentioned before, this is the strongest

result one can hope to achieve, since the results in
Jansson and Wahlberg (1997) show that it is possible
to construct examples where consistency fails. Also note

that the generic set on which the consistency condition
is ful"lled depends on the (noncentral) covariances of
the input process and on the choice of the truncation

indices a,b.

Concerning the consistency, two di!erent results will
be presented: First, consistency of the transfer functions
in the sense of the pointwise topology for the true pair

(k
0
, l
0
)3M

n
(u

t
, a,b) will be stated. Then, under some-

what stronger assumptions, the consistency for the
system matrix estimates is established. A central matrix

in the derivation of the results will prove to be
XK

a,b
"WK `

a
HK

a,b
WK ~

b
(WK ~

b
)THK T

a,b
(WK `

a
)T. Note that UK

n
is

the matrix of the eigenvectors to the largest n eigenvalues
of this matrix. Thus the properties of the eigenvalue

decomposition of this matrix will be crucial. The analysis

is analogous to the presentation given in Bauer et al.

(1999).
First note that, due to the convergence of the sample

covariances to the population counterparts, the ma-

trices WK `
a

"(SY
t,a

!UK
a
U

t,a
,Y

t,a
!UK

a
U

t,a
T)~1@2 and

WK ~
b

"(SP
t,b

, P
t,b

T)1@2 are easily seen to be consistent for
some limits W`

a
and W~

b
, using, e.g. the Cholesky de-

composition to de"ne a unique square root. The assump-

tions on the noise and the nonsingularity of E ensure

the invertibility of these matrices and thus of WK `
a

and WK ~
b

a.s. for ¹ large enough. Similarily the a.s.
convergence of HK

a,b
to H

a,b
follows. Thus the a.s. con-

vergence of XK
a,b

"WK `
a
HK

a,b
WK ~

b
(WK `

a
HK

a,b
WK ~

b
)T to

X
a,b

"W`
a
H

a,b
W~

b
(W`

a
H

a,b
W~

b
)T is obtained. Now the

next lemma can be formulated.

Lemma 6. Dexne the set M`
n

(u
t
, a,b)LM

n
(u

t
, a, b) as

follows: (k, l)3M`
n
(u

t
, a,b) if the corresponding matrix

X
a,b

has exactly n distinct nonzero eigenvalues. Then

M`
n
(u

t
, a,b) is open and dense in M

n
(u

t
, a,b) and thus also

in M
n
.

Proof. Consider the matrix X
a,b

. The matrix contains
products of the following three matrices: H

a,b
, W`

a
, W~

b
.

It is straightforward to prove that all these matrices are

analytic functions of Ez
t
zT
t`j

. These terms have been

shown to be analytic functions of the entries in the system
matrices in the proof of Lemma 5. Then using standard

arguments for analytic functions (see e.g. DieudonneH ,

1969) the analyticity of the entries of X
a,b

as a function of

the entries of (A,B,C,D, E,K)3SM
n
, which is open and

pathwise connected, follows.

Next note that H
a,b

"C
a
N
a,b

, where this equation
de"nes N

a,b
. Then the nonzero eigenvalues of X

a,b
co-

incide with the eigenvalues of

K
n
"[CT

a
(W`

a
)TW`

a
C
a
][N

a,b
W~

b
(W~

b
)TNT

a,b
]3RnCn.

It is straightforward to see that also the entries of K
n

are
analytic functions of the entries of (A,B, C,D, E,K). Thus

it is su$cient to show that the property that the eigen-
values of K

n
are distinct is generic in M

n
. In order to

show this, as in Bauer et al. (1999) consider the Sylvester

matrix associated with the characteristic polynomial

det(K
n
!jI) and its derivative with respect to j. The

determinant of the Sylvester matrix is nonzero if and only

if all eigenvalues are distinct. Again, the determinant of
the Sylvester matrix is analytic in the entries of
(A,B,C,D, E,K)3SM

n
. Thus it is su$cient to show that the

set M`
n
(u

t
, a, b) is nonempty for each n.

However, this can be shown by using induction and

a continuity argument: For n"1 the conjecture is
obvious. Thus assume that there exists a pair (k

0
, l
0
) of

order n!1 such that the corresponding matrix
K

n~1
3R(n~1)C(n~1) has n!1 distinct nonzero eigen-

values. It then follows that for any non-minimal realiz-
ation (A,B,C, D,E, K)3SM

n
of (k

0
, l
0
), the corresponding

matrix K
n

has n!1 distinct eigenvalues plus a zero
eigenvalue. The proof of Lemma 5 shows that the set
of all realizations of pairs of transfer functions

(k, l)3M
n
(u

t
, a,b) is open and dense in SM

n
. Thus there exist

realizations arbitrarily close to every realization of

(k
0
, l
0
) in SM

n
. The continuity of the mapping attaching the

matrices K
n

to realizations in SM
n

together with the conti-

nuity of the eigenvalues (see e.g. Chatelin, 1983) con-
cludes the proof. h

For a comprehensive discussion of the results, also the
following technical lemma will be useful, which can be

found e.g. in the textbook (Chatelin, 1983). Similar results
may be found in Anderson (1963).

Lemma 7. Let T
n

be a sequence of symmetric matrices

converging to T
0
, where the rank of T

0
be denoted with r.

Then the following statements hold:

(i) The set of the r largest eigenvalues Mj
i,n

, i"1,2, rN of

T
n

converges to the set of nonzero eigenvalues of

T
0
, Mj

i
, i"1,2, rN. Here convergence is with respect

to the Hausdorw metric induced by the Euclidean

metric on R ( for a dexnition of the Hausdorw metric

see e.g. Chatelin, 1983). For each i, the span of all

eigenspaces of T
n

corresponding to eigenvalues j
i,n

converging to j
i
, converges to the eigenspace of T

0
corresponding to j

i
. Convergence takes place in the

gap metric. For a dexnition of the gap metric, see e.g.

Chatelin (1983).

(ii) For an eigenvalue j
i

of T
0

of multiplicity equal to

one, the eigenvalue j
i,n

of T
n
, where j

i,n
Pj

i
, fulxlls

the following equation ( for DDT
n
!T

0
DD small):

j
i,n

"j
i
#uT

i
(T

n
!T

0
)u

i
#o(DDT

n
!T

0
DD). (4)
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Here u
i
denotes an eigenvector of length one of T

0
cor-

responding to the eigenvalue j
i
. Furthermore there

exists a sequence of eigenvectors u
i,n

of length one of

T
n
, such that

u
i,n

"u
i
# +

j > jjEji

uT
j
(T

n
!T

0
)u

i
j
i
!j

j

u
j

#o(DDT
n
!T

0
DD). (5)

For a proof see e.g. Chatelin (1983). Note that point (i)

ensures the convergence of the eigenvalues and eigenspa-
ces and thus will be the interesting result for the consist-

ency results, whereas point (ii) refers to a linearization of

the eigenvalues and eigenvectors and thus is useful in the
derivation of a central limit theorem, which will be dis-
cussed at the end of this section.

In order to formulate consistency results for the system

matrix estimates, the limiting realization of the true
transfer function, l

0
, has to be determined. This realiz-

ation corresponds to the eigenvalue decomposition

of X
a,b

: Choosing C
a
"(W`

a
)~1U

n
, where the matrix

U
n
3RasCn contains the eigenvectors of X

a,b
correspond-

ing to the n largest eigenvalues ordered in size as col-

umns, "xes a state basis and thus a particular realization
of the true transfer function. This particular realization

(which depends only on the true system, but not on the

particular realization of the noise and the inputs) will be
denoted with (A

0
,B

0
, C

0
, D

0
) in the following. Note,

however, that the eigenvalue decomposition is

nonunique even for distinct eigenvalues due to the choice

of the orientation of the eigenvectors. Lemma 7 states,
that there exists a special choice, such that for the non-

zero eigenvalues, the eigenvalue decomposition is con-

tinuous (and even di!erentiable for eigenvalues of
multiplicity one). It will always be assumed that the

actual implementation of the eigenvalue decomposition

(respectively the SVD) has this type of continuity prop-
erty, i.e. that the orientation of the singular vectors is

chosen such that the corresponding SVD is continuous in

this sense at the true system. In practice, this fact might
have to be taken into account for the implementation of
the SVD. The "rst result of this paper states the consist-

ency properties of the MOESP type of algorithms.

Theorem 8 (Consistency of the MOESP type of algo-

rithms). Let the process y
t

be generated by a system of

the form (1), which fulxlls the standard assumptions. Let

the input sequence fulxll the weak assumptions, and

let a5n#1 and b5n be user dexned choices. Also let

W< `
a

and W< ~
b

be user dexned weightings subject to the

restrictions presented in Section 3. Then the following holds:

f If the true pair (k
0
, l
0
)3M

n
(u

t
, a,b), then there exist

orthonormal matrices S
T

such that

DDvec[S
T
AK

T
ST
T

!A
0
,S

T
BK

T

!B
0
,CK

T
ST
T

!C
0
, DK

T
!D

0
]DDP0 a.s.,

i.e. the estimate of the corresponding transfer function

l is a.s. consistent.

f If (k
0
, l
0
)3M`

n
(u

t
, a,b), then

DDvec[AK
T

!A
0
, BK

T
!B

0
, CK

T
!C

0
, DK

T
!D

0
]DDP0

a.s.,

i.e. the estimates of the system matrices are a.s.

consistent.

Proof. The main technical issues have been given already
before the theorem. Note that from the assumptions on

y
t
, u

t
and (k

0
, l
0
) it follows that the sample covariances

converge to their population analogs. As has been stated
already, it follows that XK

a,b
converges to X

a,b
a.s. Then

Lemma 7 implies that the eigenspaces corresponding to

the n largest eigenvalues of XK
a,b

converge to the eigenspa-
ces of the n nonzero eigenvalues of X

a,b
, where conver-

gence is in the gap metric. Recall that CK
a
"(WK `

a
)~1UK

n
.

Note that WK `
a

PW`
a

a.s. and, thus, the consistency of
CK
a

is implied by the convergence of UK
n

to U
n
. The

columns of UK
n

are identical to the eigenvectors of XK
a,b

.
Now for (k

0
, l
0
)3M`

n
(u

t
, a, b) the eigenvalue decomposi-

tion is continuous at X
a,b

, since then all eigenvalues are

distinct, and the orientation of the eigenvectors is "xed so

as to ensure the continuity (cf. the discussion before the
theorem). Thus CK

a
PC

a
follows in this case. Note that

AK
T

and CK
T

are nonlinear continuous functions of CK
a

(us-
ing the full rank property of C

a~1
) and therefore the

consistency for CK
a

implies consistency for AK
T

and CK
T
,

respectively. Here the restriction a5n#1 is used. For

(k
0
, l
0
)3M

n
(u

t
, a,b) only the existence of orthonormal

matrices S
T

such that CK
a
ST
T

PC
a

for ¹PR can be

obtained. This follows in a straightforward manner from
the convergence of the eigenspaces in the gap metric.

Thus it remains to prove the consistency for BK
T

and

DK
T
. Recall that B and D are estimated using the structure

of U
a
. In addition the matrix CK M

a
"(WK `

a
)TUK

2
has been

introduced. As has been stated already, WK `
a

PW`
a
. Ex-

amining the least squares solution of Eq. (3) it follows
that

vec[BK
T
,DK

T
]"[LK TB,D

(I?CK M
a
(CK M

a
)T)LK B,D

]~1LK TB,D

vec[CK M
a
(CK M

a
)TSY

t,a
,U

t,a
TSU

t,a
,U

t,a
T~1].

The assumptions imply that SY
t,a

, Y
t,a

TPEY
t,a

YT
t,a

and SY
t,a

,U
t,a

TPEY
t,a

UT
t,a

. Furthermore CK M
a
(CK M

a
)T"

(WK `
a

)TUK
2
UK T

2
WK `

a
"(WK `

a
)T(I!UK

n
UK T

n
)WK `

a
. Since both the

consistency of WK `
a

and the consistency of UK
n

have been

established, the a.s. convergence of CK M
a
(CK M

a
)T follows.

From the consistency of S
T
AK

T
ST
T

and CK
T
ST
T

it is also
clear that LK B,D

[I
m`s

?diag(ST
T
, I

s
)]PLB,D

a.s., where

S
T

"I
n

is used for (k
0
, l
0
)3M`

n
(u

t
, a,b). Here I

l
denotes

the l]l identity matrix. It remains to show the asymp-

totic nonsingularity of

LK TB,D
(I?CK M

a
(CK M

a
)T)LK B,D

.
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It is su$cient to show that there exists no vector

x3Rmn`sm di!erent from zero such that
(I?(CMa )T)LB,D

x"0. Recall that LB,D
vec[B,D]"

vec[Ua]. De"ning two matrices B and D of appropriate
dimensions via vec[B,D]"x, then clearly it is su$cient

to show that there exist no two matrices B and D di!er-

ent from zero such that

(CMa )TUa"(CMa )TC
D 0 2 0

C
0
B D } F

F } } 0

C
0
Aa~2

0
B 2 C

0
B DD"0.

By studying the last block column of this expression it
can be seen that this is only possible if

C
0

F

0

DD"CaT

for some matrix T3RnCs. Since Ca~1
is full rank, T

has to be zero, which in turn implies that D"0. Using

the same arguments on the second to last block column

leads to the conclusion that C
0
B"0. Continuing the

same reasoning on all block columns "nally shows
that C

0
Ai

0
B"0, i"0, 1, 2,a!2, or equivalently

Ca~1
B"0. This implies that B"0 since Ca~1

is full
rank which proves the conjecture.

Finally observe that in the case that only

(k
0
, l
0
)3M

n
(u

t
, a,b) is imposed, the matrix S

T
also ap-

pears in the convergence result for the least-squares esti-
mate BK

T
, which is easily seen from Eq. (3). This concludes

the proof. h

Remark 9. The result shown above holds equally well for

the constrained regresssion approach, i.e., when the lower

triangular block Toeplitz structure of Ua is imposed on
UK a in the regression computed in the "rst step of the
algorithm. This can easily be seen from the consistency of

HK a,b also in this case. Clearly the de"nition of M
n
(u

t
, a, b)

and M`
n

(u
t
, a,b) has to be adapted to the constrained

regression approach.

Remark 10. As has been pointed out by an anonymous
referee, results of this kind are sometimes termed generic

consistency in the context of instrumental variable

methods (see e.g. SoK derstroK m & Stoica, 1989). This obser-
vation is interesting since an instrumental variable inter-
pretation of the class of subspace algorithms treated in

this paper has been given e.g. in Viberg (1995). In view of
this, the above consistency result is quite expected.

Note that this result implies the convergence of the

system matrix estimates to the possibly nonminimal real-
ization (A

0
, B

0
, C

0
, D

0
). The key argument in the deriva-

tion proved to be the convergence of the sample

covariances to the true ones, since the estimates of the
system matrices have been shown to be continuous func-

tions of the sample covariances under the conditions on
the true pair (k

0
, l
0
). For the asymptotic normality part,

note that this nonlinear mapping can be linearized: The

most crucial part of the proof of this statement is the
linearization of the singular vectors contained in UK

n
. This

property follows from Lemma 7. The remaining steps in

the nonlinear mapping consist only of matrix inversions
and Cholesky decompositions, which clearly can be lin-

earized. For the proof of the latter, see e.g. Golub and
Van Loan (1989). Thus, it remains to impose conditions
on the exogenous inputs, such that the sample covarian-
ces for the joint process z

t
ful"ll a central limit theorem.

For given a and b the following assumptions on the input

sequence are imposed in order to ensure the asymptotic
normality of the system matrix estimates:

De5nition 11 (Strong assumptions on inputs). The input
process u

t
admits the decomposition u

t
"v

t
#s

t
, where

v
t
"+=

j/0
K

u
( j)g

t~j
, DDK

u
( j)DD4Coj for some C(R,

0(o(1, and s
t
"+h

l/1
c
l
e*jl t for some integer h, for

some vectors c
l
3Cm and frequencies !n4j

l
(n,

14l4h such that the corresponding process is real.

Here g
t
denotes an i.i.d. sequence having mean zero and

variance unity and "nite fourth moments, which is inde-
pendent of e

t
. Furthermore u

t
is persistently exciting in

the sense that the matrix C
u,u

, de"ned in the weak as-

sumptions, is nonsingular.

Remark 12. The authors want to emphasize that this is

by no means the only scenario, where the results below

hold. See the proof of Theorem 13 for the crucial proper-
ties of the input process.

The following result is immediate from the discussion

above.

Theorem 13 (Asymptotic normality). Let the process

y
t

fulxll the standard assumptions, where the input process

fulxlls the strong assumptions given above. Let a5n#1

and b5n. Furthermore, let the weighting matrices WK `a and

WK ~b be chosen according to the restrictions stated in

Section 3. Finally, let the true pair (k
0
, l
0
)3M`

n
(u

t
, a,b).

Then

J¹ vec[AK
T

!A
0
,BK

T
!B

0
, CK

T
!C

0
, DK

T
!D

0
]

$
P Z,

where (A
0
, B

0
, C

0
,D

0
) denotes the particular realization of

the true pair (k
0
, l
0
) described before Theorem 8, and

Z denotes a multivariate Gaussian random vector with

mean zero and variance equal to V.

Proof. From the discussion before the theorem, it only
remains to prove the asymptotic normality of the sample
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covariances up to lag a#b!1 for the joint process

z
t
"[yT

t
, uT

t
]T under the strong assumptions on the input

process. This result is not new (cf. e.g. Hannan & Deistler,
1988 Lemma 4.3.4). The authors however decide to give

the details of the proof, since this reveals the su$cient
properties of the input sequence, which in fact guarantee

the asymptotic normality. The main tool in the proof

is what is sometimes called Bernstein's lemma (see e.g.
Hannan & Deistler, 1988, Lemma 4.3.3): If x

T
is a

sequence of random vectors and for every f'0, e'0,
g'0 there exist sequences a

T
(e),b

T
(e) so that x

T
"

a
T
(e)#b

T
(e) and a

T
(e) has a distribution converging to

the normal distribution with mean zero and variance

R(e)PR for eP0 and PMb
T
(e)Tb

T
(e)'fN(g, ∀¹'¹

0
,

then x
T

is asymptotically normal with variance R.
Here P is used to denote probability. This lemma is used,

where x
T

"(1/J¹)+T
t/1

(z
t
zT
t`j

!c
z,z

( j)) and a
T
(e)"

(1/J¹)+T
t/1

(z
t
(e)zT

t`j
(e)!c

z,z
( j)),z

t
(e)"[y

t
(e)T,u

t
(e)T]T,

y
t
(e)"+m

i/0
K(i)e

t~i
#L(i)u

t~i
(e),u

t
(e)"+m

i/0
K

u
(i)g

t~i
#s

t
, i.e. the in"nite sums are truncated at m. The point

of truncation m can be chosen to make the probability

PMDDu
t
!u

t
(e)DD'fN arbitrarily small for all f'0. This

follows from straightforward calculations using the
Chebyche! inequality and the exponential decrease of

the coe$cients K
u
( j). The same arguments show that the

condition also holds for z
t
!z

t
(e) and suitably chosen m.

Using the Bernstein lemma again, it is observed that the
joint asymptotic normality of the covariance estimates of

z
t
is proved, if the joint asymptotic normality of the terms

(1/J¹)+T
t/1

(e
t
eT
t`j

!d
0,j

I), (1/J¹)+T
t/1

e
t
gT
t~j

, (1/J¹)+T
t/1

(g
t
gT
t~j

!d
0,j

I),(1/J¹)+T
t/1

e
t
sT
t~j

,(1/J¹)+T
t/1

s
t
gT
t~j

and (1/J¹)+T
t/1

s
t
sT
t~j

is shown for D jD4m. Here d
0,j

"1

for j"0 and zero else. Clearly this holds for the
"rst three terms. The central limit theorem for

(1/¹)+T
t/1

e*jl t[gT
t
,eT
t
] follows, e.g. from Anderson (1971),

Theorems 8.4.1. and 8.4.3). Also the joint asymptotic
normality follows. Finally,

h
+

r,s/1

c
r
cH
s C

1

¹

T~j
+
t/1

e*(jr~js )tDe~*js j

" +
r,s > jrEjs

c
r
cH
s C

e*(jr~js )(1!e*(jr~js )(T~j))

¹(1!e*(jr~js )) De~*js j

#
h
+
r/1

c
r
cH
r

¹!j

¹
e~*js jP

h
+
r/1

c
r
cH
r
e~*js j,

where the di!erence between the sample moments and

the limit is o(1/J¹). Here cH
r

denotes the complex

conjugate of the transposed vector. This completes the
proof. h

As a byproduct also the asymptotic distribution of

various invariants may be obtained:

Corollary 14. Let the assumptions of Theorem 13 hold and

let g be a diwerentiable mapping attaching the vector x3Rl

to system matrices (A,B, C,D). Denote the Jacobian matrix

of g at (A
0
,B

0
,C

0
, D

0
) with respect to the entries of

(A,B,C,D) with J. Then

J¹[g(AK
T
, BK

T
,CK

T
, DK

T
)!g(A

0
,B

0
,C

0
, D

0
)] $

P Z,

where Z is multivariate Gaussian with zero mean and

variance JVJT. Here, V is dexned in Theorem 13.

Of course, the variance V depends on the true pair
(k

0
, l
0
), the weighting matrices and the indices a, b, how-

ever, this has not been emphasized notationally. The

expressions for the asymptotic variances are quite com-
plicated and thus have not yet contributed to an analyti-
cal analysis, to the best of the authors' knowledge.

However, it is possible to approximate them on a com-

puter (cf. the next section). The corollary can then be used
to compare how di!erent choices of the truncation indi-

ces and weighting matrices a!ect the estimation accu-

racy. For example, the accuracies of the pole estimates or
the estimates of the zeros can be assessed, if the poles or,
respectively, the zeros are distinct. Another example

concerns the variance of the frequency function

C(e*uI!A)~1B#D. For a given frequency, this function
can be di!erentiated with respect to the system matrices

whereafter the result of the corollary can be applied.

Clearly, these results also can be used to compute ap-
proximative con"dence intervals around the estimated
quantities. Some illustrations of the above are given in

the next section.

Remark 15. Note that the tools used in this paper also
can be used to analyze the PI scheme (see Verhaegen

& Dewilde, 1993). This scheme di!ers from the PO

scheme only in the fact that P
t,b"U

t,b is used instead of
both the past of the input and the output process. In the

case of the PI algorithm, the de"nition of the set
M`

n
(u

t
, a,b) will be di!erent. Then the set M

n
(u

t
, a, b) e.g.

can be chosen to be the set of all pairs of transfer func-

tions (k, l), where k is rational, stable and strictly min-

imumphase with nonsingular constant term, and where
l is rational, stable and of order n. Note that in fact two

di!erent minimality concepts are used: Using the whole

past (inputs and outputs) corresponds to parametrizing
k and l jointly, i.e. mixing the dynamics as indicated in
Eq. (1). Thus, in general the realization (A,B,C,D) of l is

not ensured to be minimal. (There may be modes in
A corresponding to k which are not shared by l. Such
modes cancel when forming l from (A,B,C,D).) On the

other hand, using P
t,b"U

t,b corresponds to parametriz-

ing k and l independently and the corresponding
realization (A,B,C,D) of l will be minimal. However,

this may not lead to a system of the form (1) of the

same dimension.
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Fig. 1 . The left plot shows the asymptotic variance of the estimated transfer function at 100 equally spaced frequency points, using WK `
a

"I and b"10

for various values of a. The right plot shows the same picture for a"2 and various values of b. In both plots the input is white noise.

5. Numerical examples

In the previous section, the asymptotic normality of

the MOESP algorithm has been derived. In Theorem 13
the variance of the limiting normal distribution has been

denoted with V. As has been stated already, V depends
on the covariance sequence of the inputs, the choice of
the weighting matrices and the choice of the indices a,b.

The theorem also shows that V can be calculated from

the knowledge of the covariances of the covariance esti-
mates of the joint process z

t
"[yT

t
, uT

t
]T. This merely

amounts to calculating the linearization of the nonlinear

mapping, which is induced by the algorithm, attaching
system matrix estimates to estimates of the covariance

sequence. The major steps in this nonlinear mapping are

as follows: First a regression in Eq. (2) is performed,
which is a function of the sample covariances of the input
and the output process of lags up to a#b!1. The
linearization of the mapping attaching the estimates
[HK

a,b
, UK

a
] to the covariance estimates is straightforward

to derive. The linearizations of the mappings attaching

the weighting matrices WK `
a

and WK ~
b
, respectively, can be

calculated by using the Cholesky factors as the required

square roots. In the next step, the SVD of WK `
a

HK
a,b

WK ~
b

is

calculated. In order to linearize the mapping attaching
the matrix UK

n
to the covariance estimates, the results

given in Lemma 7 are used. The remaining steps consist
of matrix inversions and multiplications only. Note, that

these linearizations can be calculated without any ap-
proximation. In order to obtain the asymptotic variance
of the covariance matrix estimates, the truncation tech-

niques used in the proof of Theorem 13 may be used,
which leads to an approximation of the asymptotic

covariances. The approximation error depends on the
impact of the truncated part of the in"nite sum, and thus

is directly related to the magnitude of Dj
.!9

(A)D.

As can be seen from the previous paragraph, the
resulting expressions seem to be too complicated to be
evaluated analytically. However, for a given system, the

expressions can be approximated on a computer. Thus it
is possible for any system to compare the asymptotic
variance of estimates of system invariants as, e.g. the

system poles, the system zeros or the transfer function at
some frequency points. This will be done in the following.
The discussion below is provided mainly to show a po-

tential use of the theory presented above. It is not int-
ended to investigate thoroughly the e!ects of various

choices in subspace algorithms. Therefore, the reader
should note that the statements below always refer only

to a number of examples and are not general statements.
Consider the system

A"0.5, B"1, C"1, D"0, E"1, K"1,

where the input process is either unit variance white
noise, or unit variance white noise "ltered with the "lter
having system matrices

A
u
"C

0 1

!0.7 0.5D, B
u
"C

1.3

0.3D,
C

u
"[1,0], D

u
"1.

In a "rst example, the e!ect of various choices of the
indices a and b is investigated. Fig. 1 shows the result:

For the given system using white noise inputs, the asymp-
totic variance of the transfer function estimates at 100
equally spaced frequency points in the interval (!p,p) is
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Fig. 2. This "gure shows the asymptotic variance of the transfer func-

tion estimate obtained by using the CCA weight minus the correspond-

ing variance when the MOESP weight is employed. The colored input is

used and b"10.

plotted for various values of a and b"10 (left plot) and
for various values of b, where a"2 is used (right plot).
The plots indicate, that while for b the asymptotic accu-

racy increases with increasing index, for the index a the

contrary seems to be true. For the colored noise input the
plots are qualitatively the same. A similar behavior has

been noted for the accuracies of the pole estimates in

Jansson and Wahlberg (1996). However, this is not true
for all systems, i.e., for some other systems the perfor-
mance improves with increasing a. In Jansson and Wah-

lberg (1996) it is shown that the choice of the weighting

matrix WK `
a

does not in#uence the asymptotic accuracy of
the pole estimate of the system. Fig. 2 shows that an
analogous statement for the transfer function estimate is

not true: Two popular choices for the weighting are
WK `

a
"I (which will be called MOESP in the following)

and WK `
a

"(SY
t,a

,Y
t,a

T!SY
t,a

,U
t,a

T(SU
t,a

,U
t,a

T)~1

SU
t,a

,Y
t,a

T)~1@2 (which uses the same weights as the CCA

procedure of Larimore, 1983). Fig. 2 shows the di!erence

between the two asymptotic variances of the transfer

function estimates obtained by applying the CCA and,

respectively, the MOESP weights for various values of
a with b"10 and using colored noise inputs. It can be

seen that in this example the MOESP weight performs

better than the CCA weight for all choices of indices.
However, in the case with white noise inputs, the oppo-

site is true. Then the CCA weight is to be preferred. In

order to demonstrate the "nite sample properties and to
illustrate the asymptotic result, a simulation study was

performed. For the given system with the colored noise

inputs, 1000 replications of the noise and the input were

generated for each of the sample sizes ¹"100, 200 and
400, respectively. The system was estimated using the

Fig. 3. In this "gure the sample variance of the transfer function

estimates and the true asymptotic variance are plotted for sample sizes

¹"100, 200 and 400, respectively. a"2, b"10 and MOESP weight-

ing were used in all cases. 1000 replications of the colored input and the

noise sequences were used to produce each of the curves.

MOESP weighting and a"2, b"10. Fig. 3 shows the

sample variance (scaled by ¹) for the various values of

the sample size ¹. Additionally, the theoretical variance
is plotted at 100 equally spaced frequency points. The

picture clearly reveals the convergence of the estimates to

the true asymptotic values. Finally, the MOESP class of
algorithms may be compared to another class of algo-

rithms, called CCA in Peternell et al. (1996): This class
was originally proposed by Larimore (1983) and re"ned
by Peternell et al. (1996). The idea of these methods is to

estimate the state in a "rst step from the SVD of

WK `
a
HK

a,b
WK ~

b
and to obtain estimates of the system ma-

trices from regression in the system equations (1), once an
estimate of the state is known. Simulations in that paper

showed that in some cases a procedure, which will be

called CCAI in the following, is close to optimal. This
procedure uses a preliminary estimate of the transfer

function l in order to eliminate the e!ect of the future of

the inputs in Eq. (2) (For a detailed description of the
algorithm see Peternell et al. 1996.) However, Fig. 4
shows that, for the present example, the transfer func-

tion l can be estimated more accurately using MOESP in

the case of colored inputs. In the case of white noise
inputs the two procedures show no signi"cant di!erence.

Note that in this case the asymptotic accuracy of CCA is

indistinguishable from the CrameH r Rao lower bound.
The "gures also show that the bene"t from using the

more complicated method CCAI is only marginal even in

the case of colored noise inputs (in the case of white
inputs this fact can be shown analytically, see e.g. Peter-

nell et al. (1996)). These results indicate that the choice of

the identi"cation procedure seems to depend heavily on
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Fig. 4. In this "gure the asymptotic variance of the estimates of the transfer function l at 100 equally spaced frequency points is plotted for MOESP

(a"2,b"10) and the algorithms denoted with CCA and CCAI (a"b"15) (see text for an explanation). The left plot refers to white inputs (in this

case CCA and CCAI are asymptotically equivalent and thus only CCA is plotted), the right plot corresponds to colored inputs. In both plots CR

denotes the CrameH r Rao bound.

the input characteristics. In the examples it was observed

that for white noise inputs CCA of Larimore (1983)

performed better than MOESP, whereas in the colored
noise case the opposite was true. Also the choice of the

indices a and b seems to be crucial for the accuracy of the

various algorithms.

