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Alle sechs Beitréige beschéftigen sich mit den asymptotischen Eigenschaften von
sogenannten ’Subspace’-Algorithmen, einer Klasse von Algorithmen zur Schétzung
von linearen dynamischen Modellen fiir multivariate Input-Output Daten. Die Ar-
beiten beschéftigen sich sowohl mit der Analyse der Eigenschaften der Algorithmen
fiir bereits spezifizierte Modellstruktur, sowie mit der Entwicklung und Analyse von
Verfahren zur Modellspezifikation.

Hierbei beschiftigen sich die ersten vier Arbeiten mit dem klassischen stationdren
Fall mit homoskedastischen Fehlern. Arbeit Nummer fiinf behandelt den Fall von
integrierten Prozessen, welcher in der 6konometrischen Literatur des letzten Jahr-
zehnts einen prominenten Platz einnimmt. Die letzte Arbeit untersucht den hete-
roskedastischen Fall, der vor allem in der Modellierung von Finanzmarktdaten eine
Rolle spielt.

Die ersten zwei Arbeiten beweisen die asymptotische Normalitét fiir zwei verschiede-
ne Klassen von ’subspace algorithms’. In der dritten Arbeit konnte fiir den Spezial-
fall keiner beobachteten Inputs (beziehungsweise weiflen Rauschens als beobachteten
Input) gezeigt werden, dafl eine spezielle Klasse untersuchter Algorithmen, welche
manchmal als CCA bezeichnet wird und die von (Larimore, 1983) vorgeschlagen wur-
de, optimal beziiglich der asymptotischen Varianz der Transferfunktionsschétzer ist.
Weiters konnten fiir diese speziellen Fille relativ einfache Ausdriicke fiir die asym-
ptotische Varianz einer ganzen Klasse von Algorithmen gefunden werden. Die noch
nicht veréffentlichte Arbeit (Bauer, 2000) beweist, daf§ fiir den Fall keiner beobach-
teten Inputs, CCA sogar asymptotisch dquivalent zu Pseudo-Maximum-Likelihood
Schitzung ist und daher im Gauf-schen Fall asymptotisch effizient.
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Die vierte Arbeit beschiftigt sich mit der Schéitzung der Ordnung der Zustands-
raumsysteme und untersucht drei Verfahren zur Ordnungsschitzung, die am Institut
entwickelt wurden. Konsistenzaussagen bilden den Kern dieser Arbeit.

Die fiinfte Arbeit beschéftigt sich mit der Schitzung von integrierten Prozessen, d.h.
Prozessen, die mittels Bildung der ersten zeitlichen Differenz stationér gemacht wer-
den kénnen. Eine Erweiterung von CCA auf diese Klasse von Systemen wird entwickelt
und dessen Konsistenz gezeigt. Weiters werden Fragen der Ordnungsschéitzung und
der Schétzung des kointegrierenden Ranges behandelt. Hinsichtlich der Spezifikation
des kointegrierenden Ranges wird ein Test vorgeschlagen und dessen asymptotische
Verteilung hergeleitet.

Die letzte Arbeit beschéftigt sich mit der Thematik von heteroskedastischen Inno-
vationen und zeigt im wesentlichen, dafl CCA einige Robustheitseigenschaften hat
hinsichtlich der Konsistenz. Im Speziellen wird gezeigt, dafl die Ordnung der fast si-
cheren Konvergenz der Schitzer der Systemmatrizen auch im Falle von bestimmten
heteroskedastischen Innovationen erhalten bleibt (im stationédren Fall). Die Klasse
von Innovationen, fiir die dieses Robustheitsresultat gilt, enthilt die hiufig verwen-
deten univariaten GARCH-Prozesse (unter Einschrinkung an die Parameterwerte)
sowie univariate E-GARCH Prozesse.

Die ersten fiinf Veroffentlichungen werden in der erschienenen Originalversion wie-
dergegeben. Im letzten Artikel wurde ein Druckfehler korrigiert, die Arbeit sonst
aber nicht verédndert.
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Introduction

This thesis contains the following six papers:

1. D. Bauer, M. Deistler, W. Scherrer: ” Consistency and asymptotic normality of
some subspace algorithms for systems without observed inputs”; Automatica,
35 (1999), p. 1243 - 1254.

2. D. Bauer, M. Jansson: ” Analysis of the asymptotic properties of the MOESP
type of subspace algorithms”; Automatica, 36 (2000), p. 497 - 509.

3. D. Bauer, L Ljung: ”Some facts about the choice of the weighting matrices in
Larimore type of subspace algorithms”; Automatica, 38 (2002), p. 763 - 773.

4. D. Bauer: ”Order estimation for subspace methods”; Automatica, 37 (2001),
p. 1561 - 1573.

5. D. Bauer, M. Wagner: ”Estimating Cointegrated Systems Using Subspace
Algorithms”; Journal of Econometrics, 111 (2002), p. 47 - 84.

6. D. Bauer: ”Identification of state space systems with conditionally heteroskedas-
tic innovations”; in: ”Proceedings of the 15th IFAC world congress”, Bare-
clona, Spain, July 2002.

All six papers deal with the investigation of the asymptotic properties of so called
subspace algorithms, a class of algorithms for the estimation of linear, dynamical
models for multivariate input-output data. The papers analyze the properties of the
estimators obtained for fixed model structure, as well as the problem of specifying
the model structure based on the data at hand.

The first four papers deal with the stationary case, where the innovations are as-
sumed to be homoskedastic. Paper number five deals with the case of integrated
processes, which feature prominently in the econometrics literature over the last
decade. The last paper analyzes the case of heteroskedastic innovations, which is a
common assumption in financial econometrics.

The first two papers provide asymptotic normality results for two classes of sub-
space algorithms. The asymptotic variance for one class of estimators is analyzed in
the third paper for the special case of no observed inputs (or white noise observed
inputs respectively). The main result therein is the proof, that a certain subspace
algorithm, sometimes termed as CCA, proposed by (Larimore, 1983) leads to optimal
- within the class of subspace algorithms considered - estimates in the sense of lowest
asymptotic variance matrix of the transfer function estimates. This result is based
on the derivation of relatively simple expressions for the asymptotic variance of the
estimated system matrices. This is interesting in connection with the results of the
unpublished article (Bauer, 2000), which shows, that CCA in the case of Gaussian
innovations is asymptotically efficient.

The fourth paper deals with questions of estimating the order of the state space
systems. Three different algorithms for the estimation of the order are analyzed,
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all of which were developed at the institute. The main result in this respect is the
proof of consistency for all three algorithms.

The fifth paper deals with the extensions of CCA to the case of integrated processes,
i.e. processes, which can be transformed into stationary processes by taking first
differences. The properties of the original CCA algorithm in this case are analyzed
and an adaptation is suggested, which also in the case of integrated processes leads
to consistent estimation of the system matrices. This paper also contains a discus-
sion on order estimation issues and develops and analyzes a testing procedure for
finding the cointegrating rank.

The final paper investigates the robustness properties of CCA with respect to het-
eroskedastic innovations. The main result in this respect is that the estimates ob-
tained using CCA are robust to heteroskedasty in the sense, that consistency is pre-
served and also the order of almost sure convergence is unchanged for a certain class
of heteroskedastic innovations. This class contains i.a. univariate GARCH processes
(subject to restrictions on the parameters) as well as E-GARCH processes.

The first five papers are reprinted in the original published version. In the sixth
paper a misprint has been corrected, the remaining paper has been unaltered.
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Asymptotic normality for a class of subspace algorithms, which estimate the state in a first step, is
derived. Expressions for the asymptotic variance are given.

Abstract

Linear systems with unobserved white noise inputs are considered. A class of subspace estimates for the system matrices obtained
by estimating the state in the first step is analyzed. The main result presented here states asymptotic normality of subspace estimates.
In addition, a consistency result for the system matrix estimates is given. An algorithm to compute the asymptotic variances of the
estimates is presented. In a final section the implications of the result are discussed. © 1999 Elsevier Science Ltd. All rights reserved.
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systems

1. Introduction

Subspace algorithms for the identification of linear
dynamic systems recently have attained great attention
(Larimore, 1983; Van Overschee and DeMoor, 1994;
Verhaegen, 1994; Peternell, 1995; Deistler et al., 1995).
The advantage of subspace methods compared to
methods based on optimization of a criterion function
such as the likelihood or the prediction error lies in their
numerical properties. They can be implemented numer-
ically efficiently and use only standard reliable numerical
tools such as the singular-value decomposition. Subspace
algorithms make use of the structure of the realization
problem (see e.g. Akaike, 1975; Lindquist and Picci,
1985). In addition to classical realization of course in
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identification model reduction has to be performed (see
e.g. Glover, 1984; Desai et al., 1985).

On the other hand the statistical properties of these
algorithms are not fully understood yet. In Deistler et al.
(1995) consistency has been proved. Simulation studies
e.g. in Peternell (1995) and Bauer et al. (1997) indicate,
that the relative efficiency of some subspace methods,
compared to the maximum likelihood estimates, is close
to one. Up to now no general analytical results concern-
ing the asymptotic efficiency of subspace algorithms have
been obtained. In Viberg et al. (1993) the asymptotic
distribution of the estimates of the poles of the system has
been derived. These lines have been further developed in
Wabhlberg and Jansson (1994) and Jansson (1995). In
a frequency domain setting results are given in McKelvey
(1995). Our contribution (for more details see Bauer
(1998)) is a further step towards an analytical under-
standing of this problem. In this paper, asymptotic nor-
mality for the estimates of the system matrices
(4, B, C, D) described below is derived.

The paper is organized as follows: In the next section,
the class of subspace algorithms under consideration is
presented. In the third section some definitions and nota-
tions are introduced as well as some preliminary facts,
which are proved in the appendix. In the fourth section

0005-1098/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved
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asymptotic normality of the parameter estimates is
stated. The proof is given in Section 5. In Section 6 the
implications of the result are discussed.

2. Model set and algorithms

In this paper, linear, time invariant, finite-dimensional
state-space systems are considered. Only the case is con-
sidered, where the inputs are unobserved white noise.
The system considered is of the form

X+ 1 = AX; + Be,

(1)
Vi = Cx; + De,
where (y,),. denotes the s-dimensional measured output,
(&/)ez denotes s-dimensional zero mean white noise with
variance equal to the identity. x, denotes the n-dimen-
sional state. A e R"*", Be R"**, Ce R**" and D e R***
are parameter matrices. The transfer function of the sys-
tem is given by: k(z) = D + C(zI — A)"'B =) [ oK(j)z 7,
where K(0) =D and K(j)= CA’"'B,j> 0. It will al-
ways be assumed that D is nonsingular. Throughout the
paper the system will be assumed to be minimal, stable
(i-e. |Amax(4)| < 1 holds) and strictly minimum-phase (i.e.
|Amax(4 — BD™'C)| < 1 holds). Here /,,,() denotes an
eigenvalue of maximum modulus. Thus the system is
assumed to be in innovation form. The spectrum f of the
stationary process (V,)ez is equal to f (1) = (1/2m)k(e')
k*@e'*). Here* denotes conjugate transpose. Since it is
assumed, that the noise (g;) is not observed, the stability
and the strict minimum-phase assumption exclude only
spectra, which have zeros on the unit circle. The factoriz-
ation of the spectrum is only unique, if a unique represen-
tative for the matrix D from the class {DQ: Q"Q = I} is
chosen. Therefore, D is restricted to be lower triangular
with positive entries on the diagonal throughout the
paper.

The subspace algorithms considered here, use the
fact that the state represents, in a certain sense, the
interface between the past and the future of the process
ez Let Y = vl AN Y =Dvienvia 10
and let E;* be the analogously defined vector of the
future of the noise. Using system equations (1) it is easy
to show that Y, = Ox, + &E, and x, = #'Y, holds,
where 0 =[C", ATC",(4»)"C",...]" denotes the
observability matrix, # = [BD~!,(4 — BD 'C) BD™ !,
(A —BD™'C)’BD™ ', ...] and finally

D
CB D 0
| CAB CB D

Both equations together give

Y =0xY] + 6E;}. )

Thus, since the future of the noise and the past of the
process (y,),z are uncorrelated, 0.7 Y, is the orthogonal
projection of Y, onto the space spanned by the elements
of Y, . (Here projection has to be understood in the

context of the Hilbert space span{y, ;: teZ,i=1, ...,s}
endowed with the inner product <{a, b) = Eab where
E denotes expectation.)

Now commence from a process (y;),7 rather than from
the system representation (1). Every decomposition of the
linear operator attaching to the past (Y, ) the projection
OX'Y, into two rank n operators, @ and ¢ then
fixes a basis in the state space. Using such a decom-
position, x, = XY, ,Vte Z is a state sequence, which
then defines the system matrices via projecting y, on
xl and x,4; on x, and ¢ 1e C = E{yx!}( [E{xtxtT}

= [E{xt+ 1Xt} [E{xtxtT}) 1 = HE{XH 181} [E{StStT}
can be calculated as the lower triangular Cholesky factor
of y(0) — CPC" > 0, where y(0) denotes the variance of
y, and P the variance of x,.

For given sample size T the (infinite dimensional)
eq. (2) cannot be used and thus a decision on the number
of block rows, f say, and the number of block columns,
p say, which are included, has to be made. In the follow-
ing these integers are called truncation indices. Through-
out the paper it is assumed, that f>n holds. Let
YzJ,rf = [y,T, y3+ 15 oees sz+f—1]T and Y, ,= [)/zT—b sz- 25

.., i-,]" be finite-dimensional vectors of stacked out-
puts. Define 0, =[C", A'C",....,(4" " H'C"", ', =
[BD™',(A—BD 'C)BD',...,(A— BD 'Cy 'BD '].
& denotes the first f block rows of &. Then, of course,
eq. (2) gives the following equation:

Y =04,Y ,+ O(A—BD 'CVAY,_, + &E .
)

Using this equation, the subspace methods considered

here can be decomposed into three main steps (comp.

Peternell, 1995):

(1) Regress Y, on Y, , to get an estimate 3, , of 0.7,
If T, and #, , denote the sample variance of
Y., and the sample covariance between Y, , and
Yip respectwely, then this estimate is given by
ﬁf p =, S p(r ) E

(2) Approximate 3 r.p by a rank n matrix and decompose
this approximation into the product @,%, of two
rank n matrices to get an estimate %, of %,

(3) Use the estimate of the state %, = #, Y, , to estimate
C by regressing y, on X,. In the next step estimate
[A4, BD™ '] by regressing %, ; on X, and &, the resid-
uals of the first regression. Finally, the estimate of D is
calculated as the lower triangular Cholesky factor of
the sample covariance of &,

The approximation step (2) is performed by a s1ngu1ar-
value decomposition of the matrix WiB W,
USV' =02,V + R, where W and W, are welghtmg
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matrices, U, € R”*" V,e R**" and £, is a diagonal
matrix containing the n largest singular values as its
diagonal entries (in decreasing order). The remaining
singular values contribute to R and thus are neglected.
This corresponds to approximating f +.p» Wwhich will typi-
cally be of full rank due to finite data length by a rank
n approximation @,%,=[(W;) ‘U Z)"*I[(E)"?
Vi(W,)~']. Note, that the singular vectors, i.e. the col-
umns of the matrix U,, are unique up to sign changes, if
the singular values are distinct. This corresponds to
a basis transformation of the form diag( + 1, ..., + 1).
This will be further discussed in the next section.

Throughout the paper it is assumed that the
state dimension n is known. In practice the SVD is
also used to determine the model order, either by in-
spection of the singular values and user’s choice or by
means of a criterion function (see Fuchs, 1990; Peternell,
1995).

The choice of the weighting matrices is essential. Dif-
ferent choices lead to algorithms, which have different
asymptotic properties. Larimore’s CCA procgdure (Lari-
more, 1983) is obtained by choosing W} = (I'f)” "> and
W, =(T,)"? where I 1 denotes the sample variance of
Y A Varlant of N4SID (Van Overschee and DeMoor,
1994) corresponds to W; =1, and W, = (I',)"% In
the following the discussion will be restrlcted to these
two particular choices of the weighting matrices. Note
that the estimates of (4, B, C,D) do not depend on
the particular choice of the square root_ (T,)"2,
(F )1/2(1—~ )T/Z F or (rf)l/Z (Ff)l/Z( +)T/2 Ff

3. The set M*(n)

In order to state a central limit theorem for the esti-
mates (Ay, By, Cr, Dy) of the system matrices, first the
particular representation of the true transfer function k,
which is the limit of the estimates for T — oo, has to be
determined. As is well known, for minimal state-space
representations, the class of all observationally equiva-
lent system matrices corresponding to the transfer func-
tion k is given by different choices of the basis in the state
space. In the algorithms considered here, the choice of the
basis is done implicitly by decomposing the rank n ap-
proximation to r.p iNto 0 fJi” This decomposition is
performed using the SVD of W}p, ([;)'? and is
unique, if the first n singular values of this matrix have
multiplicity one and if the orientation of the singular
vectors is fixed. Let I' ™ denote the population variance of
Y, and let #, denote the population covariance be-
tween Y., and Y, . As will be shown in the proof in
Section 5, the matrix X, =W/, (,)B% (W) =
Wf Ay (U) VAT (W )T converges to X =
WAL ) A WD =W OAT A TOW )T
a.s., if the index p is a function of the sample size T, which
tends to infinity at a certain rate (see Theorem 1). Here

W; = (') "? for the CCA algorithm and W; =1 for
the N4SID algorithm and I’} denotes the population
variance of Y, . Thus if the n nonzero eigenvalues of
X are distinct, then for T large enough, the n largest
singular values of (W ). ,,(F )} will be distinct too, by
the continuity of the singular values (see the forthcoming
Lemma 7).

Let M (n) denote the set of all rational, stable, strictly
minimum-phase transfer functions k of McMillan degree
n with a constant term, which is lower diagonal and
has strictly positive diagonal entries. Furthermore, let
M ™" (n) = M(n) denote the subset of all transfer functions
ke M(n), for which X has n distinct (non zero) eigen-
values. This subset M *(n) is generic in the sense that it is
an open and dense subset of M(n), where M(n) is en-
dowed with the so-called pointwise topology. Since the
proof of the genericity of M *(n) is lengthy and not
essential for the understanding of the rest of the paper, it
is shifted to the appendix. Note, that the set M *(n)
depends on the choice of the index f as well as on the
choice of the weighting matrix W/, thus in particular on
the choice of either CCA or N4SID, however, for the sake
of notational simplicity, this will not be explicitly in-
dicated in the notation.

Now for each transfer function k, € M *(n) a particular
representation may be obtained as follows. Note that the
eigenvalue decomposition of X = U,X2U; fixes a basis
in the state space by the choice O, =(W[) 'U,Z,?,
H =T, PUWFAHACT) Y, and x, = #°Y, . Since the
eigenvalues of X are distinct, the eigenvectors U, are
unique up to sign changes. Now the choice of the basis in
the state space is uniquely defined if in each column of
U, a nonzero entry is chosen to be strictly positive. In this
way a unique realization of k, € M *(n) is constructed. By
fixing the elements in the same positions in U, to be
positive, a unique algorithm is obtained. This can be
done from a certain T, onwards, since X, converges to
X a.s. under our assumptions.

4. A central limit theorem

In this section the main result of this paper, i.e. asymp-
totic normality will be stated. In Deistler et al. (1995)
consistency of the algorithms was shown in the sense of
convergence of the estimated transfer function to the true
transfer function rather than convergence of the system
matrix estimates. Here it is proved, that the estimates of
the system matrices are consistent. To achieve consis-
tency in our framework, the truncation index p has to
tend to infinity. This is essentially due to the fact, that in
the first step a regression is performed, neglecting in-
formation from the far past (contained in x,_,). For
a central limit theorem convergence of the estimates of
order ./ T is needed, thus a lower bound on the increase
of the index p has to be imposed in order to ensure that



1246 D. Bauer et al. |Automatica 35 (1999) 1243-1254

the effect of neglecting the far past does not show up in
the limiting distribution. On the other hand, the limited
amount of data imposes upper bounds for the increase of
p in order to ensure a uniform convergence of the esti-
mates of the covariances.

The following theorem contains the main result of the

paper:

Theorem 1. Let (y,),z be generated by a true transfer
function ko € M (n), where the ergodic white noise (&,).ez
fulfills the following conditions:

[E{gt|97t—1} =0,
E{ee!|F -1} = Elegl} =1,

[E{gt,a‘gt,bgt,c|97t*1} = COa,b,ca

[E{C:‘:l} < o0,

where [ denotes expectation, 7, the o-algebra spanned by
the past and present of the noise and additional subscripts
here indicate components of the vector &. w, .. is a con-
stant not depending on t and f'> n is a fixed integer.

If p fulfills the following conditions:

(1) p= —(dlog T)/(2loglpo|), VT > T for some d > 1,
where pg is a zero of ko of maximum modulus,
(2) p/log T)* - O for some a < 0.

then
ﬁvec[;lT — Ao, ET — By, CT — Co, ﬁT — Do] S Z,

where Z is a multivariate normal random variable with zero
mean and variance VY, and % denotes convergence in
distribution. Here (Aq, By, Co, Do) denotes the particular
realization of kg described in Section 3.

The asymptotic variance V' depends on f, k, and on
the choice of the weighting matrices. However, this is not
emphasized in the expressions for notational conveni-
ence. Note, that the assumptions on the noise process are
exactly the same as those given in Hannan and Deistler
(1988), where the asymptotic normality of maximum like-
lihood estimates is derived.