6. Conclusions

In this paper the asymptotic performance of a special

class of subspace algorithms has been investigated. The

estimate of the transfer function from the exogenous
inputs to the outputs has been shown to be a.s. consistent
for a generic set of linear systems. The results in Jansson

and Wahlberg (1997) show that this actually is the best

result that can be expected. Furthermore, for a smaller
generic set also the consistency for the system matrices

has been shown, as well as asymptotic normality using

suitable assumptions on the input process. This result
can be used to compare various procedures on the basis

of their asymptotic variance. Also, con"dence regions for

estimates of di!erent system related quantities, e.g. the
Markov parameters, can be computed using this asymp-

totic theory.

Acknowledgements

Support by the Austrian &Fonds zur FoK rderung der
wissenschaftlichen Forschung' Projekt P11213-MAT,

the foundation BLANCEFLOR Boncompagni-

Ludovisi, neH e Bildt, and the Swedish Foundation for

International Cooperation in Research and Higher Edu-
cation is gratefully acknowledged.

References

Anderson, T. W. (1971). The statistical analysis of time series. New York:

Wiley.

Anderson, T. W. (1963). Asymptotic theory for principal component

analysis. Annals of Mathematics and Statistics, 34, 122}148.

Bauer, D. (1998). Some asymptotic theory for the estimation of linear

systems using maximum likelihood methods or subspace algorithms.

Ph.D. thesis. TU Wien.

Bauer, D., Deistler, M., & Scherrer, W. (1999). Consistency and

asymptotic normality of some subspace algorithms for systems

without observed inputs. Automatica, 35(7), 1243}1254.

Chatelin, F. (1983). Spectral approximation of linear operators. New

York: Academic Press.

Chui, N. (1997). Subspace methods and informative experiments for system

identixcation. Ph.D. thesis. University of Cambridge, UK.

Deistler, M., Peternell, K., & Scherrer, W. (1995). Consistency and

relative e$ciency of subspace methods. Automatica, 31, 1865}1875.

DieudonneH , J. (1969). Foundations of modern analysis. New York:

Academic Press.

Golub, G., & Van Loan, C. (1989). Matrix computations. (2nd ed.).

Maryland: John Hopkins University Press.

Hannan, E. J., & Deistler, M. (1988). The statistical theory of linear

systems. New York: Wiley.

Jansson, M., & Wahlberg, B. (1996). A linear regression approach to

state-space subspace system identi"cation. Signal Processing, 52(2),

103}129.

Jansson, M., & Wahlberg, B. (1998). On consistency of subspace

methods for system identi"cation. Automatica, 34(12), 1507}1519.

508 D. Bauer, M. Jansson / Automatica 36 (2000) 497}509



Jansson, M., & Wahlberg, B. (1997). Counterexample to general con-

sistency of subspace system identi"cation methods. Proceedings of

SYSID+97, Fukuoka, Japan (pp. 1677}1682).

Larimore, W. E. (1983). System identi"cation, reduced order "lters and

modeling via canonical variate analysis. In H. S. Rao, & P. Dorato.

editors, Proceedings of the 1983 American Control Conference 2.

Piscataway, NJ (pp. 445}451). IEEE Service Center.

Lovera, M., Falcetti, A., & Bittanti, S. (1998). On the estimation of

the A matrix in subspace model identi"cation. Proceedings of the

MTNS+98 Conference.

Peternell, K., Scherrer, W., & Deistler, M. (1996). Statistical analysis of

novel subspace identi"cation methods. Signal Processing, 52, 161}177.

SoK derstroK m, T., & Stoica, P. (1989). System identixcation. Englewood

Cli!s, NJ: Prentice-Hall.

VanOverschee, P., & DeMoor, B. (1994). N4SID: Subspace algorithms

for the identi"cation of combined deterministic-stochastic systems.

Automatica, 30(1), 75}93.

Van Overschee, P., & De Moor, B. (1996). Subspace identixcation for

linear systems: Theory, implementation, applications. Dordrecht:

Kluwer Academic Publishers.

Verhaegen, M. (1994). Identi"cation of the deterministic part of mimo

state space models given in innovations form from input}output

data. Automatica, 30(1), 61}74.

Verhaegen, M., & Dewilde, P. (1992a). Subspace model identi"cation:

Part 1. The output-error state-space identi"cation class of algo-

rithms. International Journal of Control, 56(5), 1187}1210.

Verhaegen, M., & Dewilde, P. (1992b). Subspace model identi"cation:

Part 2. Analysis of the elementary output-error state-space model

identi"cation algorithm. International Journal of Control, 56(5),

1211}1241.

Verhaegen, M., & Dewilde, P. (1993). Subspace model identi"cation:

Part 3. Analysis of the ordinary output-error state-space model

identi"cation algorithm. International Journal of Control, 58(3),

555}586.

Viberg, M. (1995). Subspace-based methods for the identi"cation of

linear time-invariant systems. Automatica, 31(12), 1835}1851.

Viberg, M., Ottersten, B., Wahlberg, B., & Ljung, L. (1993).

Performance of subspace based state space system identi"cation

methods. Proceedings of the 12th IFAC World Congress, vol. 7,

Sydney, Australia (pp. 369}372).

Viberg, M., Wahlberg, B., & Ottersten, B. (1997). Analysis of state space

system identi"cation methods based on instrumental variables and

subspace "tting. Automatica, 33(9), 1603}1616.

Dietmar Bauer was born in St. PoK lten, Austria, in 1972. He received his
masters and Ph.D. degrees in Applied Mathematics from the Technical
University of Vienna in 1995 and 1998 respectively. From 1995 until
1998 he was with the Institute for Econometrics, Operations Research
and System Theory, Technical University of Vienna. Currently he is
visiting the Department of Electrical and Computer Engineering, Uni-
versity of Newcastle, Australia. His research interests include system
identi"cation in particular subspace algorithms and parametrisation of
linear systems, and economic applications of time series analysis. For
a recent photograph of Dietmar Bauer please refer to Automatica 35(7)
1243}1254.

Magnus Jansson was born in EnkoK ping, Sweden, in 1968. He received
the Master of Science, Technical Licentiate, and Ph.D. degrees in
electrical engineering from the Royal Institute of Technology (KTH),
Stockholm, Sweden, in 1992, 1995 and 1997, respectively. From Sep-
tember 1998 he spent one year at the Department of Electrical and
Computer Engineering, University of Minnesota, USA. He is currently
a Research Associate at the Department of Signals, Sensors and Sys-
tems, Royal Institute of Technology.

His research interests include sensor array signal processing, time
series analysis, and system identi"cation.

For a recent photograph of Magnus Jansson please refer to
Automatica 34(12) 1507}1519.

D. Bauer, M. Jansson / Automatica 36 (2000) 497}509 509



Automatica 38 (2002) 763–773

www.elsevier.com/locate/automatica

Some facts about the choice of the weighting matrices in Larimore type
of subspace algorithms�

Dietmar Bauera ; ∗, Lennart Ljungb

aInstitute f. Econometrics, Operations Research and System Theory, TU Wien, Argentinierstrasse 8, A-1040 Wien, Austria
bDivision of Automatic Control, Department of Electrical Engineering, Link(oping University, SE-581 83 Link(oping, Sweden

Received 5 October 2000; received in revised form 7 May 2001; accepted 30 October 2001

Abstract

In this paper the e/ect of some weighting matrices on the asymptotic variance of the estimates of linear discrete time state space

systems estimated using subspace methods is investigated. The analysis deals with systems with white or without observed inputs and

refers to the Larimore type of subspace procedures. The main result expresses the asymptotic variance of the system matrix estimates in

canonical form as a function of some of the user choices, clarifying the question on how to choose them optimally. It is shown, that the

CCA weighting scheme leads to optimal accuracy. The expressions for the asymptotic variance can be implemented more e3ciently as

compared to the ones previously published. ? 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Linear systems; Discrete time systems; Subspace methods; Asymptotic variance

1. Introduction

Subspace algorithms are used for the estimation of linear,

time invariant, discrete time, 5nite dimensional black box

state space models. The algorithms can be roughly divided

into Larimore type of algorithms (Larimore, 1983) (one

algorithm in this class is usually called CCA, canonical cor-

relation analysis), which estimate the state in the 5rst step

and then extract the estimates of the system matrices from

these estimates, and multivariable output error state space

(MOESP) type of algorithms (Verhaegen, 1994), which esti-

mate the observability matrix and use this estimate to obtain

estimates of the system matrices. The asymptotic properties

of the Larimore type of approach have been derived in a se-

ries of papers: Peternell, Scherrer, and Deistler (1996) derive

the consistency, Bauer, Deistler, and Scherrer (1999) prove

asymptotic normality in the case of no observed inputs,

� This paper was not presented at any IFAC meeting. This paper was

recommended for publication in revised form by Associate Editor Brett

Ninness under the direction of Editor Torsten S@oderstr@om.
∗ Corresponding author. Fax: +43-1-58801-11999.

E-mail address: dietmar.bauer@tuwien.ac.at (D. Bauer).

Bauer (1998) deals with the general case. For the MOESP

type of procedure consistency and asymptotic normality are

dealt with in Bauer and Jansson (2000), while preliminary

results on consistency can also be found in Jansson and

Wahlberg (1998) and Verhaegen (1994). The asymptotic

normality proof is very constructive in both cases, which

led to formulas for the asymptotic variance. However, these

expressions were too complicated in order to directly pro-

vide some insight into the e/ect of certain user choices.

Recently, simpli5cations of these formulas have been found

independently in Jansson (2000) for the MOESP case and in

Bauer, Deistler, and Scherrer (2000) for the Larimore type

of procedures. These simpler expressions lie at the heart

of this paper, which derives the corresponding variance

expressions as a function of a certain weighting matrix.

This expression can be used in order to optimize the user

choice with respect to asymptotic accuracy of the estimated

system.

The paper is organized as follows: In the next section the

model set and the assumptions are stated and also a short

overview of the estimation algorithms is given. Section 3

presents the main results, which are proved in Section 4.

Section 5 demonstrates the results in some numerical exam-

ples. Finally Section 6 concludes.

0005-1098/02/$ - see front matter ? 2002 Elsevier Science Ltd. All rights reserved.
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Throughout the paper the following notation will be used:

In denotes the n × n identity matrix, 0
a×b the null-matrix

of respective dimensions. Further, fT = O(gT ) means that

lim supT¿0 ‖fT =gT‖6M almost sure (a.s.). Also, fT =

o(gT ) means that limT→∞ ‖fT =gT‖= 0 a.s. Here T is used
to denote the sample size. Convergence is denoted as usual

with→ and is always meant to be a.s. if not stated explicitly.

Prime is used to denote transposition of matrices. The Kro-

necker product between two matrices A and B is denoted as

A⊗B. Finally, QT =
√

T−1 log log T is used and
:
= denotes

equality up to terms of order o(T−1=2).

2. Model Set, assumptions and algorithm

This paper deals with linear, 5nite dimensional, discrete

time, time invariant, state space systems of the form

xt+1 = Axt + But + K�t ;

yt = Cxt + Dut + �t ;
(1)

where yt ∈R
s denotes the observed output process, ut ∈R

m

denotes the observed input process and �t ∈R
s the unob-

served white noise sequence. xt ∈R
n is the state sequence.

Thus, the true order of the system is denoted by n. Here

A∈Rn×n; B∈Rn×m, C ∈Rs×n; D∈Rs×m, K ∈Rn×s are

real matrices. The system is assumed to be stable, i.e. all

eigenvalues of A are assumed to lie inside the unit cir-

cle, and strictly minimum phase, i.e. the eigenvalues of

A − KC are assumed to lie inside the unit circle. The sys-

tem matrices correspond to a pair of transfer functions: Let

H (q)=Is+C(qIn−A)
−1K and letG(q)=D+C(qIn−A)

−1B,

where q denotes the forward shift operator. Furthermore,

let Mn denote the set of all pairs of transfer functions that

permit a state space representation of the form (1) ful-

5lling the stability and the strict minimum-phase assump-

tion on H (q).

The white noise �t is for simplicity assumed to be indepen-

dently identically distributed (i.i.d.) with mean zero, non-

singular variance matrix �¿ 0 and 5nite fourth moments.

The results also hold under more general assumptions in

a martingale di/erence framework, which can be found in

Bauer et al. (1999). The input is assumed to be i.i.d. with

mean zero and nonsingular variance �u¿ 0, also having 5-

nite fourth moments. Input and noise are assumed to be in-

dependent. These set of assumptions on the noise and the

input will be termed standard assumptions in the following.

The basic structure of the algorithm can be outlined

as follows (for a detailed description see e.g. Bauer,

1998, Chapter 3): Let Y+
t;f = [y′

t ; y
′

t+1; : : : ; y
′

t+f−1]
′ and

let U+
t;f and E+t;f, respectively, be constructed analogously

using ut and �t , respectively, in the place of yt . Let

Z−

t;p = [y′

t−1; u
′

t−1; : : : ; y
′

t−p; u
′

t−p]
′. Here f and p are two

integer parameters, which have to be chosen by the user.

See below for assumptions on the choice of these integers.

Then it follows from the system equations (1) that

Y+
t;f =OfKpZ

−

t;p+UfU
+
t;f+EfE

+
t;f+Of(A−KC)

pxt−p:

Here O
′

f = [C′; A′C′; : : : ; (Af−1)′C′] and Kp = [[K; B −

KD]; (A− KC)[K; B− KD]; : : : ; (A− KC)p−1[K; B− KD]].

Further Uf is the matrix containing

[CAj−2B; : : : ; CB; D; 0s×(f−j)m]

as its jth block row and Ef contains

[CAj−2K; : : : ; CK; Is; 0
s×(f−j)s]

as its jth block row. This equation builds the basis

for all subspace algorithms, which can be described as

follows:

(1) Regress Y+
t;f onto U

+
t;f and Z

−

t;p to obtain an estimate &̂z

of OfKp and an estimate &̂u of Uf, respectively. Due

to 5nite sample e/ects &̂z will typically be of full rank.

(2) For given n 5nd a rank n approximation of &̂z by using

the SVD of Ŵ
+

f &̂zŴ
−

p = Û n)̂nV̂
′

n+ R̂. Here )̂n denotes

the diagonal matrix containing the largest n singular val-

ues in decreasing order. Û n contains the corresponding

left singular vectors as columns and V̂ n the correspond-

ing right singular vectors. Finally, R̂ accounts for the

neglected singular values. The matrices Ŵ
+

f and Ŵ
−

p

are weighting matrices, which are chosen by the user.

Further details are given below, for the moment it is suf-

5cient to note, that these possibly data-dependent ma-

trices are assumed to be nonsingular (a.s.). This leads to

an approximation ÔfK̂p = (Ŵ
+

f )
−1Û n)̂nV̂

′

n(Ŵ
−

p )−1.

The actual decomposition of this matrix into Ôf and

K̂p has no inMuence on the estimated transfer functions.

(3) Using the estimates Ôf ; K̂p and &̂u obtain the system

matrix estimates.

In the second step an order has to be speci5ed. Also, the ma-

trices Ŵ
+

f and Ŵ
−

p have to be provided by the user. In the lit-

erature several di/erent choices have been proposed. For the

matrix Ŵ
−

p typical choices are (,̂
−

p )
1=2 and (,̂

−;-

p )1=2, where

,̂
−

p =(1=T )
∑T

t=p+1 Z
−

t;p(Z
−

t;p)
′ denotes the sample variance

of Z−

t;p and X 1=2 denotes the uniquely de5ned symmetric

square root of a matrix X . Further ,̂
−;-

p =,̂
−

p −,̂z;u,̂
−1

u ,̂u; z.

Here ,̂u denotes the sample variance of U
+
t;f and ,̂u; z the

sample covariance of U+
t;f and Z−

t;p. Let ,
−

p = E,̂
−

p denote

the expectation of the covariance matrix. It follows from

the assumptions on the inputs and the noise stated above

that for any 5xed p it holds that ,̂
−;-

p − ,−

p converge

to zero. Furthermore, the results stated e.g. in Hannan and

Deistler (1988) imply, that the two norm of these matri-

ces is bounded from below and from above a.s. uniformly

for p = O((log T )a); a¡∞, i.e. for moderately growing

size. In this situation also ‖,̂
−;-

p − ,−

p ‖ → 0. It has been

shown in Bauer et al. (2000) that subject to mild condi-
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tions ensuring the convergence and invertibility of Ŵ
−

p the

choice of the weighting matrix Ŵ
−

p does not inMuence the

asymptotic variance of the estimates. Therefore, this choice

is not critical and only Ŵ
−

p = (,̂
−;-

p )1=2 will be considered.

Corresponding to Ŵ
+

f typical choices include the identity

matrix and (,̂
+;-

f )−1=2 using

,̂
+;-

f = ,̂y − ,̂y;u,̂
−1

u ,̂u;y ; (2)

where ,̂y stands for the sample variance of Y+
t;f and ,̂y;u

denotes the sample covariance of Y+
t;f and U

+
t;f. In this paper

the choice of the weighting Ŵ
+

f will be restricted depending

on the choice of the integer f: If f is chosen to be 5xed and

5nite, then Ŵ
+

f is assumed to be chosen such that ‖Ŵ
+

f −

W+
f ‖= O(QT ) for some nonsingular matrix W

+
f . For f →

∞ only Ŵ
+

f = (,̂
+;-

f )−1=2 or a weighting matrix attached

to a frequency weighting transfer function (cf. e.g. Bauer,

1998) are considered. Let the expectation be denoted with

,+;-
f . Then analogous results hold true: The error ‖,̂

+;-

f −

,+;-
f ‖2 → 0 and the two norm of ,+;-

f and thus of ,̂
+;-

f

is bounded and its smallest singular value is bounded away

from zero for f=O((log T )a); a¡∞. The name canonical

correlation analysis (CCA) will be reserved for the procedure

using

Ŵ
−

p = (,̂
−;-

p )1=2 and Ŵ
+

f = (,̂
+;-

f )−1=2: (3)

In the third step the di/erence between the two classes of

procedures appears: Whereas the Larimore type of proce-

dures use K̂p to continue, the MOESP type of procedures use

Ôf (for details see Bauer, 1998, Chapter 3). In this paper

only the Larimore type of procedures is dealt with.

3. Main results

The main idea of the considered class of algorithms is to

estimate the state in a 5rst step and to obtain the estimate of

the system using this state estimate. Consider the estimate

K̂p= ŜV̂
′

n(Ŵ
−

p )−1. Here Ŝ = [V̂
′

n(Ŵ
−

p )−1]−1
n appears to be

a convenient choice of Ŝ, where [X ]n denotes the subma-

trix containing the 5rst n columns of X . Note that the only

function of Ŝ is to change the coordinate system of the state.

The estimated transfer function is identical for any choice of

nonsingular Ŝ. For the choice given above this is true (a.s.

asymptotically), if the 5rst n columns of Kp are linearily

independent (in one and thus in any representation). This

holds true on a generic subset of Mn, which is denoted by

M+
n . Let (Âc; B̂c; Ĉc; D̂c; K̂c) denote the estimated system,

which has been converted into the canonical form induced

by the restriction that [Kp]n= In and let (Ac; Bc; Cc; Dc; Kc)

denote the corresponding representation of the true system.

Since the entries in a canonical form are system invariants,

the estimation accuracy of two procedures can be assessed

by comparing the asymptotic covariance matrix of the vec-

torization of the estimated system in a canonical form. This

is done in the main result of this paper:

Theorem 1. Let the output process yt be generated by

a system (Ac; Bc; Cc; Dc; Kc); such that the corresponding

pair of transfer functions is in M+
n . The noise and the in-

put sequence are assumed to ful9l the standard assump-

tions. Assume that the Larimore type of procedure using

Ŵ
−

p = (,̂
−;-

p )1=2 is used to estimate the system; where the

true order is assumed to be known. Furthermore; it is as-

sumed that no time delay is present; i.e. the entries in Dc

are estimated and not restricted to zero. Additionally; it

is assumed; that p¿−d log T=(2 log |30|); 1¡d¡∞ and

p = o((log T )a) holds for some a¡∞; where T denotes

the sample size and 30 = 4max(Ac − KcCc); where 4max de-

notes an eigenvalue of maximum modulus. Corresponding

to Ŵ
+

f it is assumed; that either f¿ n is 9xed and Ŵ
+

f

is chosen such that there exists a nonsingular matrix W+
f ;

where ‖Ŵ
+

f − W+
f ‖ = O(QT ); or that f→∞ and Ŵ

+

f is

chosen according to Eq. (2). Then the asymptotic variance

of vec[Âc−Ac; B̂c−Bc; Ĉc−Cc; D̂c−Dc; K̂c−Kc] is of the

form

M1M
′
1 +M2[,

−
∞ ⊗ {W †[Ef(If ⊗ �)E′

f](W
†)′}]M ′

2; (4)

where W † = (O′
fW2Of)

−1
O
′
fW2; W2 = lim (W+

f )′W+
f for

T →∞. The matrices M1 ∈R
[(n+s)(n+m)+ns]×s(n+m) and

M2 ∈R
[(n+s)(n+m)+ns]×∞ do not depend on f or W+

f .

The theorem also has an immediate consequence, which

is stated in the following corollary:

Corollary 2. Expression (4) as a function of W+
f is mini-

mized by the CCA choice of the weightingW+
f =(,+;-

f )−1=2

for each value of f. The minimum variance decreases mono-

tonically in f for the CCA case.

This theorem clari5es a long standing question about the

optimal choices of the weighting matrices for the algorithms

dealt with in this contribution. The implications of the theo-

rem are that in the situation of known system order it is al-

ways (i.e. for any choice off) optimal to use the CCAweight-

ing scheme in any situation, where no input is present or the

observed input is white noise. The theorem also suggests the

use of f→∞ at some rate, which is in accordance with ear-

lier simulation studies (cf. Bauer, 1998). It also shows that

no choice of f 5nite can achieve the optimal accuracy in

all cases, since the decrease with respect to f is in general

strict. The subset ofMn, where 5nite f also leads to optimal

estimates consists of ARX systems, as is easily seen from

the form of the essential term of the asymptotic variance of

the parameter estimates. Furthermore, the theorem provides

a measure of how much of attainable accuracy one loses by

using any method other than the optimal. The amount of ac-

curacy, which is lost by using a small f is determined in
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the case of using optimal weights by the magnitude of the

noise zeros, as they govern the rate of exponential decrease

in the matrix E−1
f Of.

Note that in the theorem it has been assumed that p tends

to in5nity as a function of the sample size. Therefore, the

above expression should be viewed as the limit of the re-

spective quantities for p→ ∞. It will be a part of the proof

to demonstrate that this limit exists.

4. Proof of Theorem 1

The main structure of the proof is as follows: First, the

problem of calculating the asymptotic variance of the esti-

mated system matrices is reduced to the corresponding prob-

lem for the terms 〈�t ; xt〉; 〈�t ; ut〉 and K̂p − Kp. Here and

below, the notation 〈at ; bt〉= T−1
∑T−f

t=p+1 atb
′

t will be used

with slight abuse of notation neglecting the dependence on

the sample size T in the notation and using the same symbol

for both the series {at}t∈Z and the vector random variable

at . Note that the last matrix is of size n × p(s + m) and

thus the number of columns increases with the sample size

under the assumptions of the theorem. Therefore, it is nec-

essary to de5ne the notion of asymptotic normality for vec-

tors of growing size. Here asymptotic distribution is to be

understood for the vectorization of the matrix in the sense

of (Lewis & Reinsel, 1985): A zero mean vector vT ∈Rp(T )
is said to be distributed asymptotically normal, if for any

vector lT ∈Rp(T ), such that
• supT¿0 ‖lT‖16M for some M ¡∞,

• ‖[l′T ; 0]− l′‖1 → 0 for T → ∞ for some vector l∈ ‘1,
• E(l′T vT )2 → c for T → ∞ for some 06 c¡∞,

the scalar product l′T vT converges in distribution to a normal

random variable.

In the next step it is shown that these three terms are

uncorrelated and asymptotically normally distributed. The

essential term will turn out to be the last one, as this is the

only one depending on the user choices. The rest of the proof

then deals with this term. The main steps are summarized

in lemmas. The 5rst lemma deals with the reduction of the

problem to the three terms mentioned before:

Lemma 3. Let the assumptions of Theorem 1 hold. Then

vec[Âc − Ac; B̂c − Bc; Ĉc − Cc; D̂c − Dc; K̂c − Kc]

= QM 1vec

[〈

�t ;

[

xt

ut

]〉]

+ QM 2;p vec[K̂p −Kp]

+ oP(T
−1=2)

where fT = oP(T
−1=2) means that T 1=2fT → 0 in proba-

bility. Here [Kp]n = In and [K̂p]n = In is assumed. Fur-

ther supp¿0 ‖ QM 2;p‖1¡∞; ‖[ QM 2;p; 0] − QM 2‖1 → 0 and

‖ QM 2‖Fr¡∞. QM 1 and QM 2 do not depend on f.

Proof. Consider the estimation of the system matrices using

the estimate of the state sequence x̂t =K̂pZ
−

t;p: This is done

using ordinary least squares. Let (Â; B̂; Ĉ; D̂; K̂) denote these

estimates and let (A; B; C; D; K) denote the corresponding

limits. In order to obtain the estimates (Âc; B̂c; Ĉc; D̂c; K̂c) a

state space transformation has to be applied. However; since

this transformation is a nonlinear di/erentiable mapping of

the system matrix estimates; it is su3cient to prove the result

for (Â; B̂; Ĉ; D̂; K̂).

The expressions for the estimation error are easily derived

to be the following. Here (A; B; C; D; K) denotes the true

system in the representation according to [Kp]n= In and so

does the true state xt . Let ;t = x̂t − xt . Then
[Ĉ − C; D̂ − D] = [〈�t − C;t ; x̂t〉; 〈�t − C;t ; ut〉]M̂

−1
;

[Â− A; B̂− B] = [〈;̃t+1; x̂t〉; 〈;̃t+1; ut〉]M̂
−1
;

[K̂ − K] = 〈;̃t+1 + But − K�̂t ; �̂t〉〈�̂t ; �̂t〉−1; (5)

where

M̂ =

[

〈x̂t ; x̂t〉 〈x̂t ; ut〉
〈ut ; x̂t〉 〈ut ; ut〉

]

and ;̃t+1 = ;t+1 + K�t − A;t . Since
√
T 〈�t − C;t ; x̂t〉 and√

T 〈�t − C;t ; ut〉 converge in distribution (see e.g. Bauer,
1998), it follows that the inverse can be replaced with its

expectation without changing the asymptotic distribution.

Now 〈x̂t ; ut〉 → 0 due to the white noise assumption on

the inputs and thus the estimation errors in Ĉ and in D̂,

respectively, can be treated separately. The same arguments

hold for Â and B̂. Thus consider Ĉ − C 5rst:

Ĉ − C :
= 〈�t − C;t ; x̂t〉〈x̂t ; x̂t〉−1

:
= 〈�t ; xt〉)−1

x − 〈C;t ; xt〉)−1
x

:
= 〈�t ; xt〉)−1

x − C(K̂p −Kp),
−

p K
′

p)
−1
x ;

where )x = Extx
′

t . Here the error bound ‖K̂p − Kp‖ =
o(QTpf) has been used to show e.g. that 〈�t ; x̂t〉 := 〈�t ; xt〉.
Next deal with K :

K̂ − K :
= 〈;t+1; �t〉�−1 + 〈−A;t − K(�̂t − �t); �t〉�−1

:
= (K̂p −Kp)

[

Is

0[p(s+m)−s]×s

]

:

This follows from the error bound cited above and the

uniform convergence of the sample covariances, as e.g.

〈;t ; �t〉= (K̂p −Kp)〈Z−

t;p; �t〉 − QA
p〈xt−p; �t〉 := 0 and also

the fact that 〈ut ; �̂t〉=0 has been used. Corresponding to the

estimation error in A it turns out to be more convenient to

consider QA = A − KC instead. The result for A then is im-

mediate, of course:

Q̂A− QA
:
= 〈;t+1 − QA;t ; xt〉)−1

x + 〈;t+1; C′�−1(�t + Dut)〉

:
= [K̂p −Kp; 0

n×(m+s)]

[

H1; p

,−

p

]

K
′

p)
−1
x
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− QA(K̂p −Kp)(,
−
p )K

′
p)

−1
x

+[K̂p −Kp]m+s

[

C

�uD
′�−1C

]

;

where again
:
= denotes equality up to terms of order

o(T−1=2). Further,

B̂− B
:
= 〈;̃t+1; ut〉〈ut ; ut〉−1
:
= (K̂p −Kp)EZ

−
t+1;pu

′
t(Eutu

′
t)
−1

+K〈�t ; ut〉(Eutu′t)−1:

Finally,

D̂ − D
:
= 〈�t − C;t ; ut〉〈ut ; ut〉−1 :

= 〈�t ; ut〉(Eutu′t)−1:

The remaining claims of the proof follow easily from

these representations. In particular, the convergence prop-

erties for M2;p are derived using the exponential decrease

in the elements of Kp. This completes the proof of the

lemma.

The next lemma deals with the second order properties of

the essential terms of the last lemma:

Lemma 4. Under the assumptions of Theorem 1√
T vec[〈�t ; xt〉];

√
T vec[〈�t ; ut〉] and

√
T vec[K̂p − Kp]

are asymptotically uncorrelated.

Proof. In the proof again all system matrices are assumed

to be in the canonical form. It has been shown in Bauer et

al. (2000) that

(K̂p −Kp) =O
†
f(&̂z − &z)PK +O(‖&̂z − &z‖

‖Ŵ−

p −W−
p ‖+ ‖&̂z − &z‖2); (6)

where &z=EY
+
t;f(Z

−
t;p)

′(,−
p )

−1 and O
†
f=(O

′
fW2Of)

−1
O
′
fW2.

HereW2=limT→∞ (W
+
f )

′W+
f ; where the limit also includes

the possibility of f tending to in5nity in the CCA case. For

any of the proposed weighting matrices; ‖Ŵ−

p − W−
p ‖ =

O(QTfp). This follows from the uniform convergence of

the sample covariances as stated e.g. in Hannan and Deistler

(1988; Theorem 5:3:2). It also follows that ‖&̂z − &z‖2 =
o(T−1=2). Therefore for the asymptotic distribution the term

O
†
f(&̂z − &z)PK is the essential one; the remaining terms

do not show up in the asymptotic distribution; as they are

o(T−1=2).

PK depends on p but this is not reMected in the notation.