Note that the lower bound of the increase of the
truncation index p depends on the true system. However,
it is possible to estimate this bound consistently as fol-
lows: Fit a (long) autoregression to the sample data and
estimate the order of this AR model by the BIC criterion.
If the true process is ARMA, then the estimated order
Peic will fulfill limg., , — 2pgicloglpol)/(logT) =1 a.s.
(see e.g. Hannan and Deistler, 1988). Therefore dpgc (or
dparc), for some d > 1 seems to be a reasonable choice for
the truncation index p.

The central limit theorem for the system matrix
estimates also implies a central limit theorem for other
quantities, which are derived from the system matrix
estimates:

Corollary 2. Let g:R""2"+*+92 L, R™ be g mapping
attaching the vector x € R™ to the matrices (A, B, C, D). If,
under the assumptions of Theorem 1, (Ay, By, Cy, Do) de-
notes the realization of ko € M ™ (n) described in Section 3
and if g is differentiable at (Ao, Bo, Co, Do), then the follow-
ing holds:

T(g(Ar, By, Cr, Dy) — g(Ao, By, Co, Do) >Z,  (3)

where Z is a multivariate normally distributed random
variable with mean zero and variance V- = J ,V4J; € R™*™,
where J, denotes the matrix of partial derivatives of
g evaluated at (Ao, By, Cy, Do)

In particular, three applications of this corollary are of
interest:

e The poles of the system depend differentiably on the
entries in the matrix A, if the eigenvalues are distinct
(see Lemma 7). Thus a CLT for the estimates of the
system poles is obtained on some generic subset of
M (n) (comp. Wahlberg and Jansson, 1994). The same
statement is true for the estimates of the system zeros.

e For fixed frequency w the transfer function evaluated
at o is equal to ko(e'”) = Dy + Co(e'’I — Ay) " 'B,.
Thus a central limit theorem for the estimates of the
transfer function at fixed frequency points is obtained.
This can be used, to compare different choices of
procedures (i.e. different choices of f and of W) for
a given system.

e For given system matrices the transformation to Eche-
lon coordinates is differentiable for system matrices
corresponding to a transfer function in the generic
neighborhood corresponding to the Echelon par-
ametrization. Thus a CLT for the Echelon parameter
estimates on a generic neighborhood holds (since the
intersection of two generic sets is still a generic set).
This can also be used to compare different procedures
correponding to their asymptotic behaviour.

Note that the algorithm has been made unique by
restricting certain elements in each column of U, to be
positive. However, the actual implementation of the SVD
algorithm may use a different selection of the signs of
the singular vectors. Thus, the system obtained by the
algorithm may be related to (AT, B, Cop, ﬁT) as defined
above by a basis transformation corresponding to
diag(+ 1,..., +1). Consistency and asymptotic nor-
mality for the estimates of the actually implemented SVD
will hold, if this SVD of X is continuous at the true
system. The results of Corollary 2 will hold, if g depends
only on the transfer function k, even if the actual SVD is
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not continuous at the true transfer function k. (In this
case the estimates of the system matrices may not con-
verge to a single point, but to the equivalence class
{(TAoT ™', TBy, CoT ™', Do): T = diag( + 1, ..., + 1)}).

5. Proof of the theorem

To simplify the notation, in the proof only the case of
Larimore’s procedure will be considered, i.e. the case
where W/ = (['f) "2 The N4SID algorithm can be
treated in a completely analogous manner. In fact for
the N4SID algorithm some steps simplify. In the proof
extensive use of the following notation will be
made: ¢g(T) = o(f(T)) means lim;_, ,g(T)/f(T) =0 a.s.,
g(T) = O(f(T)) means suprn|g(T)/f(T) <M as. for
some constant M < co. ¢g(T) = op(f(T)) means that
for every ¢ > 0, P{|g(T)/f(T)| > ¢} >0 for T - oo. The
Frobenius norm of a matrix X is denoted by

|X| =./tr X*X and the /'-norm of a (possibly infinite
dimensional) vector is denoted with || X|; = Zi|X i

5.1. Preliminaries

For the class of algorithms considered in this paper itis
straightforward to see, that the estimates (A, By, Cr, D)
are a nonlinear function of the sample autocovariances.
For given indices f and p the estimates depend only on
the sample covariances up to lag f+p—1 ie. on
70), 9(1), ..., P(f + p — 1), where 7(j) denotes the estimate
1Ty [y yyi-jof y(j) = Eyy/-;,j = 0. For consistency
the column truncation index p has to tend to infinity at
a certain rate (Deistler et al., 1995). Thus also the number
of included covariance estimates tends to infinity, which
causes the main technical complication in the proof.

Introduce the shorthand notation <a,b,) =
1/TY."_ a,b!. Then the regressions in step 3 can be writ-
ten as follows:

Cr = o £pRn £ 7 (4)
Dy = (5(0) — C<% £CD'2, (5)
Ar = e, 2O £ 7Y (6)
Br =<&ii1.8) = ((fivrapy — {fii £0CPDT, (7)

where the innovations ¢ are estimated by § =
f);l(y, — C’T)E,). Note that the estimated residuals are
orthogonal to the estimates of the state, i.e. (X, &) =0,
and thus A, and B; may be obtained by the two separate
regressions (6) and (7).
In the following, the above expressions will be further
analyzed The estimates of the states are defined by
=, Y. ,and X, = f Y i1 7 The matrix 9{/ is ob-
tarned from the matrix X = p(I“ ) 'A#7F., in the
following way: Recall from Sectlon 3, that £, contains the

square roots of the largest n eigenvalues of the matrix
(T}~ 2y ATF)"T? and U, contains the corresponding
eigenvectors, i.e.

(TH "X, ") U, =082 and UMU, =1,
The matrices @, and .7, are defined as

Oy = (TF)"20,5:7,

Ay =S PVNE,) = OO T ()7
Furthermore, let

I

0
E,=| . |[eR** and S,=|0 I, 0

Iy
€ RP*P,
Using the identities y,=E;Y,,=E}Y, 5, , and
Yi1,=EE;Y , +8S,Y,, it is straightforward to de-

rive the following expressions:

<>et9 )et> = 2ny (8)
<yt7 >et> = E}@fim (9)
O Rewry = EXAT (T 7105, (10)

Kvp, %) = S 10N WA, (D) 'EESG,E,

+ SO S y (T) 1S, T )
x(T})~ 10,2, (11)

From the expressions given above it can be seen that the
estimates of the true parameter matrices (Ao, By, Co, Do)
are obtained via a nonlinear map attaching to
)3( , P f ) and the finite- drmensronal matrices
X iffp(l“) ‘AT Y —%fp( ;) 'S, #7., and
Z =H I p(1" ) 'E, the correspondmg matrices
(ATs BTs CT9 )

In order to outline the proof of the CLT some further
notation is introduced:

01 = vec(Ar, By, Cr, Dy),
0o = vec(Ay, Bo, Cy, Dy),
) K T 2,),
VWX Yy Z)),

5 y(f)’ XO: YO! Zo)a

1, = vec(§(0), ...
m,, = vec(y(0), ...,
my = lim,_, ,, m, = vec(y(0), ...
,J(h — 1),
y(h = 1)).

QT,h = vec(§(0), ...

gn = vec(y(0), ...,
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Here e.g. X, is defined as X, = #; (I',)"'#} , and
Xo=lim,, X,=#/0")"'H}. Y,YoZ,Z, are
defined analogously, vec will be used to denote
the vector of stacked vectorizations of several matrices
with slight abuse of notation. It will be part of the proof
to show the existence of all the required limits. As has
been stated already 1, is a function of the sample
autocovariances Jr, s+, 11, = ¢(Jr, s+ ) say. Their popu-
lation counterparts are given by m, = ¢(g,+,). The esti-
mates O of the system matrices are obtained as a func-
tion 0; = Y (ih,). Then the proof of the CLT may be
decomposed into the following four steps:

(1) A central limit theorem for the covariances g ,, with
h=(f+ p)— oo at a suitable rate for T — oo (see
Section 5.2).

(2) The proof, that /T(m,—my)—0, and that
Y (my) = 0, where 6, corresponds to the particular
realization of the true system described in Section
3 (see Section 5.3).

(3) A central limit theorem for 11, i.e. /T (i, — mo) 47z,
where Z is multivariate normally distributed with
mean zero and variance V™, for p — oo at a suitable
rate for T — oo (see section 5.4).

(4) The proof of the differentiability of the mapping yr at
the point m, (see Section 5.5). In other words it is
proved that y(mg + om) — (mo) = J,0m + o(|om||)
and thus one obtains

JTOr — 00) = /Th (1) — (mo) > Z,

where Z is multiviariate normally distributed with
zero mean and variance V9 =(J,) V"(J,)". Here
J, denotes the Jacobian of Y evaluated at m,.

Note that the ‘intermediate’ variable #i1, has been intro-
duced since i1, opposed to gy, is of fixed finite dimension
as p tends to infinity.

5.2. A CLT for the covariance estimates

As has already been stated, the main technical com-
plication lies in the fact, that the index p and thus also the
dimension of the stacked vector of autocovariances
dr, s+ p has to tend to infinity. Tools to handle the growth
of dimensions are provided in Lewis and Reinsel (1985).
Their techniques are used to prove the following
lemma:

Lemma 3. For fixed h let Ve R">*"" denote the
covariance matrix of J/T(§r., — gi) defined above. Let
h depend on T such that h = o((log T)") for some o < 0.
Then under the assumptions on the process (y,) and on the
noise sequence (g,) given in Theorem 1, for every sequence
of vectors I(T) e R"” satisfying 0 < ¢, < I(T)"V4I(T) and
I(T)|l; <c, < o0 it follows that

(D) (Gr.n— 90 4
VI aayvimy 1

where Z is scalar normally distributed with zero mean and
unit variance.

Proof. In a first step the lemma is proved for the case
¥; = &. Note that in this case

T
STGrn—g) =T Y vecleal — L el 1, ... eei—ps1]
t=1

= VeC[eo, €1y eeny eh*l];
where
T
e; = 1/ﬁ Yoeepi=1..,h—1
t=1
and

ey = 1/ﬁ|: i ger — I}

Now let [(T)e R"™ be a sequence of vectors satisfying
0 < ¢y < I(T)"V;I(T), where the notation indicates, that

¢ corresponds to y, =¢. Furthermore, let v}, =
I(T)"ViI(T) denote the variance of /TIT)(§r.n — gn)s
which is bounded due to [[I[(T)||; < ¢, < oo (see also
Remark 4). Then following the proof of Theorem 3 in
Lewis and Reinsel (1985) /TUT) (Gr.n — gn)/vr.n =
Ztl= XA(T) = Zf;ll/ﬁl(T)TVCC[&S:T — 1 ... a8l 1]/
vr.p- The assumptions on ¢ imply that X(7T) and X(T)
are uncorrelated for ¢ # s with expectation equal to zero
and that the variance of X/(T) is equal to 1/T.
Yo X(T),n=1,...,T is a martingale sequence for
each T. In order to prove the convergence of
JTUT)(Gr.n — gn)/vr.n to a normal distribution, it is
sufficient to show, that

(a) sup, - 1 XA(T) B0 for T - o,
(b) YLTIXAT) Br,0<t<1 for T— o0,

where & denotes convergence in probability and | tT |
denotes the integer part of tT. Write

XI(T) = Xt,O(T) + Xt,l(T),

where

X, o(T) = (1/5/ Tz, )lo(T)" vec(ee! — 1),

where [o(T) denotes the vector of the first s* elements of
I(T). Then sup, - 1 X, o(T)* > 0, since sup, - + X, o(T)* <

sup; - 1 X, 0(t)* and EX, (t)* =0 for t > oo (compare
Hannan and Deistler, 1988, p. 149). sup, - + X, 1(T)* >0
follows from the arguments in Lewis and Reinsel (1985).
Thus the convergence of sup, - + X(T)* to zero follows
from X(T)* < 2(X,.o(T)* + X, +(T)?).



D. Bauer et al. |Automatica 35 (1999) 1243-1254 1249

For condition (b) note, that Y X, o(T)* converges due
to ergodicity of ¢ and thus of (g¢] — I)> and the as-
sumption of finite fourth moments. The convergence of
Y X, 1(T)? can be seen, using the arguments of Lewis and
Reinsel (1985). Finally, the contribution of the mixed
terms Y X, o(T)X,,1(T) > 0, which can be seen as follows:
XX, o(T) X, (T < sup, - 41X, oYX, (T).  Now
sup, < r|X;. o(T)| converges in probability to zero, since
sup; -+ X,.o(T)> does, and P{|X, (T) >3} <
YP{X, (T)| >3} <YP{X,(T)* >3’} >0 (see the
proofin Lewis and Reinsel, 1985). This shows the conver-
gence in distribution to a random variable, which is
normally distributed with mean zero and of unit vari-
ance. Note, that the normalization by vy, is necessary
here, if no conditions on the limiting behaviour of
I(T)"VEI(T) except for its boundedness are imposed.

In order to extend this result to the autocovariances of
a process (y,).z generated by model (1), note that
Vi =Y.~ oK(i)e;—; holds, and that the Markov para-
meters K(i) converge exponentially to zero ie.
K@) < clp, Y for some constants ¢ >0 and
1> p), > |2ma(A)|. Now substituting this expression for
¥, in 7(j) and in y(j) one obtains

JTGG) —(j) =

where ¢; =¢; for j > 0 and ¢; = ¢ ; for j < 0. The term
r(j) may be decomposed into four components: The first
one is due to the replacement of E{(j) = (T — j)/T)y(j) by
7(j). This term may be bounded by ch/T.

To obtain a bound for the other contributions the
following assessment will be heavily used:

Y K(i)éj - K ()" + r()), (13)

i,1=0

2
< Y El(eei—i — do,i)1* < cl.71.

tes

E

Z(&&Tﬂ‘ — 0o,:d)

tes

(14)

Here |.#| denotes the number of elements of the indexset
#. The above inequlatities follow from the fact that the
terms vec(e—; — 0o.;1) and vec(gseq—; — & ;) are uncor-
related for ¢ # s.

The second contribution is due to the approximation
of the process y, by the finite sums ) {_ K (i)e,— ;. Because
of Eq. (14) and the exponential decrease of the Markov
parameters the expectation of the Frobenius norm of this
term is bounded by c(p})*. Therefore, this term converges
to zero if a converges to infinity faster than

— log T/(21og|p}))-

The third term is due to the fact, that sums of the form

= ie1-ile@j1vi— 00, j+1-:]) are replaced by e,
i.e. by sums where the summation index runs from
1, ..., T. The difference is the sum of at most (2a + 1)
summands. Therefore by eq. (14) and by the exponential
decrease of the Markov parameters the expectation of the
Frobenius norm of this term may be bounded by ¢./a/T.

The last contribution stems from the replacement of
e; with €™ ; fori < 0. Now ¢; and e™ ; differ only in the first
i and last i sumands. Therefore, by the same reasoning as
above this term may be bounded by ¢./(a + h)/T.

Putting together these considerations imply that

h
Bl < e1 [ + catpl) (15)

where the constants ¢y, ¢, do not depend on j.
Now the first term in eq. (13) will be analyzed in more
detail. Define =Yy min@a™h) K(l+i)®K() and

i=max(0, — 1)

M, =lim,., M" = f‘:mdx(o, _yK (I + )®K(i), then

ec<. i K(l)e_1+l_lK(l)T> =

=0

Y. Mivec(é;).

l=—a

Note that M = (..., M_{, My, M4, ...) has rows which
are elements of /, and M*= (..., M~ {, My, M1, ...)
converges to M, since it can be shown that
[M*— M| < c(p,)". Here the sequence M7 is extended
on both sides with zeros, i.e. M{ =0e R ** for |l| > a.
Now let the permutation matrix P e R***" be defined
such that P vec(H) = vec(H") for every matrix H € R°***.
Then it follows that the linear term in eq. (13) can be
written as

ec( i K(i)ej+ - K"

=0

a+th
> = Y L%, vec(e)
1=0

a,h
= L] Vec(e03 €1, -ans ea+h)z

where L}, =M%, for [ =0 and L}, = M{_; + M~,_;P
for [ > 0. Clearly, the rows of the matrix L} " when
extended with zeros, converge in the /, sense to the rows
of the (s*x oo) matrix L;=(L;j o, Lj1, ...), where
L; ;= lim,. Lj,; In fact by the convergence of M* - M,
it follows that ||L; — L;|| < c(p})* holds, where the con-
stant does not depend on j.

Assembling the expressions for the covariances

JTH() — 7(j)) in the vector ./T(§r., — gy) then leads to
ﬁ(ﬁ'f,h —gn) =L""

+ vec(r(0), (1), ..., r(h)),

VeC(eO’ €1, .oy ea+h)

where the matrix L“" e R"**@*Ps* hag as its jth block
row the matrix L". By the convergence of the rows of
L*" and by the block diagonal structure of V%, it
follows that, for fixed h, the variance of \/T(jr., — gu)
exists and is given by V¢ =lim,  L“" V% (L*"", see
Remark 4 below.

Finally, let I[(T) € R™ be a sequence of vectors fullfill-
ing 0 < ¢; < I(T)"VY(T)" and |I(T)||; < ¢, < co. Then

STUTY Gr. — gn) = (T L™ vec(eo, ey, ...

+ OP(I)s

5 ea+h)
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where the second term on the right hand side is equal to
I(T)" vec(r(0), ..., r(h)) and converges to zero in probabil-
ity, as follows from eq. (15). The convergence of L] to
L; and the bounded #'-norm of I(T) imply ( for h < a)
lim (I(T)'L“"Veel(L“"U(T) = I(T)'VAIT)) =

a,h— o

Finally, it follows that [(T)"L*“"V%, (L“""I(T) is a se-
quence bounded from below and above and thus the first
part of the proof gives the desired result. []

Remark 4. Recall, that the variance matrix V| can be
calculated as follows: V4 = lim,_, ,L*"V¢ ., (L*"T. This
limit exists due to the structure of V2 and L*" and due
to the convergence of L*" for fixed h. Now the variance
of wvec[eg,...,ex—1], which has been denoted as
Vi e R **’ where x is an arbitrary integer, has as
its [js>+ (b —1)s+a,is* +(d —1) s+ c] entry the
following expression: 1/ TZ o= 1LE(&r,a€— .5 — 0jo0up)
(&, c65—i.a — 0;00.4)], Where 0 denotes the Kronecker
delta function. For s <t (t < s) conditional expectation
on Z#,_y (F,_,) shows, that the contribution is zero.
Thus only the contribution for ¢t = s has to be examined.
If j # i, then again taking the expectation conditional on
F,—min,j) Shows, that the expectation is zero (here the
assumption on the third order moments is needed to
simplify the expressions). Thus V7% is blockdiagonal. In
order to calculate the blockdiagonal entries, we distin-
guish the two cases i=j>0 and i=j=0. As can
easily be seen, for j> 0, the expectation [E(e .&—; )
(&r,c61— j.a) = OacOpa Whichis equal to 1,ifa =cand b =d
and zero else. Thus the variance matrix in this case
is equal to the identity. For j=0, the expectation
E(er.ato — Oap) (Er.c8r.a — Oca) = Eer,abr,v8r.c61,a — OapOca- NOW
for Gaussian ¢, the fourth moment Ee¢; .& &, .4 1S €qual
t0  OupOcd + 04cOpg + 04a0p. Thus the expectation
OuacOpa + 0aadpc 18 €qual to 2,ifa = b = ¢ = d, equal to 1, if
a#banda=cAb=dora#band a=dAb=c, and
equal to zero else.

Remark 5. The lemma also shows, that the condition
L,VILY -V, L,e R™"" (m fixed and finite) is a suffi-
cient condition for \/TLy(Jr., — gn) % Z, where here Z
is multivariate normally distributed with mean zero and
variance equal to V (see e.g. Anderson, 1971, Theorem
7.1.7). Since V9 is a matrix with elements of bounded
infinity norm for a stable system, where the bound is
independent of A, it is straightforward to see, that a suffi-
cient condition for L,VIL! — V to hold for some V is
that the rows of L, embedded in /* converge in the
/% norm to an infinite-dimensional vector, having ele-
ments decreasing exponentially. This will be the condi-
tion used in the sequel. Note, that the requirement
I(T)"V{I(T) > 0 is only needed for the normalization of
the variance and thus can be dropped for our purposes.

5.3. Convergence of m, to mq

First, it will be proved that [m, —mg| = O(pol’),

where 1 > py > |po| and p, denotes an eigenvalue of
(A—BD"'C), ie. a zero of the transfer function, of
maximum modulus. For this purpose the following
lemma is proved:
Lemma 6. |77 ,T';) " — Gpt, | = O(pol”).
Proof. The equality #' ") ' = ;% implies that
[#7.T;) " 0)7), — O (F7), = 0, where ('), de-
notes the first p block columns of the infinite-dimensional
matrix I'". From this it follows, that J#} ,(I,)" " —
O;H,=O(A — BD™*CyYH# #,T,) " Here #, denotes
the matrix obtained by omitting the first p block rows in
(I'"),, which is a (reordered) part of the covariance Han-
kelmatrix # = EY,"(Y,))" and thus has finite Frobenius
norm, independently of p. The Frobenius norm of ¢y can
also be bounded (independently of f), I', has bounded
eigenvalues independently of p and finally 4" is of finite
Frobenius norm. Thus, the Frobenius norm of the error
can be bounded by the Frobenius norm of (4 — BD ™' C)”
times a constant, which depends only on the underlying
system and not on the choice of the truncation indices.
Now |[(4 — BD™'C)?|| can be bounded by |pj|?, for all
1> po > Ipol. O

This lemma immediately implies |[Z,—Z,| =
| A T,) E, — A{T ) 'E,,| = O(|p,|"). Furthermore,
it is easy to see that

1 X, = Xoll = 1, ,(T,) " " A, — AT AT

[ D R O P

+ | C(A — BD™ IOy A ||| A5

is of the desired order O(|py|¥). Applying the techniques
of Lemma 6 it follows that |Y,—Y,| =
17, (L)~ St} p — HATT) 'S, A 5| = O(lpol)-

Now in order to prove /T |m, — my|| — 0 it is suffi-
cient that ./T|po|” — 0 holds, which is guaranteed by the
condition p > — (dlog T)/(2log|po|) for some d > 1.
These considerations show, that one has to impose
a lower bound on the convergence rate of p » oo to
ensure ./ T-consistency of the estimate.

Next, it is proved that y(mg) = 0. In other words the
subspace algorithms considered give a realization algo-
rithm, if the true autocovariances are used and p = oo.
First note that by construction the eigenvalue decompo-
sition (I'}) ™ "2X (')~ "% = U S2UT gives a factoriz-
ation # = ;% and # (")~ = O, A, where

Uy = (Co, A5Co, (43)'Cs, ... )",

= (M0> AoM,, A3M0> ),
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A = (BOD(;la (Ao - BOD(;I
Dng =7(0) — COZnC&
Mg = Ao%,Co + BoDy,

Co) BoDy ', -..),

and the matrices (4, By, Co, Do) are the realization of the
transfer function k,, explained in Section 3. Now the
mapping y evaluated at the point m, is considered. From
egs. (4) and (9) one obtains that C = E}(; = C, and thus
from eq. (5) that D = D,. Term (11) simplifies to

IO (T7) T ELEOE,
+(HATT) IS, ) (TF) G2 1]
=2, 'O(T'7) " '[O;BoDy ' CoZ,
+ O(Ao — BoDg 1Co)Z,] = 4oz,

since %’f(l“_l)Eoo =0,y = O;BoDy", E}0; = C,,
HAT7) 'S, = 0(Ay — BeDg'Co) A and finally
HANTS)” 1Of =37 and C(I'f)” 1Of =Z%,. Thus 1t fol-
lows that A = A,. Now eq. (10) gives <y, X,+1) —>M0,
which implies that B = B,

5.4. A CLT for in,,

In this subsection the results of the previous subsection
will be used to prove a central limit theorem for the
vector 11, = vec()(0), ..., /(f), X,» ¥p» Z,). This will be
done by linearizing the map ¢ attaching m, to the
sample covariances §r ,;+,. It will be shown that
W, =m, + L(Jr.p+r — gr.p+) + 0o(T~'?). In order to
apply Lemma 3 it then remains to show, that the rows of
L, converge in the /> norm to vectors with elements
decreasing exponentially ~

First the term X, = ,)ff A0,) 1A, is considered. By
linearizing this expression one obtalns that

T T AL — A fT,) AT )
=<ﬁ(%fp—%fp»<r-)‘%}p

_“yffp ﬁ(r‘7 p )71%},17
+ %f p \/7(%/ )4 f%pf j2 )
+ hlgher-order terms. (16)

In order to prove that the higher-order terms are of
order op(l), the uniform convergence of the sample
autocovariances has to be used: Under the upper bound
on the increase of p as a function of T, it follows
that maxyji < ;+,-117()) — ()l = O(Qr), where Qr =
J1oglog T/T (see e.g. Hannan and Deistler, 1988). This
result implies that I ?f »— 1.l = 0(p0r),
I, =TI, = (B QOr). In addition, it can be shown that
I(C,)~"| and [|(T',))""| are of order O(p). Using these
bounds some simple but tedious calculations show that
the higher-order terms are of order ./Tp*QL, j > 2,k <6
and thus converge to zero in probability under the

assumptions on the increase of p.

It remains to show that the rows of L, corresponding
to the term X, converge in the /2 norm to vectors with
elements decreasing exponentially. This follows immedi-
ately from Lemma 6.

The terms Y, =4 (F,)7'S,#%, and Z,
Wf I,(F )" 'E, can be analyzed in a completely analog—
ous manner, by showing that |2, ,SyT,) ' —
(S5 (T 7)™ 1), || converges to zero and that #,S%(I'") ™"
has rows with exponentially decreasing entries.

5.5. Differentiability of

The last part of the proof consists of the proof
of the differentiability of  at the value my=
vec[y(0), ..., v(f), Xo, Yo, Zo]. Thus it remains to show,
that in the neighborhood of m,, the approximation
Y(mo + om) = Y (mo) + Jy0m + o(||om|) holds. For this
purpose the essential steps for the computation of  are
repeated.

First, a Cholesky factorization (I'})"? of '} and the
inverse of '} and of (I'f)!/* have to be computed. Since
['; is positive definite, these computations are differenti-
able. Corresponding to the Cholesky decomposition this
can be seen from the recursions defining the Cholesky
factor (see e.g. Golub and Van Loan, 1989). The entries of
the inverse of a matrix X depend differentiably on the
entries of X, if X is nonsingular, which is straightforward
to see.

Next the n largest eigenvalues and the corresponding
eigenvectors of the matrix (I'}) ™ "2X(I'f)~"/* have to be
computed. The differentiability of the mapping attaching
the eigenvectors and the eigenvalues to the matrix
(T)~'"2X(T'f)~ " holds for ko € M *(n), due to the fol-
lowing result, which can be found eg in
Chatelin (1983):

Lemma 7. If A; is an eigenvalue of multiplicity one of
a symmetric matrix X € R™*™ which has a basis of
eigenvectors, with corresponding eigenvector u;, then the
eigenvalue 7; and the corresponding eigenvector @i; of the
perturbed matrix X + ¢X, are given for first-order ap-
proximation by

Zii)‘i + u;re‘Xlui, (17)
uJTleui

m
ﬁiiui + Z ) -
j=1j#i M T A

u;. (18)
Here uy, ..., u,, are the eigenvectors of X and = means,
that the error is o(g).

Although the theorem only states the existence of the
directional derivatives in direction X, the differentiabil-
ity follows from the fact, that the directional derivatives
are continuous in X,. This result can be found in stan-
dard textbooks on analysis (see e.g. Kowalsky, 1974).
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Thus the singular values ¢; and the corresponding
singular vectors u; depend differentiably on the entries
in the matrix (I'})""?X(I';)""2 This shows, that
0, =(Wj) 'U,Zs? depends differentiably on st,. The
remaining steps are easily analyzed using eqgs. (4)-(11).
One only has to keep in mind that X, and (y(0) — CZ,C")
are positive definite and thus the Cholesky factorizations
and the inverses, which have to be computed, are differ-
entiable with respect to the entries of m,,

5.6. Calculation of the asymptotic variance

The main result of this paper states asymptotic nor-
mality of the estimates. The asymptotic variance can be
written formally as V§ = lim,_.,, L, ,V% ,L}., as follows
from Section 5.4, where L, , = J,,L, (L, is defined in the
first paragraph of Section 5.4 and J,, denotes the matrix
of partial derivatives of the function ). The resulting
formulas are too complicated to be investigated analyti-
cally. However, actual computations provide approxima-
tions to V%, where the approximation error can be made
arbitrarily small by choosing a and p suitably large. This
approximation can be calculated along the following
lines:

Recall, that the asymptotic variance Vj of
JTLGr.n — gn] for fixed h (see Lemma 3) is the limit
lim,_ ., L“"V¢, (L“")", where the evaluation of V., is
documented in Remark 4. Expressions for L*“" can be
found in the proof of Lemma 3. The convergence of this
expression is related to the magnitude of pj, (see the proof
of Lemma 3). Corresponding to the asymptotic variance,
V™ say, of /T[m,— my] it has been shown, that
ST, —mo] = TLy[gr.p+y — gp+s] + 0p(1).  Thus
V™ =1lim,., L,V%,(L,)", where the existence of the
limit has been shown in Section 5.4. L, can be found from
eq. (16). Lemma 6 shows, that the convergence of L, and
thus of V™ depends heavily on |p§|. Finally, { is a map-
ping between two finite-dimensional vector spaces and
thus the derivative of {y can be calculated without any
approximation using the results of Lemma 7 and egs.
(4)-(11). Thus the approximation of Vgn can be found as
JyL, LT PVe (LT LT T by taking a and p large,
where the meaning of large depends on the location of the
systems zeros (for p) and poles (for a).

6. Conclusions

In this paper the asymptotic properties of the estimates
of system matrices are discussed, when the estimation is
performed using a particular class of subspace algo-
rithms. Here only the case, where no observed inputs are
included, is treated. The discussion centers on the asymp-
totic distribution of the estimates. The paper contains
a new consistency result, which states consistency for the
system matrices. The main result states a central limit

theorem for the estimates of the system matrices, if the
true system is contained in a generic set (see Section 3).
The estimates are found to be asymptotically normal and
the variance may be calculated, since the proof of the
CLT hinges on the linearization of the mapping attach-
ing system matrix estimates to covariance estimates. This
makes it possible, to compare for a given system the
effects of different weighting matrices W ', which is done
in Bauer et al. (1997). It is also possible to compare for
a given system the asymptotic variance to the optimal
asymptotic variance, as obtained by the maximum likeli-
hood approach. This is also done for some examples in
Bauer et al. (1997).

An important condition for the central limit theorem is
that the truncation index p has to tend to infinity at
a certain rate, which depends on the true system. How-
ever, as has been stated already, this rate can be consis-
tently estimated. The truncation index f however is fixed
and has to fulfill f > n in order for our result to hold.
Simulation evidence suggests, that in some situations the
choice of this index is rather important for the N4SID-
type procedure, whereas it seems to be less critical for
CCA.

Appendix: Genericity of the set M (n)

In order to simplify the notation, here only the case of
the CCA weighting W = (/)™ " is considered. The
case of N4SID can be treated in a completely analogous
way.

Let @ < R"*9°7s6=1/2 denote the set of quadruples
(A, B, C, D), where A and A — BD~'C are stable and D is
lower triangular with strictly positive diagonal elements.
Furthermore, let ®, = ® denote the set of all minimal
realizations. It is easy to see, that the set of all realizations
® is an open and nonvoid subset of R"*9*s6=1/2 and
that the set of all minimal realizations ®,, is an open and
dense subset of ©.

Recall the definition of the central matrix
X =LF) "PA) ' AUTS) T2 (see Section 3) and
consider the set ®, — ®, where the corresponding
matrix X has n distinct (nonzero) eigenvalues. Clearly
®," is a subset of ®, and the next step is to prove that
®," is open and dense in ©.

First note that #(T ") 'AH | =0,4T 40} =
0,6%"0}, where € = (B, AB, A>B, ...) is the controlla-
bility matrix. Therefore, the n nonzero eigenvalues
of X are equal to the ecigenvalues of Z =
[OT)) 'O J[¢%"]. Since A is stable P =%%" =
Y A’BB"(4’)" is an analytic function of (4, B). This im-
plies that the autocovariances 7(0) = CPC" + DD",
7(j) = CA’"Y(APC" 4+ BD"), j > 0 are analytic functions
of (4, B, C, D). Finally, since D has full rank and by the
strict minimum phase assumption it follows that the
entries of Z are analytic functions of (4, B, C, D) on ©.
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The characteristic polynomial a(2) = det(Z — AI) and
its derivative b(4) = (d/d2)a(4) have a common root iff
Z has some eigenvalues of multiplicity larger than one.
Thus the determinant of the corresponding Sylvester
matrix

rap a; - - a, 0 - 0
0 ay a, - - a,
0
R 0 0 ao a, a,
by b,-1 O 0
0
. 0
0 0 R N

c R(Zn—l)x(Zn—l)

is zero for all (4, B, C, D) e ©®,\®," and nonzero for all
(A, B, C, D) e ®,. Since detR is an analytic function of
the parameters (4, B, C, D) it follows that ®," is open in
0, and thus in ®. Now suppose that ®," were not dense
in ®,. Then detR is zero on an open subset ¥~ < O,
Now from the analycity of det R it follows that det R is
zero on the largest pathwise connected subset of ®,
which contains 7. Since ® is pathwise connected, one
may conclude that det R is zero on ©.

To find the desired contradiction now it is sufficient to
construct an element in ®,/, i.e. to prove that ®, is not
empty. This is done in a recursive manner. Clearly, for
n=1, 07 = 0, is nonvoid. Now suppose that the con-
jecture is true for n — 1. Therefore, there exists a transfer-
function k, € M(n — 1) for which Z has n — 1 nonzero
distinct eigenvalues. Now let (A4g, Bo, Co, Do) € ® be
a (nonminimal) realization of k, with n states. Then
Z, corresponding to (4o, By, Co, Do) has one zero eigen-
value and n — 1 distinct eigenvalues larger than zero.
Since ©, is dense in @, there exists a sequence
(Ay, By, Cy, Dy) € ®,, which converges to (4g, By, Co, Do)
Furthermore, by the continuity of the eigenvalues of Z, it
follows that the eigenvalues of Z, converge to the eigen-
values of Z,. Thus, there must exist an index k such that
Z, has n distinct nonzero eigenvalues, which proves that
(A By, Cr, D) € ©,.

Now let M*(n) = n(®,") = M(n), where ©: ® — M (n)
denotes the mapping attaching the transfer function
k(zy=D + C(zI —A)"'B to matrix quadrupels
(A4, B, C, D). In the following, it is proved that M *(n)is an
open and dense subset of M(n). Here M(n) is endowed
with the so-called pointwise topology, which is defined as
follows: The transfer function is identified with the se-
quence of its Markov parameters (K(j)|je Z*). The set
(RS*%)%* is endowed with the product topology and the
pointwise topology is the corresponding relative topol-
ogy for transfer functions (comp. Hannan and Deistler,
1988). Consider a koe M(n) and let ¥ < M(n) be

a neighbourhood of k, with a continuous parametriz-
ation, i.e. with a mapping ¢: ¥ +— 0,, k+— (A, B, C, D),
which is continuous. (One possibility is to use e.g. the
overlapping parametrizations presented in Hannan and
Deistler (1988, Chap. 2). Now consider the concatenated
mapping k — ¢(k) > detR. Since ¢ is continuous this
mapping is continuous. Thus if koe M (n) then
det R # 0 holds in a neighbourhood of k,, which gives
the openess of M *(n). If ko € M(n)\M *(n), then by the
denseness of ®," and by the continuity of 7, one can
construct a sequence of transfer functions in M *(n),
which converges to ko. Thus M " (n) is dense in M (n).

References

Akaike, H. (1975). Markovian representation of stochastic processes by
canonical variables. SIAM Journal of Control, 13(1), 162-172.

Anderson, T. W. (1971). The statistical analysis of time series. New York:
Wiley.

Bauer, D., Deistler, M., & Scherrer, W. (1997). The analysis of the
asymptotic variance of subspace algorithms. Proceedings of the
11th IFAC Symposium on System Identification (pp. 1087-1091).
Fukuoka, Japan.

Bauer, D. (1998). Some asymptotic theory for the estimation of linear
systems using maximum likelihood methods or subspace algo-
rithms. Ph.D. thesis, Tu Wein.

Chatelin, F. (1983). Spectral approximation of linear operators. New
York: Academic Press.

Deistler, M., Peternell, K., & Scherrer, W. (1995). Consistency and
relative efficiency of subspace methods. Automatica, 31, 1865-1875.

Desai, U. B., Pal, D., & Kirkpatrick, R. D. (1985). A realization
approach to stochastic model reduction. International Journal
of Control, 42(4), 821-838.

Fuchs, J. J. (1990). Structure and order estimation of multivariable stochas-
tic processes. I[EEE Transactions on Automatic Control, 35, 1338-1341.

Glover, K. (1984). All optimal Hankel norm approximations of linear
multivariable systems and their [ -error bound. International
Journal of Control, 39, 1115-1193.

Golub, G., & Van Loan, C. (1989). Matrix computations (2nd ed.), USA:
John Hopkins University Press.

Hannan, E. J., & Deistler, M. (1988). The statistical theory of linear
systems. New York: Wiley.

Jansson, M. (1995). On the performance of subspace methods in system
identification and array processing. Licentiate Thesis, KTH,
Stockholm.

Kowalsky, H. J. (1974). Vektoranalysis I. De Gruyter.

Larimore, W. E. (1983). System identification, reduced order filters and
modeling via canonical variate analysis. In: H. S. Rao, & P. Dorato
(Eds.). Proceedings of the 1983 American Control Conference,
vol. 2 (pp. 445-451). Piscataway, NJ: IEEE Service Center.

Lewis, R., & Reinsel, G. (1985). Prediction of multivariate time series by
autoregressive model fitting. Journal of Multivariate Analysis, 16,
393-411.

Lindquist, A., & Picci, G. (1985). Realization theory for multivariable
stationary gaussian processes. SIAM Journal on Control and
optimization, 23, 809-857.

McKelvey, T. (1995). Identification of State-Space Models from Time
and Frequency Data. Ph.D. Thesis. Dept. of Electr. Eng., Linkoping.

Peternell, K. (1995). Identification of Linear Dynamic Systems by Sub-
space and Realization-Based Algorithms. Ph.D. thesis, TU Wien.

Van Overschee, P., & DeMoor, B. (1994). N4sid: Subspace algorithms
for the identification of combined deterministic-stochastic systems.
Automatica, 30, 75-93.



1254 D. Bauer et al. |Automatica 35 (1999) 1243-1254

Verhaegen, M. (1994). Identification of the deterministic part of mimo
state space models given in innovations form from input-output
data. Automatica, 30(1), 61-74.

Viberg, M., Ottersten, B., Wahlberg, B., & Ljung, L. (1993). Perfor-
mance of subspace based state space system identification methods.
Proceedings of the 12th IFAC World Congress, Vol. 7 (pp. 369-372).
Sydney, Australia.

Wabhlberg, B., & Jansson, M. (1994). 4sid linear regression. In: Proceed-
ings of the 33rd Conference on Decision and Control (pp. 2858-2863).
Orlando, USA.

Dietmar Bauer was born in St. Polten,
Austria, on June 21st 1972. He received the
masters degree in applied mathematics
from the TU Wien in 1995 and his Ph.D.
degree in applied mathematics at the TU
Wien in 1998. He is currently an assistant
at the Institut fiir Okonometrie, Opera-
tions Research und Systemtheorie, TU
Wien. Research interests include par-
ametrization and estimation of linear sys-
tems, in particular subspace algorithms.

Manfred Deistler was born in St. Polten,
Austria. He received the Dipl. Ing. (corre-
sponding to M. Sc.) degree in electrical
engineering in 1964 and the Ph.D. degree
in applied mathematics in 1971, both from
the ‘Technische Universitit’ (University of
Technology) Vienna. From 1964 to 1966
he worked in industry on control prob-
lems. From 1966 to 1968 he had a Ford
Foundation scholarship to study econo-

metrics. From 1968 to 1978 he was an assistant and an associated
professor at the universities of Regensburg and Bonn, respectively, in
econometrics and statistics. Since 1978 he has been full professor of
Econometrics at the Technische Universitit, Vienna. His main research
interests are systems indentification, time series analysis, econometrics
and environmental modeling. He is coauthor (with E. J. Hannan) of the
book ‘The Statistical Theory of Linear Systems’ (New York, Wiley
1988). He is on the editorial board of (among others) Journal of
Econometrics, Journal of Time Series Analysis, SIAM Journal on
Control and Optimization and SIAM Journal on Matrix Analysis and
Applications.

Wolfgang Scherrer was born in Feldkirch,
Austria, on 20 September 1958. He has
received his Mag.rer.nat. (corresponding
to a B.Sc. degree), teaching profession for
secondary schools in mathematics and
physics, (1981) from the Universitit In-
nsbruck, his Dipl.Ing. (corresponding to an
M.Sc. degree) in applied mathematics
(1986) and his Ph.D. degree in applied
Mathematics (1991) from the Technische
Universitdt Wien. From 1982 to 1983 he
was working as a teacher at a secondary
school in Bregenz. From 1986 to 1996 he was research assistant
at the Institut fiir Okonometrie, Operations Research und System-
theorie, Technische Universitiat Wien. Since 1997, after his qualification
as university lecturer, he has been Associate Professor at the above
department. His main research areas are: system identification, multi-
variate linear dynamic systems, errors-in-variables models, econo-
metrics.



PERGAMON

Automatica 36 (2000) 497-509

www.elsevier.com/locate/automatica

Analysis of the asymptotic properties of the MOESP type
of subspace algorithms™

D. Bauer?, M. Jansson®*:!

*Institut fiir Okonometrie, Operations Research und Systemtheorie, Technische Universitat Wien, Argentinierstr. 8/119, A-1040 Vienna, Austria
Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA

Received 8 September 1998; revised 10 May 1999; received in final form 2 August 1999

In this paper consistency and asymptotic normality of the estimates of MOESP type of subspace
algorithms are established under fairly general assumptions on the input process.