Note the fact, that this expression does not depend on the

weighting Ŵ
−

p and that with respect to the weighting Ŵ
+

f

only the expectation W+
f has an inMuence. Since p → ∞ as

a function of the sample size it follows that ‖[&z ; 0fs×∞]−
OfK‖2 = O(p|30|p) = o(T−1=2), where 30 denotes a zero

of H (q) of maximum modulus. Then let Z−;-
t;p = Z−

t;p−

,̂z;u,̂
−1

u U+
t;f. Therefore,

&̂z − &z
:
= 〈EfE

+
t;f ; Z

−;-
t;p 〉〈Z−;-

t;p ; Z−;-
t;p 〉−1

:
= Ef〈E+t;f ; Z−

t;p〉(,−
p )

−1

as follows from straightforward calculations using

‖〈E+t;f ; U+
t;f〉‖ = O(QTf); ‖〈Z+t;p; U+

t;f〉‖ = O(QT

√

fp).

Here the white noise assumption on the input is used in the

last equation.

Note that

E vec[〈�t ; xt〉] vec[〈�t ; xt〉]′ =
1

T 2

T−f
∑

t; s=p+1

E(xtx
′
s ⊗ �t�

′
s)

which essentially is equal to 1=T ()x ⊗ �), where )x =

K,−
∞K

′ = Extx
′
t and essentially again indicates equality

up to terms of order o(T−1=2). Analogously, it follows that

TE vec[〈�t ; ut〉] vec[〈�t ; ut〉]′ :
= (�u ⊗�), where �u = Eutu

′
t

and

TE vec[〈�t ; xt〉] vec[〈�t ; ut〉]′ = 0:
Next, consider the cross moments between 〈�t ; xt〉 and
K̂p − Kp. Note that for the (i; j)th component of

vec[〈�t ; xt〉] :
= vec[〈�t ;KpZ

−
t;p〉] and any linear combina-

tion
√
Tv′O

†
fEf〈E+t;f ; Z−

t;p〉(,−
p )

−1PKVp for some vectors

v∈Rn and Vp ∈Rp(s+m) such that ‖[V ′
p; 0

1×∞]−V ′‖1 → 0,

where V is a vector in ‘1 having elements decreasing

exponentially, one obtains that

E

T−f
∑

t; s=p+1

�t; i(Kp;jZ
−
t;p)(v

′
O
†
fEfE

+
s;f)(V

′
pP

′
K(,

−
p )

−1Z−
s;p)

=
∑

t

t
∑

s=Qs

E�t; i(v
′
O
†
fEfE

+
s;f)

×(EKp;jZ
−
t;p(Z

−
s;p)

′)(,−
p )

−1PKVp

=
∑

t

t
∑

s=Qs

E�t; i(v
′
O
†
fEfE

+
s;f)

×K̃p;j

[

Ht−s;p

,−
p

]

(,−
p )

−1PKVp

=
∑

t

t
∑

s=Qs

E�t; i(v
′
O
†
fEfE

+
s;f)

×K̃p;j

[

Õt−sKp

Ip

]

PKVp + o(T )

= o(T );

where K̃p;j = [Kp;j ; 0
1×(m+s)(t−s)], the sum is over

t = p + 1; : : : ; T − f and where Hj;p = EZ
−
t; j(Z

−
t−j;p)

′ =

ÕjKp,
−
p + o(T−1=2) and Qs = max{p + 1; t − f + 1}.

Here mostly KpPK = 0 and ‖Hj;p(,
−
p )

−1 − ÕjKp‖=
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o(T−1=2) for p as speci5ed in the theorem is used (for a

proof of the latter statement see e.g. Bauer, 1998). The latter

fact is used in the replacement involved in the third equality.

The convergence follows from the convergence assumptions

on Vp and the analogous property of Kp. These properties

allow the replacement of the limit for p → ∞ by the ex-

pression obtained for p=∞, which will be done frequently

in the following in order to simplify notations. For the

covariance of elements of 〈�t ; ut〉 with v
′(K̂p−Kp)Vp ana-

logous arguments hold. Therefore, the three terms are

asymptotically uncorrelated. This completes the proof of

the lemma.

Thus the only e/ect of the user choices f and Ŵ
+

f is hid-

den in the termK̂p−Kp, which can be examined indepen-

dent of the other terms due to the uncorrelatedness. Consider

the variance of O
†
f〈EfE

+
t;f ; Z

−
t;p〉(,

−
p )

−1PKvp for some vec-

tor vp ∈R
p(m+s) such that ‖[v′p; 0

1×∞]− v′‖1 → 0 for some

vector v in ‘1 having elements decreasing exponentially:

1

T 2

T−f
∑

s; t=p+1

EẼ
+

t;f(Z
−;-
t;p )′ṽpṽ

′
pZ

−;-
s;p (Ẽ

+

s;f)
′

=
1

T

f−1
∑

l=1−f

EẼ
+

t;f(Ẽ
+

t+l;f)
′(ṽ′pEZ

−
t;p(Z

−
t+l;p)

′ṽp)+o(T
−1):

(7)

Here Ẽ
+

t;f=O
†
fEfE

+
t;f and ṽp=(,

−
p )

−1PKvp. Note that for

l=0 the part due to E+t;f is equal to O
†
fEf(If⊗�)E

′
f(O

†
f)

′.

This is the central term in the expression for the asymp-

totic variance given in the theorem. From Lemma 3 it fol-

lows, that a matrix QM 2 as used above exists. The con-

struction of this matrix will be clari5ed below. The theo-

rem then is proved, if for any vectors vp; Qvp postmultiply-

ing K̂p − Kp in the equations for the transformed sys-

tem (Âc; B̂c; Ĉc; D̂c; K̂c) analogous to Eqs. (5) it holds that

Ev′pP
′
K
(,−
p )

−1Z−
t;p(Z

−
t−j;p)

′(,−
p )

−1PK Qvp → 0; j �=0. It is

in this part of the proof, where the white noise assumption

on the input is essential. Most of the arguments used up to

now hold also for more general inputs, in particular, an ana-

logue to the variance expression given above exists. It is

convenient to split the proof into two separate cases.

4.1. The case n6 (s+ m)

On examining the expressions given in Lemma 3, one

observes that only a number of terms are multiplying

K̂p−Kp: These terms converge to ,
−
∞K

′; [H̃
′

1; ,
−
∞]

′
K

′,

[0m×s; Im; 0
m×∞]′ and [Is; 0

s×∞]′, where convergence is in

‘1 norm as required above for the vectors vp. All these

matrices have elements decreasing exponentially. Note that

EP′
K(,

−
∞)

−1Z−
t;∞(Z

−
t−j;∞)

′(,−
∞)

−1PK

=P′
K(,

−
∞)

−1

[

Hj

,−
∞

]

(,−
∞)

−1PK

=P′
K(,

−
∞)

−1

[

0j(s+m)×∞

I∞

]

PK

=P′
K

[

0j(s+m)×∞

(,−
∞)

−1

]

PK =

[

0j(s+m)×∞

(,−
∞)

−1

]

PK (8)

evaluating the expression for p=∞ rather than dealing with

the limit. HereHj=Hj;∞. Using the exponential decrease,

however, it is straightforward to show that in all situations,

where the expression occurs, the limit and the expression

for p=∞ coincide. The next to last equality follows from

the block matrix inversion formula, which gives

(,−
∞)

−1 =

[

0(s+m)×(s+m) 0(s+m)×∞

0∞×(s+m) (,−
∞)

−1

]

+

[

Is+m

−(,−
∞)

−1
H

′
1

]

-−1
= [Is+m;−H1(,

−
∞)

−1];

(9)

where -= = (=z(0) − H1(,
−
∞)

−1
H

′
1)¿ 0. The projection

P′
K
= I∞ −K

′[In; 0
n×∞] and thus the last equality follows

from n6 (s+m). Premultiplying with the above-mentioned

terms from the left shows, that the terms for l �=0 in Eq. (7)

do not matter in the case n6 (s+ m). Take for e.g.

EK[H′
1; ,

−
∞]P

′
K(,

−
∞)

−1Z−
t;∞(Z

−
t−j;∞)

′(,−
∞)

−1PK

=K[H′
1; ,

−
∞]

[

0j(s+m)×∞

(,−
∞)

−1

]

PK = 0:

This shows, that in the case n6 (s + m) only the term for

l = 0 in Eq. (7) is nonzero and thus the theorem holds in

this case.

4.2. The case n¿ (s+ m)

The theorem gives the asymptotic variance of the system

matrix estimates (Âc; B̂c; Ĉc; D̂c; K̂c). In order to show that

only the term for l=0 in Eq. (7) is nonzero, it is su3cient to

show this fact for any invertible (possibly nonlinear) trans-

formation of these matrices. It proves to be convenient to

consider ( Q̂Ac; Q̂Bc; Ĉc; D̂c; K̂c), where Q̂Ac = Âc − K̂cĈc; Q̂Bc =
B̂c−K̂cĈc. These estimates are obtained by transforming the
estimates of the subspace algorithm (Â; B̂; Ĉ; D̂; K̂) into the

particular canonical form de5ned by [Kp]n = In, which is

done using the transformation matrix Ŝ, which is de5ned as

Ŝ=[[K̂ ; Q̂B]; : : : ; Q̂A
n−1

[K̂ ; Q̂B]]n. Then e.g. Ĉc−Cc= ĈŜ−C=
(Ĉ −C)Ŝ +C(Ŝ − In), where In is the limit of Ŝ as follows
in a straightforward fashion from the consistency results for

K̂p and the sample covariances used in the regression. It

follows from the normalization [K̂p]n = [Kp]n = In that in
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the current case the contribution ofK̂p−Kp to the error in

B̂c; D̂c and K̂c converges to zero (see Lemma 3). Therefore

only Ĉc and Âc have to be dealt with.

Note that the columns of Ŝ follow a recursive pattern.

Therefore, denoting T̂ i= Q̂A
i

[K̂ ; Q̂B]; Ti= QA
i
[K; QB] the follow-

ing recursion is obtained for i = 0; 1; : : ::

T̂ i+1 − Ti+1

= Q̂A(T̂ i − Ti) + ( Q̂A− QA)Ti

:
=;K

[

H1

,−

∞

]

K
′)−1
x Ti− QA;K,

−

∞
K

′)−1
x Ti+ QA(T̂ i−Ti)

:
= ;K

[

H1

,−

∞

]

K
′)−1
x Ti − QA

i+1
;K,

−

∞
K

′)−1
x T0

+

i
∑

j=1

QA
j
;K

{[

H1

,−

∞

]

K
′)−1
x − ,−

∞
K

′)−1
x

QA

}

Ti−j ;

where ;K = [K̂p; 0
n×∞] − K and where K = K∞ as

well as ;K[Is+m; 0]
′ = 0 are used. The recursion is started

at T̂ 0 = T0.

The next lemma shows that for the second and the third

term in this recursion only the term corresponding to l= 0

in Eq. (7) is of relevance:

Lemma 5. Under the conditions of Theorem 1 for j¿ 0

holds that

ET ′

0)
−1
x K,−

∞
Z̃
−

t;∞(Z̃
−

t−j;∞)
′ = o(1);

E{)−1
x K[H′

1; ,
−

∞
]− QA

′

)−1
x K,−

∞
}Z̃

−

t;∞(Z̃
−

t−j;∞)
′

= o(1);

where Z̃
−

t;∞ = P′

K
(,−

∞
)−1Z−

t;∞. Here K[H′

1; ,
−

∞
]K′ =

Ext(xt+1)
′ = )xA

′ has been used.

Proof. For the 5rst term note that

ET ′

0)
−1
x K,−

∞
Z̃
−

t;∞(Z̃
−

t−j;∞)
′

=T ′

0)
−1
x K,−

∞
P′

K(,
−

∞
)−1

[

0j(s+m)×∞

I∞

]

PK

=T ′

0)
−1
x (K− )x[In; 0

n×∞](,−

∞
)−1)

[

0j(s+m)×∞

I∞

]

PK

= − T ′

0[In; 0
n×∞](,−

∞
)−1

[

0j(s+m)×∞

I∞

]

PK

= − [Is+m; 0
(s+m)×∞](,−

∞
)−1

[

0j(s+m)×∞

I∞

]

PK = 0:

Here again the matrix inversion lemma has been used to-

gether with the property that T0 = [In]s+m. The expressions

are evaluated at p =∞ rather than dealing with the limit;

which is possible due to the exponential decrease in K.

The conjecture for the second term follows in a similar

manner from:

E{)−1
x K[H′

1; ,
−

∞
]− QA

′

)−1
x K,−

∞
}Z̃

−

t;∞(Z̃
−

t−j;∞)
′

= {)−1
x K[H′

1; ,
−

∞
]− QA

′

)−1
x K,−

∞
}

×P′

K(,
−

∞
)−1

[

0

I∞

]

PK

= {)−1
x K[H′

1; ,
−

∞
]− QA

′

)−1
x K,−

∞
}

×K
′[In; 0](,

−

∞
)−1

[

0

I∞

]

PK

= − [C′; 0n×m]T ′

0[In; 0
n×∞](,−

∞
)−1

[

0

I∞

]

PK = 0;

where the dimensions of the zero blocks are omitted for

notational simplicity. This completes the proof of the

lemma.

Therefore, the strategy in the remaining part of the proof

will be to isolate these terms in all the occurring expressions.

Note that due to the normalization ofKp it follows that each

column of In is equal to a column of Ti for some index i.

Let Qn= �n=(s+m)�, where �x� denotes the greatest integer
smaller than x. Further let Qm=n− Qn(s+m). Then the columns

of Ti ; 06 i¡ Qn and the 5rst Qm columns of T Qn are vectors

of the canonical basis. Therefore, the columns of Ĉc − Cc
are equal to the columns of the following expressions for

the respective integers i:

(Ĉ − C)T̂ i−1 + C(T̂ i−1 − Ti−1)

:
= 〈�t ; xt〉)

−1
x Ti−1 − C QA

i−1
;K(,

−

∞
)K′)−1

x T0

+

i−2
∑

j=0

C QA
j
;K

{[

H1

,−

∞

]

K
′)−1
x

−,−

∞
K

′)−1
x

QA
}

Ti−j−2: (10)

Application of the results of the last lemma also shows

the result for Ĉc − Cc and thus only Âc − Ac is left for

investigation.

Note that Q̂Ac − QAc
:
= −(Ŝ − In) QA+ ( Q̂A− QA) + QA(Ŝ − In).

If i is such that Ti is a block column of the identity matrix,

then ŜTi = T̂ i and thus

−(Ŝ − In) QATi−1 + ( Q̂A− QA)Ti−1 + QA(Ŝ − In)Ti−1

=− (Ŝ − In)Ti + ( Q̂A− QA)Ti−1 + QA(T̂ i−1 − Ti−1) = 0:

This is also true for the 5rst Qm columns of T Qn−1. Therefore,

it remains to deal with the matrix W = [w′

0; : : : ; w
′

Qn−1; w̃
′

Qn]
′,

whereW denotes the matrix built of the last s+m columns of
QA. Here wi ∈R

(s+m)×(s+m); i = 0; : : : ; Qn − 1, w̃ Qn ∈R
Qm×(s+m).
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In order to unify the notation let w Qn=[w̃′
Qn; 0

(s+m)×(s+m− Qm)]′,

s Qn−1=[0
(s+m− Qm)× Qm, Is+m− Qm]

′, s Qn=[I Qm; 0
Qm×(s+m− Qm)]′, Qs Qn−1=

[Is+m− Qm; 0
(s+m− Qm)× Qm]′ and Qs Qn = [0 Qm×(s+m− Qm); I Qm]

′, respec-

tively. Finally de5ne

Y =

[
H1

,−
∞

]
K

′)−1
x :

Then for i = Qn− 1 and i = Qn one obtains

(T̂ i − Ti − (Ŝ − In) QATi−1)si

=−
Qn∑

j=0

(T̂ j − Tj)wj Qsi + (T̂ i − Ti)si

=−

Qn∑

j=1

;KYTj−1wj Qsi + QA
j
;K(,

−
∞)K

′)−1
x T0wj Qsi

+;KYTi−1si − QA
i
;K(,

−
∞)K

′)−1
x T0si

−
Qn∑

j=1

j−1∑

l=1

QA
l
;K{Y − ,−

∞K
′)−1

x
QA}Tj−l−1wj Qsi

+

i−1∑

j=1

QA
j
;K{Y − ,−

∞K
′)−1

x
QA}Ti−j−1si :

It has been shown before, that for the terms postmultiplied

by T0 and the terms including {Y − ,−
∞K

′)−1
x

QA} only the
covariance of the respective term matters in the asymptotic

variance as stated in Eq. (7), but not the covariances at lags

l �=0. The only terms of concern are the remaining ones,

which are equal to

;KY


Ti−1si −

Qn∑

j=1

Tj−1wj Qsi




=;KY







0(s+m)×(s+m)

0(s+m)×(s+m)

...

0 Qm×(s+m)

Is+m




+




−w1

−w2

...

−w̃ Qn

0(s+m)×(s+m)







Qsi :

Denoting the matrix in brackets on the right-hand side

with W̃ we obtain QAW̃ = −T0w1. Also, AW̃ = QAW̃ +

T0[C
′; 0n×m]′W̃ = T0V for some matrix V . Therefore

EW̃
′
)−1
x K[H′

1; ,
−
∞]P

′
K(,

−
∞)

−1Z−
t;∞(Z

−
t−j;∞)

′(,−
∞)

−1PK

= W̃
′
)−1
x K[H′

1; ,
−
∞]P

′
K(,

−
∞)

−1

[
0

I∞

]
PK

= W̃
′
)−1
x K[H′

1; ,
−
∞](I∞ −K

′[In; 0])

×(,−
∞)

−1

[
0

I∞

]
PK

= − W̃
′
A′[In; 0](,

−
∞)

−1

[
0

I∞

]
PK = 0;

again omitting the dimensions of the zero blocks. Here

the second last equation follows from K[H′
1; ,

−
∞]K

′ =

Ext(xt+1)
′ = )xA

′. Summing up the 5ndings up to now it

follows that

vec[ Q̂Ac − QA; Q̂Bc − QB; Ĉc − C; D̂c − D; K̂c − K]

:
= QM 1 vec

〈
�t ;

[
xt

ut

]〉
+ QM 2;p vec(K̂p −Kp): (11)

Here the matrices QM 1 and QM 2;p can be found by tracing

the computations so far. Additionally, it has been shown that

E

[
QM 1

([
xt

ut

]
⊗ �t

)]
[(Z̃

−

t+j;p ⊗ O
†
EfE

+
t+j;f)]

′

( QM 2;p)
′ → 0;

QM 2;pE(Z̃
−

t;p ⊗ O
†
EfE

+
t;f)(Z̃

−

t+j;p ⊗ O
†
EfE

+
t+j;f)

′

( QM 2;p)
′ → 0;

where the 5rst limit holds for all j and the second for j �=0.

From the de5nition of QM 1 and QM 2 it follows that these ma-

trices do not depend onW2 or f. Using the expressions given

above and the arguments given in the proof of Lemma 5

the corresponding expressions for M1 and M2 follow in

a straightforward fashion. For the 5xed case f it fol-

lows directly, that the asymptotic covariance matrix is

of the form given in the theorem. In the case f→∞
it can be shown in straightforward but tedious opera-

tions, that the terms given above are of order o(T−1=2)

uniformly in f = O((log T )a). Here the form of the

weighting matrices is used to show e.g. that the vari-

ance of O
†
fEfE

+
t;f is bounded uniformly in f. There-

fore, the expression for the asymptotic variance of

the estimated system matrices also holds in the case

f→∞ for CCA weights. This completes the proof of the

theorem.

4.3. Proof of Corollary 2

Note that

O
†
Ef(If ⊗ �)E′

f(O
†)′

=(O′
fW2Of)

−1
O
′
fW2[Ef(If⊗�)E

′
f]W2Of(O

′
fW2Of)

−1:

This is minimized by W
◦

2 = [Ef(If ⊗ �)E′
f]

−1 with mini-

mum (O′
f(E

′
f)

−1(If ⊗ �−1)E−1
f Of)

−1. Some matrix alge-

bra shows, that this gives the identical variance with any

choice W2 = W
◦

2 + W
◦

2 OfWO
′
fW

◦

2 , such that W2 is invert-

ible. Thus the CCA weightings minimize the variance of the
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estimated system, since in this case W2 = (,+;-y )−1, where

,+;-y = Ef(If ⊗ �)E′

f + Of)xO
′

f. Therefore, due to the

matrix inversion lemma

(,+;-y )−1 = (Ef(If ⊗ �)E′

f)
−1

+(Ef(If ⊗ �)E′

f)
−1

OfWO
′

f(Ef(If ⊗ �)E′

f)
−1

for suitable matrix W . The lower diagonal block Toeplitz

structure of Ef then shows, that this minimum variance de-

creases monotonically in f, since it ensures, that E−1
f Of is

a submatrix of E−1
∞

O∞. This completes the proof.

5. Numerical illustration

In this section two examples will be given, which illus-

trate the 5ndings of the last section. As a 5rst case consider

the following single-input single-output system without ex-

ogenous inputs having state dimension three:

A=







−0:532 0:4639 0:2855

1 0 −0:2568

0 1 0:0054






; K =







1

0

0






;

C = [− 0:532 0:4639 − 0:0413]:

The noise is assumed to be white with variance equal to

1. For this system the asymptotic variance is compared to

the Cramer–Rao bound using the following measure: Let

FI denote the Fisher information matrix with respect to the

particular canonical form used in this paper. Then it is well

known, that the Cramer–Rao bound for the estimation is

equal to F−1
I . Thus, let Vf(W

+
f ) denote the asymptotic vari-

ance of parameter estimates obtained from the subspace pro-

cedure using the integer f and the weighting matrix W+
f .

Then the measure Ef = tr[Vf(W
+
f )FI ] − 2ns − (n + s)m

is used. For an e3cient estimation method this is equal to

zero, otherwise positive. The upper plot in Fig. 1 shows

this measure for the two weighting schemes denoted as CCA

(i.e. Ŵ
+

f = (,̂
+

f )
−1=2) and N4SID (i.e. W+

f = Ifs). The au-

thors want to emphasize that N4SID is only used as a label

for the weighting scheme as indicated above. This is not to

be confused with the algorithm called N4SID by VanOver-

schee and De Moor (1994). The lower plot of this 5g-

ure shows det[(O′

fW2Of)
−1

O
′

fW2EfE
′

fW2Of(O
′

fW2Of)
−1],

where W2 = limT→∞ (Ŵ
+

f )
′Ŵ

+

f . This is the central term in

Eq. (4). The plots clearly reveal the identical behaviour

of the two measures. It can also be seen, that for the CCA

weights the measure Ef decreases to zero for f → ∞,

whereas for the N4SIDweights the choice off=n is optimal.

For both weightings a converging behaviour is observed for

large f, which is also in accordance with the theory.

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

CCA

N4SID

4 6 8 10 12 14 16 18 20
500

1000

1500

2000

2500

3000

3500

4000

CCA

N4SID

Fig. 1. The no input case: The upper plot shows the measure Ef for

the two weighting schemes CCA and N4SID for the range of values

f = 3; : : : ; 20. The lower 5gure shows a plot of the determinant of

(O′

fW2Of)
−1

O
′

fW2EfE
′

fW2Of(O
′

fW2Of)
−1 for the same two procedures

and the same range of integers f.

The second example is a second order single- input

single-output system with one additional observed white

noise input given by the system matrices

A=

[

0:393 2:022

−0:208 −0:685

]

; B=

[

0:95

1:00

]

;

C = [0:326 − 0:743]; D = 0:95; K =

[

1

0

]

:

The observed and the unobserved noise are assumed to

have mean zero and variance 1. Thus there are a total of

7 parameters to be estimated. Analogous to the case of

no inputs de5ne Ef = tr[Vf(W
+
f )FI ] − 7. Fig. 2 shows

the result of the calculation. The 5gures again demonstrate

identical behaviour of the two measures of accuracy.

Again, the CCA weighting scheme is superior to the

N4SID weighting scheme and again it reaches the

Cramer–Rao lower bound for f→∞. This illustrates
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1.4

1.6
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2.4

2.6

2.8
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CCA

N4SID

Fig. 2. The white noise input case: The upper plot shows the measure Ef
for the two weighting schemes CCA and N4SID for the range of values

f = 2; : : : ; 20. The lower picture shows a plot of the determinant of

(O′

fW2Of)
−1

O
′

fW2EfE
′

fW2Of(O
′

fW2Of)
−1 for the same two procedures

and the same range of integers f.

the signi5cance of the expressions found in this paper

in assessing the relative e3ciency of various weighting

schemes.

6. Conclusions

In this paper the dependence of the asymptotic accuracy

of the Larimore type of subspace methods with respect to

the choice of the integer f and the weighting matrixW+
f has

been explored in the situation, where the true system order

is known. It has been shown, that the e/ects of these choices

in the case of no observed inputs or white observed inputs

can be summarized in the term (O′

fW2Of)
−1

O
′

fW2Ef(I ⊗

�)E′

fW2Of(O
′

fW2Of)
−1 as has been shown in Theorem 1.

This term shows, that the CCA choice of the weighting ac-

cording to (3) is optimal with respect to the asymptotic vari-

ance for each f. It also follows that for this optimal choice

the variance decreases with increasing f, achieving the op-

timal accuracy for the choice f → ∞. For other weight-

ing procedures the expression can be used to optimize the

choice of f. Finally, the new expressions for the asymptotic

variance also lead to an e3cient implementation of the com-

putation of the asymptotic variance, which could be used

for practical implementation rather than only for academic

purposes.
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Three diwerent order estimation criteria in the context of subspace algorithms are introduced and

suzcient conditions for strong consistency are derived. A simulation study points to open questions.

Abstract

In this paper the question of estimating the order in the context of subspace methods is addressed. Three di!erent approaches are

presented and the asymptotic properties thereof derived. Two of these methods are based on the information contained in the

estimated singular values, while the third method is based on the estimated innovation variance. The case with observed inputs is

treated as well as the case without exogenous inputs. The two methods based on the singular values are shown to be consistent under

fairly mild assumptions, while the same result for the third approach is only obtained on a generic set. The former can be applied to

Larimore type of procedures as well as to MOESP type of procedures, whereas the third is only applied to Larimore type of

algorithms. This has implications for the estimation of the order of systems, which are close to the exceptional set, as is shown in

a numerical example. All the estimation methods involve the choice of a penalty term. Su$cient conditions on the penalty term to

guarantee consistency are derived. The e!ects of di!erent choices of the penalty term are investigated in a simulation study. � 2001

Elsevier Science Ltd. All rights reserved.

Keywords: Subspace methods; System order; Estimation; Asymptotic properties

1. Introduction

There exists an extensive literature for order estima-

tion algorithms for linear, dynamical, state space systems.

Probably the most important contribution can be at-

tributed to Akaike (1969) for introducing the information

criteria. These criteria compare the model "t on the

estimation data as measured by a function of the esti-

mated innovation variance to some penalty term, which

punishes high model orders. In other words, the higher

model order is only chosen, if the increase in the accuracy

is higher than a certain threshold, which depends on the

sample size. Alternatively they can be seen as a sequence

of tests to identify the model order, where the size of the

tests is adjusted to the sample size. The properties of

these estimation methods are well studied (Shibata, 1980;

Akaike, 1969; Rissanen, 1978) and the e!ects of the choice

of the penalty term are well understood (see e.g. Hannan

& Deistler, 1988) for a comprehensive discussion of the

known properties. All these estimation methods however

rely on the use of the maximum likelihood estimate for

the system for each order. Thus in practice a large num-

ber of systems has to be estimated using numerical search

procedures to optimise the likelihood for given system

order, leading to a sometimes prohibitive amount of

computations.

For subspace algorithms the situation is di!erent. Al-

though subspace methods have been proposed quite

some time ago, there exist only few references dealing

with the estimation of the order in the context of sub-

space methods. The "rst contribution seems to be due to

(Peternell, 1995). This method relies on the information

of the estimated canonical correlations, which are esti-

mated in the subspace methods. This leads to a very

economical (in terms of computations) method, which

has been shown to lead to almost sure (a.s.) consistent

estimates under the usual assumptions. See below for

0005-1098/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
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more details on this. It has been observed in Bauer (1998),

that this method seems to be relatively sensitive to the

choice of certain user parameters, which can deteriorate

the performance of the method considerably (see the

simulations section). This motivates the development of

an alternative, which is a small adaptation of the cri-

terion given in Peternell (1995) and seems to be less

sensitive. Bauer (1998) introduces another criterion for

the Larimore type of procedures, which is much in the

spirit of Akaikes information criteria, as it uses the esti-

mated innovation variance. These three procedures will

be presented and analysed below. It will be clear from the

proofs however, that the proposed estimation method is

only one possibility, as the main problem boils down to

estimate the rank of a matrix. For this problem there are

well established testing methods, which however rely on

the distribution of the matrix, whose rank is estimated.

Such procedures are presented in Sorelius (1999): There

the rank of the crucial matrix is found by increasing the

dimensions of the matrix by one in one step and perform-

ing a test on the newly introduced smallest singular

value. This procedure however has the disadvantage of

simultaneous tests, since in practice a sequence of tests

will have to be performed, where the number of the tests

and the dependency of the tests is unknown at the start of

the tests.

The organisation of the paper is as follows: In the next

section the model set is stated and the main assumptions

are presented. The estimation algorithms are brie#y re-

viewed in Section 3, where also the various order estima-

tion algorithms are discussed. Section 4 then states the

main results of this paper and provides proofs for them.

A simulation study is performed in Section 5. Finally

Section 6 concludes.

2. Model set and assumptions

In this paper linear, "nite dimensional, discrete time,

time invariant, state space systems of the form

x
���

"Ax
�
#Bu

�
#K�

�
,

y
�
"Cx

�
#Du

�
#�

�
, (1)

are considered, where y
�
3�� denotes the observed output

process, u
�
3�� denotes the observed input process and

�
�
3�� the unobserved white noise sequence. x

�
3�� is the

state sequence. Here the true order of the system is

denoted by n. The matrices A3����, B3����, C3����,

D3����, K3���� determine the system. In the case an

input delay is postulated, D is restricted to zero. The

system is assumed to be stable, i.e. all eigenvalues ofA are

assumed to lie inside the unit circle, and strictly min-

imum-phase, i.e. the eigenvalues of A!KC are

assumed to lie inside the unit circle. The system

matrices correspond to a pair of transfer functions:

Let k(z)"I#zC(I!zA)��K and let l(z)"D#

zC(I!zA)��B, where z denotes the backward shift oper-

ator. Furthermore let M
�
denote the set of all pairs of

transfer functions (k, l) that permit a minimal state space

representation of the form (1) ful"ling the stability and

the strict minimum-phase assumption.