Abstract

The MOESP type of subspace algorithms are used for the identification of linear, discrete time, finite-dimensional state-space
systems. They are based on the geometric structure of covariance matrices and exploit the properties of the state vector extensively. In
this paper the asymptotic properties of the algorithms are examined. The main results include consistency and asymptotic normality
for the estimates of the system matrices, under suitable assumptions on the noise sequence, the input process and the underlying true

system. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Subspace algorithms are used for the estimation of
linear, time-invariant, finite-dimensional, discrete time,
state-space systems. They are an alternative to the more
classical maximum likelihood and prediction error
methods. The main advantages of subspace algorithms
are their conceptual simplicity and their numerical prop-
erties. The main idea of these algorithms lies in the
observation that the predictions of a time series from the
whole past of the outputs and possibly the whole series of
observed exogenous inputs for different time horizons are
a function of the state vector and the future of the
exogenous inputs: Every optimal (in the least-squares
sense) predictor of the future of the process based on the
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entire past of the output process and the whole input
process is a linear function of the state and the future of
the exogenous inputs under appropriate assumptions on
the noise and the data generating process. This fact can
be used for estimation of the state (cf. Larimore, 1983;
Peternell, Scherrer & Deistler, 1996) or the estimation of
the linear mapping attaching the predictions to the state
vectors and the future of the exogenous inputs (cf. Van
Overschee & De Moor, 1994, 1996; Verhaegen, 1994).
The statistical properties of the first type of algorithms
are clarified to a large extent by Deistler, Peternell and
Scherrer (1995), Peternell et al. (1996), Bauer, Deistler
and Scherrer (1999) and Bauer (1998). Within the second
type of algorithms, the MOESP class of algorithms is
very popular. MOESP has been developed by Verhaegen
and coworkers in a series of papers (Verhaegen &
Dewilde, 1992a,b; Verhaegen & Dewilde, 1993; Ver-
haegen, 1994). The numerical properties of the latter
algorithms have been investigated thoroughly in these
papers. The consistency of this approach has been inves-
tigated in Jansson and Wahlberg (1997, 1998). The main
conclusion from these papers is that, in general, it is not
enough to impose persistence of excitation type of condi-
tions on the exogenous inputs in order to guarantee
consistency. However, there are some special cases (see

0005-1098/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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Jansson & Wabhlberg, 1998). Asymptotic normality of the
estimates of the poles of the transfer function has been
established in Viberg, Ottersten, Wahlberg and Ljung
(1993). In the current paper the asymptotic properties of
the subspace estimates using various conditions on the
exogenous inputs are considered. The analysis will center
on conditions ensuring consistency of the approach in
generic situations, and on asymptotic normality of the
system matrix estimates.

The paper is organized as follows: Section 2 introduces
the model class used for identification and presents some
standard assumptions. Section 3 presents the class of
algorithms considered. Section 4 then contains the main
results of this paper, namely consistency and asymptotic
normality of the system matrix estimates. Section 5
presents some numerical examples and finally Section 6
concludes the paper.

Throughout the paper the following notation will be
used: Bold face symbols are used for matrices and vec-
tors, lower case latin and greek symbols are used for
scalars. As usual — will denote convergence for deter-
ministic quantities and — a.s. stands for almost sure
convergence of stochastic quantities. > will denote con-
vergence in distribution. Also the notation <{a,,b,) =
(1/T)Y./~1a,b!, where T denotes the sample size, is intro-
duced. Here the initial conditions are such that
<a,,b,> =<a,,;,b,;) holds for | j| < o + f, where o and
p are integers to be specified in the following section.
Finally f, = o(g,) means lim,_, , f,/g, = 0.

2. Model set

In this paper the model class is restricted to linear,
finite-dimensional, discrete time, time-invariant, state-
space systems of the form

X;+1 = AX; + Bu, + Ke,,

(1)
y, = Cx; + Du, + Eg,,

where t€Z, y, € R® is the s-dimensional observed output,
g, € R®, denotes the s-dimensional white noise with zero
mean and covariance matrix equal to unity. u, e R™ de-
notes the m-dimensional exogenous input series, which is
assumed to be independent of the noise ¢ in an appropri-
ate sense to be defined below. Finally, x, € R" denotes the
n-dimensional state, and AeR"*", BeR"*™, CeR**",
DeR**™, EcR*** and KeR""*® are parameter matrices.
The matrix E is assumed to be lower triangular with
strictly positive entries on the main diagonal. In particu-
lar, it is thus assumed that E is nonsingular. Throughout
the paper it will also be assumed that the matrix A is
stable, i.e. that |1,,,(A) < 1, where Z,,,,(A) denotes an
eigenvalue of A of maximum modulus, and that
|Zmax(A — KE™C)| < 1. Using the forward-shift operator

z, the output y, can be written as

yt = Dllt + Z CA'i_lBllt_j + Eb‘t + Z CAj_lKﬁt_j

j=1 ji=1

LO): a4+ Y KG)z .

0 j=0

M8

J
Here zu, = u,, {,z¢, = & and the Markov parameters
K(j) and L(j) are defined by the above equality. Using
this notation the transfer functions k(z) = Y /2 K(j)z /=
E+CzI—A)7'K, and 1z2)=>7,L(j)z /=D +
C(zI — A)” 'B can be defined. Note that the bound on the
eigenvalues of A implies the convergence of the series
defining k(z) on the complement of the open unit disc.
The assumption on the eigenvalues of A — KE™'C im-
plies that the inverse of k exists and is analytic on the
complement of the open unit disc.

Definition 1 (Standard assumptions). The process y,,teZ
is generated by a system of the form (1), where (A,C) is
observable and (A,[B,K]) is reachable. The white noise
¢ is independently identical distributed (i.i.d.) with mean
zero and covariance equal to unity. Furthermore, the
third- and the fourth-order moments of the noise exist
and thus are finite. The input process u, is assumed to be
independent of the noise.

Note that it is not assumed that the system is reachable
from the exogenous inputs only, i.e. that the pair (A, B) is
reachable. Also, note that it is assumed that the matrix
A describes the dynamics of k and of 1, i.e. the matrix
A contains the dynamics due to the exogenous inputs as
well as the dynamics due to the noise. Therefore
(A,B,C,D) may be a nonminimal realization of 1. The
assumptions on the white noise are overly strong. How-
ever, the authors decided to keep the assumptions on the
noise simple, since it will be clear from the exposition,
which properties of the noise indeed are needed. The
results will obviously hold also for much weaker require-
ments on the noise. Concerning the inputs, there will be
different sets of assumptions for the results on consist-
ency and on the asymptotic normality.

3. The algorithms

In this section a brief presentation of the algorithms
considered in this paper will be given. The main fact that
is used by subspace algorithms can be formulated as
follows: Let Y, = [y/-1,¥i-2, --.,¥i—4]" be the vector
of the stacked (finite) past of the process and let
Y. =[y5 ¥ 1, .-, ¥iea—1]" be the vector of the stacked
(finite) future of the output process. Define U,; and
U,, analogously from u,, and let P,; = [Y/;, U/;1"
In what follows, it is assumed that o >n and > n.
Furthermore, let I', = [C",ATC", ..., (AT)* 'C"]" denote



D. Bauer, M. Jansson | Automatica 36 (2000) 497-509 499

the extended observability matrix. Then the following
equation can easily be shown to hold:

Y,.=Tx +®,U, +N,,. (2)

Here N, , is equal to the contribution due to the future of
the noise and ®, is defined as

CB D :

o, = .
: .0
CA*"’B CB D

Now the MOESP type of algorithms can be described as
follows. The discussion will be restricted to PO-MOESP
first (Verhaegen, 1994). At the end of Section 4 also the
algorithm denoted by PI-MOESP (Verhaegen and Dew-
ilde, 1993) will be dealt with.

Remark 2. The notation ‘MOESP type’ is introduced in
order to emphasize that the considered class of algo-
rithms is obtained from direct modifications of the orig-
inal procedure proposed in Verhaegen (1994). From the
discussion it will be clear that there are several possibili-
ties to compute the intermediate steps in the estimation
algorithm. Different choices lead to variations of the
algorithm, which also change the asymptotic properties
of the corresponding estimates. In order to avoid dealing
with all variants of the original algorithm MOESP, one
particular version (which is chosen somewhat arbitrarily)
is analyzed. However, the tools used in the analysis below
are the basis of the analysis for some of the variants
proposed in the literature.

In a first step, define [IA{M, ®,] from the regression of
Y,, onto P, 5 and U, ,:

N P, P\ (Pop\\ 7!
= (v (02 )G HE)

Note that the column space of H,;, the population
analog to H, 4, is contained in the column space of I,
(cf. Verhaegen, 1994, see also below).

Remark 3. A more complex method can be obtained
easily using a similar approach as proposed in Peternell
et al. (1996): Note that @, is a lower triangular block
Toeplitz matrix, i.e. a matrix of the form

Lk 0 - 0
L - IJ.I Lo : ’

: . 0

L., - L; L

where L; e R**™. These restrictions can be imposed in the
regression given above. Introducing more of the structure

of the problem, it is hoped to obtain better estimates (see
Peternell et al., 1996, for some simulation studies).

In a second step, the singular value decomposition
(SVD) of a weighted version of the matrix Iflw is used:
Let W, H,,W; =ULV" = U,L,V; + R. The diagonal
matrix £, € R"*" contains the largest n singular values
contained in the diagonal matrix £, and U, € R**" and
V, e RF™*m denote the matrices containing the corre-
sponding singular vectors as columns. Here W, and
W,} are weighting matrices, which are assumed to be
nonsingular (for some comments on this, see Jansson
& Wahlberg, 1998). Common choices for W, are I,
(<Yt,o( - (i)(xUt,auYt,a( - (I\)a(Ut,(x>)71/25 (<Yt,(x7Yt,1> -
<Yt,a>Ut,a><Ut,asUt,a>_1<Ut,aaYt,a>)_1/2 or W: =W,
lower triangular block Toeplitz and independent of
the data. For W, the restriction that either
W/; = (K(Prp:Prp )Y or

Wi = (P Pry) — (P U > (U U > 7
X <Ut,a5Pt,B >)1/2

is imposed. Here X = (Y)'/? denotes any square root of
a positive-definite matrix Y such that XX" =Y. It is
straightforward to see, that the particular choice of the
square root does not affect the estimates.

In this second step also the order of the system has to
be determined. For the construction of order estimation
procedures in the context of subspace identification
methods, see Bauer (1998). Given the true order n an
estimate of T, is defined by I', = (W,")"'U,. Then an
estimate of (A,C) is obtained by using the shift-invariance
property of I',: Note that I',_ ;A =T, where I'] is
obtained from I', by omitting the first block row, i.e.
I'] = [ATCT(AN)?CT, ... (AT !CT]". Replacing true
quantities with estimates, the least-squares estimate
A, =T1_,T'] is obtained. Here I}_, denotes the
Moore-Penrose pseudoinverse of I',_ ;. Cy is estimated
as the first block row of I',. There have been several
different proposals on how to estimate the pair (A, C)
from an estimate of I', (see e.g. Viberg, Wahlberg &
Ottersten, 1997; Lovera, Falcetti & Bittanti, 1998). All
these methods basically lead to a (explicit or implicit)
definition of a mapping attaching estimates (A;, Cy) to
the estimate T',. It will be clear from the discussion in
Section 4, what the ‘key properties’ of these mappings
are, in order to ensure consistency and asymptotic nor-
mality.

In the remaining step, the estimate I, is used to obtain
estimates of B and D from Eq. (2). Note that @, is a linear
function of vec[B,D], i.e. vec®, = Ly, vec[B,D], where
Ly p depends only on T',. Let I'y e R***~" be a full-
rank matrix, such that I''T} =0, ie. the columns of
I'; span the orthogonal complement of the space
spanned by the columns of I',. Then from Eq. (2) it
follows that (T'))"Y,, = (Iy)'®,U,, + (I';)'N,,. For the
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estimation it is tempting to replace the true quantity
I't with a corresponding estimate 't e R**“~"_ such
that IJT'; = 0. In this paper the choice ['; = (W, )'U, is
used, where U, e R***™™ js an orthonormal matrix
spanning the orthogonal complement of the space span-
ned by the columns of U,. (Again, the choice for 't made
here is somewhat arbitrary.) Therefore, [B,D] can be
estimated as follows.”

VeC[ETs 1,jT:I =arg min ||Vec[(f‘i_)T<Yt,mUt,a ><Ut,a aUt,a > N 1]
B.D

— (I®[T7]1")Ly pvec[B,D]||?
= [EE,D(I®fi-(f;_)T)EB,D] B lqu;,D
vee[T2 (5 (Y, U, ><U,,U > 71, (3)

where ® denotes the Kronecker product and ||-|| the
Euclidean norm. ]:B,D denotes the matrix Ly ,, where the
estimate I, is used rather than the matrix I,. Note that
the estimates of B and D depend on the choice of ['2. Also
note that instead of using the estimate I, in the definition
of fB!D the estimates A; and C; could be used. The
above approach of estimating B and D can be given
an instrumental variable (IV) interpretation. Since u,
and g are assumed to be uncorrelated, the IV vector
& =<U,,U,,> 'U,, can be used to correlate out
the noise in the equation (I';)'N,, = T,)"Y,, —
(Ty)'®,U,,. Indeed, minimizing the IV criterion
Zz 1 FL)TYm (Uz(x®[fi]T)I:B,DVeC[&D])fﬂ|12r,
where || - ||z denotes the Frobenius norm, with respect to
B and D leads to exactly the same solution as given in (3).
This is the original MOESP procedure proposed in Ver-
haegen (1994) Another, maybe more natural, choice of
the 1V vector is & = ((U,,,U,,>) "~ "*U,,. However, the
estimate given in (3) is chosen in the analysis that follows.
All the alternative approaches mentioned above are eas-
ily analyzed using the tools presented in this paper.

No attempt will be made to estimate the remaining
matrices E and K, the discussion rather concentrates on
the estimation of I. This is done mainly for two reasons:
First, most of the proposed methods for the estimation of
E and K result in consistent estimates only for f — oo . In
this case, the analysis becomes much more complex, and
the assumptions on the input sequence have to be
adapted. Second, the original MOESP algorithm (Ver-
haegen, 1994) was developed for the estimation of I only.
Therefore, the analysis is restricted to the estimation of
(A, B, C,D). In the next section, the asymptotic properties
of the estimates (Ay, By, Cy,Dy) obtained by this algo-
rithm are investigated.

2Note that vec(ABC) = (C"®A)vec(B) for matrices of compatible
dimensions.

4. Asymptotic properties

The first part of this section will focus on the question
of consistency of the estimates. There will be two different
concepts concerning the consistency, depending on
whether the estimate of the transfer function is con-
cerned, or whether the convergence of the system matrix
estimates is investigated. From the description of the
algorithm it can be seen that the system matrix estimates
are a nonlinear function of the sample covariances of the
joint process z, = [y;,u;/]" up to lag o + f — 1. Up to
now, no assumptions on the input process have been
introduced, except for the independence of the noise. The
assumptions needed for the consistency result are as
follows:

Definition 4 (Weak assumptions on the inputs). The pro-
cess u, is pseudostationary, fulfilling (where these equa-
tions define p and v, ,(j)):

1 T
lim — > u, =p,
T—- t=1

157/ T
lim — ) wufy;
T—- oo t=1

= Yuul))

for j > 0. Furthermore, the input process is assumed to
be persistently exciting of order o + f, i.e. the block
Toeplitz matrix

’))u,u(o) Yu,u(l) YM,M(OC + ﬁ - 1)
ru .= yu,u€ - 1) ‘}’u,u(o)
’ . . yu,u(l)
)}u,u(l —o— B) yu,u( - 1) ))u,u(o)

is of full rank (« + f)m. From these assumptions it fol-
lows (cf. e.g. Hannan & Deistler, 1988, Theorem 4.1.1)
that

1 T—j T
lim — Y we' j=0=1m— > wg_;, j=0
T—- t=1 T—- t=1+j
In this case, u, and g will be called uncorrelated with
slight abuse of terminology.

Let y..(j) = Fzz/, ;» where E has to be interpreted as
expectation for random variables and as a limit of the
sample covariances for expressions involving u,. It is well
known (see e.g. Hannan & Deistler, 1988, Chapter 4.1)
that the given assumptions are sufficient for these limits
to exist and also for the almost sure convergence of the
sample covariances . .(j) = (1/T) Z, Szl ;- This con-
vergence result will be the basis for the consistency proof.
Note that this result holds, e.g. if the input process is
a trajectory generated by an ii.d. sequence of random
variables with finite variance, which is filtered using a lin-
ear filter k,(z) = Y 72 oK, (j)z~ i having the property that
Y olIK.u( ])|| < 0. Addltlonally, also a term of the form
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Yioice”' may be added, where ¢,eC", —n < 4, <,
1 <[ < h are such that the corresponding process is real
valued. Note that this additional term includes a mean
value term as well as sinusoids. Thus the class of input
signals for which the given assumptions hold seems to
include many typical situations. However, the authors
want to emphasize that the examples given are by no
means the only signals satisfying the weak assumptions.

A central matrix in the evaluations is the matrix
W, H, ;W;, on which the SVD is performed. It will be
shown below that for the choices of W, and W, given in
Section 3 the weighting matrices converge to the corre-
sponding matrices where sample estimates are replaced
by population moments. The same is true for the esti-
mates obtained in the regression, ie. H,; —H,,
a.s., where H,,; = T,[Ex,(P/%)"J[EPT;(P)"] ™', Here
P, denotes the residual from a regression of P, ; onto
Ut,ou i'e's P{,Iﬁ = Pt,ﬁ - [E[Pt,ﬁyUt,a:][E[Ut,auUt,a]7 1Ut,az'
Using the persistence of excitation assumption on the
input sequence, it follows that the estimated covariance
matrix, flﬂ say, of P{'; converges to the population ana-
log. Moreover, the assumptions on the noise ensure that
f[ﬁ is nonsingular almost sure for T large enough. Thus,
in order to assess the rank of H,,; only the rank of
Ex,(P)" has to be considered. It is easy to see that
Ex,(P}%)" is of full rank iff the following matrix is of full
rank:

X P, B T
R, s =E L
’ <U ><U>

From Jansson and Wahlberg (1997) it follows that the
weak assumptions on the input sequence are not suffi-
cient for this matrix to be of full rank. Jansson and
Wabhlberg (1997) actually constructs an ARMA input
process (which is persistent of any order) and a system,
such that the rank of %, ; is smaller than the order of the
system. It follows from the arguments in Peternell et al.
(1996) that the rank of £, , will be equal to the order of
the true system if o and f are taken sufficiently large
(some sufficient conditions for the rank constraint to
hold are given in Jansson & Wahlberg, 1998). Another
reference in this respect is Chui (1997). However, in this
paper another route will be followed, by showing that the
set of transfer functions for which the full rank condition
is not satisfied is ‘thin’. Here sets of transfer functions are
equipped with the pointwise topology (see e.g., Hannan
& Deistler, 1988), sets of finite-dimensional vectors with
the Euclidean metric. Let S, denote the set of all system
matrices (A, B, C,D,E,K), where the state dimension is
equal to n, E is lower triangular with positive entries on
the main diagonal, and A and A — KE~'C are stable. Let
S, = S, denote the subset of S, where additionally (A, C)
is observable and (A, [B,K]) is reachable. Note that S, is
not the closure of S, in the corresponding Euclidean
space, since the stability, the strict minimum-phase con-

dition and the nonsingularity of E is maintained also for
the systems in S,. Let © denote the mapping attaching
transfer functions to system matrices. Finally, let
M, = n(S,) denote the set of all pairs of transfer functions
corresponding to S,. Then a ‘thin’ set is a set whose
complement in M, is open and dense in M,,.

Lemma 5. The set M, (u,,0, ) = M, of pairs of transfer
functions (k,1)e M,,, such that the corresponding matrix
Ry.p is of full rank (n + am), is open and dense in M,,.

Proof. The proof uses similar techniques as have been
used in Bauer et al. (1999): First, it will be shown that
given the sequence of population covariances of the input
sequence, 7,.,(j), the finite-dimensional matrix %, 5 is an
analytic function of the system matrices on S,, which is
an open and pathwise connected set in the embed-
ding FEuclidean space. Thus the determinant of
Ry Ry p € RUTHMXFam g an analytic function of the
system matrix entries. This shows that the determinant is
either identically zero on §,,, or generically nonzero. The
existence of a single pair of transfer functions such that
R,.p 1s of full rank then proves the lemma.

Thus consider the entries in %, ; more closely. Four
types of entries have to be considered: Ex,u,. s Ex,yi, i
Eyu':; and Fuu/; ;. Here |jl <o+ f — 1 in all cases.
Eu,u/; ; is independent of the system matrices and hence
is an analytic function of the entries in (A,B,C,D,EK)€eS,.
Next consider Ex,u), ;- Since g and u, are assumed to be
completely uncorrelated, one obtains: [Ex,u/, =
E) 2y Al "Bu,_,u/. j, which is an analytic function of the
entries in A and B due to the assumed stability of A.
This also shows the analyticity of Ey,u/ ;. Thus, it re-
mains to show the result for terms of the form
Ex,y/+; = Ex,(Cx,+; + Du,.; + Eg,.j)'. Now Ex,u/;
has been treated already, Ex,&_; = A’ 'KJ;s,, where
dj>0 1s equal to 1 for j >0 and zero else. Thus the
remaining term is equal to

Ex,x/+j = [E|: Y A7 'Bu,_; + Ai_let_,-:|

i=1

0 T
X[z Aiil(BuH—j—i + K8t+j—i):|

i=1

Y [A”'BEu_uf,; BTAYT

rs=1
+ A" 1K|E8t—r£?+j—sKT(AS7 I)T]

due to the assumed orthogonality of u, and &. Now
again, the analyticity of this expression as a function of
the entries in A follows from the stability of A. Therefore,
each entry in %, 5 is an analytic function of the entries in
the system matrices (A,B,C,D,E,K)eS,. As has been
stated already, the lemma then follows from the existence
of one system with the property that the corresponding
matrix %, , has full rank. This follows, for example, by
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choosing 1 = 0 and k as an arbitrary transfer function of
order n. This completes the proof. [

As has been mentioned before, this is the strongest
result one can hope to achieve, since the results in
Jansson and Wahlberg (1997) show that it is possible
to construct examples where consistency fails. Also note
that the generic set on which the consistency condition
is fulfilled depends on the (noncentral) covariances of
the input process and on the choice of the truncation
indices o,f.