The white noise �
�
is assumed to be an ergodic martin-

gale di!erence sequence satisfying the following condi-

tions:

���
�
�F

���
�"0, ���

�
��
�
�F

���
�"�"��

�
��
�
'0,

���
���

�
���

�
���

�F
���

�"�
�����

, ����
���

�(R. (2)

Here � denotes expectation, F
�
denotes the �-algebra

spanned by (y
�
, s)t) and �

���
denotes the ath component

of the vector �
�
. Note that these assumptions coincide

with the assumptions used in the analysis of the order

estimation methods in the case of maximum likelihood

estimation in Hannan andDeistler (1988, Theorem 4.3.2).

Corresponding to the input two di!erent sets of assump-

tions will be introduced for the Larimore type of proced-

ures and the MOESP type of procedures.

Assumption 1 (¸arimore type of procedure). The process

(u
�
; t3�) is "ltered white noise of the form

u
�
"��

	��
K



( j)�

��	
, where �

�
is an ergodic, martingale

di!erence sequence with innovation covariance matrix

�
�
'0 ful"ling the assumptions stated in Eq. (2) and

being independent of �
�
, and where ��K



( j)��)c



		



for

some 0(c


(R, 0(	



(1. Furthermore �



(�)"

(��
	��

K


( j)e��	)�

�
(��

	��
K



( j)e��	)� is assumed to ful"l

0(c


I)�



(�))c
 I(R for !�(�)�.

Assumption 2 (MOESP type of procedures). The input

process (u
�
; t3�) is of the form u

�
"cv

�
#��

	��
c
	
e��	 �

where v
�
ful"ls Assumptions 1 and c

	
3�� are zero mean

random variables with "nite mean square such that

the corresponding process u
�

is real valued. Further

0)c(R is a constant. Furthermore the process u
�
is

assumed to be persistently exciting of order � (to be

speci"ed later) in the sense of Ljung (1999).

Note that the assumptions for the inputs in the

Larimore procedure are more severe, as is apparent from

the choice c"0: In this case the input is just a sum of

sinusoids and thus only persistent of "nite degree, where-

as the Larimore type of assumptions imply, that the input

is persistent of any order. The reason for this lies in the

fact, that for the Larimore type of procedures a necessary

condition for consistency is that the integer parameter

p tends to in"nity (see below for details). For the MOESP

type of procedures note that the assumptions are similar

to the assumptions imposed in the proof of the asymp-

totic normality in Bauer and Jansson (2000). It will be

clear from the proof given below, which properties for the

input signal are really needed in this respect. Also note
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that the conditions given in Bauer and Jansson (2000)

permit certain pseudostationary sequences, i.e. sums of

sinusoids. However in this case it is necessary to impose

the necessary restrictions (i.e. the existence of certain

limits, which appear in the proof) directly on the

sequence rather than using su$cient conditions on the

underlying random variables.

3. Estimation algorithms

In this section a brief review of the main steps in the

considered subspace procedures is given and the es-

timation algorithms are motivated. For a more de-

tailed description of subspace methods see Larimore

(1983), Verhaegen (1994) or Bauer (1998, Chapter 3). Let

>�
���

"[y�
�
, y�

���
,2, y�

�����
]� and let ;�

���
and E�

���
, re-

spectively, be constructed analogously using u
�

and �
�
,

respectively, in the place of y
�
. Let Z�

��

"[y�

���
, u�

���
,2,

y�
��


, u�
��


]�. Here f and p are two integer parameters,

which have to be chosen by the user. See below for

assumptions on the choice of these integers. Then it

follows from the system equations (1) that

>�
���

"O
�
K



Z�

��

#U

�
;�

���
#E

�
E�
���

#O
�
(A!KC)
x

��

.

Here O�
�
"[C�,A�C�,2(A���)�C�] and K



"

[[K, B!KD], (A!KC)[K, B!KD],2,(A!KC)
��

[K,B!KD]]. Further U
�

and E
�

are block Toeplitz

matrices containing the impulse response sequences. The

actual form of these two matrices is of no importance

here and thus it is referred to the original articles for

details. This equation builds the basis for all subspace

algorithms, which can be described as follows:

(1) Regress>�
���

onto;�
���

and Z�
��


to obtain an estimate


K
�

of O
�
K



and an estimate 
K



of U

�
, respectively.

Due to "nite sample e!ects 
K
�
will typically be of full

rank.

(2) For given n "nd a rank n approximation of 
K
�

by

using the SVD of =K �
�

K
�
=K �



";K

�
�K
�
<K �

�
#RK . Here

�K
�

denotes the diagonal matrix containing the lar-

gest n singular values in decreasing order. ;K
�

con-

tains the corresponding left singular vectors as

columns and <K
�

the corresponding right singular

vectors. Finally RK accounts for the neglected singular

values. This leads to an approximation

OK
�
KK



"(=K �

�
)��;K

�
�K
�
<K �

�
(=K �



)��. The actual de-

composition of this matrix into OK
�

and KK



has no

in#uence on the estimated transfer functions.

(3) Using the estimates OK
�
, KK



and 
K



obtain the sys-

tem matrix estimates.

In the second step an order has to be speci"ed. Also the

matrices=K �
�

and=K �



have to be provided by the user. In

the literature several di!erent choices have been pro-

posed. For the matrix =K �



the choices are restricted to

(�K �


)��	 and (�K ���



)��	, where �K �



"1/¹����

��
��
Z�

��

(Z�

��

)�

denotes the sample variance of Z�
��


. Further

�K ���



"�K �



!�K
��


�K ��



�K

��

. Here �K



denotes the sample

covariance of ;�
���

and �K

��

the sample covariance of

;�
���

and Z�
��


. Corresponding to =K �
�

two choices will

be considered: (�K ���
�

)���	"�K �
�

!�K
��


�K ��



�K

��

using

obvious notation, where y stands for >�
���

, and

=K �
�

"[K
�

(i!j)]
��	

, where w(z)"��
	��

K
�

( j)z	 denotes

a frequency weighting. K
�

( j)"0, j(0 and K
�

(0) is

assumed nonsingular. Furthermore w(z) is assumed to be

stable and strictly minimum phase. The intuition of this

special choice of the weighting is to emphasize some

frequency range via speci"cally designing w(z) to be

a band pass "lter (see e.g. McKelvey, 1995). The idea of

this step is essentially to discriminate between the non-

zero &signal' singular values and the noise contained in RK ,

which is in#uenced by the weighting, since this scales

di!erent directions. Using the information contained in

the estimated singular values will be the basis for two of

the estimation methods.

For the Larimore type of methods also an order es-

timation algorithm will be given, which relies on the

estimated innovation variance. Thus it is necessary to

give more details on the estimation of the system matrices

in this case. Note, that from step 2 an estimate KK



is

obtained. This is used to estimate the state sequence as

x(
�
"KK



Z�

��

. Let �a

�
, b

�
�"1/¹����

��
��
a
�
b�
�
. Inserting

the estimated state into the system equations (1) one

obtains estimates of (A,B,C,D) from the least squares

solution:

[AK
�
, BK

�
]"[�x(

���
,x(

�
� �x(

���
, u

�
�]�

�x(
�
,x(

�
� �x(

�
, u

�
�

�u
�
,x(

�
� �u

�
, u

�
��

��
,

[CK
�
,DK

�
]"[�y

�
,x(

�
� �y

�
, u

�
�]�

�x(
�
,x(

�
� �x(

�
,u

�
�

�u
�
,x(

�
� �u

�
, u

�
��

��
.

If a delay is postulated, then in the second least squares

problem u
�
is omitted. The matrix K and the innovation

sequence are estimated from the residuals of these equa-

tions as follows: Let �(
�
"y

�
!CK

�
x(
�
!DK

�
u
�
. Then

�K "��(
�
, �(

�
� and KK

�
"�x(

���
, �(

�
��K ��.

Following the discussion given above there are

a couple of rather obvious algorithms to estimate the

order. These will be presented in the following.

3.1. Using the information contained in the

singular values

From standard theory it follows, that XK
��


"

=K �
�


K
�
=K �



converges a.s. to the limit X

�
"

=�
�
O
�
K



=�



, where=�

�
and=�



denote the a.s. limits

of=K �
�

and=K �



, respectively. Here convergence occurs in

the operator norm acting on l	 almost surely, where the

matrices occurring are seen as operators by adding zeros
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in the in"nite matrix representation corresponding to the

operator. Therefore it follows from the results of operator

theory (see e.g. Chatelin, 1983) that the singular values

also converge. Since X
�
has rank n, only the "rst n singu-

lar values of X
�
are nonzero, the rest being zero. There-

fore, the problem boils down to the assessment of the

rank of a noisy matrix. The problem gets complicated,

since the distribution of the noise acting on the matrix is

hard to quantify. Therefore this paper resorts to estima-

tion algorithms as opposed to methods of obtaining the

order via a sequence of tests (cf. Sorelius, 1999). These

algorithms share the idea of the information criteria of

comparing the signi"cance of the inclusion of another

coordinate in the state to a penalty term, which is chosen

such that the resulting estimates possess desirable prop-

erties, such as consistency. De"ne the following two

criteria:

NIC(n)"
�
�

	����

�( 	
	
#C(¹)d(n)/¹, (3)

S<C(n)"�( 	
���

#C(¹)d(n)/¹. (4)

Here d(n)"n(m#s)#ns#sm denotes the number of

parameters of a state space system of order n (see e.g.

Hannan and Deistler, 1988, Theorem 2.5.3). C(¹)'0,

C(¹)/¹P0 is a penalty term, which will be described

below in more detail. In the de"nition M"

min� fs, p(s#m)�, the number of estimated singular

values. The estimated order n( , say, is obtained as the

minimising argument of these criterion functions. NIC

has been introduced and analysed in Peternell (1995). In

the de"nition Peternell (1995) used a di!erent choice of

d(n), which however can be reformulated to "t into the

present setting. Also Peternell (1995) only dealt with f and

p "xed and "nite, while the following discussion holds for

general choices. SVC stands for singular value criterion

and has been proposed as a re"nement of NIC in Bauer

(1998). The main di!erence lies in the fact, that NIC uses

the Frobenius norm of the matrix RK , whereas SVC uses

the two norm to measure the size of the neglected singu-

lar values. For both criteria the order estimate is ob-

tained by minimizing the above expression. Note, that

these order estimation techniques do not depend on

whether MOESP or the Larimore type of methods is

used and thus can be used in all these procedures. The

author wants to stress, that these are just two algorithms,

however many more seem possible, since in principle all

that is done is to compare the size of RK measured in some

norm to some sample size dependent penalty term. Also

note, that the choice of the weighting matrices=K �
�
and

=K �


is very in#uential for the outcome of the estimation,

as will be demonstrated in Section 5. This might indeed

be desirable, since special weightings can be given

a somewhat heuristic interpretation as frequency shaping

"lters (cf. McKelvey, 1995). In this case it follows, that the

weighting matrices serve as a tool to stress the important

frequencies for the identi"cation, and thus these direc-

tions might be upweighed, whereas other directions are

downweighed.

Note, that both criterion functions can be imple-

mented with almost no computational load. The singular

values are estimated in the algorithms, therefore only the

addition of the penalty term and the minimization over

a small range of integers has to be performed.

3.2. Using the estimated innovation covariance

A second intuitive idea would be to estimate the

order using the estimated innovation covariance in the

Larimore type of procedures. Recall that given the state

sequence of dimension n, say x( �
�
, the innovation variance

is estimated as �K
�
"�y

�
!CK �

�
x( �
�
!DK �

�
u
�
, y

�
!

CK �
�
x( �
�
!DK �

�
u
�
�. Here [CK �

�
,DK �

�
] denotes the estimates of

C and D using the estimated state x( �
�
. Then it is tempting

to use the criterion function used also in the information

criteria as follows:

I<C(n)"log det�K
�
#C(¹)d(n)/¹, (5)

where d(n) and C(¹) are identical to the de"nition

of SVC and NIC. Again the order estimate is obtained

by minimizing this function over the integers

0)n)min� fs, p(s#m)�. Here IVC stands for innova-

tion variance criterion. The author wants to stress, that

this is not the standard information criterion, since the

estimates �K
�
are not the maximum likelihood estimates

of the innovation sequence. In fact it will be shown, that

this estimation algorithm may perform poor in some

situations.

From a computational point of view this criterion is

very attractive in the case of no exogenous inputs present

in the read out equation, i.e. in the case y
�
"Cx

�
#�

�
,

and additionally the choice of the weighting =K �



"

(�K �


)��	. In this case the choice KK �



"<K �

�
(=K �



)��Z�

��

leads to �x( �

�
,x( �

�
�"I, i.e. the components of the state are

orthogonal and thus the regressions can be performed

independently. The estimation algorithm then amounts

to estimating the matrix C for the maximal state dimen-

sion, max say, and then only additions and multiplica-

tions have to be performed. LetCK ���
�

"[CK �
�
,CK �����

�
] then

�K
�
"�K

���
#CK �����

�
(CK �����

�
)�.

In the case of exogenous inputs present or a di!erent

choice of the weighting=K �


on the contrary each regres-

sions has to be performed separately. Note however, that

normally these will be low dimensional regression in

general and also of not too big numerical load. It is

possible to implement the subspace procedures such that

only the estimated covariances are used rather than the

data itself. In this case the necessary covariance estimates

are already calculated and thus only matrix inversions

have to be calculated. Otherwise also in this step the
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necessary covariances could be calculated in order to

minimize the number of necessary calculations. It will be

shown in the next section, that although this procedure

seems appealing on "rst sight, it is not a recommended

procedure. Thus in this respect the result of this paper is

rather to show, that using this method may lead to

problems, which are somewhat unexpected.

4. Main results

In this section the properties of the various estimation

algorithms will be derived. The discussion draws heavily

from Bauer (1998) and Peternell (1995). Some results for

the MOESP case have been presented in (Bauer, 1999).

The following notation will be used widely: Let

f
�

"O(g
�
) mean that �� f

�
��
	
/g

�
)M a.s. Further

f
�

"o(g
�
) implies �� f

�
��
	
/g

�
P0 a.s.

The results are mainly based on the following lemmas:

The "rst deals with the accuracy of the estimation of

sample covariances under the given assumptions on the

system and the input. The second one deals with the

linearization of the SVD or SVD related quantities,

which will be of importance mainly for the NIC and SVC

cases.

Lemma 1. Let (y
�
; t3�) be generated by a system of the

form (1), where the noise fulxls the assumptions of Section 2.

Let �(
���
( j)"¹�����	

	��
z
�
z�
��	

and let �
���
( j)"�z

�
z�
��	
,

where z
�
"[y�

�
, u�

�
]�. Furthermore let H

�
"o((log¹)�) for

some 0(a(R.

If u
�

fulxls Assumptions 1 then

max

�	����

���(
���
( j)!�

���
( j)��

	
"O(Q

�
), (6)

where Q
�

"�log log¹/¹. If u
�
only fulxls Assumptions 2,

then the statement is true for H
�

"M(R.

This lemma follows from Hannan and Deistler (1988,

Theorem 5.3.2, Chapter 5). The lemma provides relatively

sharp bounds for the estimation error of the covariance

sequences. In fact it follows from the law of the iterated

logarithm for the estimated covariance sequences

that*except for the exact evaluation of the constant

involved in the O(Q
�
) statement*the bound is tight.

Lemma 2 (Chatelin). Let T
�

denote a sequence of sym-

metric, compact operators acting on l	, which converges in

norm to the operator T
3
. Then it follows, that the set of

eigenvalues of T
�

converges to the set of eigenvalues of T
3
.

Also the corresponding eigenspaces converge in the gap

metric. Let P3
�

denote the orthonormal projection matrix

onto the space of eigenvectors corresponding to the eigen-

value �3
�

of T
3

and let P�
�

and ��
�

denote the corresponding

quantities of T
�
. Here for a multiple eigenvalue �3

�
of

T
3

the quantities P�
�

refer to the orthonormal projection

matrix onto the space spanned by the eigenvectors to all

eigenvalues of T
�

converging to �3
�
. Then

P�
�
"P3

�
#�

	��

P3
	

T
�

! T
3

�3
�
!�3

	

P3
�
#P3

�

T
�

! T
3

�3
�
!�3

	

P3
	

# o(��T
�

! T
3
��). (7)

The lemma implies, that the eigenspaces converge, and

in particular the projections on the eigenspaces converge

at the same rate as the error in the approximation.

It has been shown in Bauer and Jansson (2000), that

theMOESP type of methods lead to consistent estimates

for the system matrix estimates only in generic cases.
Therefore also the SVC criterion can only produce con-

sistent estimates in these cases. Let �


(�) denote the

spectrum of the stationary process u
�
and assume, that

the integers f and p are used for the estimation. Further

denote the noise variance with �. Then it has been shown

in (Bauer & Jansson, 2000) that there exists a set

;
�
( f, p,�



,�)LM

�
, such that the MOESP procedure

provides consistent estimates of the pair of transfer func-

tions. It is also shown, that this set is generic in M
�
.

However as the example given in Jansson and Wahlberg

(1997) shows, the set is not identical toM
�
in general. In

the case min� f, p�'3n it has been shown in (Chui, 1997)

that this is the case, i.e. the consistency holds for every

pair (k, l)3M
�
. In fact the su$cient conditions stated in

(Chui, 1997) are much sharper.

Theorem 3. Let the process (y
�
; t3�) be generated by

a system of form (1), where the true system order is equal to

n
�
, and where the white noise process (�

�
; t3�) fulxls the

Assumptions of Section 2. Let the input fulxl the Assump-

tions 1, further min� f, p�*n
�

and max� f, p�"o((log¹)�)

is assumed for some a(R. In this case the conditions

C(¹)'0, C(¹)/¹P0, C(¹)/( fp log log¹)PR are suf-

xcient for the a.s. consistency of the order estimate obtained

by minimizing S<C(n).

If the input fulxls the Assumptions 2 with �"f#p!1,

then for each xxed pair f and p there exists a set

;
�
( f, p,�



(�),�)LM

�
, where �



(�) denotes the pseudo-

spectrum of the input sequence, such that for

(k, l)3;
�
( f, p,�



(�),�) the SVC method leads to a.s. con-

sistent estimates of the order under the assumption

C(¹)'0, C(¹)/¹P0, C(¹)/log log¹PR. If (k, l) �
;

�
( f, p,�



(�),�) then consistency fails for the same choice

of the penalty term C(¹), i.e. lim
���

n((n
�

a.s.

Proof. Note, that under both sets of assumptions

the error in the estimation of the "rst f#p!1

covariances �
�
( j) is of order O(Q

�
) uniformly due to

the Lemma 1. The estimation uses the singular values

of XK
��


"=K �
�

K
�
=K �



, which converges to X

3
"

=�
�
O
�
K



=�



a.s. as has been shown e.g. in Peternell,
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Scherrer and Deistler (1996). Here convergence is in

operator norm in the embedding l	. Consider the estima-

tion error in 
K
�
"rst: Introduce the notation

�a
�
, b

�
�"¹������

	�
��
a
�
b�
�
. Then

[
K
�
,
K



]"�>�

���
,�
Z�

��


;�
���
����

Z�
��


;�
���
�,�

Z�
��


;�
���
��

��
.

The estimation error in each entry of these matrices is of

the order O(Q
�
) as follows from the Lemma 1 together

with Hannan and Deistler (1988) Theorem 6.6.11, which

assures the summability of the columns of the inverse

uniformely in f and p. Thus consider the weighting ma-

trices: Recall that the weighting matrices are restricted to

be either deterministic or chosen as the square roots of

matrices like �>�
���

,>�
���

�!�>�
���

,;�
���

��;�
���

,;�
���

���

�;�
���

,>�
���

�. Using the same arguments as have been

used above shows that the estimation error in the entries

of these matrices are of order O(Q
�
). Therefore also the

error in the positive de"nite symmetric square root is of

the same order, as can be seen from a Taylor series

expansion of the square root, which can be used to de"ne
the symmetric square root of an operator.

It thus follows, that XK
��


PX
3
, where ��XK

��

!X

3
��
	
"

O(Q
�
�fp). Therefore the singular values converge at the

same rate. This shows, that underestimation of the order

is not possible asymptotically, if �
�3

'0, where �
�

de-

notes the singular values of X
3

ordered decreasingly, as

S<C(n)"�( 	
���

#
d(n)C(¹)

¹

"�	
���

#(�( 	
���

!�	
���

)#
d(n)C(¹)

¹

"�	
���

#O��fpQ
�

#
d(n)C(¹)

¹ �.
Since the second term tends to zero, the minimum cannot

be attained at n(n
3
. In the case of the MOESP proced-

ure and (k, l)�;
�
( f, p, �



,�) the nth singular value is zero

and thus consistency fails, as follows from the same

arguments given below, since in that case, the same

arguments show that the asymptotic state dimension is

equal to the number of nonzero singular values for the

limiting matrix.

Therefore it needs to be shown, that the true order

n
3

will be preferred to n'n
3

asymptotically. Thus for

n*n
3

consider

�(
���

"��=K �
�

K
�
=K �



!;K

�
�K
�
<K �

�
��
	

"��;K �(XK
��


!;K
�
�K
�
<K �

�
)��

	

)��;K
	
;K �

	
XK

��

!;

	
;�

	
X
3
��
	
.

Here ;K "[;K
�
,;K

	��
], ;K

�
3�����, ;K

	��
3����
 ����� and

;K
	
";K

	��3
, which together with ;�

	
X
3
"0 explains the

last inequality. Since the entries of XK
��


!X
3

have been

shown to be of order O(Q
�
) the norm

��;K
	
;K �

	
(XK

��

!X

3
)��

	
)��;K

	
;K �

	
��
	
��XK

��

!X

3
��
��

"O(Q
�
�fp).

Therefore it remains to obtain a bound on ��;K
	
;K �

	
!

;
	
;�

	
��
	
. But this follows from Lemma 2, using

T
�

"XK
��


XK �
��


, T
3
"X

3
X�
3

and the exponential

decrease in elements in the rows of ;
�3

(cf. Bauer, 1998).

Indeed from this the result follows, since n*n
3

S<C(n
3
)!S<C(n)"�( 	

�3��
!�( 	

���
#(d(n

3
)!d(n))

C(¹)

¹

"
C(¹)

¹
[O( fp log log ¹/C(¹))

# d(n
3
)!d(n)](0,

since fp log log ¹/C(¹)P0 and d(n)'d(n
3
).

Note, that the result also proves the consistency of the

NIC criterion for the same restrictions on the penalty

term. Also note, that concerning the penalty term only

a su$cient condition is given. The bound is obtained by

rather brute force arguments, bounding the two norm

with the Frobenius norm. In the case, where f and p tend

to in"nity at a rate log ¹ it seems to be desirable to use

a lower penalty term, as will be argued in the numerical

examples.

For the estimation criteria, which are based on an

estimate of the innovation variance, the situation is

somewhat di!erent. Note that this procedure only ap-

plies for the Larimore type of procedures. Therefore

assume, that the input process ful"ls Assumptions 1.

Note that if no delay is postulated

�K
�
"�y

�
,y

�
�!�y� ,�

x(
�

u
�
����

x(
�

u
�
�,�

x(
�

u
�
��

��

��
x(
�

u
�
�, y��

"�y
�
,y

�
�!�y

�
,Z�

����
��
� Ķ �

�

�( Ķ
�
�Z�

����
��
,Z�

����
��
� Ķ �

�
)�� Ķ

�
�Z�

����
��
, y

�
�

"�y
�
,y

�
�!HMK

�
ĶM �
�
( ĶM

�
ĶM �
�
)�� ĶM

�
HMK �

�
,

where

Ķ
�
"�

0 0 KK


(n)

0 I 0 �, KK


(n)"<K �

�
(=K �



)��.

Further ĶM
�
" Ķ

�
�Z�

����
��
,Z�

����
��
���	 and HMK

�
"

�y
�
,Z�

����
��
� �Z�

����
��
,Z�

����
��
����	.

First consider the problem of underestimating the

order. Let �
�

denote the limit of �K
�
. Then det[�

�3
]

(det[�
�3��

] is a su$cient condition to avoid asymp-

totic underestimation of the order. This follows from

C(¹)/¹P0. This condition has been analyzed in more
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detail in Bauer (1998): In the special case, where no input

is present in the readout equation, i.e. D"0 and where

=K �



"(�K �


)��	 this condition is equivalent to C

���3
O0,

whereC
���3

denotes the last column of the limiting realiz-

ation of the true system. It has been found, that this

condition is ful"led on a generic subset in some special

cases. It is referred to the original work for details. In

general however the implications of this condition are

unknown.

Next, consider the question of overestimation: For

n*n
3
one obtains �

�
"�

�3
and thus the estimation

error has to be analysed more closely. According to the

equation above one obtains

�K
�
!�K

�3
"HMK

�
( ĶM �

�3
( ĶM

�3
ĶM �
�3
)�� ĶM

�3
! ĶM �

�
( ĶM

�
ĶM �
�
)�� ĶM

�
)HM K �

�
.

Using the matrix inversion lemma for partitioned

matrices one obtains

ĶM �
�
( ĶM

�
ĶM �
�
)�� ĶM

�
" ĶM �

�3
( ĶM

�3
ĶM �
�3
)�� ĶM

�3

#PK 	
�3

ĶM �
��	
( ĶM

��	
PK 	

�3
ĶM �
��	
)�� ĶM

��	
PK 	

�3
,

where PK 	
�3

"I! ĶM �
�3
( ĶM

�3
ĶM �
�3
)�� ĶM

�3
and where ĶM �

�
"

[ ĶM �
�3
, ĶM �

��	
]. Since the second term is a projection ope-

rator it has norm one. Thus the essential term isHMK
�
PK 	
�3
,

which converges to zero, since HMK
�
P[C,D] M̧

�3
and

PK 	
��

PI! M̧ �
�3
( M̧

�3
M̧ �
�3
)�� M̧

�3
"P	

�3
. The estimation errors

are derived using the uniform convergence of the

covariance estimates: The main emphasis here lies on

KK


!K



. It is straightforward to show, using Lemmas 1

and 2 that there exists a matrix SK
�

such that

��SK
�
KK



!K



��
	
"O(Q

�
�p). Applying Lemma 1 to

�y
�
,Z�

����
��
� this also implies ��HMK

�
![C,D] M̧

�3
��
	
"

O(Q
�
�p) as well as ��PK 	

�3
!P	

�3
��
	
"O(Q

�
�p). Therefore

consider

I<C(n)!I<C(n
3
)

"(d(n)!d(n
3
))
C(¹)

¹
# log(det�K

�
/det�K

�3
)

"(d(n)!d(n
3
))
C(¹)

¹
# log(det[I#(�K

�
!�K

�3
)�K ��

�3
])

"(d(n)!d(n
3
))
C(¹)

¹
# tr[(�K

�
!�K

�3
)�K ��

�3
]

#o(���K
�
!�K

�3
��)

"(d(n)!d(n
3
))
C(¹)

¹
#O(Q	

�
p)

as follows from a Taylor series expansion of log (1#x).

Thus

¹

C(¹)
(I<C(n)!I<C(n

3
))

"d(n)!d(n
3
)#O(p log log¹/C(¹)).

This shows the following result:

Theorem 4. Let the process (y
�
; t3�) be generated by a sys-

tem of the form (1), where the true system (k, l)3M
�3
, where

n
3

denotes the true order. Let the noise fulxl the assumptions

of Section 2 and let the input fulxl Assumptions 1.

Let the system be estimated according to the Larimore

type of procedure using f*n
3

and p"p(¹)PR, where

max� f, p�"O((log¹)�) for a(R.

Then the order estimate obtained as the minimizing argu-

ment of I<C(n) using a penalty term C(¹)'0, C(¹)/¹P0

and C(¹)/(p log log¹)PR is a.s. consistent, if

det[�
�3��

] 'det[�
�3
]. If det[�

�3��
]"det[�

�3
] then

the order is underestimated a.s. asymptotically.

The theorem leads to a penalty term, which has to be

slightly higher than p log log¹ and therefore the choice

log¹ seems to be a reasonable choice for the usual choice

of p (see the simulation section) noting that log log¹ is

small even for relatively large ¹, although not theoret-

ically justi"ed for the Larimore type of methods, where

f and p tend to in"nity. This result is new, as in Bauer

(1998) much more severe restrictions on the penalty term

have been used. The restriction det[�
�3��

]'det[�
�3
] is

worth being investigated further. The fundamental di!er-

ence of the criterion I<C(n) as compared to the informa-

tion criteria, although formally de"ned analogously, is

that the innovation variance is calculated for truncated

states only, rather than newly computed states. However

the "rst n components of x
�
"K

�
Z�

���
need not be

generated by a state space equation of order n for n(n
3
,

i.e. the matrix K
�
might not have the shift invariance

structure K
	
�

"AM
�
K

�
�
for any matrix AM

�
of dimen-

sion n�n, using obvious notation to denote submatrices.

Therefore the criterion only measures the direct in#uence

of the state coordinates on the prediction of y
�
, but it does

not take into account the dynamical generation of the

state. Thus in the case, where a state does not contribute

to the present of the output, but only to the future, it will

be neglected according to the criterion given above. As

the cited results show, this might be an extremely rare

situation. The main concern in this respect is, that in

situations, where the contribution is small, the same

behaviour is expected, i.e. many observation will be

needed in order to detect this state component. In the

next section an example for this will be given.

5. Numerical examples

In this section three di!erent examples are presented in

order to compare the various proposed order estimation

methods. The candidate order estimation algorithms will

be S<C(n), I<C(n) as presented above,NIC(n) as present-

ed by Peternell (1995) andMOE(n), which is implemented

in the N4SID procedure of the system identi"cation

toolbox of MATLAB (Ljung, 1991): The idea here is to

formalise the search for a `gapa in the singular values.
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Table 1

Here the probability of estimating the indicated order for 1000 time series of sample size ¹ is shown for two di!erent weighting schemes (CCA and

N4SID) and 4 di!erent estimation methods: I<C(n) with C(¹)"log¹ (IVC1) and C(¹)"fp log ¹ (IVC2) and SVC with C(¹)"log ¹ (SVC1) and

C(¹)"fp log ¹ (SVC2). f"p"p(

��

has been used

¹ 100 1000 5000

Est. order

(2 2 '2 (2 2 '2 (2 2 '2

IVC1 0.00 0.83 0.17 0.00 0.77 0.23 0.00 0.67 0.33

CCA IVC2 1.00 0.00 0.00 0.63 0.37 0.00 0.05 0.95 0.00

SVC1 0.00 0.94 0.06 0.00 0.93 0.07 0.00 0.94 0.06

SVC2 1.00 0.00 0.00 0.86 0.14 0.00 0.09 0.91 0.00

IVC1 0.82 0.03 0.15 0.68 0.06 0.26 0.50 0.13 0.37

N4SID IVC2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

SVC1 0.00 0.66 0.34 0.00 0.40 0.60 0.00 0.37 0.63

SVC2 0.45 0.55 0.00 0.04 0.96 0.00 0.00 1.00 0.00

The order is estimated as

n("max�n: log�(
�
'�

	
(log�(

�
#log�(

�
)�,

i.e. the largest integer, such that the corresponding singu-

lar value is greater than the geometric mean of the largest

and the smallest nonzero estimated singular value. The

three examples include a low order single input single

output system without exogenous inputs, where the or-

der is expected to be easy to "nd, another SISO system

without exogenous inputs, where the order is expected to

be hard to identify, and "nally a MIMO system with

a two dimensional observed input. The main points of

interest are the e!ects of the choice of the penalty term,
the weighting matrices, the integer parameters f and p,

and of course a comparison between the various proced-

ures.

5.1. Example I

As a "rst example consider the system de"ned by the

following matrices:

A"�
0 1

!0.7 0.5�, K"�
1.3

0.3�, C"[1, 0].

This system has Lyapunov balanced Gramian of

roughly �"diag(2.55,1.78). The system poles are at

0.25$0.7984i and the zeros at !0.4$0.4359i. In the

estimation two di!erent weighting schemes are used:

CCA uses=K �
�

"(�K �
�
)���	 and the method using=K �

�
"I

will be labelled N4SID. The restriction to these two

choices is arbitrary and only justi"ed by the fact, that

these choices seem to be the most widely used ones, in the

following example di!erent weightings will be used. Note

that the label N4SID is not to be confused with the

procedure N4SID introduced by Van Overschee and

DeMoor (1994). Here only the same weighting scheme is

treated, the actual algorithm however is not used. The

indices f"p"p(

��

are used. Here p(

��

denotes the order

estimate in a long autoregression to explain y
�

as

y
�
"a

�
y
���

#2#a


y
��


#e
�
, where the order is esti-

mated using AIC. It is well known, that in the present

setting p(

��

tends to in"nity at the rate log ¹. From

theoretical considerations as well as from practical point

of view thus f"p"�dp(

��

� for small values of d'1

seems to be an appropriate choice ( for a discussion on

this see e.g. Bauer, 1998). For each of the weighting

schemes, the order of the state space system is estimated

using four di!erent methods: IVC and SVC with

C(¹)"log¹ (denoted with IVC1 and SVC1, respective-

ly, in the sequel), IVC and SVC with C(¹)"fp log ¹

(denoted with IVC2 and SVC2, respectively). Note, that

only for the last two procedures the consistency results

have been derived. One thousand time series of length

100, 1000 and 5000, respectively, have been generated

and used for estimation. Table 1 shows the results for

¹"100, ¹"1000 and ¹"5000 respectively. They

show, that the performance of the order estimation pro-

cedure depends heavily on the weighting scheme: For

CCA the IVC1 method works well, whereas it shows

problems to estimate the true order, when used with

N4SID. This is due to the fact, that in the Lyapunov

balanced realization of the true system, the entry C
��	

is

equal to !0.0146 and thus close to zero. This leads to

a high risk of underestimating the order using IVC to-

gether with N4SID in this example. For CCA it is ob-

served, that as has been expected, the higher penalty term

results in a high risk of underestimation, while reducing

the risk of overestimation. For N4SID the SVC method

outperforms IVC and it is also observed, that for C(¹)"

fp log ¹ the accuracy increases with the sample size,

whereas the lower penalty term does not seem to lead to

consistent order estimates. In the CCA case it is seen, that

the higher penalty term leads to a big risk of under-

estimating the order for small sample sizes. On the other

hand for the N4SID weighting the smaller penalty leads

to a high risk of overestimation. Therefore no clear deci-

sion about the choice of the penalty has been found. Both
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Table 2

This table shows the estimated means of the various order estimation procedures as a function of sample size and di!erent weighting matrices=K �
�

.

Here SVC, NIC and IVC use the penalty term C(¹)"log ¹. The table has been produced using 1000 replications in each case

=K �
�

¹ Method d"2 Method d"4

IVC SVC NIC MOE IVC SVC NIC MOE

CCA 100 3.50 2.30 5.50 3.67 2.07 2.31 6.32 4.03

250 5.80 2.78 7.06 5.23 5.23 2.87 15.25 10.89

500 6.53 3.37 7.64 6.03 5.55 3.43 17.23 13.48

1000 7.53 4.03 7.74 6.65 6.63 4.11 17.90 15.14

low pass 100 5.12 5.23 5.91 5.24 3.99 5.92 6.85 5.93

250 8.43 6.91 8.04 6.92 11.10 13.12 16.41 13.15

500 9.61 7.68 9.10 7.69 12.64 15.26 19.27 15.34

1000 10.43 8.51 10.10 8.52 14.32 16.68 21.09 16.76

high pass 100 3.97 5.60 6.30 5.64 2.57 6.43 7.21 6.50

250 6.93 7.55 8.75 7.69 6.89 14.50 17.83 15.11

500 8.12 8.38 9.92 8.61 7.82 16.83 20.89 17.66

1000 9.08 9.30 11.04 9.55 9.86 18.34 22.85 19.36

Fig. 1. In this "gure the order estimates obtained by SVC and IVC

using C(¹)"log ¹ are compared to the estimates obtained in the ML

framework using AIC and BIC. ¹"100 and f"p"2p(

��

are used

together with the CCA weighting scheme. The plots have been obtained

using 100 replications.

choices used in this example are heuristic and not moti-

vated by additional arguments. A theoretical justi"cation

seems to be needed.

5.2. Example II

Next, the various order estimation procedures will be

tested on an eight order system with poles at

z"0.8e���	��, z"0.7e������, z"0.5e������, z"0.6e������

and zeros at z"0.8e������,!0.4755,0.1,0.3,0. Using this

example extensive simulations comparing the order es-
timation criteria have been performed. The system order

is hard to estimate and consistent estimates of the order

are not the main goal in this example. The Lyapunov

balanced Gramian is equal to diag(6.85, 4.46, 1.08,

0.39, 0.045, 0.015, 0.0004, 0.0002) and thus the system is

expected to be approximated well using a fourth order

system. A couple of di!erent setups have been tested. In

a "rst simulation study 1000 replications of time series of

sample lengths ¹"100, 250, 500 and 1000 have been

generated. In the subspace algorithms three di!erent

weighting matrices =K �
�

have been applied: The CCA

weights, a low-pass "lter, generated using a 6th order

butterworth "lter with cuto! frequency 0.5� and the

corresponding high pass "lter have been incorporated.

The choice of the cuto! frequency is arbitrary and not

problem oriented. The only purpose of using these

weighting schemes is to investigate their e!ects on the

estimated order and the estimated transfer functions.

Further f"p"dp(

��

has been used in all cases, where

d"2 and 4 are tried. The choice d"4 leads to com-

parably large values of f and p. These two di!erent

choices are used to investigate the sensitivity of the order

estimation criteria on the size of the matrix, which is

decomposed in the algorithm. The average values of the

corresponding order estimates are given in Table 2. It can

be seen, that the behaviour of the various algorithms is

very di!erent for di!erent weightings=K �
�
. For the CCA

weighting NIC gives values close to the true order for

d"2, while it results in overly large estimates for d"4.

Also MOE seems to su!er from the bigger choice of d,

whereas both SVC and IVC are relatively robust with

respect to this choice. For the low pass weighting all

estimation procedures show a tendency to overestimate

the system order by a factor of two for d"4, and also the

results for d"2 are large compared to the CCA case. The

same result also holds for the high pass weighting, except

that the estimates of IVC for d"4 are better than the
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Fig. 2. These plots show the result of the simulation for ¹"1000. The left picture shows the average mean square error of the transfer function

estimates at 50 equally spaced frequencies in the angular frequency range �3[0,�) obtained using the various order estimation procedures with the

CCA weighting scheme and f"p"2p(

��

. The right plot shows the corresponding histogram for the estimated orders. The plots have been obtained

using 1000 replications.

Fig. 3. These are the same plots as shown in Fig. 2 with respect to the choice f"p"4p(

��

.

respective estimates of the other order estimation proced-

ures. This indicates, that d"2 is the favourable choice,

as compared to d"4.

The order estimation procedur es are also compared to

the more traditional maximum likelihood based informa-

tion criteria. In Fig. 1 a histogram for the estimated

orders using IVC, SVC, AIC and BIC is given. The latter

two criteria estimate the order as the minimizing argu-

ment of the following function:

IC(n)"log det(�K
�
)#C(¹)d(n)/¹,

where d(n) denotes the number of parameters as in IVC.

�K
�

denotes the pseudo maximum likelihood estimates of

the innovation covariance specifying the system order as

n. AIC uses C(¹)"2, whereas BIC uses C(¹)"log ¹.

Here ¹"100 and f"p"2p(

��

have been used. It can

be observed, that BIC tends to choose n"4 with a high

probability, while AIC selects relatively large orders. The

two subspace order estimates lead to slightly smaller

order estimates. Especially the results for SVC and BIC

seem to be comparable.

However, the order estimate might be seen to be not

the only interesting indicator. Therefore also the result-

ing estimates of the system are considered. The right plot

of Fig. 2 shows the square root of the mean squared error

of the estimated transfer function (estimated from 1000

replications) in the angular frequency range [0,�] ob-

tained by CCA using d"2 for the four subspace based

procedures. Here the sample size is equal to ¹"1000

and C(¹)"log ¹ is used for SVC, IVC and NIC. The

"gures show, that the IVC estimates are worse, despite

the fact, that the average estimated order seems to be the

best for this scenario. This is explained in the right plot of

Fig. 2, which gives the histogram of the order estimates:

In the IVC case there is a relatively high portion of low

order systems (over 50% are less than n"4), as well as

a high number of overly large estimates (35% larger than

n"10). This combines to a high bias, which shows in the

mean square error. The NIC and MOE perform about

equal, due to the very similar distribution of the order

estimates. The SVC method leads to a mean square error

almost identical to the one obtained by using NIC or

MOE, while choosing smaller orders on average, which

might be seen as an advantage. The results for d"4 are

similar with one exception: Contrary to what has been

said before, the SVC method reacts much larger to the

change of d than NIC and MOE with respect to the mean

square error. This is due to the fact, that there is a higher

percentage of low orders estimated in this case leading to

a high bias error. The results for NIC and MOE are not
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Fig. 4. These plots show the result of the simulation for ¹"100 (left picture) and ¹"1000 (right picture). The pictures shows the average mean

square error of the transfer function at 50 equally spaced frequencies in the angular frequency range �3[0,�) obtained using the IVC procedure (left

plot) and the MOE procedure (right plot) for the three di!erent weighting scheme and f"p"2p(

��
. The plots are based on 1000 replications.

Fig. 5 . This "gure shows the result of 1000 simulation runs using the

noise level s"10 (top row), s"1 (middle row), s"0.1 (bottom row).

Each picture shows the probabilities of estimating the order using the

four estimation algorithms IVC, SVC, MOE and NIC: The weightings

have been chosen according to CCA. The truncation indices have been

chosen as f"p"2p(

��
. The inputs are i.i.d. uniformely distributed

white noise normalized to zero mean and unit variance. For SVC and

IVC the penalty term C(¹)"log¹ is used.

that sensitive, although on average much higher orders

are chosen. The corresponding pictures are given in

Fig. 3. Finally also the e!ect of the weightings on the

mean square error is discussed: Fig. 4 shows two plots,

where the left one refers to ¹"100 and the order

estimate according to IVC with penalty log¹. The right

plot shows the result for MOE and ¹"1000. In both

cases there is somewhat surprisingly hardly any di!er-

ence due to the choice of the weighting matrices. A sim-

ilar picture holds for the other cases as well. This

observation is in contrast to the observations in the

results of simulations with "xed order, where an in#uence

of the weighting matrices with respect to the mean square

error has been observed (see e.g. Bauer, 1998). It is re-

marked, that this observation might not be typical, but is

certainly worth to be investigated further.

5.3. Example III

As a last example also a system with observed

exogenous inputs is treated: Consider the system given by

the following matrices:

A"�
0.8 0.2

!0.4 !0.5�, B"�
0 !1

1 0.5 �,

K"�
1.5 0

!0.2 !0.8�, D"�
0 0

0 0�
and C"I

	
, the two�two identity matrix. The poles of

the system are 0.7352 and!0.4352, the zeros of k
�
are at

!0.6583 and 0.2583, whereas the zeros of l
�
are at

!0.1000$0.9327i. Fig. 5 shows the probabilities of the

order estimates for di!erent noise covariances �"s	I
	
,

where the input is i.i.d uniformely distributed white noise

with zero mean and unit variance. In the 1000 replica-

tions of sample size ¹"200 the choices f"p"2p(

��

and the CCA weighting scheme have been used. The

penalty term was equal to C(¹)"log¹ in all cases. The

three di!erent noise levels were s"10, 1 and 0.1, respec-

tively. It can be seen, that IVC has a tendency to overesti-

mate the order for small noise contribution, whereasNIC

underestimates the order for high noise level frequently.

Note, that for the case of additional exogenous inputs

Peternell (1995) suggests to use d(n)"(p(s#m)!n)

( fs!n), which essentially leads to a bigger penalty term

of the form n(sf#p(m#s))C(¹), which is used for this

order estimation scheme. The order estimation proced-

ure implemented in MATLAB, i.e. MOE, shows a tend-

ency to overestimate the order in all cases. In this

example SVC shows the best performance, however,

further undocumented simulations show, that this is

sensitive to the choice of f and p. This example was
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chosen merely to illustrate that the proposed methods

also work in the case of exogenous inputs. It should be

noted again, that the order estimation techniques, except

for the IVCmethod, apply equally to theMOESP type of

methods.

5.4. Summary of simulations

The points investigated in the simulation section were

the comparison in between the various estimation

methods, the sensitivity with respect to the choice of the

indices f and p and the choice of the penalty term. In this

respect the "rst example showed, that the choice

C(¹)"log¹ for SVC and IVC leads to a serious threat

of overestimation of the order, while leading to accurate

estimates for small samples. The choice C(¹)"fp log¹

on the other hand showed clearly convergent behaviour

and a high rate of misspeci"cations for small samples.

Thus a reasonable choice of the penalty term could lie in

between. Further work is required to "nd motivations for

particular choices. The example also showed, that for

IVC there are systems, where the estimation leads to

a high risk of underestimation even for high sample sizes.

The second example tried to evaluate the e!ect of di!er-

ent choices of f and p, reassuring that for the CCA

weighting scheme both the order estimates obtained by

SVC and IVC react less sensitive with respect to these

values, whereas both NIC and the procedure imple-

mented in MATLAB show a high dependency on these

parameters. These "ndings motivate the choice of

1)d)2 with respect to order estimation. The results of

this second example also show a large impact of the

choice of the weighting scheme on the estimated order.

However no systematic behaviour has been observed and

also this point seems to be worth to be investigated

further. Finally the third example simply shows, that also

in the case of exogenous inputs present the order estima-

tion procedures are capable of delivering suitable esti-

mates, which show consistent behaviour. Summing up it

can be stated, that no single criterion can be isolated as

the best choice.

6. Conclusions

In this paper the question of order estimation in the

context of subspace methods has been addressed. Two

new procedures have been proposed and analysed.

Lower bounds on the penalty term in order for the

estimates to be (strongly) consistent have been given. The

method using the innovation variance has been shown to

su!er from severe theoretical disadvantages and thus the

use of this intuitively appealing procedure is discouraged.

For the SVC criterion the advantages certainly are the

possibility to obtain an estimate of the order with almost

no computational costs, as only the properties of the

estimates of the singular values, which are estimated in

any case, are used. In a simulation study it has been

demonstrated, that the methods lead to reasonable re-

sults. It has been shown, that SVC is less sensitive to the

choice of the truncation integers f and p than the criterion

introduced by Peternell (1995) or the method used in the

system identi"cation toolbox of Ljung (1991). However

the SVC criterion also contains a subjective component

in the choice of the penalty term. In the simulations no

clear picture on how this should be chosen could be

obtained and no heuristical motivation for any particular

choice has been found. This seems to be a rewarding

question for future research.
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Abstract

The properties of the so-called subspace algorithms, up to now used almost only for stationary

processes, are investigated in the context of cointegrated processes of order 1. It is shown for

one of these algorithms that it can be adapted to deliver consistent estimates of all system

parameters in the case of general I(1) VARMA models and mild conditions on the under-

lying noise. Estimates of the cointegrating space are derived and several test procedures for the

cointegrating rank are proposed. Consistent estimation of the system order is also discussed. A

simulation study shows the usefulness of subspace algorithms for estimation of and testing in

cointegrated systems. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In econometrics it is common practice to analyze integrated or cointegrated

processes using their vector autoregressive (VAR) or vector autoregressive moving

average (VARMA) representation. For linear processes the state space representation

is an alternative and equivalent representation, which turns out to be very convenient

for the analysis of cointegration. Based on the discussion of state space models for

integrated processes (of order 1) we propose a simple estimation procedure for all
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system parameters, two tests for the cointegrating rank and one estimation procedure

for the cointegrating rank.

The estimate is based on the so-called subspace algorithms. These have been de-

veloped in the engineering literature over the past 15 years for stationary processes.

The computational cost amounts to performing OLS regressions and one singular value

decomposition. Thus, especially for VARMA processes, the computational cost is much

lower than for the nonlinear optimization problem that has to be solved in (pseudo)

maximum likelihood estimation.

The only application of subspace algorithms for nonstationary processes so far is

Aoki (1990, Chapter 9). His procedure however lacks a thorough statistical founda-

tion including issues of estimating integer parameters like the system order and the

cointegrating rank. Aoki’s procedure furthermore can be shown to be ineFcient for

stationary processes.

A couple of variants of subspace algorithms have been developed, e.g. Larimore

(1983), Van Overschee and DeMoor (1994) or Verhaegen (1994). In recent years,

the asymptotic theory has been developed for the stationary case in several papers:

Deistler et al. (1995) and Peternell (1995) discuss consistency. Bauer (1998) and

Bauer et al. (1999) establish central limit theorems for the estimates and also derive

consistent order estimation procedures. Bauer (2002) shows that Larimore’s (1983)

CCA algorithm is asymptotically equivalent to pseudo-maximum likelihood analysis for

stationary systems. I.e. for stationary processes this method results in estimates that

have the same asymptotic variance as those obtained by maximizing the Gaussian

likelihood function.

Given the above-mentioned result of Bauer (2002) and the fact that the CCA algo-

rithm is especially suited for the analysis of multivariate time series without exogenous

variables, this paper is conHned to this procedure, or to an adapted version for inte-

grated processes to be precise. Based on this procedure we derive tests for the number

of unit roots and therefore for the dimension of the cointegrating space. These tests

are based on the estimated singular values from the singular value decomposition per-

formed in the algorithm, or on the estimated eigenvalues of the matrix describing the

state transition respectively (the details are given in Section 3). The eigenvalue-based

test is relying on arguments in the spirit of Stock and Watson (1988).

Let us state once again that the analysis is restricted to processes where the only

unit roots are located at one and where also the integration order is restricted to one,

thus, e.g. I(2) processes or processes with seasonal unit roots are excluded up to now.

As will be seen below, the restriction of an integration order 1 corresponds in the state

space representation to the assumption that the eigenvalues of the system at one are

simple.

Our work is of course not the Hrst to deal with cointegration analysis in the context

of VARMA processes. Yap and Reinsel (1995) derive the maximum likelihood esti-

mator for cointegrated Gaussian VARMA processes integrated of order one. Saikkonen

(1992) derives consistency of Johansen (1995) type estimates for cointegrated VARMA

processes if the lag length of an autoregressive approximation is increased with the

sample size at a suFcient rate. For both of the above approaches, the asymptotic null

distributions of the tests for the cointegrating rank are the same as for the Johansen
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procedure for VAR processes. Wagner (1999) shows that the Johansen procedure ap-

plied with a Hxed lag on an underlying VARMA process results in consistent estimates

of the cointegrating space. The short-run parameters however are not estimated con-

sistently anymore in this case. Another strand of the literature is based on (static or

dynamic) regressions, with possible correction factors for serial correlation. These ap-

proaches are in a way nonparametric in that they focus on the testing for and estimation

of cointegrating relationships. They usually neglect the estimation of the other system

parameters, these however may usually be recovered in a second step, due to usual

super-consistency of the estimated cointegrating relationships. 2 See e.g. Phillips (1991,

1995), Stock and Watson (1988), Bewley and Yang (1995) or Poskitt (2000) from a

long list of contributions.

We believe that our approach represents a valuable additional tool for several reasons.

First, it introduces the state space representation (in a canonical form) of integrated

processes and highlights its properties. Second, it brings to the attention of the econo-

metrics community results that have up to now been almost exclusively discussed in a

stationary setting in the systems engineering literature. The consistency of one of these

procedures also for integrated processes that is derived in this paper thus points to the

potential usefulness of these developments also for econometric analysis. The applica-

bility to VARMA processes and the computational simplicity are further advantages.

The results thus allow at least for a cheap “cross-validation” of results derived with

standard methods, like e.g. the Johansen procedure.

The estimates could also be used as consistent initial values to obtain eFcient esti-

mates of the parameters performing one Newton step for pseudo-maximum likelihood

estimation, as presented in Yap and Reinsel (1995) or in Bauer and Wagner (2000b).

If only used as initial values, the subspace estimates still have the additional advantage

of providing also initial (and consistent) information concerning the structure of the

system (i.e. the system order and the cointegrating rank).

Both, the simulation results and Hrst applications (see e.g. Bauer and Wagner (2000a),

for an application to interest rate data), indicate that the method performs at least

comparable to standard methods like e.g. the Johansen method, with the additional

advantage of providing consistent estimates of all system parameters for VARMA

processes in a computationally simple fashion.

The paper is organized as follows: In Section 2 the state space framework is intro-

duced and its relation to the VARMA representation of linear stochastic processes is

discussed. In Section 3, subspace algorithms are introduced and discussed. Section 4,

states the theoretical results for the method presented in Section 3 for the stationary

and, which constitutes one of the main results of the paper, for integrated processes.

Section 5 is devoted to derive consistent estimates of the system order and to the

development of tests for the cointegrating rank. In Section 6 simulation results to as-

sess the Hnite sample properties of our methods are presented and Section 7 summarizes

and concludes. All proofs are collected in Appendix A and in Appendix B the gap

metric (used in some of the proofs) is deHned and the simulated systems are given.

2 Thus, these regression-based approaches may often be seen as descendants of the seminal Engle and

Granger (1987) 2-step procedure.
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2. State space models

In this paper we consider Hnite-dimensional, time-invariant, discrete time systems in

their state space representation of the form

xt+1 = Axt + K�t ; yt = Cxt + E�t ; (1)

where yt denotes the s-dimensional output series observed for t = 0; : : : ; T . �t denotes

an s-dimensional white noise sequence. A∈Rn×n, K ∈Rn×s, C ∈Rs×n, E ∈Rs×s and

xt ∈R
n denote the n-dimensional state sequence. Throughout the paper �t is assumed to

be an ergodic strictly stationary martingale diMerence sequence for which the following

conditions hold:

E{�t |Ft−1}= 0; E{�t�
′

t |Ft−1}= E{�t�
′

t}= Is; (2)

E{�t; a�t; b�t; c|Ft−1}= !a;b;c; E�4t; a¡∞; (3)

where �t; a denotes the ath component of the vector �t and Ft−1 denotes the �-algebra

spanned by the past, i.e. by �t−1; �t−2; : : : ; �0 and x0. !a;b;c is a constant and Is de-

notes the s× s identity matrix. The matrix E is assumed to be nonsingular and lower

triangular with positive entries on the diagonal. This restriction is necessary to en-

sure identiHability of E and �t . The above conditions will be referred to as standard

assumptions throughout the paper. The assumptions concerning the noise exclude ARCH

eMects. The extension of the method to cover also heteroskedastic innovations is a topic

of further research.

In the systems theory literature it is well known that state space systems and VARMA

systems are just two diMerent representations of the same object. To

acquaint the reader with the properties of state space and VARMA representations,

the main facts relevant for this paper are collected in this section. For a more de-

tailed discussion see e.g. Hannan and Deistler (1988, Chapter 1). DeHne the map-

ping � as �(A; K; C; E) = k(z) = E + zC(In − zA)−1K , i.e. � maps the state space

system (A; K; C; E) to its corresponding transfer function k(z). Here z denotes both,

a complex variable and the backward shift operator. From the above deHnition of

k(z), it is directly seen that k(z) is a rational transfer function. It can furthermore be

easily veriHed that also conversely for each rational transfer function k(z) there ex-

ists (at least one) state space system (A; K; C; E) such that �(A; K; C; E) = k(z). The

same type of relationship also holds between VARMA representations of systems and

the corresponding transfer function. So we can analogously deHne a mapping N� as

N�(a; b)= k(z)= a−1(z)b(z) for a(z) and b(z) matrix polynomials. Neither the VARMA

nor the state space representations are unique. For Hxed transfer function k(z) the sets

{(a; b): N�(a; b) = k(z)} and {(A; K; C; E) :�(A; K; C; E) = k(z)} are called equivalence

sets. For VARMA systems equivalence sets are described using polynomial matrices

(as N�(a; b) = N�(pa; pb) holds for all polynomial matrices p with p(0) nonsingular)

for state space representations nonsingular matrices have the same function: It is ob-

vious, that �(A; K; C; E) = �(TAT−1; TK; CT−1; E). In this case the state space systems

(A; K; C; E) and (TAT−1; TK; CT−1; E) are called observationally equivalent. A state
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space representation of a transfer function k(z) is called minimal, if no other state space

representation with smaller state dimension exists. Under the assumption of minimality,

all observationally equivalent state space systems are described by transformations with

nonsingular matrices, as above.
The concept of minimality is linked to three matrices: To the observability matrix

O= [C′; A′C′; (A2)′C′; : : : ]′, to the controllability matrix C= [K; AK; A2K; : : : ] and to

the Hankel matrix H=OC=[CAi+j−2K]i; j=1; :::. For a minimal system all three matrices

have rank equal to the system dimension or system order, usually denoted as n. The

nonsingular matrices T that generate observationally equivalent state space systems,

correspond to a change in the state space basis and result in a diMerent factorization

of the Hankel matrix as H= [OT−1][TC].
Assume e.g. that a system representation leads to an observability matrix O not

having full column rank. In this case there exists a state vector, Nx say, such that

O Nx=0. This implies that components of the state in this direction Nx have no inQuence

on yt and can therefore be omitted from the system description. In other words (after

an appropriate basis change) the state dimension can be reduced without changing the

input–output characteristics of the model, when the observability matrix does not have

full rank. Similar lines of thought can be applied to the controllability matrix.
Note at this point that for a minimal system, the eigenvalues of the matrix A cor-

respond to the poles of k(z) and this follows from (In − zA)
−1 = det(In − zA)

−1Ã(z),

with Ã(z) denoting the matrix of cofactors. Thus, for integration to occur, some of the

eigenvalues of A must be equal to one. Consider e.g. the case A=In. Then xt+1=xt+K�t
shows that xt is integrated of order 1 and in this case the state is a vector random

walk. Thus, for this example xt =K
∑t−1

j=0 �j + x0. Since yt =Cxt + E�t it follows that

yt =CK
∑t−1

j=0 �j +CE�t +Cx0, with C ∈R
s×n and K ∈R

n×s. The number of common

trends in yt is thus given by the rank of the matrix CK ∈R
s×s. This rank is at most

s, which reQects the fact that at most s common trends can be present for yt (see also

the discussion below).
Seasonal unit roots analogously correspond to complex eigenvalues of the matrix A

with modulus 1. A minimal system (1) thus generates output that is integrated if all

the eigenvalues of A are inside the open unit disc or at one. The integration order of

yt is determined by the structure of the eigenvalues at one (see Bauer and Wagner

(2001), for a detailed discussion). The integration order is equal to 1 if the algebraic

multiplicity of the eigenvalue one equals its geometric multiplicity.
As a Hnal assumption we restrict attention to systems that are strictly minimum

phase, i.e. to systems where in the state space representation all eigenvalues of the

matrix (A − KE−1C) have absolute value smaller than one. This corresponds to the

assumption of all zeros of k(z) = �(A; K; C; E) being outside the closed unit disc.

Denote by Mn the set of all transfer functions k(z), which fulHll the above conditions

on the poles and the zeros and where the minimal state dimension of a state space

representation of k(z) is equal to n. Note that in Mn, stationary systems and integrated

systems with diMerent cointegrating ranks are included.
Since the representation of a transfer function k(z)∈Mn in state space form is not

unique, further restrictions have to be imposed on the matrices (A; K; C; E) in or-

der to achieve uniqueness. This is achieved by the deHnition or construction of a
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canonical form. There are many ways of imposing the required restrictions to ensure

uniqueness. One way is to choose the controllability matrix C equal to the Hrst n

linearly independent rows of H. The row indices describing these rows can be rep-

resented by a multi-index called Kronecker index. The Kronecker index is unique to

each transfer function in Mn. The subset of transfer functions k(z)∈Mn, where the Hrst

n rows of the corresponding Hankel matrix H are linearly independent, is called the

generic neighborhood of the echelon canonical form. The name derives from the fact

that this set is generic in Mn and allows for a continuous parametrization, i.e. a home-

omorphic mapping attaching parameter vectors �∈R2ns+s(s+1)=2 to transfer functions

k(z)∈Mn for appropriately deHned topologies. The advantage of the echelon canonical

forms lies in the fact that the parameter values occurring in the echelon state space rep-

resentation are closely linked to the parameters occurring in the corresponding echelon

VARMA representation of the system (for the exact relation see Hannan and Deistler,

1988, Section 2.6). In particular, there exists a homeomorphic bijection between these

two diMerent sets of parameter vectors. Also the sets of transfer functions, which can be

parametrized continuously, are identical, so that the user is completely free to choose

the setup she is more familiar with. In particular, any estimated state space system can

be identiHed with the corresponding echelon VARMA system, and consistency results

derived for echelon state space systems also hold for the echelon VARMA parameters

(on generic subsets of Mn, to be precise).

A companion paper, Bauer and Wagner (2001), develops a diMerent canonical form

for state space systems of form (1) containing an arbitrary number of unit roots located

at any point on the unit circle. This canonical form reveals the relationship between

the integration orders (corresponding to the diMerent unit roots) and the structure of

the corresponding eigenvalues of A in a minimal representation. In this paper we are

going to draw from these results, and the canonical form, on which the results derived

in this paper are based, is a special case and is of the following form:

A=

[

Ic 0

0 Ast

]

; K =

[

K1

Kst

]

; C = [C1 Cst]:

Here c denotes the number of common trends in the minimal state xt and (Ast ; Kst ; Cst)

denotes a state space realization of the stationary subsystem. Note that there can be

no more than s common trends in a minimal state xt , which is seen as follows: Due

to the structure of the canonical form in the present case, the observability matrix O

takes the form

O=







C1 Cst

C1 CstAst
...