Concerning the consistency, two different results will
be presented: First, consistency of the transfer functions
in the sense of the pointwise topology for the true pair
(ko,lp)e M, (u,, o, B) will be stated. Then, under some-
what stronger assumptions, the consistency for the
system matrix estimates is established. A central matrix
in the derivation of the results will prove to be
X, = W, H, ,W; (W;)'H] ;,(W,)". Note that U, is
the matrix of the eigenvectors to the largest n eigenvalues
of this matrix. Thus the properties of the eigenvalue
decomposition of this matrix will be crucial. The analysis
is analogous to the presentation given in Bauer et al.
(1999).

First note that, due to the convergence of the sample
covariances to the population counterparts, the ma-
trices W, = (Y,, — ®,U,,,Y,, — ®,U,,>) " '* and
W, = ({P,,P,;»)"? are easily seen to be consistent for
some limits W, and W, using, e.g. the Cholesky de-
composition to define a unique square root. The assump-
tions on the noise and the nonsingularity of E ensure
the invertibility of these matrices and thus of W,
and Wﬁ_ a.s. for T large enough. Similarily the a.s.
convergence of H, ; to H, 4 follows. Thus the a.s. con-
vergence of X, , =W, H,,W;(W,/H,,W;)" to
X, =W, H, ;W; (W, H,;W;)" is obtained. Now the
next lemma can be formulated.

Lemma 6. Define the set M, (u,, o, p) = M,(u,,0,p) as
follows: (k,1)e M, (u,, 0, B) if the corresponding matrix
X,.p has exactly n distinct nonzero eigenvalues. Then
M, (u,, 0, B) is open and dense in M, (u,, o, p) and thus also
inM,.

Proof. Consider the matrix X, ;. The matrix contains
products of the following three matrices: H, 5, W,", W .
It is straightforward to prove that all these matrices are
analytic functions of Ezz/, ;. These terms have been
shown to be analytic functions of the entries in the system
matrices in the proof of Lemma 5. Then using standard
arguments for analytic functions (see e.g. Dicudonné,
1969) the analyticity of the entries of X, 4 as a function of
the entries of (A,B,C,D,E,K)eS,, which is open and
pathwise connected, follows.

Next note that H,; =I',E, ;, where this equation
defines =, ;. Then the nonzero eigenvalues of X, ; co-

incide with the eigenvalues of
A, = [TA(W,) W TL[E, W, (Wy)'E; TR

It is straightforward to see that also the entries of A, are
analytic functions of the entries of (A, B, C, D, E, K). Thus
it is sufficient to show that the property that the eigen-
values of A, are distinct is generic in M,. In order to
show this, as in Bauer et al. (1999) consider the Sylvester
matrix associated with the characteristic polynomial
det(A, — AI) and its derivative with respect to A. The
determinant of the Sylvester matrix is nonzero if and only
if all eigenvalues are distinct. Again, the determinant of
the Sylvester matrix is analytic in the entries of
(A,B,C,D,E,K)e3,. Thus it is sufficient to show that the
set M, (u,, 0, f) is nonempty for each n.

However, this can be shown by using induction and
a continuity argument: For n =1 the conjecture is
obvious. Thus assume that there exists a pair (kq,ly) of
order n—1 such that the corresponding matrix
A,_1 €eRO"™D*@=D hag p — 1 distinct nonzero eigen-
values. It then follows that for any non-minimal realiz-
ation (A,B,C,D,E,K)eS, of (ky,l,), the corresponding
matrix A, has n — 1 distinct eigenvalues plus a zero
eigenvalue. The proof of Lemma 5 shows that the set
of all realizations of pairs of transfer functions
(k,1)e M, (u,, o, B) is open and dense in S,,. Thus there exist
realizations arbitrarily close to every realization of
(ko,ly) in S,,. The continuity of the mapping attaching the
matrices A, to realizations in S, together with the conti-
nuity of the eigenvalues (see e.g. Chatelin, 1983) con-
cludes the proof. [

For a comprehensive discussion of the results, also the
following technical lemma will be useful, which can be
found e.g. in the textbook (Chatelin, 1983). Similar results
may be found in Anderson (1963).

Lemma 7. Let T, be a sequence of symmetric matrices
converging to T, where the rank of T, be denoted with r.
Then the following statements hold:

(i) The set of the r largest eigenvalues {2; ,,i = 1,...,r} of
T, converges to the set of nonzero eigenvalues of
To, {4,i = 1,...,r}. Here convergence is with respect
to the Hausdorff metric induced by the Euclidean
metric on R (for a definition of the Hausdorff metric
see e.g. Chatelin, 1983). For each i, the span of all
eigenspaces of T, corresponding to eigenvalues 1;,
converging to 1;, converges to the eigenspace of T
corresponding to A;. Convergence takes place in the
gap metric. For a definition of the gap metric, see e.g.
Chatelin (1983).

(il) For an eigenvalue J; of Ty of multiplicity equal to
one, the eigenvalue A;, of T,, where 4;, — A;, fulfills
the following equation ( for ||T, — Ty|| small):

Aim =2 + 0}(T, — To)u; + o(||T, — To). “4)
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Here u; denotes an eigenvector of length one of T cor-
responding to the eigenvalue A;. Furthermore there
exists a sequence of eigenvectors W, , of length one of
T,, such that

UTT,‘—T u;
L=+ Z uu

J
JiAEA i — 4

+ o(|[T,, — Toll). (5)

For a proof see e.g. Chatelin (1983). Note that point (i)
ensures the convergence of the eigenvalues and eigenspa-
ces and thus will be the interesting result for the consist-
ency results, whereas point (ii) refers to a linearization of
the eigenvalues and eigenvectors and thus is useful in the
derivation of a central limit theorem, which will be dis-
cussed at the end of this section.

In order to formulate consistency results for the system
matrix estimates, the limiting realization of the true
transfer function, l,, has to be determined. This realiz-
ation corresponds to the eigenvalue decomposition
of X,4: Choosing I, = (W, ) 'U,, where the matrix
U, e R**" contains the eigenvectors of X, 5 correspond-
ing to the n largest eigenvalues ordered in size as col-
umns, fixes a state basis and thus a particular realization
of the true transfer function. This particular realization
(which depends only on the true system, but not on the
particular realization of the noise and the inputs) will be
denoted with (Ay,By,Cy,Dy) in the following. Note,
however, that the eigenvalue decomposition is
nonunique even for distinct eigenvalues due to the choice
of the orientation of the eigenvectors. Lemma 7 states,
that there exists a special choice, such that for the non-
zero eigenvalues, the eigenvalue decomposition is con-
tinuous (and even differentiable for eigenvalues of
multiplicity one). It will always be assumed that the
actual implementation of the eigenvalue decomposition
(respectively the SVD) has this type of continuity prop-
erty, i.e. that the orientation of the singular vectors is
chosen such that the corresponding SVD is continuous in
this sense at the true system. In practice, this fact might
have to be taken into account for the implementation of
the SVD. The first result of this paper states the consist-
ency properties of the MOESP type of algorithms.

Theorem 8 (Consistency of the MOESP type of algo-
rithms). Let the process 'y, be generated by a system of
the form (1), which fulfills the standard assumptions. Let
the input sequence fulfill the weak assumptions, and
let o >n+ 1 and B = n be user defined choices. Also let
W, and W,; be user defined weightings subject to the
restrictions presented in Section 3. Then the following holds:

e If the true pair (Ko,lg)e M ,(u,,o, ), then there exist
orthonormal matrices St such that

HVeC[STATS—; - AOaSTBT
- BOaCTS}: - COaDT — Dol >0 as.,

i.e. the estimate of the corresponding transfer function
l is a.s. consistent.

o If (ko,lo)e M, (u,, o, ), then

|lvec[A
a.s.,

- A0>]§T - BO,CT - COaﬁT — Dol =0

i.e. the estimates of the system matrices are a.s.
consistent.

Proof. The main technical issues have been given already
before the theorem. Note that from the assumptions on
y:,u, and (ko,ly) it follows that the sample covariances
converge to their population analogs. As has been stated
already, it follows that X, ; converges to X, ; a.s. Then
Lemma 7 implies that the eigenspaces corresponding to
the n largest eigenvalues of )A(a, s converge to the eigenspa-
ces of the n nonzero eigenvalues of X, 45, where conver-
gence is in the gap metric. Recall that T, = (W,") ™!
Note that W) — W," a.s. and, thus, the consistency of
I, is implied by the convergence of U, to U,. The
columns of U, are identical to the eigenvectors of X,,,;.
Now for (ko,lo)e M, (u,, o, ) the eigenvalue decomposi-
tion is continuous at X, 4, since then all eigenvalues are
distinct, and the orientation of the eigenvectors is fixed so
as to ensure the continuity (cf. the discussion before the
theorem). Thus I', » I', follows in this case. Note that
A; and C; are nonlinear continuous functions of I, (us-
ing the full rank property of I',_;) and therefore the
consistency for I', implies consistency for A and Cy,
respectively. Here the restriction o > n + 1 is used. For
(ko,lp)e M, (u,, 0, B) only the existence of orthonormal
matrices Sy such that I,ST - T, for T — oo can be
obtained. This follows in a straightforward manner from
the convergence of the eigenspaces in the gap metric.

Thus it remains to prove the consistency for B; and
D Recall that B and D are estimated using the structure
of ®,. In addition the matrix '} = (W, )TU2 has been
introduced. As has been stated already, W,” — W,". Ex-
amining the least squares solution of Eq. (3) it follows
that

VeC[ET, DT] = [EE‘,D(I®fi_(fi)T)£B,D] - 1IAJI];,D
vee[ 5 (15) (Y, Upa >{U¢,Up > ™',

The assumptions imply that <{Y,,,Y.,>—EY, Y/,
and <Y,,.U,,> - EY,,U},. Furthermore [}(I})" =
(WHTO,UIW, = (WH 1 — U, UNHW,". Since both the
consistency of W, and the consistency of U, have been
established, the a.s. convergence of I':(['})T follows.
From the consistency of S;A;ST and C,ST it is also
clear that ﬁB,D [L,+,®diag(ST,I,)] » Lgp as., where
Sr =1, is used for (ko,lo)e M, (u,, o, ). Here I, denotes
the I x [ identity matrix. It remains to show the asymp-
totic nonsingularity of

L p(I@T5(5) ") g p.
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It is sufficient to show that there exists no vector
xeR™*sm  different from zero such  that
(I®(;))Lgpx =0. Recall that Lgp vec[B,D] =
vec[®, ]. Defining two matrices B and D of appropriate
dimensions via vec[ B, D] = x, then clearly it is sufficient
to show that there exist no two matrices B and D differ-
ent from zero such that

C,B D . .
o, =@y ° T =
CoA% B C,B D

By studying the last block column of this expression it
can be seen that this is only possible if

0

for some matrix TeR"**. Since I',_; is full rank, T
has to be zero, which in turn implies that D = 0. Using
the same arguments on the second to last block column
leads to the conclusion that CoB = 0. Continuing the
same reasoning on all block columns finally shows
that CoALB =0,i=0,1,...,.0. —2, or equivalently
I',_{B =0. This implies that B =0 since I',_; is full
rank which proves the conjecture.

Finally observe that in the case that only
(ko,1p)e M, (u,, o, ) is imposed, the matrix Sy also ap-
pears in the convergence result for the least-squares esti-
mate By, which is easily seen from Eq. (3). This concludes
the proof. [

Remark 9. The result shown above holds equally well for
the constrained regresssion approach, i.c., when the lower
triangular block Toeplitz structure of @, is imposed on
®, in the regression computed in the first step of the
algorithm. This can easily be seen from the consistency of
Ifla,,; also in this case. Clearly the definition of M, (u,, o, )
and M, (u,, o, ) has to be adapted to the constrained
regression approach.

Remark 10. As has been pointed out by an anonymous
referee, results of this kind are sometimes termed generic
consistency in the context of instrumental variable
methods (see e.g. Soderstrom & Stoica, 1989). This obser-
vation is interesting since an instrumental variable inter-
pretation of the class of subspace algorithms treated in
this paper has been given e.g. in Viberg (1995). In view of
this, the above consistency result is quite expected.

Note that this result implies the convergence of the
system matrix estimates to the possibly nonminimal real-
ization (Ay, By, Cy, D). The key argument in the deriva-

tion proved to be the convergence of the sample
covariances to the true ones, since the estimates of the
system matrices have been shown to be continuous func-
tions of the sample covariances under the conditions on
the true pair (ko,ly). For the asymptotic normality part,
note that this nonlinear mapping can be linearized: The
most crucial part of the proof of this statement is the
linearization of the singular vectors contained in U,. This
property follows from Lemma 7. The remaining steps in
the nonlinear mapping consist only of matrix inversions
and Cholesky decompositions, which clearly can be lin-
earized. For the proof of the latter, see e.g. Golub and
Van Loan (1989). Thus, it remains to impose conditions
on the exogenous inputs, such that the sample covarian-
ces for the joint process z, fulfill a central limit theorem.
For given o and f the following assumptions on the input
sequence are imposed in order to ensure the asymptotic
normality of the system matrix estimates:

Definition 11 (Strong assumptions on inputs). The input
process u, admits the decomposition u, = v, + s,, where
Vo= Y7 oK K < Cp’ for some C < oo,
0<p<l1,ands, =Y7_,¢e™ for some integer h, for
some vectors ¢;eC" and frequencies — 7 < 4, <,
1 <1< h such that the corresponding process is real.
Here 5, denotes an i.i.d. sequence having mean zero and
variance unity and finite fourth moments, which is inde-
pendent of . Furthermore u, is persistently exciting in
the sense that the matrix I',,, defined in the weak as-
sumptions, is nonsingular.

Remark 12. The authors want to emphasize that this is
by no means the only scenario, where the results below
hold. See the proof of Theorem 13 for the crucial proper-
ties of the input process.

The following result is immediate from the discussion
above.

Theorem 13 (Asymptotic normality). Let the process
Yy, fulfill the standard assumptions, where the input process
fulfills the strong assumptions given above. Let o > n + 1
and B > n. Furthermore, let the weighting matrices W, and
W, be chosen according to the restrictions stated in
Section 3. Finally, let the true pair (ko,ly)e M, (u,, o, p).
Then
d

ﬁVeC[AT - AO,BT - BOJCT - COaDT —Do]— Z,

where (Ao, By, Co, D) denotes the particular realization of
the true pair (Ko,lo) described before Theorem 8, and
Z. denotes a multivariate Gaussian random vector with
mean zero and variance equal to V.

Proof. From the discussion before the theorem, it only
remains to prove the asymptotic normality of the sample



D. Bauer, M. Jansson | Automatica 36 (2000) 497-509 505

covariances up to lag o + f§ — 1 for the joint process
z, = [y}, u}]" under the strong assumptions on the input
process. This result is not new (cf. e.g. Hannan & Deistler,
1988 Lemma 4.3.4). The authors however decide to give
the details of the proof, since this reveals the sufficient
properties of the input sequence, which in fact guarantee
the asymptotic normality. The main tool in the proof
is what is sometimes called Bernstein’s lemma (sce e.g.
Hannan & Deistler, 1988, Lemma 4.3.3): If xr is a
sequence of random vectors and for every { > 0,¢ > 0,
n >0 there exist sequences a;(g)br(¢) so that x; =
ap(e) + by(e) and ap(e) has a distribution converging to
the normal distribution with mean zero and variance
¥(¢) » Xfore — 0and P{by(e)'by(e) > {} <, VT > T,,
then x; is asymptotically normal with variance X.
Here P is used to denote probability. This lemma is used,
where xr = (Uﬁ 2 i=1(z2i; — y-.-(j)) and ar(e) =
1/\/_ )Y i=1(z(e)z/+ () — vzz(j)) 1(8) = [y.(e)", u(e )T]T
Z:n oK(e,—; + L(Du,—( Z:n o Ku (D) -
+ s,, i.e. the infinite sums are truncated at m. The point
of truncation m can be chosen to make the probability
P{|ju, — u,(¢)|| > ¢} arbitrarily small for all { > 0. This
follows from straightforward calculations using the
Chebycheff inequality and the exponential decrease of
the coefficients K, (j). The same arguments show that the
condition also holds for z, — z,(¢) and suitably chosen m.
Using the Bernstein lemma again, it is observed that the
joint asymptotic normality of the covariance estimates of
z, is proved, if the joint asymptotic normality of the terms
U/ T 1 sl — S0 DU/ TIT v (1 TV
(mi=; = 3o, D1/ DX st (1 DXL sl
and (l/ﬁ)thzlsts,T_j is shown for | j| < m. Here §,; = 1
for j =0 and zero else. Clearly this holds for the
first three terms. The central limit theorem for
(1/T)Y = e*' [yl follows, e.g. from Anderson (1971),
Theorems 8.4.1. and 8.4.3). Also the joint asymptotic
normality follows. Finally,

u 1127 o
Z Crc;-l|: Z el(ﬂ,l;)t:|e—11x]
rs=1 Tt:1

IA ”)(1 = A NT = J)) o
= H _ —iAj
Z crcs|: T(l . 1(/1 —A;)) j|e

F.S: A F A

h
al — o
Z J 71)]_) Z CC e 1)»,1’

r=1

where the difference between the sample moments and
the limit is o(l/ﬁ ). Here ¢! denotes the complex
conjugate of the transposed vector. This completes the
proof. [

As a byproduct also the asymptotic distribution of
various invariants may be obtained:

Corollary 14. Let the assumptions of Theorem 13 hold and
let g be a differentiable mapping attaching the vector x € R
to system matrices (A, B, C, D). Denote the Jacobian matrix
of g at (Ay,By,Cy,Dy) with respect to the entries of
(A,B,C,D) with J. Then

P d
ﬁ[g(ATaBTaCTsDT) — 9(A0,Bo,Co,Do)] — Z,

where 7. is multivariate Gaussian with zero mean and
variance JVI'. Here, V is defined in Theorem 13.

Of course, the variance V depends on the true pair
(ko,1p), the weighting matrices and the indices a, 5, how-
ever, this has not been emphasized notationally. The
expressions for the asymptotic variances are quite com-
plicated and thus have not yet contributed to an analyti-
cal analysis, to the best of the authors’ knowledge.
However, it is possible to approximate them on a com-
puter (cf. the next section). The corollary can then be used
to compare how different choices of the truncation indi-
ces and weighting matrices affect the estimation accu-
racy. For example, the accuracies of the pole estimates or
the estimates of the zeros can be assessed, if the poles or,
respectively, the zeros are distinct. Another example
concerns the variance of the frequency function
C(e™I — A)"'B + D. For a given frequency, this function
can be differentiated with respect to the system matrices
whereafter the result of the corollary can be applied.
Clearly, these results also can be used to compute ap-
proximative confidence intervals around the estimated
quantities. Some illustrations of the above are given in
the next section.

Remark 15. Note that the tools used in this paper also
can be used to analyze the PI scheme (see Verhaegen
& Dewilde, 1993). This scheme differs from the PO
scheme only in the fact that P, ; = U, ; is used instead of
both the past of the input and the output process. In the
case of the PI algorithm, the definition of the set
M, (u,, o, B) will be different. Then the set M, (u,, o, f) e.g.
can be chosen to be the set of all pairs of transfer func-
tions (k, 1), where k is rational, stable and strictly min-
imumphase with nonsingular constant term, and where
1 is rational, stable and of order n. Note that in fact two
different minimality concepts are used: Using the whole
past (inputs and outputs) corresponds to parametrizing
k and 1 jointly, i.e. mixing the dynamics as indicated in
Eq. (1). Thus, in general the realization (A,B,C,D) of 1 is
not ensured to be minimal. (There may be modes in
A corresponding to k which are not shared by 1. Such
modes cancel when forming 1 from (A, B, C,D).) On the
other hand, using P, ; = U, 4 corresponds to parametriz-
ing k and 1 independently and the corresponding
realization (A,B,C,D) of 1 will be minimal. However,
this may not lead to a system of the form (1) of the
same dimension.
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5. Numerical examples

In the previous section, the asymptotic normality of
the MOESP algorithm has been derived. In Theorem 13
the variance of the limiting normal distribution has been
denoted with V. As has been stated already, V depends
on the covariance sequence of the inputs, the choice of
the weighting matrices and the choice of the indices o, f.
The theorem also shows that V can be calculated from
the knowledge of the covariances of the covariance esti-
mates of the joint process z, = [y/,u;|". This merely
amounts to calculating the linearization of the nonlinear
mapping, which is induced by the algorithm, attaching
system matrix estimates to estimates of the covariance
sequence. The major steps in this nonlinear mapping are
as follows: First a regression in Eq. (2) is performed,
which is a function of the sample covariances of the input
and the output process of lags up to « + f — 1. The
linearization of the mapping attaching the estimates
[I:Ia,,;, ®,] to the covariance estimates is straightforward
to derive. The linearizations of the mappings attaching
the weighting matrices W, and W,} , respectively, can be
calculated by using the Cholesky factors as the required
square roots. In the next step, the SVD of W:ﬁwwﬂ’ is
calculated. In order to linearize the mapping attaching
the matrix U, to the covariance estimates, the results
given in Lemma 7 are used. The remaining steps consist
of matrix inversions and multiplications only. Note, that
these linearizations can be calculated without any ap-
proximation. In order to obtain the asymptotic variance
of the covariance matrix estimates, the truncation tech-
niques used in the proof of Theorem 13 may be used,
which leads to an approximation of the asymptotic

As. Variance of Transfer Function Estimate}=10

Index o -1

Ang. Freq. /n

covariances. The approximation error depends on the
impact of the truncated part of the infinite sum, and thus
is directly related to the magnitude of |1,,,,(A)|.

As can be seen from the previous paragraph, the
resulting expressions seem to be too complicated to be
evaluated analytically. However, for a given system, the
expressions can be approximated on a computer. Thus it
is possible for any system to compare the asymptotic
variance of estimates of system invariants as, e.g. the
system poles, the system zeros or the transfer function at
some frequency points. This will be done in the following.
The discussion below is provided mainly to show a po-
tential use of the theory presented above. It is not int-
ended to investigate thoroughly the effects of various
choices in subspace algorithms. Therefore, the reader
should note that the statements below always refer only
to a number of examples and are not general statements.

Consider the system

A=05 B=1, C=1, D=0, E=1, K=1,

where the input process is either unit variance white
noise, or unit variance white noise filtered with the filter
having system matrices

0 1 1.3
Au = > Bu = bl
[ —07 0.5} [0.3}

C,=[10], D,=1

In a first example, the effect of various choices of the
indices o and f is investigated. Fig. 1 shows the result:
For the given system using white noise inputs, the asymp-
totic variance of the transfer function estimates at 100
equally spaced frequency points in the interval ( — m, ) is

As. Variance of Transfer Function Estimate o=2

-1
Index B Ang. Freq. /nt

Fig. 1. The left plot shows the asymptotic variance of the estimated transfer function at 100 equally spaced frequency points, using W;* = Iand = 10
for various values of a. The right plot shows the same picture for o = 2 and various values of . In both plots the input is white noise.
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Difference of as. Variance,§ = 10

Index o -1

Ang. Freq. /n

Fig. 2. This figure shows the asymptotic variance of the transfer func-
tion estimate obtained by using the CCA weight minus the correspond-
ing variance when the MOESP weight is employed. The colored input is
used and f = 10.

plotted for various values of o and f§ = 10 (left plot) and
for various values of ff, where o =2 is used (right plot).
The plots indicate, that while for f the asymptotic accu-
racy increases with increasing index, for the index o the
contrary seems to be true. For the colored noise input the
plots are qualitatively the same. A similar behavior has
been noted for the accuracies of the pole estimates in
Jansson and Wahlberg (1996). However, this is not true
for all systems, i.e., for some other systems the perfor-
mance improves with increasing o. In Jansson and Wah-
Iberg (1996) it is shown that the choice of the weighting
matrix W, does not influence the asymptotic accuracy of
the pole estimate of the system. Fig. 2 shows that an
analogous statement for the transfer function estimate is
not true: Two popular choices for the weighting are
W," =1 (which will be called MOESP in the following)
and W; = (<Yt,owYt,a> - <Yt,ocaUt,ot >(<Ut,17Ut,a >)71
(U, 4, Y:2»)~ '* (which uses the same weights as the CCA
procedure of Larimore, 1983). Fig. 2 shows the difference
between the two asymptotic variances of the transfer
function estimates obtained by applying the CCA and,
respectively, the MOESP weights for various values of
o with = 10 and using colored noise inputs. It can be
seen that in this example the MOESP weight performs
better than the CCA weight for all choices of indices.
However, in the case with white noise inputs, the oppo-
site is true. Then the CCA weight is to be preferred. In
order to demonstrate the finite sample properties and to
illustrate the asymptotic result, a simulation study was
performed. For the given system with the colored noise
inputs, 1000 replications of the noise and the input were
generated for each of the sample sizes T = 100, 200 and
400, respectively. The system was estimated using the

Estimated finite sample variance

Ang. freq. /m

Fig. 3. In this figure the sample variance of the transfer function
estimates and the true asymptotic variance are plotted for sample sizes
T = 100,200 and 400, respectively. o = 2, f = 10 and MOESP weight-
ing were used in all cases. 1000 replications of the colored input and the
noise sequences were used to produce each of the curves.

MOESP weighting and « = 2, = 10. Fig. 3 shows the
sample variance (scaled by T) for the various values of
the sample size T. Additionally, the theoretical variance
is plotted at 100 equally spaced frequency points. The
picture clearly reveals the convergence of the estimates to
the true asymptotic values. Finally, the MOESP class of
algorithms may be compared to another class of algo-
rithms, called CCA in Peternell et al. (1996): This class
was originally proposed by Larimore (1983) and refined
by Peternell et al. (1996). The idea of these methods is to
estimate the state in a first step from the SVD of
W, H,;W; and to obtain estimates of the system ma-
trices from regression in the system equations (1), once an
estimate of the state is known. Simulations in that paper
showed that in some cases a procedure, which will be
called CCAI in the following, is close to optimal. This
procedure uses a preliminary estimate of the transfer
function l in order to eliminate the effect of the future of
the inputs in Eq. (2) (For a detailed description of the
algorithm see Peternell et al. 1996.) However, Fig. 4
shows that, for the present example, the transfer func-
tion I can be estimated more accurately using MOESP in
the case of colored inputs. In the case of white noise
inputs the two procedures show no significant difference.
Note that in this case the asymptotic accuracy of CCA is
indistinguishable from the Cramér Rao lower bound.
The figures also show that the benefit from using the
more complicated method CCATis only marginal even in
the case of colored noise inputs (in the case of white
inputs this fact can be shown analytically, see e.g. Peter-
nell et al. (1996)). These results indicate that the choice of
the identification procedure seems to depend heavily on
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Asymptotic variance of estimated transfer function

Asymptotic variance of estimated transfer function

10

10

10

1 |

T i 10
0

0
Ang. Freq. /n Ang. Freq. /n
Fig. 4. In this figure the asymptotic variance of the estimates of the transfer function 1 at 100 equally spaced frequency points is plotted for MOESP
(¢ =2, = 10) and the algorithms denoted with CCA and CCAI (o = § = 15) (see text for an explanation). The left plot refers to white inputs (in this
case CCA and CCALI are asymptotically equivalent and thus only CCA is plotted), the right plot corresponds to colored inputs. In both plots CR

denotes the Cramér Rao bound.

the input characteristics. In the examples it was observed
that for white noise inputs CCA of Larimore (1983)
performed better than MOESP, whereas in the colored
noise case the opposite was true. Also the choice of the
indices « and f seems to be crucial for the accuracy of the
various algorithms.

6. Conclusions

In this paper the asymptotic performance of a special
class of subspace algorithms has been investigated. The
estimate of the transfer function from the exogenous
inputs to the outputs has been shown to be a.s. consistent
for a generic set of linear systems. The results in Jansson
and Wabhlberg (1997) show that this actually is the best
result that can be expected. Furthermore, for a smaller
generic set also the consistency for the system matrices
has been shown, as well as asymptotic normality using
suitable assumptions on the input process. This result
can be used to compare various procedures on the basis
of their asymptotic variance. Also, confidence regions for
estimates of different system related quantities, e.g. the
Markov parameters, can be computed using this asymp-
totic theory.
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Abstract

In this paper the effect of some weighting matrices on the asymptotic variance of the estimates of linear discrete time state space
systems estimated using subspace methods is investigated. The analysis deals with systems with white or without observed inputs and
refers to the Larimore type of subspace procedures. The main result expresses the asymptotic variance of the system matrix estimates in
canonical form as a function of some of the user choices, clarifying the question on how to choose them optimally. It is shown, that the
CCA weighting scheme leads to optimal accuracy. The expressions for the asymptotic variance can be implemented more efficiently as
compared to the ones previously published. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Linear systems; Discrete time systems; Subspace methods; Asymptotic variance

1. Introduction

Subspace algorithms are used for the estimation of linear,
time invariant, discrete time, finite dimensional black box
state space models. The algorithms can be roughly divided
into Larimore type of algorithms (Larimore, 1983) (one
algorithm in this class is usually called CCA, canonical cor-
relation analysis), which estimate the state in the first step
and then extract the estimates of the system matrices from
these estimates, and multivariable output error state space
(MOESP) type of algorithms (Verhaegen, 1994 ), which esti-
mate the observability matrix and use this estimate to obtain
estimates of the system matrices. The asymptotic properties
of the Larimore type of approach have been derived in a se-
ries of papers: Peternell, Scherrer, and Deistler (1996) derive
the consistency, Bauer, Deistler, and Scherrer (1999) prove
asymptotic normality in the case of no observed inputs,

* This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Brett
Ninness under the direction of Editor Torsten Soderstrom.

* Corresponding author. Fax: +43-1-58801-11999.

E-mail address: dietmar.bauer@tuwien.ac.at (D. Bauer).

Bauer (1998) deals with the general case. For the MOESP
type of procedure consistency and asymptotic normality are
dealt with in Bauer and Jansson (2000), while preliminary
results on consistency can also be found in Jansson and
Wahlberg (1998) and Verhaegen (1994). The asymptotic
normality proof is very constructive in both cases, which
led to formulas for the asymptotic variance. However, these
expressions were too complicated in order to directly pro-
vide some insight into the effect of certain user choices.
Recently, simplifications of these formulas have been found
independently in Jansson (2000) for the MOESP case and in
Bauer, Deistler, and Scherrer (2000) for the Larimore type
of procedures. These simpler expressions lie at the heart
of this paper, which derives the corresponding variance
expressions as a function of a certain weighting matrix.
This expression can be used in order to optimize the user
choice with respect to asymptotic accuracy of the estimated
system.

The paper is organized as follows: In the next section the
model set and the assumptions are stated and also a short
overview of the estimation algorithms is given. Section 3
presents the main results, which are proved in Section 4.
Section 5 demonstrates the results in some numerical exam-
ples. Finally Section 6 concludes.

0005-1098/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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Throughout the paper the following notation will be used:
1, denotes the n x n identity matrix, 07%b the null-matrix
of respective dimensions. Further, f7 = O(gr) means that
limsupr. g || f7/9r]] <M almost sure (a.s.). Also, fr =
o(gr) means that imr_, || f7/gr| =0 a.s. Here T is used
to denote the sample size. Convergence is denoted as usual
with — and is always meant to be a.s. if not stated explicitly.
Prime is used to denote transposition of matrices. The Kro-
necker product between two matrices 4 and B is denoted as

A®B. Finally, Or = /T~ loglog T is used and = denotes
equality up to terms of order o(7~/?).

2. Model Set, assumptions and algorithm

This paper deals with linear, finite dimensional, discrete
time, time invariant, state space systems of the form

Xip1 = Ax; + Bu, + Key,

(D
yt = Cx, +Dut + &t

where y; € R*® denotes the observed output process, u, € R”
denotes the observed input process and ¢ € R® the unob-
served white noise sequence. x; € R” is the state sequence.
Thus, the true order of the system is denoted by n. Here
AeR™" BeR™" CeR™> DeR>*" KeR"™ are
real matrices. The system is assumed to be stable, i.e. all
eigenvalues of 4 are assumed to lie inside the unit cir-
cle, and strictly minimum phase, i.e. the eigenvalues of
A — KC are assumed to lie inside the unit circle. The sys-
tem matrices correspond to a pair of transfer functions: Let
H(q)=I,+C(ql,—A)"'K and let G(¢)=D+C(ql,—A4)"'B,
where g denotes the forward shift operator. Furthermore,
let M, denote the set of all pairs of transfer functions that
permit a state space representation of the form (1) ful-
filling the stability and the strict minimum-phase assump-
tion on H(q).

The white noise ¢, is for simplicity assumed to be indepen-
dently identically distributed (i.i.d.) with mean zero, non-
singular variance matrix Q > 0 and finite fourth moments.
The results also hold under more general assumptions in
a martingale difference framework, which can be found in
Bauer et al. (1999). The input is assumed to be i.i.d. with
mean zero and nonsingular variance Q,, > 0, also having fi-
nite fourth moments. Input and noise are assumed to be in-
dependent. These set of assumptions on the noise and the
input will be termed standard assumptions in the following.

The basic structure of the algorithm can be outlined
as follows (for a detailed description see e.g. Bauer,
1998, Chapter 3): Let Y, = [¥/, /115> ¥, ;1] and
let U:f and E;’ /» Tespectively, be constructed analogously
using u, and &, respectively, in the place of y,. Let
Z =t _ys.csyi_pu_,). Here f and p are two
integer parameters, which have to be chosen by the user.
See below for assumptions on the choice of these integers.

Then it follows from the system equations (1) that
V=0 A pZ, AU U +6 B 40 p(A—KC)Px .
Here ¢y = [C,A'C,....,(47~1YC'] and A4, = [[K,B —
KD],(4 — KC)[K,B — KD],...,(4 — KC)?~'[K,B — KD]].
Further % ; is the matrix containing
[CA'7%B,...,CB,D,0**V=/)m]

as its jth block row and &' contains
[CA2K,...,CK,I,,0°X/ =/

as its jth block row. This equation builds the basis
for all subspace algorithms, which can be described as
follows:

(1) Regress ¥, onto U, and Z,_, to obtain an estimate B,
of 04", and an estimate ﬁu of % s, respectively. Due
to finite sample effects ﬁz will typically be of full rank.

(2) For given n find a rank »n approximation of ﬁz by using
the SVD of W;ﬁz Wp_ = Unfn 17:1 +R. Here fn denotes
the diagonal matrix containing the largest » singular val-
ues in decreasing order. U,, contains the corresponding
left singular vectors as columns and ¥, the correspond-
ing right singular vectors. Finally, R accounts for the
neglected singular values. The matrices W;-r and WP_
are weighting matrices, which are chosen by the user.
Further details are given below, for the moment it is suf-
ficient to note, that these possibly data-dependent ma-
trices are assumed to be nonsingular (a.s.). This leads to

L. P -+ Aa Al s —
an approximation ¢ .4, = (W, )~'U,2, V;(Wp )~
The actual decomposition of this matrix into @, and
Va » has no influence on the estimated transfer functions.

(3) Using the estimates ( 1 A p and ﬂAu obtain the system
matrix estimates.

In the second step an order has to be specified. Also, the ma-

trices W; and Wp_ have to be provided by the user. In the lit-
erature several different choices have been proposed. For the

matrix Wpi typical choices are (f; )2 and (f;n )72, where
I ; =(1)T) Z;T: o1 Zip(Z, ) denotes the sample variance
of Z;, and X'/ denotes the uniquely defined symmetric
square root of a matrix X . Further f;’nzf; A
Here I « denotes the sample variance of U:f and I’ uz the
sample covariance of Ut’Lf and Z_,. Let I', = EI ; denote

the expectation of the covariance matrix. It follows from
the assumptions on the inputs and the noise stated above

that for any fixed p it holds that r ;,n — I', converge
to zero. Furthermore, the results stated e.g. in Hannan and
Deistler (1988) imply, that the two norm of these matri-
ces is bounded from below and from above a.s. uniformly
for p = O((log T)*), a < o0, i.e. for moderately growing

size. In this situation also ||f;’H —I',|| — 0. It has been
shown in Bauer et al. (2000) that subject to mild condi-
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tions ensuring the convergence and invertibility of W[; the

choice of the weighting matrix W; does not influence the
asymptotic variance of the estimates. Therefore, this choice

is not critical and only ¥, = (I ;H)l/ 2 will be considered.
Corresponding to W; typical choices include the identity

. ~+, 11 .
matrix and (F;L- )~ 12 using

At IT A A Al
'y =0y =Ty, Ly, 2)

where I, stands for the sample variance of Yt*f and I,

denotes the sample covariance of Yt*f and Uff. In this paper

the choice of the weighting W; will be restricted depending
on the choice of the integer f: If f is chosen to be fixed and
finite, then W;-L is assumed to be chosen such that || W;r -
W*|| = O(Qr) for some nonsingular matrix 7;". For f —

oo only W; =(I ;’H)*l/z or a weighting matrix attached
to a frequency weighting transfer function (cf. e.g. Bauer,
1998) are considered. Let the expectation be denoted with

ot 0T
r ;’” . Then analogous results hold true: The error ||I’ f+ -

17,11”2 — 0 and the two norm of F;’H and thus of IA";’H
is bounded and its smallest singular value is bounded away
from zero for f =0O((log T')?), a < co. The name canonical
correlation analysis (CCA) will be reserved for the procedure
using

A A—, 1T A+ A+ T
w, =, )" and W, =T, )" 3)

In the third step the difference between the two classes of
procedures appears: Whereas the Larimore type of proce-
dures use A » to continue, the MOESP type of procedures use
4 r (for details see Bauer, 1998, Chapter 3). In this paper
only the Larimore type of procedures is dealt with.

3. Main results

The main idea of the considered class of algorithms is to
estimate the state in a first step and to obtain the estimate of
the system using this state estimate. Consider the estimate
fp = S’I};(WP_ )~!. Here S= [V;(WP_ )*1];1 appears to be
a convenient choice of S, where [X1], denotes the subma-
trix containing the first » columns of X. Note that the only
function of S is to change the coordinate system of the state.
The estimated transfer function is identical for any choice of
nonsingular S. For the choice given above this is true (a.s.
asymptotically), if the first # columns of 4", are linearily
independent (in one and thus in any representation). This
holds true on a generic subset of M,, which is denoted by
M. Let (ﬁc,éc,éc,ﬁc,kc) denote the estimated system,
which has been converted into the canonical form induced
by the restriction that [4,], =1, and let (4, B., C., D.,K.)
denote the corresponding representation of the true system.
Since the entries in a canonical form are system invariants,
the estimation accuracy of two procedures can be assessed

by comparing the asymptotic covariance matrix of the vec-
torization of the estimated system in a canonical form. This
is done in the main result of this paper:

Theorem 1. Let the output process y, be generated by
a system (A¢, B, Ce, D¢, K.), such that the corresponding
pair of transfer functions is in M, . The noise and the in-
put sequence are assumed to fulfil the standard assump-
tions. Assume that the Larimore type of procedure using

WP_ =(I 5 ’n)l/2 is used to estimate the system, where the
true order is assumed to be known. Furthermore, it is as-
sumed that no time delay is present, i.e. the entries in D,
are estimated and not restricted to zero. Additionally, it
is assumed, that p = —dlog T/(21og |po|),1 < d < oo and
p = o((log T)*) holds for some a < oo, where T denotes
the sample size and py = Amax(Ae — K.C.), where Amax de-
notes an eigenvalue of maximum modulus. Corresponding
to W; it is assumed, that either f = n is fixed and W;
is chosen such that there exists a nonsingular matrix Wf*,

where ||Wf+ — W' = O(Qr), or that f — oo and W; is
chosen according to Eq. (2). Then the asymptotic variance
of vec[A. — A, Bo — Be,Co — Co, Do — Do, K. — K] is of the
form

MM + My[TL, @ {WT[E Iy @ Q& WY M, (4)

where W1 = (0 W60,)~' O W5, W = lim (WY W,* for
T —oo. The matrices M; € RIH9)0tmytnsixstntm) gy g
M, € RIESXtmns1xo do not depend on f or W'

The theorem also has an immediate consequence, which
is stated in the following corollary:

Corollary 2. Expression (4) as a function of VI?* is mini-
mized by the CCA choice of the weighting W," = (l"jf-’n)*l/2
for each value of f. The minimum variance decreases mono-
tonically in f for the CCA case.

This theorem clarifies a long standing question about the
optimal choices of the weighting matrices for the algorithms
dealt with in this contribution. The implications of the theo-
rem are that in the situation of known system order it is al-
ways (i.e. for any choice of 1) optimal to use the CCA weight-
ing scheme in any situation, where no input is present or the
observed input is white noise. The theorem also suggests the
use of f—o0 at some rate, which is in accordance with ear-
lier simulation studies (cf. Bauer, 1998). It also shows that
no choice of f finite can achieve the optimal accuracy in
all cases, since the decrease with respect to f is in general
strict. The subset of M,,, where finite f also leads to optimal
estimates consists of ARX systems, as is easily seen from
the form of the essential term of the asymptotic variance of
the parameter estimates. Furthermore, the theorem provides
a measure of how much of attainable accuracy one loses by
using any method other than the optimal. The amount of ac-
curacy, which is lost by using a small f is determined in
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the case of using optimal weights by the magnitude of the
noise zeros, as they govern the rate of exponential decrease
in the matrix & ;1 O;.

Note that in the theorem it has been assumed that p tends
to infinity as a function of the sample size. Therefore, the
above expression should be viewed as the limit of the re-
spective quantities for p — oo. It will be a part of the proof
to demonstrate that this limit exists.

4. Proof of Theorem 1

The main structure of the proof is as follows: First, the
problem of calculating the asymptotic variance of the esti-
mated system matrices is reduced to the corresponding prob-
lem for the terms (&, x;), (&,u,;) and .%?p — A p. Here and
below, the notation (a;,b,) = T~ Z,T:_p'il a;b! will be used
with slight abuse of notation neglecting the dependence on
the sample size 7 in the notation and using the same symbol
for both the series {a;},c7 and the vector random variable
a;. Note that the last matrix is of size n x p(s + m) and
thus the number of columns increases with the sample size
under the assumptions of the theorem. Therefore, it is nec-
essary to define the notion of asymptotic normality for vec-
tors of growing size. Here asymptotic distribution is to be
understood for the vectorization of the matrix in the sense
of (Lewis & Reinsel, 1985): A zero mean vector vy € RP(T)
is said to be distributed asymptotically normal, if for any
vector /7 € RPT)_ such that

e supy-, |lir]1 < M for some M < oo,
o ||[/7,0] = V|1 — 0 for T — oo for some vector [ €/},
e E(/4vr)* — ¢ for T — oo for some 0 < ¢ < o0,

the scalar product /;vr converges in distribution to a normal
random variable.

In the next step it is shown that these three terms are
uncorrelated and asymptotically normally distributed. The
essential term will turn out to be the last one, as this is the
only one depending on the user choices. The rest of the proof
then deals with this term. The main steps are summarized
in lemmas. The first lemma deals with the reduction of the
problem to the three terms mentioned before:

Lemma 3. Let the assumptions of Theorem 1 hold. Then

VCC[A\C - Acaéc - Bca éc - CC7DC - Dcakc - Kc]
- Xt

=M vec Ks,, [ >
Uy

+op(T™1?)
where fr = op(T~'?) means that T'?>fr — 0 in proba-
bility. Here [ A}, = I, and [ ], =1, is assumed. Fur-
ther sup - |M2,plli < o0, ||[[M2,,,0] — Ma|i — 0 and
IM2||Fr < 00. My and M, do not depend on f.