...







and thus the Hrst block column has rank equal to the rank of C1, which is less or equal

to s. This also shows that for a minimal representation, C1 is of full column rank c.

Analogous arguments show that in a minimal representation, the row rank of K1 is

equal to c. Thus, for minimal systems c6 s denotes the number of common trends

present in both yt and xt , irrespective of the system order n. From the structure of the
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state space representation it follows that

yt = C1K1

t−1∑

j=0

�j + kst(z)�t ; (4)

where kst(z) = E + zCst(In−c − zAst)
−1Kst, assuming zero initial conditions for the

nonstationary part of the state. This immediately shows that if r denotes the number

of linearly independent cointegrating relations for yt , the equation c = s− r holds.

The representation given above is not unique. The set of observationally equivalent

state space systems, which also have a block-diagonal A matrix, where the (1; 1) block

is equal to the identity matrix, is characterized by S=diag(S1; Sst), where both matrices

S1 ∈R
c×c and Sst ∈R

(n−c)×(n−c) are nonsingular. Thus, further restrictions have to be

imposed in order to reduce the set of observationally equivalent systems obeying all

restrictions to a singleton. In other words, to achieve identiHcation of the parameters,

a unique representative has to be selected of the set of (observationally equivalent

minimal) state space systems that represent the transfer function k(z).

In the canonical form presented in Bauer and Wagner (2001) C1 is chosen to be

part of an orthonormal matrix, i.e. C1 ∈R
s×c; C′

1C1 = Ic is assumed. 3 Therefore there

exists a matrix C⊥

1 with (C⊥

1 )′C⊥

1 = Ir and (C⊥

1 )′C1 =0, i.e. C⊥

1 spans the orthogonal

complement of C1. Let NC
′

=[C1; C
⊥

1 ]. Since all the eigenvalues of Ast are, by construc-

tion, restricted to be inside the unit circle, it is easily seen that kst(z) is analytic in the

closed unit disc. Note that the representation given in Eq. (4) coincides with that of

Granger. It is immediate that the Hrst component in (4) corresponds to the common

trends and that the columns of C⊥

1 span the space of the cointegrating relations. There-

fore, the cointegrating rank is equal to r. The number of common trends is equal to the

number of eigenvalues of A at one, denoted with c, and c= s− r holds. In the case of

higher integration orders, the relationship between the eigenvalues and the integration

orders (at the diMerent frequencies, i.e. corresponding to the diMerent unit roots) is

more complicated. Still however, the eigenvalue structure (for details see Bauer and

Wagner, 2001) determines the integration orders and the numbers of components with

diMerent integration orders.

3. Subspace algorithms

Subspace algorithms originated in the engineering literature in the 1980s. They

provide an alternative to classical (pseudo) maximum likelihood estimation of linear

time-invariant systems, like e.g. VARMA systems. In the meantime, a variety of algo-

rithms is available, e.g. CCA (Larimore, 1983), N4SID (Van Overschee and DeMoor,

1994) or MOESP (Verhaegen, 1994). In this paper we restrict attention to the algorithm

described in Larimore (1983), which is well suited for the analysis of multivariate time

series, where no exogenous observed variables are present.

3 These restrictions are not suFcient for identiHability in the general case and some further restrictions

are needed. However, these restrictions are not important for the present setting and thus we refer to Bauer

and Wagner (2001) for details.
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The main idea of this algorithm lies in the interpretation of the state: Consider

the problem of predicting yt+j ; j¿ 0 from its Hnite past up to time t − 1, i.e. from

yt−1; yt−2; : : : ; y0 and x0.
4 From system equations (1) it follows that

yt+j = CAjxt +

j−1
∑

i=0

CAiK�t+j−i−1 + E�t+j : (5)

Now, since

xt = Atx0 +

t−1
∑

i=0

AiK�t−i−1

= Atx0 +

t−1
∑

i=0

AiKE−1(yt−i−1 − Cxt−i−1)

= (A − KE−1C)tx0 +

t−1
∑

i=0

(A − KE−1C)iKE−1yt−i−1;

one obtains y(t+ j|t)=CAjxt , where y(t+ j|t) denotes the best linear predictor of yt+j

from the knowledge of yt−1; : : : ; y0; x0. Thus, the state xt is a basis for the predictor

space for the whole future of yt , i.e. for yt+j ; j¿ 0, and is contained in the past of

the time series. For notational brevity let NA = (A − KE−1C). Then, after substituting

for xt the above expression giving xt as a function of x0 and past yt’s, we can re-write

Eq. (5) in stacked matrix format for all j¿ 0 as

















yt

yt+1

...

yt+j

...

















=



















CKE−1 C NAKE−1 · · · C NA
t−1

KE−1

CAKE−1 CA NAKE−1 · · · CA NA
t−1

KE−1

...
...

...
...

CAjKE−1 CAj NAKE−1 · · · CAj NA
t−1

KE−1

...
...

...
...





























yt−1

yt−2

...

y0











+

















C

CA
...

CAj

...

















NA
t
x0 +

















E 0 0 · · · 0 · · ·
CK E 0 · · · 0 · · ·
...

...
...

...
...

...

CAj−1K CAj−2K · · · CK E · · ·
...

...
...

...
...
. . .

































�t
�t+1

...

�t+l

...

















= !











yt−1

yt−2

...

y0











+

















C

CA
...

CAj

...

















NA
t
x0 + E

















�t
�t+1

...

�t+l

...

















:

4 In the case that x0 is not known, x0 is estimated using the Kalman Hlter and the resulting estimate is

used for the prediction. This, however, does not change the asymptotic properties.
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The above equation describes the future of the process, yt+j ; j¿ 0, as the sum of

three components: The Hrst term is due to the (Hnite) past of the process yt−1; : : : ; y0,

the second term describes the impact of the initial state x0 and the third term shows

the impact of the future of the noise process �t+j ; j¿ 0. The latter term is orthogonal

to the former two. Note that for t → ∞ the second term vanishes, since due to the

strict minimum-phase assumption the matrix NA
t
= (A− KE−1C)t converges to zero.

The matrix ! in the above equation connecting the past of the output yt (i.e. terms for

s¡ t) to the future values (s¿ t) carries structural information about the system, i.e. it

contains relevant information about the system matrices (A; K; C; E). The idea of sub-

space algorithms is to use this information to obtain estimates of the system matrices.

For estimation only a Hnite set of observations is available, hence the above equation

is utilized in a truncated version. Note that the matrix ! in the equation above has

rank equal to n, the system order. Thus, choose two indices f and p, both larger or

equal to n, and deHne

Y+
t;f = [y′t ; y

′

t+1; : : : ; y
′

t+f−1]
′;

Y−

t;p = [y′t−1; y
′

t−2; : : : ; y
′

t−p]
′

and

E+
t;f = [�′t ; �

′

t+1; : : : ; �
′

t+f−1]
′:

Furthermore, let

Of = [C′; A′C′; : : : ; (Af−1)′C′]′;

Kp = [KE−1; (A− KE−1C)KE−1; : : : ; (A− KE−1C)p−1KE−1]

and let Ef denote the matrix with the ith block row [CAi−2K; : : : ; CK; E; 0] for i¿ 2

and [E; 0; : : : ; 0] as its Hrst block row. As a second change to the above equation, the

state p-periods ahead is employed, since only a Hnite past yt−1; : : : ; yt−p is used. With

this notation the truncated equation can compactly be written as

Y+
t;f = OfKpY

−

t;p + Of(A− KE−1C)pxt−p + EfE
+
t;f : (6)

The above observations lead to the following procedure:

(1) In a Hrst step, regress Y+
t;f on Y−

t;p to obtain an estimate !̂f;p of OfKp.

(2) Typically !̂f;p is of full rank, whereas OfKp is of rank n for f;p¿ n, where n

denotes the true order and f and p are user-chosen integers. Thus, approximate

!̂f;p by a rank n matrix with decomposition ÔfK̂p; see below for details on the

approximation.

(3) Use the estimate K̂p to estimate the state as x̂t = K̂pY
−

t;p. Once the state has been

estimated, the system equations (1) can be used to obtain estimates of the system

matrices (A; K; C; E) by ordinary least squares: First regress yt on x̂t to obtain

an estimate Ĉ and residuals �̃t . Then $̂ = (1=T )
∑T

t=1 �̃t �̃
′

t
is an estimate for the

innovation variance. Thus, Ê can be calculated as the lower triangular Cholesky

factor of $̂ and �̂t = Ê
−1
�̃t . Finally regress x̂t+1 on x̂t and �̂t to obtain estimates Â

and K̂ respectively.
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The approximation performed in step 2 is not performed on !̂f;p directly, but on

a weighted matrix Ŵ
+

f !̂f;pŴ
−

p . The mentioned subspace algorithms diMer i.a. in their

choices of weighting matrices. Let &̂
+

f =
∑T

t=1 Y
+
t;f(Y

+
t;f)

′ and &̂
−

p =
∑T

t=1 Y
−

t;p(Y
−

t;p)
′

denote the (noncentered and unnormalized) sample covariances of Y+
t;f and Y−

t;p. Here

yt = 0 for t ¡ 0 and t ¿T is used. 5 Then in the algorithm CCA, Ŵ
+

f = (&̂
+

f)
−1=2

and Ŵ
−

p = (&̂
−

p )1=2 respectively. 6 For MOESP and N4SID, Ŵ
+

f = I and Ŵ
−

p is as for

CCA. The MOESP type algorithms are diMering from e.g. CCA algorithms in that they

are uncovering the system matrix estimates based on Ôf, whereas CCA is exploiting

the structure of K̂p, since the state is estimated as x̂t = K̂pY
−

t;p. MOESP algorithms

are considered to be more suitable for the estimation of systems containing exogenous

variables (see e.g. Bauer, 1998). The choice of weighting matrices in CCA also explains

the name, canonical correlation analysis: The algorithm amounts to an estimation of

the canonical correlations between Y+
t;f and Y−

t;p.

Bauer (2002) shows that for stationary systems, the CCA algorithm results in estimates

that have the same asymptotic properties as pseudo-maximum likelihood estimates.

Thus, we focus attention on the weighting matrices as speciHed in the CCA algorithm,

which however will have to be modiHed for integrated processes to ensure consistency

also then.

Let Ŵ
+

f !̂f;pŴ
−

p = Û )̂V̂
′

be the singular value decomposition where Û contains

the left singular vectors, )̂ = diag(�̂1; : : : ; �̂min(f;p)s) contains the singular values or-

dered decreasing in size and V̂ contains the right singular vectors. For a system of

order n, exactly n singular values are larger than zero. Of course, only estimates

�̂1¿ · · ·¿ �̂n¿ �̂n+1¿ · · ·¿ �̂min(f;p)s are available. The estimated singular values

�̂n+1; : : : ; �̂min(f;p)s will be nonzero due to small sample and noise eMects. Asymptoti-

cally �̂n+1; : : : ; �̂min(f;p)s converge to zero. Now, paralleling the stationary case (Bauer,

1998), the order estimation is based on considering the size of the Hrst neglected

singular value, �̂n+1, exploiting the asymptotic behavior of the estimates. DeHne the

following criterion:

SVC(n) = �̂2n+1 + 2nsHT =T: (7)

Here HT ¿ 0; HT =T → 0 denotes a penalty term, which determines the asymptotic

properties of the estimated order. The number of parameters in a model with state

dimension n is equal to 2ns (for the generic neighborhood, to be precise), excluding

the parameters in E, see e.g. Hannan and Deistler (1988, Theorem 2.6.3). The order

estimate, n̂ say, is then given by the minimizing argument of the criterion function

SVC(n). It will later be shown that this procedure is consistent, for suitable choices of

HT , also for integrated processes (see Theorem 3 in Section 5).

5 Alternatively, the summation can be limited to the range p + 16 t6 T − f, this does not change the

asymptotic results of this paper. However, it may well inQuence the Hnite sample properties.
6 X 1=2 denotes the Cholesky factor of the positive deHnite matrix X such that X 1=2(X 1=2)′ = X .



D. Bauer, M. Wagner / Journal of Econometrics 111 (2002) 47–84 57

Thus, for the speciHed rank n, where e.g. n= n̂, decompose the SVD in two parts:

Ŵ
+

f !̂f;pŴ
−

p = Û )̂V̂
′

= Û n)̂nV̂
′

n + R̂;

where Û n ∈R
fs×n; V̂ n ∈R

ps×n and )̂n ∈R
n×n. Here )̂n = diag(�̂1; : : : ; �̂n) contains the

n dominant singular values ordered decreasing in size, i.e. 1¿ �̂1¿ · · ·¿ �̂n¿ 0. The

matrices Û n and V̂ n contain the corresponding left and right singular vectors.

The remaining singular values and vectors are attributed to R̂ and are neglected. The

rank n approximation to !̂f;p is now given by ÔfK̂p = [(Ŵ
+

f)
−1Û n][)̂nV̂

′

n(Ŵ
−

p )
−1]

and thus K̂p = )̂nV̂
′

n(Ŵ
−

p )
−1. Observe, that Ôf and K̂p will, in general, not have the

structure of their population counterparts Of and Kp, e.g. there will exist no matrix

Â, such that [I(f−1)s; 0
(f−1)s; s]ÔfÂ= [0f(s−1)s; s; I(f−1)s]Ôf.

For integrated processes we are going to modify the above procedure for the estima-

tion of K̂p and therefore x̂t . Let, as before, the true cointegrating rank be denoted by r,

then c=s−r common trends drive the system. Assume that a consistent estimate Ĉ1 of

C1, as deHned in the canonical form, is given. There are several ways known to obtain

such an estimate, and below it is shown that the subspace algorithm in its standard

form can be used to obtain the required estimate. A computationally simple way to

obtain an estimate of C1 is to regress yt on the Hrst c components of the state esti-

mated by the standard CCA algorithm. The subspace estimates of the cointegrating space

achieve super-consistency, i.e. T .(Ĉ1 − C1) → 0 for 0¡.¡ 1. Now denote (parallel-

ing the discussion in Section 2) with N̂C = [Ĉ1; Ĉ
⊥

1 ]
′, where Ĉ

⊥

1 ∈R
s×r ; Ĉ

′

1Ĉ
⊥

1 = 0 and

(Ĉ
⊥

1 )
′Ĉ

⊥

1 = Ir . Thus, the columns of Ĉ
⊥

1 span the estimated cointegrating space. Now

deHne a new weighting matrix Ŵ
+

f;C1
= [(I ⊗ N̂C)

∑T
t=1 Y

+
t;f(Y

+
t;f)

′(I ⊗ N̂C)′]−1=2(I ⊗ N̂C),

using the Cholesky decomposition as the square root. In combination with the mod-

iHed weighting matrix also the estimate for K̂p has to be modiHed: For any choice

of weighting matrices, the estimated matrix K̂p = )̂nV̂
′

n(Ŵ
−

p )
−1 can alternatively be

written as K̂p= Û
′

nŴ
+

f !̂f;p. Now, if the modiHed weighting matrix Ŵ
+

f;C1
is used, the

corresponding matrix of left singular vectors Û n has to be changed to Û n;c, where

Û n;c =

[

Ic 0c×(n−c)

0(fs−c)×c Û (2; 2)

]

:

Û (2; 2) denotes the (2; 2) block of Û n. This modiHcation is motivated by the fact that

(as shown in Appendix A) Û n → U0, with

U0 =

[

Ic 0c×(n−c)

0(fs−c)×c U0(2; 2)

]

:

Thus, under the assumption of a correctly speciHed number of common trends, c,

and the availability of a consistent estimate of the common trends space, the subspace

procedure can be modiHed as follows: Use the corresponding modiHed weighting matrix

Ŵ
+

f;C1
and the modiHed matrix Û n;c to obtain an adapted estimate of K̂p, which is given

by Û
′

n;cŴ
+

f;C1
!̂f;p. The replacement of Û n by Û n;c changes the asymptotic properties of

the estimates and guarantees that also the estimates corresponding to the stationary part
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of the transfer function are consistent (see Theorem 2). The approach just described

above is called adapted procedure throughout the paper.

For stationary processes, i.e. when r = s and thus c = 0, the adapted procedure

coincides with the standard CCA procedure.

4. Main results

Let M st
n ⊂ Mn denote the set of all transfer functions k(z)∈Mn without poles

on the unit circle, i.e. which describe stationary systems. Further denote with M st;+
n

the set of all transfer functions k(z)∈M st
n , such that the a.s. limit for T → ∞ and

p= p(T )→∞ (whose existence is guaranteed under the assumptions of Theorem 1)

W+
f !W

−

∞
of Ŵ

+

f !̂f;pŴ
−

p has n distinct nonzero singular values. Bauer et al. (1999)

show that M st;+
n is a generic subset of M st

n . The following results that clarify the

asymptotic properties in the stationary case can be found in Bauer et al. (1999) and

Bauer (1998, 2002).

Theorem 1. Let yt be generated by a system of form (1); where the white noise

�t ful1lls the standard assumptions and where k(z)∈M
st
n denotes the true trans-

fer function of order n. If f = f(T )¿ n is a user-supplied integer and p(T )¿

− (d=2)(log T=log |00|); where 00 is an eigenvalue of A − KE−1C of maximum mod-

ulus and d¿ 1 is some real value; and if max{f(T ); p(T )} = o((log T )a) for some

a¿ 0; then

• For k(z)∈M st
n the estimate of the transfer function is a.s. consistent; i.e. k̂(z) →

k(z) a.s.; where convergence is in the pointwise topology (see e.g. Hannan and

Deistler; 1988).

• For k(z)∈M st;+
n the estimate of the system matrices is a.s. consistent; i.e. there

exists a realization (A; K; C; E) of the true transfer function k(z)∈M st;+
n ; such that

‖vec[Â−A; K̂ −K; Ĉ −C; Ê−E]‖ → 0 a.s. Here vec denotes the operator stacking

the vectorizations of the various matrices.

• For k ∈M st;+
n a central limit theorem for the system matrix estimates holds; i.e.

√
T [vec(Â− A; K̂ − K; Ĉ − C; Ê − E)] d→N(0; V );

where
d→ denotes convergence in distribution and N(0; V ) is a Gaussian random

variable with zero mean and variance V .

• The choice Ŵ+

f = (&̂
+

f)
−1=2 and Ŵ

−

p = (&̂
−

p )
1=2 and f = p → ∞ according to the

restrictions imposed above implements a generalized pseudo-maximum likelihood

procedure and thus in the Gaussian case achieves optimal asymptotic variance.

• If HT =(f(T )p(T ) log log T ) → ∞ and HT =T → 0; the order estimated using SVC

is a.s. consistent.

The usual choices concerning f are f(T ) = f constant or f(T ) = p(T ). For p(T )

often 2p̂AIC is used, where p̂AIC denotes the order estimate obtained in an autore-

gressive approximation of the system. The above results, that clarify the asymptotic
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properties of the algorithm for the stationary case, also motivate the speciHc choice of

the weighting matrices and therefore the speciHc choice of the algorithm in this paper.

Expressions for the variance V can be given, see e.g. Bauer and Ljung (2002). The

expression given there shows that indeed CCA is the optimal choice of the weighting

sequence for each Hxed f¿ n.

The algorithm as it is described above, only leads to a system that is close to a

cointegrated system, a precise meaning of this statement is contained in the formulation

of Theorem 2. The estimation problem can however also easily be reformulated to

result in an estimated system that corresponds to an exactly cointegrated system. A

reduced rank regression approach delivers the required result: Remember the third step

in the description of subspace algorithms, where, after x̂t , �̂t , Ĉ and Ê have been

estimated, x̂t+1 is regressed on x̂t and �̂t to obtain estimates of Â and K̂ (i.e. the

equation xt+1 = Axt + K�t is estimated). Now, if the cointegrating rank of yt is r,

the rank of the matrix A − In equals n − c which due to minimality furthermore is

equal to n − s + r. Thus, alternative estimates Ã and K̃ of A and K can be obtained

from a reduced rank regression x̂t+1 − x̂t = (Ã − In)x̂t + K̃ �̂t under the constraint that

rank(Ã−In)=n−c. This approach results by construction in an estimated system that is

exactly cointegrated with cointegrating rank r. In order to separate the two approaches

notationally, the latter approach is referred to as reduced rank regression approach

and the least-squares method for obtaining estimates of A and K is called unrestricted

regression approach.

The Hrst main result of this paper is now concerned with the properties of the

described algorithm (and its adaptation) for integrated processes of order 1. The proof

of the theorem is given in Appendix A.

Theorem 2. Let the s-dimensional output yt be generated by a system of form (1)

with the ergodic noise �t ful1lling the standard assumptions. Assume that the true

order n of the transfer function k(z) is known. Concerning the indices f and p

the following assumptions are made: p = p(T ) = o((log T )a) for some 0¡a¡∞;
p¿−d log T=log |00|; where 00 is an eigenvalue of A−KE−1C of maximum modulus;

d¿ 1 and f¿ n is 1xed.

Given the true cointegrating rank r, the standard CCA subspace algorithm delivers

consistent estimates of order T of the cointegrating space as follows: Denote by C1

the 1rst c columns of C. Then consistent estimates Ĉ1 of C1, with T
.‖Ĉ1 −C1‖ → 0

in probability for 0¡.¡ 1, are obtained by an OLS regression of yt on the 1rst c

components of the state estimated by the standard CCA procedure, say x̂t;1. As it is

C⊥

1 that is spanning the cointegrating space, note at this point that T .‖Ĉ1−C1‖ → 0

implies that also T .‖Ĉ
⊥

1 − C⊥

1 ‖ → 0.

Assume again that r is correctly speci1ed and that the adapted subspace procedure

as described above is used with an estimate Ĉ1 that is consistent of order T . Then

the estimate k̂(z) = Ê + zĈ(I − zÂ)−1K̂ converges in probability to the true transfer

function k(z) for the unrestricted regression approach.

The same result concerning the consistency of the transfer function estimate holds

also if the reduced rank regression approach is used, where the estimate Ã of A is

constructed to ful1ll the rank restriction rank(Ã− In) = n− c.
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The consistency result in the theorem is stated in terms of the transfer functions.

To reformulate the consistency result in terms of the system matrices (A; K; C; E), it

is required to transform the estimates to a canonical form (on generic pieces of Mn).

The next question, after having established consistency of the estimates, refers to the

asymptotic distribution of the estimates. This is left as a topic of future research.

A diMerence between the algorithm for the stationary case and the integrated case

is the diMerent choice of the weighting matrices, Ŵ
+

f or Ŵ
+

f;C1
respectively. It follows

from the above theorem that the former weighting matrix may be used in the estimation

of the cointegrating space and this estimate may then be employed in the construction

of the weighting matrix Ŵ
+

f;C1
. Consistent estimates of the parameters corresponding

to the stationary part of the transfer function are derived by using the adapted version

of the subspace algorithm.

A second diMerence between the results for stationary and integrated processes is

the stronger restriction for the increase of p as a function of the sample size for the

case of integrated processes. This stronger restriction is introduced to guarantee that

(A−KE−1C)p=o(T−1) rather than only (A−KE−1C)p=o(T−1=2), which is suFcient

in the stationary case.

Related to the consistent estimation of the cointegrating space, also tests for its

dimension are developed in the following section, where two diMerent tests are provided.

5. Estimating the structure indices

In this section we discuss the determination of the structure indices, i.e. of the system

order n and of the cointegrating rank r, or equivalently of the number of common trends

c. These problems are tackled by employing the properties of the singular values of

Ŵ
+

f !̂f;pŴ
−

p and of the eigenvalues of Â. It has been seen in Section 3 that the system

order is equal to the number of nonzero singular values of the limit of Ŵ
+

f !̂f;pŴ
−

p .

This property of the singular values �̂n+j for j¿ 0 to converge to zero has been

exploited for stationary systems in the criterion SVC(n). The following theorem shows

that this order estimation procedure is consistent also for integrated processes.

Theorem 3. Under the conditions of Theorem 2 the estimate of the order obtained

by SVC as de1ned in (7) is weakly consistent for HT =(p(T ) log log T ) → ∞ and

HT =T → 0; i.e. n̂→ n in probability.

The proof of Theorem 3 is given in Appendix A.

Concerning the estimation of (or testing for) the cointegrating rank we propose two

tests. One based on �̂i, the estimated singular values. This test procedure will turn out

to be related to the Bewley and Yang (1995) approach. The other test is based on

the eigenvalues of Â. The eigenvalue-based test is in the spirit of Stock and Watson

(1988) and employs the fact that the number of eigenvalues of the matrix A equal to

one equals the number of common trends. Let us analyze each test in turn and start

with the singular value based test.
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Our singular value based test for the number of common trends is based on corre-

lations between Y+
t;f and Y−

t;p. Thus, there are similarities to other tests that are based

on canonical correlations between the observations. In particular, the test proposed by

Poskitt (2000) turns out to use a special case of our framework, i.e. when f = p= 1

are chosen, as Poskitt calculates the correlations between yt and yt−1. The diMerence

thus is that our test takes the short-run dynamics into account. Furthermore, in our

proof we derive sharp bounds on the estimation error leading to the distribution of the

test statistic, whereas Poskitt (2000) only derives an upper bound. This comes at the

expense of not proving strong consistency, but only in probability statements. It should

be noted, however, that Poskitt (2000) uses a slightly diMerent test statistic, which

could easily be adapted to the present case. For the special case of AR(1) processes

and for f = p= 1 and for the null hypothesis of no cointegration, the test of Bewley

and Yang (1995) coincides with the test statistic presented in Theorem 4. 7

Let the process yt be generated by a minimal system of form (1) with order n

and true cointegrating rank r. Then (asymptotically) exactly c (where again c= s− r)

estimated singular values are equal to one, whereas the remaining n−c nonzero singular

values are converging to their limits smaller than one. This relationship between the

number of singular values equal to one and the number of common trends only holds

true if no zeros of the transfer function are admitted on the unit circle 8 and the

only poles of the transfer function on the unit circle, i.e. the only unit roots, occur at

z = 1. Any of these other cases also introduces unit singular values and therefore the

following test is not robust against the presence of e.g. seasonal unit roots. Consistency

of the estimated singular values has been established in the proof of Theorem 2. More

precisely, there it is shown that given a number of common trends c, the largest c

estimated singular values converge to one at rate T , whereas the remaining n − c

converge to their limits only at rate T 1=2. Thus, a test for the cointegrating rank,

r = s− c, or more directly for the number of common trends c, may be based on the

asymptotic distribution of the Hrst c estimated singular values.

Theorem 4. Let the process yt be generated by a system of form (1); where the true

noise satis1es the standard assumptions. Let �̂i denote the estimate of the ith singular

value (which are assumed to be ordered decreasing in size) and let c denote the true

number of common trends. Then T (1− 1=c
∑c

j=1 �̂
2
j ) converges in distribution to

1

c
tr



C′

1$C1

(

∫ 1

0

W (u)W (u)′ du

)

−1


 : (8)

Here
∫ 1

0
W (u)W (u)′ du denotes a mixture of Brownian motions; where the covariance

associated with W (u) is equal to K1K
′

1. $ = EE′ denotes the innovation covariance

matrix.

The proof of Theorem 4 is given in Appendix A.

7 For the general situation, i.e. for higher order processes or for values of f and p larger than one, there

seems to be no connection.
8 Thus, we exclude in terms of a left coprime VARMA representation unit roots in the MA polynomial.
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Thus, for all values of c, the system can be estimated by the adapted CCA procedure

to obtain estimates of C1, K1 and $ and these estimates could then be inserted in

the test statistic. However, this already shows the main disadvantage of this test, its

dependence on nuisance parameters. This drawback could in principle be overcome or

at least mitigated by bootstrapping the test statistic to decrease the Hnite sample eMects

(see e.g. Bauer and Wagner (2000a), for a Hrst application of the bootstrapped version

of this test).
Another idea is to follow the arguments developed in Poskitt (2000) and to ignore the

above distributional result and use only the implied in probability bounds in a procedure

to estimate the cointegrating rank. Again exploit the fact that as many singular values

as there are common trends converge to one at rate T . Hence, simply take as an

estimate of the number of common trends the largest integer, say c, such that the cth

singular value �̂c is the smallest one for which 1 − �̂2c¡hT =T , where hT → ∞ and

hT =T
1=4

→ 0 as T → ∞. This leads to a weakly consistent estimation of c due to the

results concerning the asymptotic distribution of the singular values. The speciHc choice

of the threshold hT inQuences the Hnite sample properties of the estimation procedure

and also the asymptotic properties of the estimated cointegrating rank derived with this

approach. It is common in the literature to choose the penalty hT close to the lower

bound of possible values for which a.s. consistency is obtained (compare e.g. the order

estimation criterion BIC in the stationary case). Choices close to the lower bound then

ensure even strong consistency for the procedure. E.g. for the special case c=1 in the

present setup it can be shown that hT = (log T )2 is a crude lower bound to achieve

almost sure consistency (see the remark in Appendix A).
We advocate the use of the preceding result to obtain preliminary intuition concern-

ing possible cointegrating vectors and to combine the results of this procedure either

with the above test or with the nuisance parameter free test based on the eigenvalues of

Â presented below. Nuisance parameter free test statistics can be based on the eigenval-

ues of Â. This approach is very much in the spirit of Stock and Watson (1988): In that

paper a test for the number of common trends in processes zt having a representation

of the form 5(z)D′Uzt = �t is derived. Here �t is white noise, 5(z)∈Rc×c is a matrix

polynomial and D∈R
s×c. A test for the number of common trends is based on an esti-

mated Hrst order autoregressive coeFcient matrix of the integrated process 5(z)D′zt . It

is shown in Stock and Watson (1988) that the test statistic is asymptotically unchanged,

whether 5(z) and D are known or estimated consistently.
This setup Hts to our problem very well, taking into account a few changes. We

are not testing on the observations themselves, but on the state xt corresponding to the

canonical form presented in Section 2. And in our case it is the state that is unknown

and of which only an estimate is available. The matrices 5(z) and D themselves have

a very simple form in our case, since the state transition equation is an autoregression

of order one. Also in our canonical form the Hrst c components of the state are the

integrated ones, i.e. [Ic; 0
c×(n−c)]Uxt =K1�t−1, hence 5(z) = Ic and D= [Ic; 0

c×(n−c)]′.

Now, to derive a nuisance parameter free test for the number of common trends, we

have to show that the replacement of the state with an estimate x̂t = K̂pY
−

t;p does

not change the asymptotic distribution of the test statistic. This is the content of the

following theorem, whose proof is given in Appendix A.
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Theorem 5. Let the assumptions of Theorem 2 hold and let the true number of

common trends be denoted as c. Assume that the adapted subspace procedure for

cointegrated processes under the hypothesis of a correctly speci1ed cointegrating rank

is used.