+ My, ,veclh , — Hp]

Proof. Consider the estimation of the system matrices using
the estimate of the state sequence X, =" pZ,’_p: This is done

using ordinary least squares. Let (fi, B,C,D,K ) denote these
estimates and let (4,B,C,D,K) denote the corresponding
limits. In order to obtain the estimates (/Ic,éc, C.,D..K c)a
state space transformation has to be applied. However, since
this transformation is a nonlinear differentiable mapping of
the system matrix estimates, it is sufficient to prove the result
for (/LE’, C, ﬁ,k).

The expressions for the estimation error are easily derived
to be the following. Here (4,B,C,D,K) denotes the true
system in the representation according to [.#",], = I, and so

does the true state x;. Let A, = X; — x;. Then
A A R A1
[C — C,D — D] = [<8t — CAt,xt>, <82‘ — CA[, ut>]M 5

n A ~ ~—1
[A—A,B—-B]= [<At+laxt>7 <At+|’ut>]M 5

[]e—K]: <jt+] +But _Ké\taé\l‘><é\t7é\t>71> (5)
where
M _ <3€t,?ft> <)eta ”t>

<ut7xt> <ut9 ut>

and A, = A,y + Ke, — A4,. Since /T (g, — CA,,%,) and
ﬁ(s, — C4,,u,) converge in distribution (see e.g. Bauer,
1998), it follows that the inverse can be replaced with its
expectation without changing the asymptotic distribution.
Now (X;,u;) — 0 due to the white noise assumption on
the inputs and thus the estimation errors in C and in D,
respectively, can be treated separately. The same arguments
hold for 4 and B. Thus consider C — C first:

C—C= (g — CALEN(E3) !
= <£t,xt>2x_1 — <CA,,x,>Zx_1
= (enx) 2 = CUH p — A )T, HNET,

where X, = Ex,x/. Here the error bound |4 p— Aol =
o(Qr pf') has been used to show e.g. that (g, x;) = (&,x;).
Next deal with K:

A

K—-—K= <Az+1,St>Q_l + (=44, — K(é - 8’)’SI>Q_1

=A = A )

K
O[p(erm)fs] Xs ‘| )

This follows from the error bound cited above and the
uniform convergence of the sample covariances, as e.g.
(As,8) = (Jf”p — AN, ) —,ip(x,,p,s» = 0 and also
the fact that (i, &) =0 has been used. Corresponding to the
estimation error in A it turns out to be more convenient to
consider 4 = A — KC instead. The result for 4 then is im-
mediate, of course:

12 —A= <Az+1 —/IAt,Xt>Zx_l + <AI+I>C/Q_1(8t +D7flt)>

. 7 nx(m+s %l’p —
=[A ) — A, 0" H][ ~ ]%;ZXI

p
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— Ay — H T A ET!

C

"l‘[%p - %p]mﬂ 0 D/Q—IC

where again = denotes equality up to terms of order
o(T~'2). Further,

B = B= (A, u) )™
= (A — A pEZ, il Eug]) ™!
+ K (e ) (Buguy) ™
Finally,
D —D = (g — CApu) (upyus) ™1 = (e, 1) (Euut)) "

The remaining claims of the proof follow easily from
these representations. In particular, the convergence prop-
erties for M, , are derived using the exponential decrease
in the elements of . This completes the proof of the
lemma. [J

The next lemma deals with the second order properties of
the essential terms of the last lemma:

Lemma 4. Under the assumptions of Theorem 1
VT vecl (e, x,)], VT vec[(e;,u;)] and T vec[A , — A )]

are asymptotically uncorrelated.

Proof. In the proof again all system matrices are assumed
to be in the canonical form. It has been shown in Bauer et
al. (2000) that

Ay — A p)=OW(B. — BIP4 + O B. — B
17, — W+ 1B — B, (6)

where f.=EY,!(Z,,)(I'; )~ and O} =(¢/, 150,)~' O, .

Here W5 = l1mT_,oO (W;r ) W+ Where the limit also 1ncludes
the possibility of f tendlng to infinity in the CCA case. For
any of the proposed weighting matrices, |le - Wl =
O(Qr f p). This follows from the uniform convergence of
the sample covariances as stated e.g. in Hannan and Deistler
(1988, Theorem 5.3.2). It also follows that ||, — f.||> =
o(T~'/?). Therefore for the asymptotic distribution the term
@l(ﬁ — B.)Py is the essential one, the remaining terms
do not show up in the asymptotic distribution, as they are
o(T~12),

P, depends on p but this is not reflected in the notation.
Note the fact, that this expression does not depend on the
weighting Wﬁ and that with respect to the weighting W;
only the expectatlon W+ has an influence. Since p — oo as

a function of the sample size it follows that ||[,,0/5*>°] —
Or A |2 = O(p|po|?) = o(T~Y?), where p, denotes a zero
of H(q) of maximum modulus. Then let Z[’_/;H =27, ,—

o U,;. Therefore,
Bz ﬁ <gf ;fs ><Zt_p aZt_pn>_l

_éaf< INE tjp>(F;)7l
as follows from straightforward calculations using

KE U = 001 ), (25, US| = 001/ 1 ).

Here the whlte noise assumption on the input is used in the
last equation.

Note that
1 T—f
Evec[ (e, x:)] Vec[(st,x,>]/ = Il Z [E(xtx; ® St'gé)
t,s=p+1

which essentially is equal to 1/7(X, ® Q), where 2, =
AT A" = Exx, and essentially again indicates equality
up to terms of order o(7~"/?). Analogously, it follows that
TEvec[ (&, u,)] vec[{e,u,)] = (2, @ Q), where Q, = Fuu)
and

TEvec[{&,x,)] vec[{e,u;)] = 0.

Next, consider the cross moments between (&,x,) and
A » — A p. Note that for the (7,j)th component of
vee[(&,x,)] = Vec[<st,J/ Z, )] and any linear combina-
tion /70 0" é’f< L Zip) (L) 'PyV, for some vectors
ve R" and V € R”(”’”) such that H[VI’J,OIX“’]— V' — 0,
where V' is a vector in /; having elements decreasing
exponentially, one obtains that

E Z e i(H i

WO ES VP2,

t,s=p+1
t
=3 e 0L ES )
t s=s
X(EA 2, (2o )W, ) PV

—ZZ[Eg,,(u V& ES,)

%tfs,p
ry

t
=3 Ee (' 0L6E] )
t s=s

XA p r, )PV,

N O,
XA p,j J PyVy,+o(T)
P
=o(T),
where ffpj = [Ap; ,01X0mt)(t=9)] " the sum is over
t=p+1,....T— fandwhere%jp—[E A2 ,) =

@%,,F; + o(T~"?) and § = max{p + l,t — f+ 1}
Here mostly 4 ,P, = 0 and ||A; ,(I',)~" — O ,||=
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o(T~'2) for p as specified in the theorem is used (for a
proof of the latter statement see e.g. Bauer, 1998). The latter
fact is used in the replacement involved in the third equality.
The convergence follows from the convergence assumptions
on V', and the analogous property of % ,. These properties
allow the replacement of the limit for p — oo by the ex-
pression obtained for p = oo, which will be done frequently
in the following in order to simplify notations. For the
covariance of elements of (;,u;) with v'(#", — A ,)V , ana-
logous arguments hold. Therefore, the three terms are
asymptotically uncorrelated. This completes the proof of
the lemma. [

Thus the only effect of the user choices f and W; is hid-
den in the term 4 »— A p, which can be examined indepen-
dent of the other terms due to the uncorrelatedness. Consider
the variance of @' <é",»Et o Zip) Ty )™ 'P v, for some vec-
tor v, € RP(™FS) such that ||[vp 0] —v'|; — 0 for some
Vector v in /) having elements decreasing exponentially:

Z EEI](Zt_p )/EPNIp sp (Esf)

s,t=p+1

-1

1 St st . . _

=7 Z EE, (E\ 1) (BEZ (27, ) Bp)+o(T™ ).
I=1—f

(7

Here £, ;= 016 (E;, and 5,=(I'; )~'P¢v,,. Note that for
1=0 the part due to E,", is equal to 0.6 (I, ® @)&",(0})'.
This is the central term in the expression for the asymp-
totic variance given in the theorem. From Lemma 3 it fol-
lows, that a matrix M, as used above exists. The con-
struction of this matrix will be clarified below. The theo-
rem then is proved, if for any vectors v,, 7, postmultiply-
ing A p — A, in the equations for the transformed sys-
tem (/L,E’L, C..D..K. ) analogous to Egs. (5) it holds that
B, P (I, )~ 1Z,p( i) ()" Py, — 0, j#0. It is
in thls part of the proof where the white noise assumption
on the input is essential. Most of the arguments used up to
now hold also for more general inputs, in particular, an ana-
logue to the variance expression given above exists. It is
convenient to split the proof into two separate cases.

4.1. The case n < (s + m)

On examining the expressions given in Lemma 3, one
observes that only a number of terms are multiplying
A, — A ,: These terms converge to I 4", [9’?/1,1";0]'%’,
[0, 1,,,0m*>]" and [, 0°*°°]’, where convergence is in
/1 norm as required above for the vectors v,. All these
matrices have elements decreasing exponentially. Note that

(L) 2 (20 () Py

et | —\—1
=P,(I'y) r- (I's) Px
0j(s+m)><o<>
=P(I)”! Py
) O/’(s+m)><oo 0j(s+m)><o<>
oo | ao [P @

evaluating the expression for p=oc rather than dealing with
the limit. Here #’; = J#’; .. Using the exponential decrease,
however, it is stralghtforward to show that in all situations,
where the expression occurs, the limit and the expression
for p = oo coincide. The next to last equality follows from
the block matrix inversion formula, which gives

o O(s+m)><(s+m) O(S+m)><oo
(Foo) - o0 (s+m) (F;C)fl
Is+m 1
+ —(F_)_1<%/1 Hy [S+ma %1([‘ ) ]
)

where I1, = (7.(0) — # (I’ )~ ' #") > 0. The projection
P, =1 — A"[I,,0"°°] and thus the last equality follows
from n < (s+m). Premultiplying with the above-mentioned
terms from the left shows, that the terms for / # 0 in Eq. (7)
do not matter in the case n < (s + m). Take for e.g.

EA A TP (D)™ 2o (2, 00) (T) ™ P
/(s+m)x oo
(r2)™
This shows, that in the case n < (s + m) only the term for

!/ =0 in Eq. (7) is nonzero and thus the theorem holds in
this case.

= A A, TZ] Py =0.

4.2. The case n > (s +m)

The theorem gives the asymptotlc variance of the system
matrix estimates (AC,BC, CC,DC,K ). In order to show that
only the term for /=0 in Eq. (7) is nonzero, it is sufficient to
show this fact for any invertible (possibly nonlinear) trans-
formation of these matrices. It proves to be convenlent to
consider (AC,BC, C..D..K. ), where A, =4, -K.C,, B =
B.—K.C.. These estimates are obtained by transforming the
estimates of the subspace algorithm (/i,é, C‘,ﬁ,]& ) into the
particular canonical form defined by [#",], = 1,, which is
done using the transformation matrix S, which is defined as
S=[[K,B],...,A [K,B]], Thene.g C.—C.=CS—C=
(C —C)S + C(S —1,,), where I, is the limit of S as follows
in a straightforward fashion from the consistency results for
A p and the sample covariances used in the regression. It
follows from the normalization [,%7 ol = [A ], =1, that in
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the current case the contribution of 4~ p— A p to the error in
B., D.and K, converges to zero (see Lemma 3). Therefore
only C, and 4. have to be dealt with.

Note that the columns of S follow a recursive pattern.
Therefore, denoting T i :/Il [15' ,E‘], T; :/II[K, E’] the follow-
ing recursion is obtained for i =0, 1,...:

Ti+1 - Ti+1

At — T+ A - DT,

A, [r—l 1 I —AN g T ' ST T AT T))

- Hy
_%Fo_o

—l—ZAA/{

where 4, = [%p,O”XOO] — A" and where " = A o as
well as A [Li4+m, 0] = 0 are used. The recursion is started
at f() =Tp.

The next lemma shows that for the second and the third
term in this recursion only the term corresponding to / =0
in Eq. (7) is of relevance:

H'ENT - A Ay T 5T,

H'ET — F/ZIA},,,

Lemma 5. Under the conditions of Theorem 1 for j >0
holds that

ETo S A TLZ, (2, 00) =o(1),

E{Z A, T2 — A5 H T o VAN VA |
=o(1),
where Z~t’_C>O =P, (I'y) "Z . Here A A\, T A" =

Ex;(x,41) = 2. A" has been used.

Proof. For the first term note that

ETo2, ‘wrz Z,OO(Zt joo)

j(s+m)x oo

=Ty ' AT P () Py
j(s+m)x oo

=T (A = Z[L, 07T ™") [ J Py

j(s+m)x oo
= = T, 0T~ l Py

j(s+m)x oo

— _ [[S+m)0(s+m)><00](ro—o)—l [ P%/ =0.

Here again the matrix inversion lemma has been used to-
gether with the property that 7y = [/,],,,,. The expressions

are evaluated at p = oo rather than dealing with the limit,
which is possible due to the exponential decrease in 7 .

The conjecture for the second term follows in a similar
manner from:

=\, T - A T}

/ —\—1 0
XPo(lo)™ | | P
— _ - _
= {7\ AH T - AT
XA 'L, 0)(T) ™! Py

0
= [C, 0" T, 01T ) ™! [] Py =0,

o0

where the dimensions of the zero blocks are omitted for
notational simplicity. This completes the proof of the
lemma. O

Therefore, the strategy in the remaining part of the proof
will be to isolate these terms in all the occurring expressions.
Note that due to the normalization of %, it follows that each
column of 7, is equal to a column of 7; for some index i.
Let 7= |n/(s +m)|, where | x| denotes the greatest integer
smaller than x. Further let m=n—n(s+m). Then the columns
of T;, 0 <i < 7 and the first 7z columns of T}; are vectors
of the canonical basis. Therefore, the columns of C. — C.
are equal to the columns of the following expressions for
the respective integers i:

(C—O)i_1+C(Ti—1 — Ti_y)

= e ) I Ty — CA A (T2 H ' 2T,

+ZCA Af{lf ]y/z—

— T A'S7 A} T (10)

Application of the results of the last lemma also shows
the result for C, — C. and thus only A, — A, is left for
investigation

Note thatA =—-S—1I, )A+(A A+ AS - 1,).
If i is such that T is a block column of the identity matrix,
then S7; = 7T; and thus

(8 — L)AT,—y + (A — DTy +AS — )T

= S —I)T + A — DTy + A(Ti_y — T,_) =0.

This is also true for the first 7z columns of T;_;. Therefore,
it remains to deal with the matrix W = [w},...,ws_,W5],
where W denotes the matrix built of the last s+m columns of
A. Here w; € ROTmXGtm) 5 — 01— 1, w; € RAx(stm),
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In order to unify the notation let w; = [}, QG +mx(stm=m)]’
sy =[0Tm=mxim p o q] s si= L, 0T g =
Usm—sa, 06T and g7 = [07*6Hm=m) 21 respec-
tively. Finally define

[%1
Y=
loo

Then for i =7 — 1 and i = 71 one obtains

A3

(Ty = T; — (S — L)ATi—1)s;

== (T; = Tywsi + (T = T))s;

j=0
ﬁ .
== A YTjywisi + A Ay (D) A E Tow;i
j=1
F Ay YT, y5i — A A (T)H' 7 Tos;
n j—1

SN A Ay T AT s,
j=1 I=1
i-1

+ > A A Y T A" AT s
j=1

It has been shown before, that for the terms postmultiplied
by T, and the terms including {Y — I'; #7274} only the
covariance of the respective term matters in the asymptotic
variance as stated in Eq. (7), but not the covariances at lags
[#0. The only terms of concern are the remaining ones,
which are equal to

n
Ay Y | Tizisi — Z T;1w;s;

r O(s+m) X (s+m) 7] r —wy b
O(S+m)><(s+m) —wy
=AyY : + : Si-
Orﬁ X (s+m) 71,;’;
Is+m O(s+m)><(s+m)

Denoting the matrix in brackets on the right-hand side
with W we obtain AW = —Tow;. Also, AW = AW +
To[C',0"™'W = T,V for some matrix V. Therefore

EW 2 A TP (D) 2o (200 (D) Py
—WZ AL TLIP(T) ™! Py
=W s A, T (oo — H7[1,,01)

x(I'g)™! Py

oo

= — WAL, 0I5

oo

again omitting the dimensions of the zero blocks. Here
the second last equation follows from [, [ 14" =
Ex;(x;41) = 2,A’. Summing up the findings up to now it
follows that

vec[d, — A,B, —B,C. — C,D, — D,K. — K]

. 2 Xt
= M vec ( &,
Uy

Here the matrices M, and M, » can be found by tracing
the computations so far. Additionally, it has been shown that

- X;
M, & &

Uy
(Mz,p)/ - 07

> + M, vee(H , — A ). (11)

E [( t+j. p®06fE+]f)]

My, B(Z,, @ 06 ES N2,y ,® OT6ES, Y

t+j,p
(Mz,p)/ - 07

where the first limit holds for all j and the second for j £ 0.
From the definition of M, and M, it follows that these ma-
trices do not depend on 4 or f. Using the expressions given
above and the arguments given in the proof of Lemma 5
the corresponding expressions for M; and M, follow in
a straightforward fashion. For the fixed case f it fol-
lows directly, that the asymptotic covariance matrix is
of the form given in the theorem. In the case f — oo
it can be shown in straightforward but tedious opera-
tions, that the terms given above are of order o(7~!?)
uniformly in f = O((logT)*). Here the form of the
weighting matrlces is used to show e.g. that the vari-
ance of O 6 fE+- is bounded uniformly in f. There-
fore, the expressmn for the asymptotic variance of
the estimated system matrices also holds in the case
f — oo for CCA weights. This completes the proof of the
theorem. [J

4.3. Proof of Corollary 2

Note that
O8Iy @ Q)&(0TY

=0T O L6 f U @QE IO (O 0 )™

This is minimized by 1’ = [& /(I; ® 2)¢",]~" with mini-
mum (Cf”f(@@}-)*l(lf ® Qil)é";l(ﬁf)*l. Some matrix alge-
bra shows, that this gives the identical variance with any
choice W = W + W O W(/f 4, such that 1% is invert-
ible. Thus the CCA welghtlngs minimize the variance of the
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estimated system, since in this case W5 = (I’ ;L Jy=1 " where
=6,y ® Q)8" + 0y 2:(';. Therefore, due to the
matrix inversion lemma

(M= =&, 0 Q)™
H(E Uy @ QEN) O WS (I @ Q)E) !

for suitable matrix W. The lower diagonal block Toeplitz
structure of &'y then shows, that this minimum variance de-
creases monotonically in f, since it ensures, that é";l Oris
a submatrix of ¢! .. This completes the proof. [J

5. Numerical illustration

In this section two examples will be given, which illus-
trate the findings of the last section. As a first case consider
the following single-input single-output system without ex-
ogenous inputs having state dimension three:

—0.532 04639 0.2855 1
A= 1 0 —02568|, K=10],
0 1 0.0054 0
C=[-0532 04639 —0.0413].

The noise is assumed to be white with variance equal to
1. For this system the asymptotic variance is compared to
the Cramer—Rao bound using the following measure: Let
F; denote the Fisher information matrix with respect to the
particular canonical form used in this paper. Then it is well
known, that the Cramer—Rao bound for the estimation is
equal to F' 1_1. Thus, let V( W;”) denote the asymptotic vari-
ance of parameter estimates obtained from the subspace pro-
cedure using the integer f and the weighting matrix Wff
Then the measure E, = te[V, (W, )Fi] — 2ns — (n + s)m
is used. For an efficient estimation method this is equal to
zero, otherwise positive. The upper plot in Fig. 1 shows
this measure for the two weighting schemes denoted as CCA
(ie. W, = (I';)"'?) and N4SID (i.e. W" = Iy,). The au-
thors want to emphasize that N4SID is only used as a label
for the weighting scheme as indicated above. This is not to
be confused with the algorithm called N4SID by VanOver-
schee and De Moor (1994). The lower plot of this fig-
ure shows det[(@’f %@f)_l@‘}l/lfz(g@f@@’f Wz@f(@}Wz@‘f)_l],

where W = limr_, oo (Vf/f+ )’W;. This is the central term in
Eq. (4). The plots clearly reveal the identical behaviour
of the two measures. It can also be seen, that for the CCA
weights the measure £, decreases to zero for f — oo,
whereas for the N4SID weights the choice of f'=n is optimal.
For both weightings a converging behaviour is observed for
large f, which is also in accordance with the theory.

— CCA
—— N4SID

10 12 14 16 18 20

4000

3500

3000

2500

2000

1500

1000 |

500 L— . . . . . . .
4 6 8 10 12 14 16 18 20

Fig. 1. The no input case: The upper plot shows the measure E, for
the two weighting schemes CCA and N4SID for the range of values
f =3,...,20. The lower figure shows a plot of the determinant of

(C”fl/lﬁ@f)*l(W’f%é”_/cﬁ”’f%@f(@’[%(ﬁ‘f)*l for the same two procedures
and the same range of integers f.