Then the asymptotic distribution of the largest c eigenvalues of T (
∑T−1

t=0 x̂t+1; x̂
′

t)

(
∑T−1

t=0 x̂t ; x̂
′

t)
−1

− In) is equal to the distribution of the eigenvalues of
∫ 1

0
W (u) dW (u)′

(
∫ 1

0
W (u)W (u)′du)−1,whereW (u) denotes the c-dimensional standard Brownianmotion.

Since Â = (
∑T−1

t=0 x̂t+1; x̂
′

t)(
∑T−1

t=0 x̂t ; x̂
′

t)
−1, this result directly leads to nuisance

parameter free tests based on the eigenvalues of Â.

Thus, given the above result, the eigenvalues of Â or respectively of T (Â − In)

can be used to construct tests for the number of common trends (and therefore for

the number of cointegrating relationships) in a straightforward way. Tests based on

Theorem 5 have, as opposed to tests based on Theorem 4, the advantage of being

nuisance parameter free.

Analogous to this result, it seems tempting to investigate also diMerent schemes for

obtaining the number of cointegrating relations: Theorem 5 basically shows that the

replacement of the state xt by an estimate x̂t does not change the usual asymptotics.

The question whether an analogous statement also holds for the Johansen approach

applied to the state equation is currently under investigation.

There are, as in Stock and Watson (1988), several possibilities for constructing tests:

For a given null hypothesis of c common trends, the test statistic can be based on the

cth estimated eigenvalue alone, or on the c largest estimated eigenvalues of T (Â− In).

For the latter choice the sum of the c largest eigenvalues may be considered (compare

e.g. the construction of the trace and the max tests in the Johansen framework). The

second choice to be made is whether one bases the test statistic on the real parts

of the eigenvalues or on the absolute values. Following again Stock and Watson we

decide to use the real part of the eigenvalues, which can then be ordered according

to decreasing size. Thus, in the simulations presented in the following section the test

statistic is constructed from the real part of the cth largest eigenvalue (according to

the size of the real part) of T (Â− In).
9

The test is one sided, with the alternative that the (real part of the) cth largest

eigenvalue of T (Â−In) is smaller than 0, as explosive systems are not of great concern.

Thus, the test is performed by comparing the cth largest real part of the eigenvalues of

T (Â− In) with the real part of the cth largest eigenvalue of the functional of Brownian

motions given in the formulation of the theorem. The asymptotic distributions of the

(real parts of the ordered) eigenvalues have been simulated and critical values are

available from the authors upon request.

The test sequence we propose is to start with an upper bound for the number of

common trends as initial null hypothesis. For a chosen null hypothesis of c common

trends, the matrix Â is then estimated by applying the adapted subspace procedure

9 In further simulations also the properties of other choices concerning the construction of test statistics

have been investigated.
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with the corresponding number of common trends. This in turn means nothing but the

construction of the weighting matrix W+
f;C1

based on the Hrst c columns of an initial

estimate of C. If the null hypothesis is rejected, the test sequence is continued with the

null of c − 1 common trends and is stopped when the corresponding null hypothesis

cannot be rejected anymore. The sequence of course stops also after the rejection of

the null hypothesis c = 1.

An open question at this point is the determination of the initial null hypothesis.

There are basically two possibilities: The Hrst is to start the testing sequence with the

maximal possible number of common trends, which is (remember the discussion in Sec-

tion 2) given by the minimum of s, the dimension of the observed time series, and n,

the system order. In the simulations this test sequence will be labeled as eigenvalue test

sequence. The second possibility is to use a threshold-based estimate of the number of

common trends as an initial guess (see the discussion below Theorem 4). To ensure that

this approach works well, it is required to Hnd a threshold that implies a low probability

of underestimating the number of common trends. This is achieved by using large val-

ues for the penalty term hT . The test procedure that starts with an initial guess derived

from a threshold estimate of the number of common trends and uses the eigenvalue

test sequence thereafter is called combined test procedure in the following section. In

principle it is furthermore possible, as indicated before, to bootstrap the singular value

based test statistic to obtain an initial guess for the number of common trends.

6. A small simulation study

In this section the theoretical results obtained in the previous sections are tested

on simulated data. Two aspects of the presented methods are investigated: the order

estimation and the performance of the proposed test sequences.

The systems we simulate have been previously investigated by Saikkonen and

Luukkonen (1997). A precise description of the systems is given in Appendix B. All

three systems generate three-dimensional outputs. The three scenarios include the cases of

a two-dimensional cointegrating space (Scheme 1), of a one-dimensional cointegrating

space (Scheme 2) and of an integrated system without cointegration (Scheme 3).

For each system 1000 time series of lengths T = 100, 500 and 1000 have been

generated using Gaussian white noise with covariance matrix as speciHed in Appendix

B. We report the estimated order of the system and the cointegrating rank as determined

by the diMerent proposed testing procedures. The integers f and p are chosen to

equal 2p̂AIC, where p̂AIC denotes the order estimate obtained by using AIC in an

autoregressive approximation. It can be shown that under the assumptions in this paper,

the probability that dp̂AIC¿− log T=log |00| tends to one for d¿ 2. The system order

is estimated by using the criterion SVC(n), as described in the previous sections with

penalty HT = log T . For all three systems the true system order is given by n= 3.

In the right panel of Table 1 the estimated orders are reported. For all three sys-

tems for T = 500 and 1000 the order is estimated correctly in more than 99% of the

replications. For T = 100 the order estimation turns out to be inaccurate, with a sub-

stantial bias toward underestimation of the system order. In the left panel of Table 1
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Table 1

Frequency distributions of the test results for the dimensions of the cointegrating space and of the estimated

system orders for Schemes 1 to 3 and sample sizes 100, 500 and 1000. This table displays the test results

for the eigenvalue test sequence

Scheme Sample size Dim. of coint. space System order

0 1 2 3 1 2 3 4

1 T = 100 0.082 0.106 0.705 0.107 0.511 0.288 0.201 0

T = 500 0 0 0.962 0.038 0 0 0.996 0.004

T = 1000 0 0 0.976 0.024 0 0 0.998 0.002

2 T = 100 0.141 0.486 0.351 0.022 0.335 0.378 0.287 0

T = 500 0 0.918 0.082 0 0 0 0.995 0.005

T = 1000 0 0.962 0.038 0 0 0 0.994 0.006

3 T = 100 0.625 0.061 0.31 0.004 0.306 0.056 0.638 0

T = 500 0.961 0.035 0.004 0 0 0 0.995 0.005

T = 1000 0.968 0.031 0.001 0 0 0 1 0

the distributions of the test results for the dimension of the cointegrating spaces us-

ing the eigenvalue test sequence are reported. For 100 observations the results are

only satisfactory for Scheme 1, with a correct result in about 70% of the replications.

For Schemes 2 and 3 the results are not so good for T = 100, with a correct deci-

sion in only about 49% and 63% of the replications respectively. This unsatisfactory

behavior of the tests is also a consequence of the imprecise estimation of the system

order for this small sample. It may be necessary to consider diMerent values for HT
to improve the small sample performance of the order estimation criterion SVC(n). 10

For the larger two sample sizes the performance of this test procedure is very good,

and the nominal size corresponds to the actual size quite accurately. All tests in this

section are performed at a nominal size of 5%.

In Table 2 the results for the threshold estimate (left panel) and the combined

test sequence (right panel) are reported. The underlying penalty term is given by

hT = (log T )2. Some diMerences between the diMerent proposed tests can be observed.

For T=100 the eigenvalue test sequence is better than the other two, except for Scheme

2, where the threshold test sequence is slightly better than the combined test sequence

and both of these are better than the eigenvalue test sequence. For this system also

for the larger sample sizes the actual size of the eigenvalue test sequence is slightly

lower than for the other two, where however all three tests do not have problems in

detecting the correct number of cointegrating relationships.

The good performance of the threshold (log T )2 may heuristically be explained by

the fact that in this particular example it happens to be of the same magnitude as the

95% percentile of the asymptotic distribution of the singular value based test statistic

presented in Theorem 4. By bootstrapping, this percentile can be estimated to be e.g.

10 For the systems reported, the behavior of both the estimation of the system order and the test procedures

can be improved for T = 100 by using smaller values for f and p than 2p̂AIC. This seems to make the

estimation more precise but is lacking an asymptotic argument.
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Table 2

Frequency distributions of the test results for the dimensions of the cointegrating space for Schemes 1–3

and sample sizes and T = 100; 500; 1000

Scheme Sample size Threshold Combined

0 1 2 3 0 1 2 3

1 T = 100 0.039 0.442 0.519 0 0.031 0.142 0.702 0.125

T = 500 0 0.003 0.997 0 0 0 0.977 0.023

T = 1000 0 0 1 0 0 0 0.977 0.023

2 T = 100 0.068 0.609 0.323 0 0.053 0.579 0.342 0.026

T = 500 0 0.994 0.006 0 0 0.933 0.067 0

T = 1000 0 1 0 0 0 0.956 0.044 0

3 T = 100 0.574 0.1 0.326 0 0.567 0.1 0.325 0.008

T = 500 0.961 0.039 0 0 0.946 0.047 0.007 0

T = 1000 0.984 0.016 0 0 0.967 0.028 0.005 0

The left panel displays the results from the threshold estimate and the right panel displays the results

from the combined test sequence, based on the threshold estimate. The penalty underlying these results is

given by hT = (log T )2.

approximately 35 for Scheme 2 with cointegrating rank r =1. Comparing this number

with (log 100)2 = 21:2, (log 500)2 = 38:6 and (log 1000)2 = 47:7 explains the good

performance. Thus, by specifying the initial null hypothesis with this threshold, the

combined test sequence starts “closer” to the true number of common trends in a large

number of replications. Other employed thresholds did not deliver results as favorable

as hT = (log T )2. Note once again that only for Scheme 2 and T = 100 the threshold

estimate and the combined test sequence lead to improvements over the eigenvalue

test sequence. We want to stress again that the discussion above is only valid for this

particular example and cannot be seen as a justiHcation for choosing the threshold

(log T )2 in all cases. The main message from this example lies in the fact that the

singular values based test may be used to obtain a Hrst insight into the number of

possible common trends, rather than delivering a precise test.

Another possibility for determining the cointegrating rank, e.g. employed in Bauer

and Wagner (2000a), is to bootstrap the singular value based test statistic. Also this

approach, although computationally more costly, can easily be implemented and leads

to satisfactory results as well. Note that the singular value based test leads to test

sequences for determining the number of common trends in the same way as the

eigenvalue-based tests.

Turning back to the order estimation it is remarkable that for T =500 and 1000 the

correct system order is detected in almost every replication. The good performance for

the larger sample sizes can be explained visually by inspecting the estimated singular

values.

Fig. 1 shows (for one replication) the estimated singular values for Scheme 1 (left

plot) and for Scheme 2 (right plot) for 100 and 1000 observations. It can clearly be

seen that for sample size T =1000 the gap between the third and the fourth estimated
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Fig. 1. Estimated singular values for Scheme 1 (left plot) and Scheme 2 (right plot) for one example and

sample size T = 100 (o) and T = 1000 (x) respectively.
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Fig. 2. Estimated eigenvalues for Scheme 1 and sample size T = 100 (left plot) and sample size T = 1000

(right plot).

singular value is very pronounced, which is reQected by the accuracy of the order

estimates. The graphical information presented in Fig. 1 also gives, especially again

for T = 1000, a clear indication about the number of singular values equal to 1, and

therefore about the number of common trends. Note however the similarity of the two

plots for 100 observations. This explains the diFculty of estimating the cointegrating

rank for this sample size, at least for the singular value based procedures. We can also

inspect the eigenvalues of Â. For Scheme 1, with true eigenvalues 1, 0:8 and 0:7, this

is done in Fig. 2 for all replications. For T =100 the plot is quite ambiguous, whereas

for T = 1000 the plot clearly reveals the single unit root at z = 1.

For comparison we also report the results obtained by applying the widely used

Johansen method on the simulated data. The results are documented in Table 3. The

order of the approximating autoregressive model is chosen according to AIC in each
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Table 3

Frequency distributions of the test results for the dimensions of the cointegrating space for Schemes 1–3

and sample sizes and T =100; 500; 1000 using the Johansen trace test in an autoregressive approximation of

the systems

Sample T = 100 T = 500 T = 1000

Coint. 0 1 2 3 0 1 2 3 0 1 2 3

Sch. 1 0.028 0.481 0.425 0.066 0 0 0.93 0.07 0 0 0.922 0.078

Sch. 2 0.085 0.813 0.092 0.001 0 0.913 0.082 0.005 0 0.926 0.07 0.004

Sch. 3 0.496 0.458 0.037 0.009 0.722 0.266 0.009 0.003 0.721 0.273 0.003 0.003

repetition, the test employed is the trace test, the signiHcance level is again 95% and

the usual test sequence that starts with an initial null of no cointegration is employed.

Comparing the results in Table 3 with the results for the subspace procedure in

Tables 1 and 2 we observe that for Schemes 1 and 3 and T = 100 all the subspace

tests deliver better results than the Johansen procedure. The ordering is reversed for

Scheme 2, where the Johansen trace test produces better results for T=100. For Scheme

3 the subspace procedures exhibit a better performance than the Johansen procedure

also for T = 500 and even for T = 1000. It has to be noted however that for Scheme

3 Johansen’s max test delivers results that are comparable to the results obtained by

the subspace cointegration analysis. For the other systems and the larger sample sizes

both procedures have no diFculties in detecting the correct number of cointegrating

relationships.

Thus, when we base the decision concerning the cointegrating rank on the eigenvalue

test sequence or on the combined test sequence, the subspace cointegration analysis

yields in these examples results that are at least comparable to results obtained by

applying the Johansen procedure. In addition to that, subspace cointegration analysis

has the further advantage of delivering consistent estimates of all system parameters.

For VARMA systems the approach based on the Johansen procedure only delivers

estimates of an autoregressive approximation, where the orders have to be increased

with the sample size to ensure consistency. Modelling the VARMA system with a

state space system is of course much more parsimonious than by an inHnite order

autoregression.

It has to be stressed that the results are so far only based on a couple of simulation

exercises. Further work has to be done to gain further understanding about the properties

of the proposed method and the test procedures based on it.

7. Summary and conclusions

This paper establishes consistency for an adapted version of the CCA subspace algo-

rithm. Based on this result, several methods for testing for (or estimating) the number

of common trends and thus equivalently the number of cointegrating relationships have

been introduced and analyzed. Furthermore, also a consistent order estimation procedure

is provided.
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The signiHcance of these results lies in the fact that the method provides consistent

estimates of all system parameters, including the cointegrating space, for VARMA pro-

cesses. This general applicability is an advantage compared to some other methods, like

e.g. the method proposed by Johansen for Gaussian VAR processes. As the subspace

estimates are computationally very cheap, they can also be used for “cross-validation”

of results obtained by the application of standard methods. The subspace estimates can

also be used as consistent initial values to obtain eFcient estimates of the parameters

performing one Newton step for pseudo-maximum likelihood estimation as described

in Yap and Reinsel (1995) or Bauer and Wagner (2000b).

The limited simulation evidence presented in this paper indicates that the perfor-

mance of the method is as good as that of the Johansen procedure. However, further

understanding concerning an optimal construction of the tests (e.g. whether the tests

should be based on the real parts or the absolute values of the eigenvalues of Â) and

an optimal choice of the penalty in deciding about the number of singular values equal

to one (if one wants to use the combined test procedure) has to be gained. One ad-

vantage of the state space framework is that the user is directly provided with easily

accessible information on the cointegrating rank and the system order. The estimated

singular values and the eigenvalues of Â provide the required information that can also

be inspected graphically.

In addition to an investigation of the properties of the tests and estimates, further

research is concentrated on three important questions not dealt with in this contribution.

One is the treatment of deterministic components, like constants and trends. The second

is the derivation of test (statistics) of hypotheses on the cointegrating space. This

second question is closely linked to the derivation of the asymptotic distribution of

the estimates of the cointegrating space. The third research Held Hnally lies in the

exploration of the applicability of subspace algorithms for processes having arbitrary

unit roots, i.e. processes with seasonal unit roots as well as processes integrated of

higher orders, as the main step of the algorithm is an autoregression, which is known

to provide consistent estimates in all these contexts (see Lai and Wei, 1982a, b).
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Appendix A. Proofs

Proof of Theorem 2. The arguments developed below for integrated processes follow

the lines of Shin and Lee (1997); LWutkepohl and Saikkonen (1997) and Saikkonen and

Luukkonen (1997). The key argument is the deHnition of appropriate transformations
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of Y+
t;f and Y−

t;p; as deHned in the main part of the paper; which separate the stationary

and nonstationary components of these random variables.

From the Granger representation theorem for cointegrated processes (of order 1) it

follows, under the assumptions of the theorem, that yt = C1K1

∑t
j=1 �t−j + kst(z)�t ,

where kst(z) denotes the stable part of the transfer function and where C1 ∈R
s×c;

K1 ∈R
c×s; C′

1C1= Ir . In this representation C1 is not unique. Bauer and Wagner (2001)

show how a unique choice for C1 can be obtained. Note again that the cointegrating

space does not depend on the speciHc choice of C1. If C
⊥

1 ∈R
s×r , where again c=s−r,

is such that (C⊥

1 )′C⊥

1 =Ic; (C
⊥

1 )′C1=0, then, with NC as deHned in Section 2, in NCyt the

Hrst c components are equal to
∑t

j=1 K1�t−j+vt , where vt=C
′

1kst(z)�t is stationary. The

remaining r components are stationary and the dimension of the cointegrating space is

equal to r. Let NQf be of the form

NQf =



















Ic 0c×r

0r×c Ir 0

−Ic 0c×r Ic
. . .

. . .
. . .

−Ic 0c×r Ic 0c×r

0r×c Ir



















:

Then Z+
t;f = NQf(I ⊗

NC)Y+
t;f can be represented as

Z+
t;f =





























I

0
...

...

0

































t−2
∑

j=0

K1�j



+



























K1�t−1

0

K1�t

...

K1�t+f−2

0



























+



























C′

1kst(z)�t
C′

2kst(z)�t
C′

1kst(z)U�t+1

...

C′

1kst(z)U�t+f−1

C′

2kst(z)�t+f−1



























:

Here U = (1 − z) denotes, as usual, the Hrst diMerence operator. Analogously, the

vector Y−

t;p can be transformed to Z−

t;p = NQp(I ⊗
NC)Y−

t;p, which is given by

Z−

t;p =

























I

0
...

...

0





























t−2
∑

j=0

K1�j



−























0

0

K1�t−2

...

K1�t−p
0























−























C′

1kst(z)�t−1

C′

2kst(z)�t−1

C′

1kst(z)U�t−1

...

C′

1kst(z)U�t−p+1

C′

2kst(z)�t−p























:

Let DT =diag(T−1Ic; T
−1=2Ifs−c), where T denotes sample size. From the construction

of Z+
t;f and Z−

t;p it follows that only the Hrst c components are nonstationary, whereas the
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remaining components are stationary. Hence the normalization. Let 〈at ; bt〉=
∑T

t=1 atb
′
t .
11

Furthermore we use the following notation: For a scalar random variable fT let

fT = o(gT ) mean limfT =gT = 0 a.s. fT = O(gT ) means that |fT =gT |6M a.s. for

some Hnite constant M . For matrix-valued random variables the notation is used for

the maximum of all entries, i.e. fT = O(gT ) means that maxi; j|fT; i; j=gT |6M a.s.,

where fT; i; j denotes the (i; j) element of fT . oP and OP denote the corresponding

in probability statements. Then the following lemma will be used widely in order to

derive the asymptotic properties of the estimates.

Lemma 1. Let nt=
∑t−1

i=1 �i and let vt=
∑∞

j=0 Kj�t−j ; where k(z)=
∑∞

j=0 Kjz
j denotes

a rational transfer function; whose poles are strictly outside the unit circle and �t
denotes a strictly stationary martingale di?erence sequence ful1lling the standard

assumptions. Thus; nt is integrated and vt is stationary. Then

• If .̂j=(1=T )
∑T

t=j+1 vtv
′
t−j and .j=Evtv

′
t−j ; then max|j|6FT ‖.̂j−.j‖=O(

√

log log T=T )

for FT = o((log T )a); a¡∞.

• 〈nt ; nt〉−1=2〈nt ; �t+j〉= o(
√

log T ); j¿ 0.

• 〈nt ; nt〉−1 = o(T−1).

• 〈nt ; nt〉−1=2〈nt ; vt〉=OP(1); T
−1〈nt ; vt〉=OP(1); 〈nt ; vt〉= o(T log T ).

• T−2〈nt ; nt〉 ⇒
∫ 1

0
W (u)W (u)′ du; where ⇒ denotes weak convergence of measures

and the Brownian motion W (u) is the limit of (1=
√
T )

∑�Tu�
t=1 �t ; where �x� denotes

the smallest integer equal or larger than x.

• 〈nt ; nt〉= o(T 2 log (T )).

Proof. The Hrst point follows from Hannan and Deistler (1988; Theorem 5.3.2). The

second and the third points can be found in Lai and Wei (1982a) and Lai and Wei

(1982b); respectively. The last three points follow from standard evaluations; see e.g.

Johansen (1995); except for 〈nt ; vt〉 = o(T log T ): Note that vt = k(z)�t = k(1)�t +

(k(z) − k(1))�t . Thus; 〈nt ; vt〉 = 〈nt ; �t〉k(1)′ + 〈nt ; (k(z) − k(1))�t〉. The Hrst term is

o(T log T ) according to the results of Lai and Wei (1982a; Corollary 2). For the

second term; note that nt=
∑t−1

j=1 �j and that k(z)−k(1)=(1−z)kd(z). This shows that
〈nt ; (k(z)−k(1))�t〉=(

∑T
j=1 �j)(kd(z)�T )

′−
∑T−1

j=1 �j(kd(z)�j)
′=o(T log T ). This follows

from the (conditional) zero mean assumption on �t ; the fact that kd(z)�T =O(T 1=2) and

the standard convergence orders for stationary processes.

Let ;T = (1=T 2)
∑

t (
∑t−2

j=0 K1�j)(
∑t−2

j=0 K1�j)
′. Clearly, ;T is the (appropriately

scaled) dominant term in the nonstationary component of both Z+
t;f and Z−

t;p. Further

let D̃T = diag(;
−1=2
T ; I)DT :

12 Then D̃T 〈Z+
t;f ; Z

+
t;f〉D̃T converges to diag(I; &̃

+

f) in

11 Alternatively, the summations could be in the range t = p + 1; : : : ; T − f without changing the results.
12 In order to simplify notation, the symbol D̃T will be used for any matrix of the form

diag(;
−1=2
T T−1; T−1=2I), irrespective of the dimension of the second block.



72 D. Bauer, M. Wagner / Journal of Econometrics 111 (2002) 47–84

probability. This can be seen by considering the diMerence

D̃T 〈Z
+
t;f ; Z

+
t;f〉D̃T −

[

I 0

0 &̃
+

f

]

:

Denoting by nt =
∑t−2

j=0 K1�j, we obtain for the (1; 1) block of this expression

;
−1=2
T T−2

[

T
∑

t=0

(nt + vt)(nt + vt)
′

]

(;
−1=2
T )′ − ;−1=2

T T−2

T
∑

t=0

ntn
′

t(;
−1=2
T )′:

Here vt stands for all stationary contributions. Thus, we obtain T−2
∑T

t=0 ;
−1=2
T (ntv

′

t+

vtn
′

t + vtv
′

t)(;
−1=2
T )′. This matrix converges, when multiplied by T , in distribution to

a random variable, since T−1
∑T

t=0 ntv
′

t converges in distribution (see e.g. Johansen,

1995, Theorem B.13). The (2; 1) (and the (1; 2) block, which is the transpose thereof )

are of the form T−3=2
∑T

t=0 ;
−1=2
T ntv

′

t+OP(T
−1=2). Here vt again stands for a stationary

variable (not the same as before, though). It follows, that T 1=2 times this expression

converges in distribution, see also Lemma 1. Finally the (2; 2) term is the sample

covariance of a stationary process and thus the error converges in distribution, when

multiplied by T 1=2, as follows from standard arguments, see e.g. Hannan and Deistler

(1988, Chapter 4). Taking the Cholesky factor as the square root of a matrix, we obtain

that D̃T 〈Z
+
t;f ; Z

+
t;f〉

1=2 converges in probability to diag(I; (&̃
+

f)
1=2), and again the blocks

are of the same order of convergence, except for the (1,2) block, which is identically

zero due to the lower triangular structure of the Cholesky factor.

Note that the matrix on which the singular value decomposition is performed in the

subspace algorithm is equal to

〈Y+
t;f ; Y

+
t;f〉

−1=2〈Y+
t;f ; Y

−

t;p〉(〈Y
−

t;p; Y
−

t;p〉
−1=2)′:

The left singular vectors of this matrix are equal to the eigenvectors of the matrix

X̂ = 〈Y+
t;f ; Y

+
t;f〉

−1=2〈Y+
t;f ; Y

−

t;p〉〈Y
−

t;p; Y
−

t;p〉
−1〈Y−

t;p; Y
+
t;f〉(〈Y

+
t;f ; Y

+
t;f〉

−1=2)′

= 〈Z+
t;f ; Z

+
t;f〉

−1=2〈Z+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1〈Z−

t;p; Z
+
t;f〉(〈Z

+
t;f ; Z

+
t;f〉

−1=2)′;

where the second expression can be analyzed more easily due to the fact that in Z+
t;f

and Z−

t;p the coordinates corresponding to the stationary and the nonstationary parts are

separated. Note however that in this equality the square roots are deHned diMerently: If

〈Z+
t;f ; Z

+
t;f〉

−1=2 corresponds to the Cholesky factor, the expression involving Y+
t;f will not

and vice versa, since the transformation mapping Y+
t;f into Z+

t;f is not lower triangular

in general. Replacing Y+
t;f with Ŷ

+

t;f = (I ⊗ N̂C)Y+
t;f and Z+

t;f with Ẑ
+

t;f = NQfŶ
+

t;f this

is true and thus for the Cholesky factors NQf〈Ŷ
+

t;f ; Ŷ
+

t;f〉
1=2 = 〈Ẑ

+

t;f ; Ẑ
+

t;f〉
1=2 holds. Note

that the error in the replacement of Z+
t;f by Ẑ

+

t;f is of order OP(T
−1) and thus can be

neglected for our purposes. This substitution has however an eMect on the asymptotic

distribution of the estimates, which is not further analyzed here.

Recall that Y+
t;f = OfKpY

−

t;p + Of(A − KE−1C)pxt−p + EfE
+
t;f and thus Z+

t;f =

ÕfK̃pZ
−

t;p + Õf(A − KE−1C)pxt−p + ẼfE
+
t;f, where Õf = NQf(I ⊗ NC)Of and K̃p and
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Ẽf are deHned analogously. Therefore Z+
t;f = ÕfK̃pZ

−

t;p + N+
t;f, where 〈N+

t;f ; N
+
t;f〉=

o(T 1+�) ∀�¿ 0 due to the bound on the increase of p(T ), which implies that (A −
KE−1C)p = o(1=T ). Also note that

Õf =

[

Ic Õ
st;1

f

0 Õ
st;2

f

]

; K̃p =

[

Ic K̃
st;1

p

0 K̃
st;2

p

]

;

where Õ
st; i

f and K̃
st; i

p for i = 1; 2 correspond to the stationary part. From the results

given above, it will be shown that X̂ converges to

X =

[

I 0

0 (&̃
+

f)
−1=2

H̃f;∞(&̃
−

∞
)−1

H̃
′

f;∞((&̃
+

f)
−1=2)′

]

: (A.1)

In order to do this, it remains to consider the estimation error in the term

D̃T 〈Z
+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1〈Z−

t;p; Z
+
t;f〉D̃

′

T , since

X̂ − X

=(〈Z+
t;f ; Z

+
t;f〉

1=2)−1〈Z+
t;f ; Z

−

t;p〉(〈Z
−

t;p; Z
−

t;p〉)
−1〈Z−

t;p; Z
+
t;f〉((〈Z

+
t;f ; Z

+
t;f〉

1=2)−1)′

−

[

I 0

0 (&̃
+

f)
−1=2

H̃f;∞(&̃
−

∞
)−1

H̃
′

f;∞((&̃
+

f)
−1=2)′

]

=

{

(D̃T 〈Z
+
t;f ; Z

+
t;f〉

1=2)−1 −

[

I 0

0 (&̃
+

f)
−1=2

]}

×

[

I 0

0 H̃f;∞(&̃
−

∞
)−1

H̃
′

f;∞((&̃
+

f)
−1=2)′

]

+

[

I 0

0 (&̃
+

f)
−1=2

]

{

D̃T 〈Z
+
t;f ; Z

−

t;p〉(〈Z
−

t;p; Z
−

t;p〉)
−1〈Z−

t;p; Z
+
t;f〉D̃T

−

[

I 0

0 H̃f;∞(&̃
−

∞
)−1

H̃
′

f;∞

]}[

I 0

0 (&̃
+

f)
−1=2

]

+

[

I 0

0 (&̃
+

f)
−1=2

H̃f;∞(&̃
−

∞
)−1

H̃
′

f;∞

]

{

(D̃T 〈Z
+
t;f ; Z

+
t;f〉

1=2)−1

−

[

I 0

0 (&̃
+

f)
−1=2

]}

+ rT :

Here rT accounts for the error from replacing estimates with limits in the Hrst and

second diMerence. The Hrst and the last summands have been dealt with above and

shown to be convergent in distribution to a constant and thus convergent in probability.

Here in the (1; 1) sub-block convergence is of order OP(T
−1), in the remaining blocks
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of order OP(T
−1=2). Note that 〈Z+

t;f ; Z
−

t;p〉= ÕfK̃p〈Z−

t;p; Z
−

t;p〉+ 〈N+
t;f ; Z

−

t;p〉. Thus,
D̃T 〈Z+

t;f ; Z
−

t;p〉〈Z−

t;p; Z
−

t;p〉−1〈Z−

t;p; Z
+
t;f〉D̃

′

T

= D̃T ÕfK̃p〈Z−

t;p; Z
−

t;p〉K̃
′

pÕ
′

fD̃
′

T + D̃T (ÕfK̃p〈Z−

t;p; N
+
t;f〉

+ 〈N+
t;f ; Z

−

t;p〉K̃
′

pÕ
′

f + 〈N+
t;f ; Z

−

t;p〉〈Z−

t;p; Z
−

t;p〉−1〈Z−

t;p; N
+
t;f〉)D̃

′

T :

The Hrst term converges in probability to diag[I; H̃f;∞(&̃
−

∞
)−1

H̃
′

f;∞], as follows

from standard arguments considering the structure of Õf and K̃p. Moreover the error

terms in the (1; 1) element are of order OP(T
−1) and in the remaining blocks of order

OP(T
−1=2) using standard arguments as above. Recall that N+

t;f = ẼfE
+
t;f + Õf(A −

KE−1C)pxt−p. Then the convergence of the second and the third terms is straight-

forward to show using Lemma 1 and the fact that K̃pZ
−

t;p = xt − (A− KE−1C)pxt−p.

Here also ‖(A − KE−1C)p‖ = o(1=T ) is used. For the fourth term apply the matrix

inversion lemma to the matrix 〈Z−

t;p; Z
−

t;p〉 to separate the eMects of the stationary and

the nonstationary part: Let Z−;1
t;p and Z−;st

t;p denote the nonstationary and the stationary

parts of Z−

t;p respectively. Then

〈Z−

t;p; Z
−

t;p〉−1 =

[

0 0

0 〈Z−;st
t;p ; Z

−;st
t;p 〉−1

]

+

[

I

−〈Z−;st
t;p ; Z

−;st
t;p 〉−1〈Z−;st

t;p ; Z
−;1
t;p 〉

]

〈Z−;5
t;p ; Z−;5

t;p 〉−1
[

I;−〈Z−;1
t;p ; Z

−;st
t;p 〉〈Z−;st

t;p ; Z
−;st
t;p 〉−1

]

; (A.2)

where 〈Z−;5
t;p ; Z−;5

t;p 〉=〈Z−;1
t;p ; Z

−;1
t;p 〉−〈Z−;1

t;p ; Z
−;st
t;p 〉〈Z−;st

t;p ; Z
−;st
t;p 〉−1〈Z−;st

t;p ; Z
−;1
t;p 〉. Thus, the

fourth term is equal to

D̃T (〈N+
t;f ; Z

−;st
t;p 〉〈Z−;st

t;p ; Z
−;st
t;p 〉−1〈Z−;st

t;p ; N
+
t;f〉+ 〈N+

t;f ; Z
−;5
t;p 〉

〈Z−;5
t;p ; Z−;5

t;p 〉−1〈Z−;5
t;p ; N+

t;f〉)D̃
′

T :

Therefore in the Hrst term only stationary variables and Õf(A − KE−1C)pxt−p occur

and thus the term is of order o(p(T )=T ) a.s. Here also the fact that 〈xt−p; xt−p〉 =
o(T 2 log T ) is used, see e.g. Lemma 1. Corresponding to the second term note that

due to Lemma 1 〈Z−;5
t;p ; Z−;5

t;p 〉 = 〈Z−;1
t;p ; Z

−;1
t;p 〉 + o(T (log T )2p(T )) and 〈N+

t;f ; Z
−;5
t;p 〉 =

〈N+
t;f ; Z

−;1
t;p 〉+o(

√
T (log T )2p(T )). Thus, the crucial term can be seen to be essentially

equal to D̃T 〈N+
t;f ; Z

−;1
t;p 〉〈Z−;1

t;p ; Z
−;1
t;p 〉−1〈Z−;1

t;p ; N
+
t;f〉D̃

′

T and is also seen to converge to

zero. Considering the various error terms, it is straightforward but cumbersome to

show that the (1; 1) block of rT is of order oP(T
−1). The remaining blocks of rT

are of order oP(T
−1=2), as they are the sum of products of matrices having the same

property. Note that the increase in p(T ) only aMects the stationary part Z−;st
t;p and thus

especially the inverse 〈Z−;st
t;p ; Z

−;st
t;p 〉 can be dealt with using well-understood theory for

stationary processes, showing e.g. that the inHnity norm of the inverse is bounded

uniformly in p(T ), for 06p(T )6 (log(T ))a and a¡∞.

In subspace algorithms an eigenvalue decomposition is performed on X̂ . For the

limit X the Hrst c= s− r eigenvalues are equal to one, assuming the cointegrating rank

to be equal to r. The corresponding eigenvectors span the space corresponding to the

Hrst c vectors of the canonical basis. With regard to the remaining eigenvalues and
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eigen-vectors note that the term (&̃
+

f)
−1=2

H̃f;p((&̃
−

p )
−1=2)′ corresponds to the stationary

transfer function

k̃(z) =

[

(1− z)Ic 0

0 Ir

]

NCk(z)

as can be shown from the deHnition of Z+
t;f and Z−

t;p. The transfer function k̃(z) is of

order smaller or equal to n. This can be seen by considering the nonminimal represen-

tation

Ã=





I 0 0

0 Ast 0

I C′

1Cst 0



 ; K̃ =





K1

Kst

C′

1E



 ; C̃ =

[(

I

0

)

; NCCst ;−

(

I

0

)]

;

Ẽ = NCE

of k̃(z). Here the realization (A; K; C; E) of k(z) is used, where

A=

[

I 0

0 Ast

]

; K =

[

K1

Kst

]

; C = [C1; Cst]:

From the expressions for Z+
t;f and Z−

t;p and realization theory for the stationary case it

follows that H̃f;∞((&̃
−

∞
)−1=2)′ is equal to a part of the Hankel matrix of the Markov

parameters corresponding to k̃(z) times an orthonormal matrix, which arises because

of the speciHc choice for the square root of &̃
−

∞
. Now some algebraic computations

show that the Markov parameters K̃(j) of k̃(z) are equal to

K̃(1) =

[

C′

1CstKst + K1 − C
′

1E

C′

2Cst

]

; K̃(j) =

[

C′

1Cst(Ast − In−c)A
j−2
st Kst

C′

2CstA
j−1
st

]

; j¿ 2:

It follows that H̃f;∞((&̃
−

∞
)−1=2)′ is of rank n − c, since it is, up to an orthonormal

transformation, essentially the Hankel matrix of the coeFcients K̃(j), where the Hrst

c rows have been omitted. The typical element of this matrix is equal to C′

1Cst(Ast −

In−c)A
j−2
st Kst or C

′

2CstA
j−1
st Kst. The Hankel matrix with the Hrst c rows omitted can be

factored into
















C′

2Cst

C′

1Cst(Ast − In−c)

C′

2CstAst

C′

1Cst(Ast − In−c)
...

















[Kst AstKst A2stKst · · · ];

where the second matrix is equal to the controllability matrix of the stationary part

and thus of full rank n− c. Thus, consider the case, where the Hrst matrix above has

not full column rank. Then, there exists a vector x such that C′

1Cst(Ast − In−c)A
j
stx =

0; j ¿ 0, which implies that C′

1CstA
j+1
st x=C

′

1CstA
j
stx; j¿ 0 ⇒ C′

1CstA
j
stx=0; j ¿ 0. Also

C′

2CstA
j
stx=0; j ¿ 0 must hold in this case. Thus, x=0 follows from minimality of the

stationary state space system (Ast ; Kst ; Cst). This implies that the number of nonzero
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singular values of the limit of X̂ =(〈Y+
t;f ; Y

+
t;f)

−1=2〈Y+
t;f ; Y

−
t;p〉(〈Y

−
t;p; Y

−
t;p〉

−1=2)′ is (gener-

ically) equal to n, the order of the system. From Eq. (A.1) it thus follows that the

SVD leads to a factorization
[

Ic 0

0 (&̃
+

f)
−1=2 NOf

][

Ic 0

0 NKp(&̃
−

p )
1=2

]

:

Here NOf and NKp correspond to the decomposition of the stationary part. From the

deHnitions of Ã and C̃ it follows that C̃Ã=[0; NCCstAst − [ I
0
]C′

1Cst ; 0] and thus only the

n − c columns in the middle of Õf contribute to H̃f;p((&̃
−

p )
−1=2)′. It follows from

the deHnitions of Ã and K̃ that the middle rows of C̃ correspond to the controllability

matrix corresponding to kst. Therefore, C̃∞(&̃
−
)−1=2Z−

t;∞=K̃∞Z
−
t;∞=xt;st, the stationary

part of the state. Which particular realization Ast ; Kst is used is determined by the

SVD. Furthermore, the convergence of the matrix X̂ implies the convergence of the

eigenvalues and also the eigenspaces, as follows from the next lemma. Thus, let Û n

denote the matrix, whose columns correspond to the eigenvectors to the n dominant

eigenvalues of X̂ . The following lemma (see e.g. Chatelin, 1983) provides tools to

assess the estimation error.

Lemma 2. Let T denote a symmetric; positive de1nite compact linear operator and

let T̂ denote a sequence of symmetric; positive de1nite compact operators converging

to T. Let =1¿ · · ·¿=k¿ 0 denote the k; say; distinct nonzero eigenvalues of T

having geometric and algebraic multiplicities equal to ki say. Further let Pi denote

the (orthogonal) projection onto the eigenspace corresponding to the eigenvalue =i of

T. Furthermore; let =̂i; j and P̂i denote the corresponding approximating quantities

calculated from T̂. Then

• =̂i; j → =i ; i.e. the eigenvalues converge to the true eigenvalues.

• P̂i → Pi ; where convergence is in the gap metric ( for a de1nition see Chatelin

(1983); or Appendix B).

Furthermore, the following 1rst order approximations hold:

1

ki

ki
∑

j=1

=̂i; j = =i +
1

ki
tr[(T̂−T)Pi]; (A.3)

P̂i = Pi +
∑

=j 	==i

{

1

=i − =j
Pj[T̂−T]Pi +

1

=i − =j
Pi[T̂−T]Pj

}

: (A.4)

From the lemma it follows that the probability that there exists a nonsingular matrix

ŜT , such that Ũ n = Û nŜT = [ I
Ũ n; 1

0
Ũ n; 2

] converges to one. Further Û nŜT converges in

probability to U0 = [ I
0

0
Ũ 0

]. Here again Ũ 0 corresponds to the stationary part. In the

adapted procedure the zero blocks are explicitly imposed, which is only possible, since

the Cholesky factors of 〈Ẑ
+

t;f ; Ẑ
+

t;f〉 can be calculated. Note that the Cholesky factor of

〈Z+
t;f ; Z

+
t;f〉 cannot be calculated in general. The results in Chatelin (1983, Proposition
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3.25) further show that the entries of the matrix Ũ n are analytic functions of the

entries in X̂ and thus in particular power series expansions exist, ensuring the validity

of linearization arguments. Consider the estimate

x̂t = Ũ
′

n〈Y
+
t;f ; Y

+
t;f〉

−1=2〈Y+
t;f ; Y

−

t;p〉〈Y
−

t;p; Y
−

t;p〉
−1Y−

t;p

= Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈Z+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p

= Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈(W+
f )

−1U0xt + &xt;st + EE+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p:

Here the limit of 〈Z+
t;f ; Z

+
t;f〉

−1=2D̃
−1

T is denoted with W+
f . Furthermore note that

& = [&1; 0
c×(fs−c)]′ and thus only aMects the components due to the common trends.

Note that U ′

0W
+
f (W

+
f )

−1U0 = In and thus contrary to the stationary case, the estimate

D̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈Z+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1 is not consistent for K̃p, since it neglects

the term U ′

0W
+
f [0; &]K̃p due to the fact that the common trends dominate the Hrst com-

ponents of the state. Let G=(In+U
′

0W
+
f [0; &])

−1. Recall that xt = K̃Z−

t;∞ = K̃pZ
−

t;p+

(A− KE−1C)pxt−p. Therefore

GD̃
−1

T x̂t − xt

=GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈Õfxt + ẼE+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p − xt

=(GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2
Õf − I)〈K̃pZ

−

t;p; Z
−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p

+GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈ẼfE
+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p−(A−KE−1C)pxt−p

+GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈Õf(A− KE−1C)p〈xt−p; Z
−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p

=(GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2
Õf − I)K̃pZ

−

t;p − (A− KE−1C)pxt−p

+GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2
Õf(A− KE−1C)p〈xt−p; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p

+GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

+
t;f〉

−1=2〈ẼfE
+
t;f ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p:

This fact is exploited to show that a regression of the system equations can be used to

obtain a consistent estimate of the transfer function. Consider therefore the regression

in the observation equation:

ĈD̃TG
−1 − C =

(

T
∑

t=1

(yt − CGD̃
−1

T x̂t)x̂
′

t

)(

T
∑

t=1

x̂t x̂
′

t

)−1

D̃TG
−1

=

(

∑

t

[C(xt − GD̃
−1

T x̂t) + E�t]x̂
′

t

)(

∑

t

x̂t x̂
′

t

)

−1

D̃TG
−1:

It follows from the deHnition of x̂t that 〈x̂t ; x̂t〉 converges to a deterministic limit, say

P, which is nonsingular. It follows from standard arguments that 〈�t ; x̂t〉 converges

in distribution. The above evaluations apply for both, the standard and the adapted,

procedures. In both cases the block matrix inversion of 〈Z−

t;p; Z
−

t;p〉 is used analogous to

Eq. (A.2). Considering the expression given above, one can show that for the adapted
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procedure 〈GD̃
−1

T x̂t − xt ; x̂t〉 converges in distribution, if p=p(T )¿−d log T=log |00|,
where d¿ 1. We impose this stronger requirement on the increase of the integer p in

order to ensure that ‖(A−KE−1C)p‖ tends to zero faster than T−1. Here all evaluations

are standard, except for the term (GD̃
−1

T Ũ
′

n〈Z
+
t;f ; Z

−

t;f〉
−1=2

Õf − I) which is equal to

[GD̃
−1

T Ũ
′

nD̃T D̃
−1

T 〈Z+
t;f ; Z

−

t;f〉
−1=2 − GU ′

0(W
+
f )][(W

+
f )

−1U0 + [0; &]]:

Noting that for the adapted procedure D̃
−1

T 〈Z+
t;f ; Z

+
t;f〉

−1=2 converges to W+
f and that

D̃
−1

T Ũ
′

nD̃T converges to U ′

0 in probability, shows the convergence of this expression

to zero. Evaluating the errors in each sub-block shows that the expression times D̃
−1

T

converges in distribution for the adapted procedure. For the algorithm not taking the

cointegrating rank into account, this statement does no longer hold, since in this case

the (1; 2) block of D̃
−1

T Ũ
′

nD̃T is of order OP(1) and thus does not converge to zero. In

this case the matrix post-multiplied by diag(TIc; Ifs−c) converges in distribution. Similar

reasoning for the remaining terms shows the assertion that 〈GD̃
−1

T x̂t − xt ; x̂t〉 converges

in distribution for the case of the adapted procedure. Therefore, ĈD̃TG
−1 converges

in probability to C and furthermore (ĈD̃TG
−1 − C)GD̃

−1

T converges in distribution,

establishing the familiar convergence of order T for the complement of the cointegrating

space (and thus also for the cointegrating space) for the adapted procedure.

For the standard subspace procedure one can show that the order of convergence

of the cointegrating space still applies, whereas the remaining columns of ĈD̃T − C
only converge in distribution and thus are not estimated consistently by the standard

CCA procedure. Also note that the Hrst columns of G are equal to the corresponding

columns of the identity matrix, showing that the Hrst c columns of Õf and ÕfG
−1

are identical and thus the same result applies for the transformed system, which is

realizable from the data.

From now on only the adapted procedure is considered. Note that yt − Ĉx̂t =Cxt +

E�t − ĈD̃TG
−1GD̃

−1

T x̂t = (C − ĈT D̃TG
−1)xt + ĈT D̃TG

−1(xt − GD̃
−1

T x̂t) + E�t . Since

1=T 〈�t ; �t〉 → Is, where convergence is in probability, the consistency of 1=T 〈�̃t ; �̃t〉 fol-

lows from an application of the arguments given above, the consistency for ĈD̃TG
−1

and the expression obtained for GD̃
−1

T x̂t − xt . Therefore also the estimates Ê are

consistent.

It remains to consider the estimation of A and K . Concerning Â note that the nor-

malization of x̂t implies that GD̃
−1

T ÂD̃TG
−1 is the relevant quantity. Thus, consider

GD̃
−1

T ÂD̃TG
−1 − A= 〈GD̃

−1

T x̂t+1 − AGD̃
−1

T x̂t ; x̂t〉〈x̂t ; x̂t〉
−1D̃TG

−1

= 〈GD̃
−1

T x̂t+1 − xt+1; x̂t〉〈x̂t ; x̂t〉
−1D̃TG

−1

+A〈xt − GD̃
−1

T x̂t ; x̂t〉〈x̂t ; x̂t〉
−1D̃TG

−1

+ 〈K�t ; x̂t〉〈x̂t ; x̂t〉
−1D̃TG

−1:

It follows from the arguments given above that all these terms converge to zero in

probability (using the expression for GD̃
−1

T x̂t − xt and the analogous expression for

GD̃
−1

T x̂t+1 − xt+1).
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Finally also consistency of K̂ is shown. Note that for �̂t = Ê
−1

(yt − Ĉx̂t) it holds

that 〈�̂t ; x̂t〉 = 0, since �̃t = Ê�̂t and 〈�̃t ; x̂t〉 = 0, as �̃t denotes the residuals of the Hrst

regression, where x̂t were used as regressors. The relevant quantity in accordance with

the results for Â and Ĉ is equal to GD̃
−1

T K̂ . Therefore, consider

GD̃
−1

T K̂ =

(

1=T
∑

t

GD̃
−1

T x̂t+1�̂
′

t

)(

1=T
∑

t

�̂t �̂
′

t

)

−1

=

(

T−1
∑

t

(GD̃
−1

T x̂t+1 − AGD̃
−1

T x̂t)�̂
′

t

)(

T−1
∑

t

�̂t �̂
′

t

)

−1

= T−1
∑

t

(GD̃
−1

T x̂t+1 − xt+1)�̂
′

t

(

T−1
∑

t

�̂t �̂
′

t

)

−1

+T−1
∑

t

[A(xt − GD̃
−1

T x̂t) + K�t]�̂
′

t

(

T−1
∑

t

�̂t �̂
′

t

)

−1

:

Tedious but straightforward calculations show that this expression converges to K in

probability. It Hnally remains to show consistency also for the reduced rank regres-

sion approach, i.e. the procedure where the system is estimated under a constraint on

the number of cointegrating relationships. The proof of consistency follows directly

from using the consistency of the state estimation (apparent e.g. from the equation

for GD̃
−1

T x̂t − xt) and the well-known consistency of e.g. the Johansen procedure. The

latter is a reduced rank regression problem itself. This completes the proof.

Remark. Note however that the proof only shows consistency for the transfer function

estimates. The system description (Â; K̂ ; Ĉ; Ê) itself on the contrary will be divergent.

One way to obtain also consistent estimates of the system description is to transform

the estimates to a canonical form; e.g. echelon canonical form (see e.g. Hannan and

Deistler; 1988). The proof given above then shows the consistency for the estimated

system matrices on a generic subset. Note that the state space echelon canonical form

can easily be transformed to a VARMA representation; if this is the preferred system

representation (see Section 2).

Proof of Theorem 3. Consider Ŷ = 〈Y+
t;f ; Y

+
t;f〉

−1=2〈Y+
t;f ; Y

−

t;p〉(〈Y
−

t;p; Y
−

t;p〉
−1=2)′ and the

corresponding limit of the matrix sequence Ŷ ; denoted by Y . The relevant quantity

for order estimation is ‖Ŷ − Y‖. In order to see this; Hrst consider the probability

of underestimating the order; i.e. choosing the order n¡n0. Simple manipulations

show that P{SVC(n)¡SVC(n0)} = P{�̂2n+1 − �̂2n0+1¡HT (d(n0) − d(n))=T}. Since

d(n)¡d(n0) for n¡n0 and HT =T → 0 this probability converges to zero; if �̂i →
�i ; ∀i6 n0. On the other hand; overestimation occurs; if minn¿n0 SVC(n)¡SVC(n0).

The probability for this to occur is equal to

P{�̂2n0+1 + HTd(n0)=T −min(�̂2n+1 + d(n)HT =T )¿ 0}

6P{�̂2n0+1 + HTd(n0)=T − d(n0 + 1)HT =T )¿ 0}
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=P{�̂2n0+1¿ (d(n0 + 1)− d(n0))HT =T}

=P

{

T

HT
�̂2n0+1¿d(n0 + 1)− d(n0)

}

:

Therefore the results is proven; if it can be shown that
√

(T=HT )�̂n0+1 → 0 in prob-

ability. Note that �̂n0+16C ‖P̂2 − P2‖2 + ‖Ŷ − Y‖2 (see Bauer (1998) for a proof).

Here P̂2 denotes the orthogonal projection onto the orthogonal complement of Û n0 and

P2 the corresponding limit. Thus; it follows from Lemma 2 that �̂n0+1=OP(‖Ŷ −Y‖2)
and it is suFcient to show that

√

T=HT‖Ŷ − Y‖2 → 0 in probability.

In this respect take D̃T 〈Z+
t;f ; Z

−

t;p〉D̃
′

T − diag(I; H̃) as an example. The (1; 1) block

has been shown to be of order OP(T
−1) and is thus oP(

√

HT =T ). The (2; 1) block is

of Hxed Hnite size and has been shown to converge in distribution, when multiplied

with
√
T . Therefore it is also oP(

√

HT =T ). The (2; 2) block corresponds to stationary

variables and therefore can be dealt with using standard methods, showing that it is

O(QT
√
p), where QT =

√

log log T=T , showing that also the norm of this component is

oP(
√

HT =T ) under the assumptions imposed upon HT . Finally consider the (1; 2) block.

This is equal to (T−2〈nt ; nt〉)−1=2T−3=2〈z+t ; Z−;st
t;p 〉, where nt=

∑t−1
j=0 K1�j ; z

+
t =C′

1yt and

Z−;st
t;p denotes the stationary part of Z−

t;p as before. According to the results of Lemma

1 it follows that

〈z+t ; Z−;st
t;p 〉= 〈nt + vt ; Z−;st

t;p 〉= 〈nt ; �t〉KV (1)′ +





T
∑

j=1

�j



V ′

T + 〈�t ; Vt〉

+o(T
√

log log Tp(T ));

where Z−;st
t;p =KV (z)�t=KV (1)�t+(1−z)Vt . Note that the entries of KV (1) are bounded

uniformly in p(T ). This decomposition holds for each Hxed p. Thus

‖(T−2〈nt ; nt〉)−1=2〈z+t ; Z−;st
t;p 〉‖2

6 ‖(T−2〈nt ; nt〉)−1=2〈nt ; �t〉‖2‖KV (1)‖2 + ‖(T−2〈nt ; nt〉)−1=2





T
∑

j=1

�j



V ′

T‖2

+ ‖(T−2〈nt ; nt〉)−1=2〈�t ; Vt〉‖2 + oP(T
√
HT ):

The Hrst term is oP(T
√
HT ) and thus of correct order also for p → ∞ as indicated

in the theorem. The same holds true for the last term due to stationarity arguments.

Finally note that E‖VT‖22=E
∑p

j=1 VT (j)
2
6Cp, since the entries of VT have bounded

variance (uniformly in p). Therefore also this term is of the required order. Thus,
√

(T=HT )‖D̃T 〈Z+
t;f ; Z

−

t;p〉D̃
′

T − diag(I; H̃)‖2 → 0 in probability. Similar arguments for

the remaining terms show that
√

T=HT‖Ŷ −Y‖2=oP(1). This completes the proof.

Remark. For c= 1 an a.s. consistency result could be obtained using the above tech-

niques and the bound lim sup 〈nt ; nt〉−1 = O(T−2
√

log log T ); see e.g. Lai and Wei

(1982a). In this case Lemma 1 may be strengthened to 〈nt ; vt〉= o(T
√

log T ). There-

fore it follows that 〈Z+
t;f ; Z

+
t;f〉−1=2 = W+

f + o((log T )T−1=2). Similar arguments show
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that ‖Ŷ − Ŷ‖2Fr=O(max{(log T )2=T; (p(T ) log T )=T}). Here ‖ ‖Fr denotes the Frobenius

norm. This gives a (somewhat heuristic) motivation for a penalty term HT = (log T )2

for the choice p(T ) = O(log T ).

Proof of Theorem 4. The asymptotic properties of the eigenvalues (or equivalently of

the singular values) have already been stated in Eq. (A.3) in the proof of Theorem 2

in this appendix. Thus; we have to evaluate tr[P1(X̂ −X )]; which can easily be seen to

equal tr[X̂
1;1

−X 1;1]; where the superscript 1;1 denotes the (1; 1) block of the respective

quantities. Let z+t =
∑t−1

j=0 K1�j+C
′

1kst(z)�t denote the vector of the Hrst c components

of Z+
t;f. Then it is straightforward to see that the relevant quantity is equal to

tr[I − 〈z+t ; z
+
t 〉

−1〈z+t ; Z
−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1〈Z−

t;p; z
+
t 〉]

= tr[〈z+t ; z
+
t 〉

−1{〈z+t ; z
+
t 〉 − 〈z+t ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1〈Z−

t;p; z
+
t 〉}]:

Let the Hrst c rows of Z−

t;p be denoted by z−t =
∑t−2

j=0 K1�j + C′

1kst(z)�t−1. Then it

follows that z+t = z−t + K1�t−1 + C
′

1kst(z)U�t = z
−

t + C′

1Uyt . Denote at = C
′

1Uyt ; then

〈z+t ; Z
−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p = z+t − at + 〈at ; Z
−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1Z−

t;p; which shows that we

have to consider

tr[〈z+t ; z
+
t 〉

−1{−〈at ; z
+
t 〉+ 〈at ; Z

−

t;p〉〈Z
−

t;p; Z
−

t;p〉
−1〈Z−

t;p; z
+
t 〉}]:

Using the decomposition of z+t and Eq. (A.2) again the essential term in the second

summand is seen to equal 〈at ; z
+
t 〉−〈at ; at〉+ 〈at ; Z

−;st
t;p 〉〈Z−;st

t;p ; Z
−;st
t;p 〉−1〈Z−;st

t;p ; at〉; where

Z−;st
t;p denotes the stationary part of Z−

t;p. Therefore up to Hrst order approximation we

obtain

T



1−
1

c

c
∑

j=1

�̂2j





:
=
T

c
tr[〈z+t ; z

+
t 〉

−1{〈at ; at〉 − 〈at ; Z
−;st
t;p 〉

〈Z−;st
t;p ; Z

−;st
t;p 〉−1〈Z−;st

t;p ; at〉}]:

Now the result follows from the facts that 1=T 2〈z+t ; z
+
t 〉

d
→

∫ 1

0
W (u)W (u)′ du; at and

Z−;st
t;p are stationary and �t are the innovations of the process whose components form

Z−;st
t;p and of which at is a linear transformation. The claim then follows from the

continuous mapping theorem.

Proof of Theorem 5. The eigenvalues of T (〈K1�t ; xt;1〉〈xt;1; xt;1〉
−1) converge in distri-

bution to the distribution mentioned in the formulation of the theorem. Here xt;1 ∈R
c

denotes the Hrst c coordinates of the state in the canonical form. Note that the eigen-

values do not depend on the choice of the basis for xt;1; i.e. a transformation Sxt;1 of

xt;1 leaves the eigenvalues unchanged. Using Eq. (A.2) it follows that

T 〈K1�t ; xt〉〈xt ; xt〉
−1[Ic; 0

c×n]′ = T (〈K1�t ; xt;1〉〈xt;1; xt;1〉
−1) + oP(1):

Noting that K1�t = xt+1;1 − xt;1; it remains to show that the replacement of xt by

x̃t= ŜTGD̃
−1

T K̂pZ
−

t;p does not change the asymptotic distribution; where ŜT denotes the
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matrix transforming the estimates (GD̃
−1

T
ÂD̃TG

−1; GD̃
−1

T K̂ ; ĈD̃TG
−1) into the canoni-

cal form; where GD̃
−1

T ÂD̃TG
−1 is in Jordan normal form. Here Â denotes the estimate

from the unrestricted regression.

Note that due to the order of consistency it follows that ŜT = diag(Ŝ
1

T ; Ŝ
st

T ) +

OP(T
−1=2); Ŝ

1

T ∈R
c×c and thus ŜTGD̃

−1

T K̂p − Kp = OP(T
−1=2) (see the decomposi-

tion of xt−GD̃
−1

T K̂pZ
−
t;p). Therefore it follows that T−2(〈xt;1; xt;1〉−〈x̃t;1; x̃t;1〉)=oP(1),

where the additional subscript 1 denotes the Hrst c components. Also T−1(〈x̃t+1;1 −
x̃t;1; x̃t;1〉 − 〈xt+1;1 − xt;1; xt;1〉) = oP(1). This shows that the asymptotic distributions of

T 〈x̃t+1;1 − x̃t;1; x̃t;1〉〈x̃t;1; x̃t;1〉
−1 and T 〈xt+1;1 − xt;1; xt;1〉〈xt;1; xt;1〉

−1 coincide. Analogous

arguments show that

T 〈x̃t+1;1 − x̃t;1; x̃t〉〈x̃t ; x̃t〉
−1[Ic; 0

c×n]′ = T (〈x̃t+1;1 − x̃t;1; x̃t;1〉

〈x̃t;1; x̃t;1〉
−1) + oP(1)

Note that due to the transformation of the system this (1; 1) block of the A-matrix

contains the c eigenvalues of maximum modulus. This completes the proof.

Appendix B. Gap metric and simulated systems

The gap metric is deHned as follows. Let H be a Hilbert space and let M and N be

two closed subspaces of H . Then the gap A between M and N is deHned as follows:

A(M;N ) = max

(

sup
x∈M;‖x‖=1

‖(I − Q)x‖; sup
x∈N;‖x‖=1

‖(I − P)x‖

)

;

where Q denotes the orthogonal projection onto N and P is the orthogonal projection

onto M . In the deHnition of the gap metric, ‖x‖ denotes the norm induced by the inner

product on H .

The simulated systems are taken from Saikkonen and Luukkonen (1997) and are the

following three-dimensional VARMA(1,1) processes:

Uyt =Byt−1 + �t − &1�t−1 (B.1)

with y0 = y−1 = 0 and �t normally independently distributed N(0; )). The parameter

matrices are deHned as follows, &1 = C. diag(0:297;−0:202; 0)C−1
. where

C. =





−0:816 −0:657 −0:822

−0:624 −0:785 0:566

−0:488 0:475 0:174



 ; (B.2)

)=





0:47 0:20 0:18

0:20 0:32 0:27

0:18 0:27 0:30



 (B.3)
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Table 4

Parameter values Ci for Schemes 1–3

Scheme C1 C2 C3

1 1.0 0.8 0.7

2 1.0 1.0 0.7

3 1.0 1.0 1.0

and B = N diag(C1; C2; C3)N
−1

− I3 with

N−1 =





−0:29 −0:47 −0:57

−0:01 −0:85 1:00

−0:75 1:39 −0:55



 : (B.4)

The three sets of parameters Ci are given in Table 4.

The number of parameters Ci less than unity corresponds to the number of cointe-

grating relationships.
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