The second example is a second order single- input
single-output system with one additional observed white
noise input given by the system matrices

0.393 2.022 0.95
A - ] B = s
—0.208 —0.685 1.00

1
C=[0326 —0743], D=095 K= l(’] .

The observed and the unobserved noise are assumed to
have mean zero and variance 1. Thus there are a total of
7 parameters to be estimated. Analogous to the case of
no inputs define £, = tr[Vf(Wf*)Fl] — 7. Fig. 2 shows
the result of the calculation. The figures again demonstrate
identical behaviour of the two measures of accuracy.
Again, the CCA weighting scheme is superior to the
N4SID weighting scheme and again it reaches the
Cramer—-Rao lower bound for f — oco. This illustrates
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25 T T T T T T

— CCA
—— N4SID

12 14 16 18 20

— CCA
—— N4SID

Fig. 2. The white noise input case: The upper plot shows the measure £
for the two weighting schemes CCA and N4SID for the range of values
f=2,...,20. The lower picture shows a plot of the determinant of
((Cf/.VIéCWf)*l (O}Vlﬁﬁ/-tﬁ”"f»%@f(@’fWé(ﬁ/-)*l for the same two procedures
and the same range of integers f.

the significance of the expressions found in this paper
in assessing the relative efficiency of various weighting
schemes.

6. Conclusions

In this paper the dependence of the asymptotic accuracy
of the Larimore type of subspace methods with respect to
the choice of the integer /" and the weighting matrix W}* has
been explored in the situation, where the true system order
is known. It has been shown, that the effects of these choices
in the case of no observed inputs or white observed inputs
can be summarized in the term (@'/-Vlfz@".f)_l(ﬁ}l/l/zo«@f(l ®
Q)& W0 (O W50)~" as has been shown in Theorem 1.
This term shows, that the CCA choice of the weighting ac-
cording to (3) is optimal with respect to the asymptotic vari-
ance for each f. It also follows that for this optimal choice
the variance decreases with increasing f', achieving the op-

timal accuracy for the choice f — oco. For other weight-
ing procedures the expression can be used to optimize the
choice of f. Finally, the new expressions for the asymptotic
variance also lead to an efficient implementation of the com-
putation of the asymptotic variance, which could be used
for practical implementation rather than only for academic
purposes.
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Three different order estimation criteria in the context of subspace algorithms are introduced and
sufficient conditions for strong consistency are derived. A simulation study points to open questions.

Abstract

In this paper the question of estimating the order in the context of subspace methods is addressed. Three different approaches are
presented and the asymptotic properties thereof derived. Two of these methods are based on the information contained in the
estimated singular values, while the third method is based on the estimated innovation variance. The case with observed inputs is
treated as well as the case without exogenous inputs. The two methods based on the singular values are shown to be consistent under
fairly mild assumptions, while the same result for the third approach is only obtained on a generic set. The former can be applied to
Larimore type of procedures as well as to MOESP type of procedures, whereas the third is only applied to Larimore type of
algorithms. This has implications for the estimation of the order of systems, which are close to the exceptional set, as is shown in
a numerical example. All the estimation methods involve the choice of a penalty term. Sufficient conditions on the penalty term to
guarantee consistency are derived. The effects of different choices of the penalty term are investigated in a simulation study. © 2001

Elsevier Science Ltd. All rights reserved.

Keywords: Subspace methods; System order; Estimation; Asymptotic properties

1. Introduction

There exists an extensive literature for order estima-
tion algorithms for linear, dynamical, state space systems.
Probably the most important contribution can be at-
tributed to Akaike (1969) for introducing the information
criteria. These criteria compare the model fit on the
estimation data as measured by a function of the esti-
mated innovation variance to some penalty term, which
punishes high model orders. In other words, the higher
model order is only chosen, if the increase in the accuracy
is higher than a certain threshold, which depends on the
sample size. Alternatively they can be seen as a sequence
of tests to identify the model order, where the size of the
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H. Hjalmarsson under the direction of Editor Torsten Soderstrom.

! Parts of this work have been done while the author was holding
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E-mail address: dietmar.baver@tuwien.ac.at (D. Bauer).

tests is adjusted to the sample size. The properties of
these estimation methods are well studied (Shibata, 1980;
Akaike, 1969; Rissanen, 1978) and the effects of the choice
of the penalty term are well understood (see e.g. Hannan
& Deistler, 1988) for a comprehensive discussion of the
known properties. All these estimation methods however
rely on the use of the maximum likelihood estimate for
the system for each order. Thus in practice a large num-
ber of systems has to be estimated using numerical search
procedures to optimise the likelihood for given system
order, leading to a sometimes prohibitive amount of
computations.

For subspace algorithms the situation is different. Al-
though subspace methods have been proposed quite
some time ago, there exist only few references dealing
with the estimation of the order in the context of sub-
space methods. The first contribution seems to be due to
(Peternell, 1995). This method relies on the information
of the estimated canonical correlations, which are esti-
mated in the subspace methods. This leads to a very
economical (in terms of computations) method, which
has been shown to lead to almost sure (a.s.) consistent
estimates under the usual assumptions. See below for

0005-1098/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0005-1098(01)00118-2
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more details on this. It has been observed in Bauer (1998),
that this method seems to be relatively sensitive to the
choice of certain user parameters, which can deteriorate
the performance of the method considerably (see the
simulations section). This motivates the development of
an alternative, which is a small adaptation of the cri-
terion given in Peternell (1995) and seems to be less
sensitive. Bauer (1998) introduces another criterion for
the Larimore type of procedures, which is much in the
spirit of Akaikes information criteria, as it uses the esti-
mated innovation variance. These three procedures will
be presented and analysed below. It will be clear from the
proofs however, that the proposed estimation method is
only one possibility, as the main problem boils down to
estimate the rank of a matrix. For this problem there are
well established testing methods, which however rely on
the distribution of the matrix, whose rank is estimated.
Such procedures are presented in Sorelius (1999): There
the rank of the crucial matrix is found by increasing the
dimensions of the matrix by one in one step and perform-
ing a test on the newly introduced smallest singular
value. This procedure however has the disadvantage of
simultaneous tests, since in practice a sequence of tests
will have to be performed, where the number of the tests
and the dependency of the tests is unknown at the start of
the tests.

The organisation of the paper is as follows: In the next
section the model set is stated and the main assumptions
are presented. The estimation algorithms are briefly re-
viewed in Section 3, where also the various order estima-
tion algorithms are discussed. Section 4 then states the
main results of this paper and provides proofs for them.
A simulation study is performed in Section 5. Finally
Section 6 concludes.

2. Model set and assumptions

In this paper linear, finite dimensional, discrete time,
time invariant, state space systems of the form

X,+1 = Ax, + Bu, + Kg,,
Ve = Cx; + Du, + ¢, (1)

are considered, where y, € R® denotes the observed output
process, u, € R™ denotes the observed input process and
&, € R® the unobserved white noise sequence. x, € R” is the
state sequence. Here the true order of the system is
denoted by n. The matrices Ae R"*", Be R"*™ CeR**",
DeR**™ KeR"™* determine the system. In the case an
input delay is postulated, D is restricted to zero. The
system is assumed to be stable, i.e. all eigenvalues of A are
assumed to lie inside the unit circle, and strictly min-
imum-phase, i.e. the eigenvalues of 4 — KC are
assumed to lie inside the unit circle. The system
matrices correspond to a pair of transfer functions:

Let k(z)=1+2zC(I —zA) 'K and let Ilz)=D +
zC(I — zA)™ ' B, where z denotes the backward shift oper-
ator. Furthermore let M, denote the set of all pairs of
transfer functions (k, /) that permit a minimal state space
representation of the form (1) fulfiling the stability and
the strict minimum-phase assumption.

The white noise ¢, is assumed to be an ergodic martin-
gale difference sequence satisfying the following condi-
tions:

E{e| F—1} =0, Elea|F,—1} =Q =Eee >0,
[E{St,agt,bgt,c| yt—l} = wu,b,ca [E{gia} < . (2)

Here E denotes expectation, &, denotes the g-algebra
spanned by (y,, s < t) and ¢, , denotes the ath component
of the vector &. Note that these assumptions coincide
with the assumptions used in the analysis of the order
estimation methods in the case of maximum likelihood
estimation in Hannan and Deistler (1988, Theorem 4.3.2).
Corresponding to the input two different sets of assump-
tions will be introduced for the Larimore type of proced-
ures and the MOESP type of procedures.

Assumption 1 (Larimore type of procedure). The process
(uteZ) is filtered white noise of the form
u, =Y 7oK, (jn.—j, where n, is an ergodic, martingale
difference sequence with innovation covariance matrix
Q, > 0 fulfiling the assumptions stated in Eq. (2) and
being independent of ¢, and where ||K,(j)|| < c.pi for
some 0<c¢, < o0, 0<p, <1. Furthermore &,(w)=
O o Ku(DENR, (Y72 0 K, (j)e' ) is assumed to fulfil
O<cl <P (w)<cl < oo for —m<w< T

Assumption 2 (MOESP type of procedures). The input
process (u;; t€Z) is of the form u, = cv, + Y-y c;e™!
where v, fulfils Assumptions 1 and c¢; e R™ are zero mean
random variables with finite mean square such that
the corresponding process u, is real valued. Further
0 < ¢ < oo is a constant. Furthermore the process u, is
assumed to be persistently exciting of order o (to be
specified later) in the sense of Ljung (1999).

Note that the assumptions for the inputs in the
Larimore procedure are more severe, as is apparent from
the choice ¢ = 0: In this case the input is just a sum of
sinusoids and thus only persistent of finite degree, where-
as the Larimore type of assumptions imply, that the input
is persistent of any order. The reason for this lies in the
fact, that for the Larimore type of procedures a necessary
condition for consistency is that the integer parameter
p tends to infinity (see below for details). For the MOESP
type of procedures note that the assumptions are similar
to the assumptions imposed in the proof of the asymp-
totic normality in Bauer and Jansson (2000). It will be
clear from the proof given below, which properties for the
input signal are really needed in this respect. Also note
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that the conditions given in Bauer and Jansson (2000)
permit certain pseudostationary sequences, i.e. sums of
sinusoids. However in this case it is necessary to impose
the necessary restrictions (i.e. the existence of certain
limits, which appear in the proof) directly on the
sequence rather than using sufficient conditions on the
underlying random variables.

3. Estimation algorithms

In this section a brief review of the main steps in the
considered subspace procedures is given and the es-
timation algorithms are motivated. For a more de-
tailed description of subspace methods see Larimore
(1983), Verhaegen (1994) or Bauer (1998, Chapter 3). Let
Y =i Vit1s--sVivs-1] and let U, and E;, re-
spectively, be constructed analogously using u, and ¢,,
respectively, in the place of y,. Let Z,, = [y;— 1, t1—1, ...,
Vi—p-Ui—p]. Here fand p are two integer parameters,
which have to be chosen by the user. See below for
assumptions on the choice of these integers. Then it
follows from the system equations (1) that

Y =0, HpZiy + U UL + EGE
+ 04— KOPx,_,.

Here O =[C,AC,...(A’"'YC] and X ,=
[[K,B—KD], (A — KC)[K,B— KD],...(A— KCy!
[K,B — KD]]. Further %, and &, are block Toeplitz
matrices containing the impulse response sequences. The
actual form of these two matrices is of no importance
here and thus it is referred to the original articles for
details. This equation builds the basis for all subspace
algorithms, which can be described as follows:

(1) Regress Y,'; onto U, and Z,_, to obtain an estimate
B. of O A, and an estimate B of U . respectively.
Due to finite sample effects f3, will typically be of full
rank.

(2) For given n find a rank n approximation of j, by
using the SVD of W}B,W, = U,%,V, + R. Here
S, denotes the diagonal matrix containing the lar-
gest n singular values in decreasing order. U, con-
tains the corresponding left singular vectors as
columns and V, the corresponding right singular
vectors. Finally R accounts for the neglected singular
values. This leads to an approximation
O, H, =W/ '0,2,Vy(W,) '. The actual de-
composition of this matrix into ¢, and %", has no
influence on the estimated transfer functions.

(3) Using the estimates @ 1 Va » and B, obtain the sys-
tem matrix estimates.

In the second step an order has to be specified. Also the
matrices W} and W, have to be provided by the user. In
the literature several different choices have been pro-

posed. For the matrix W‘ the choices are restricted to
(,)"? and (T, "', where I, =Ty Zo (20,
denotes the sample variance of Z;, Further
r,"=r, — fzy,,f“;lfu,z. Here I, denotes the sample
covariance of U, and I .z the sample covariance of
U/, and Z,,. Corresponding to W} two choices will
be considered: ([}~ '?>=r} —~T,,[;'T,, using
obvious notation, where y stands for Y,;, and
W = [Kw(i —j)li , where w(z) = Y 7 o Ky (j)z’ denotes
a frequency weighting. Ky (j) =0, j <0 and Ky (0) is
assumed nonsingular. Furthermore w(z) is assumed to be
stable and strictly minimum phase. The intuition of this
special choice of the weighting is to emphasize some
frequency range via specifically designing w(z) to be
a band pass filter (see e.g. McKelvey, 1995). The idea of
this step is essentially to discriminate between the non-
zero ‘signal’ singular values and the noise contained in R,
which is influenced by the weighting, since this scales
different directions. Using the information contained in
the estimated singular values will be the basis for two of
the estimation methods.

For the Larimore type of methods also an order es-
timation algorithm will be given, which relies on the
estimated innovation variance. Thus it is necessary to
give more details on the estimation of the system matrices
in this case. Note, that from step 2 an estimate %, is
obtained This is used to estimate the state sequence as

=A,Z, Let {a,b)y=1/TY /)i abj. Inserting
the estimated state into the system equations (1) one
obtains estimates of (4, B,C, D) from the least squares
solution:

X, X R -1
[Ar, Brl = [(er 1 ) <&,+1,u,>][<x”x’> <x””‘>} ,

U, X ug, )

KXy Zouy |t
Qug, %) <ut9ut>:| '

If a delay is postulated, then in the second least squares
problem u, is omitted. The matrix K and the innovation
sequence are estimated from the residuals of these equa-
tions as follows: Let & =y, — CyX, — Dyu,. Then
Q= {&,%& and KT = <>Act+ln§t>é_l-

Following the discussion given above there are
a couple of rather obvious algorithms to estimate the
order. These will be presented in the following.

[CTs ET] =[yn%> s ut>]|:

3.1. Using the information contained in the
singular values

From standard theory it follows, that X,, =
W/B.W, converges as. to the limit X =
Wy (/fj W, ,where W and W, denote the a.s. limits
of Wf and Wp , respectively. Here convergence occurs in
the operator norm acting on /> almost surely, where the
matrices occurring are seen as operators by adding zeros
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in the infinite matrix representation corresponding to the
operator. Therefore it follows from the results of operator
theory (see e.g. Chatelin, 1983) that the singular values
also converge. Since X, has rank n, only the first n singu-
lar values of X. are nonzero, the rest being zero. There-
fore, the problem boils down to the assessment of the
rank of a noisy matrix. The problem gets complicated,
since the distribution of the noise acting on the matrix is
hard to quantify. Therefore this paper resorts to estima-
tion algorithms as opposed to methods of obtaining the
order via a sequence of tests (cf. Sorelius, 1999). These
algorithms share the idea of the information criteria of
comparing the significance of the inclusion of another
coordinate in the state to a penalty term, which is chosen
such that the resulting estimates possess desirable prop-
erties, such as consistency. Define the following two
criteria:

NICt)= 3 & + (T, 3)
SVCn) = 621 + C(T)d(n)/T. @

Here d(n) = n(m + s) + ns + sm denotes the number of
parameters of a state space system of order n (see e.g.
Hannan and Deistler, 1988, Theorem 2.5.3). C(T) > 0,
C(T)/T -0 is a penalty term, which will be described
below in more detail. In the definition M =

min{fs,p(s + m)}, the number of estimated singular
values. The estimated order 7, say, is obtained as the
minimising argument of these criterion functions. NIC
has been introduced and analysed in Peternell (1995). In
the definition Peternell (1995) used a different choice of
d(n), which however can be reformulated to fit into the
present setting. Also Peternell (1995) only dealt with fand
p fixed and finite, while the following discussion holds for
general choices. SVC stands for singular value criterion
and has been proposed as a refinement of NIC in Bauer
(1998). The main difference lies in the fact, that NIC uses
the Frobenius norm of the matrix R, whereas SVC uses
the two norm to measure the size of the neglected singu-
lar values. For both criteria the order estimate is ob-
tained by minimizing the above expression. Note, that
these order estimation techniques do not depend on
whether MOESP or the Larimore type of methods is
used and thus can be used in all these procedures. The
author wants to stress, that these are just two algorithms,
however many more seem possible, since in principle all
that is done is to compare the size of R measured in some
norm to some sample size dependent penalty term. Also
note, that the choice of the weighting matrices W,f and
W, is very influential for the outcome of the estimation,
as will be demonstrated in Section 5. This might indeed
be desirable, since special weightings can be given
a somewhat heuristic interpretation as frequency shaping
filters (cf. McKelvey, 1995). In this case it follows, that the
weighting matrices serve as a tool to stress the important

frequencies for the identification, and thus these direc-
tions might be upweighed, whereas other directions are
downweighed.

Note, that both criterion functions can be imple-
mented with almost no computational load. The singular
values are estimated in the algorithms, therefore only the
addition of the penalty term and the minimization over
a small range of integers has to be performed.

3.2. Using the estimated innovation covariance

A second intuitive idea would be to estimate the
order using the estimated innovation covariance in the
Larimore type of procedures. Recall that given the state
sequence of dimension n, say X}, the innovation variance
is  estimated as Q, =<y, — C4X' — D%u,,y, —
Ci3" — D%u,>. Here [C%,D%] denotes the estimates of
C and D using the estimated state X. Then it is tempting
to use the criterion function used also in the information
criteria as follows:

1VC(n) = logdet Q, + C(T)d(n)/T, 5)

where d(n) and C(T) are identical to the definition
of SVC and NIC. Again the order estimate is obtained
by minimizing this function over the integers
0 < n < min{fs, p(s + m)}. Here IVC stands for innova-
tion variance criterion. The author wants to stress, that
this is not the standard information criterion, since the
estimates Q, are not the maximum likelihood estimates
of the innovation sequence. In fact it will be shown, that
this estimation algorithm may perform poor in some
situations.

From a computational point of view this criterion is
very attractive in the case of no exogenous inputs present
in the read out equation, i.e. in the case y, = Cx, + &,
and additionally the choice of the weighting Wp_ =
(F,)"2. In this case the choice #" =V, (W,) 'Z,
leads to {X!.X!> = I, i.e. the components of the state are
orthogonal and thus the regressions can be performed
independently. The estimation algorithm then amounts
to estimating the matrix C for the maximal state dimen-
sion, max say, and then only additions and multiplica-
tions have to be performed. Let C3** = [C%.,C% ™] then

Qn = Qmax + C';_ max(C‘{;‘— max)/.

In the case of exogenous inputs present or a different
choice of the weighting Wp_ on the contrary each regres-
sions has to be performed separately. Note however, that
normally these will be low dimensional regression in
general and also of not too big numerical load. It is
possible to implement the subspace procedures such that
only the estimated covariances are used rather than the
data itself. In this case the necessary covariance estimates
are already calculated and thus only matrix inversions
have to be calculated. Otherwise also in this step the
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necessary covariances could be calculated in order to
minimize the number of necessary calculations. It will be
shown in the next section, that although this procedure
seems appealing on first sight, it is not a recommended
procedure. Thus in this respect the result of this paper is
rather to show, that using this method may lead to
problems, which are somewhat unexpected.

4. Main results

In this section the properties of the various estimation
algorithms will be derived. The discussion draws heavily
from Bauer (1998) and Peternell (1995). Some results for
the MOESP case have been presented in (Bauer, 1999).
The following notation will be used widely: Let
fr =0O(gr) mean that ||f;|l2/9r <M as. Further
Jr = olgr) implies || fr|l2/gr — 0 as.

The results are mainly based on the following lemmas:
The first deals with the accuracy of the estimation of
sample covariances under the given assumptions on the
system and the input. The second one deals with the
linearization of the SVD or SVD related quantities,
which will be of importance mainly for the NIC and SVC
cases.

Lemma 1. Let (y,; te Z) be generated by a system of the
form (1), where the noise fulfils the assumptions of Section 2.
Let ?z,z(]’) = TﬁleT:iljth;-%—j and let yz,z(j) = [EZtZ;-%—js
where z; = [y;,u;|'. Furthermore let Hy = o((log T)") for
some 0 < a< .

If u, fulfils Assumptions 1 then

max [[jz,:(j) = vzz(ll2 = 0@Qr), (©)

il <Hyp

where Qp = /loglog T/T. If u, only fulfils Assumptions 2,

then the statement is true for Hr = M < 0.

This lemma follows from Hannan and Deistler (1988,
Theorem 5.3.2, Chapter 5). The lemma provides relatively
sharp bounds for the estimation error of the covariance
sequences. In fact it follows from the law of the iterated
logarithm for the estimated covariance sequences
that—except for the exact evaluation of the constant
involved in the O(Qr) statement—the bound is tight.

Lemma 2 (Chatelin). Let I denote a sequence of sym-
metric, compact operators acting on {*, which converges in
norm to the operator 7. Then it follows, that the set of
eigenvalues of 7 1 converges to the set of eigenvalues of 7.
Also the corresponding eigenspaces converge in the gap
metric. Let P} denote the orthonormal projection matrix
onto the space of eigenvectors corresponding to the eigen-
value /5 of 7, and let P! and /. denote the corresponding
quantities of I . Here for a multiple eigenvalue A; of

T, the quantities P} refer to the orthonormal projection
matrix onto the space spanned by the eigenvectors to all
eigenvalues of I converging to A;. Then

Tr— T, Ir— T
Pl =P+ Y Pj =P+ P{ =5 ——P;
j#i Ai _/lj A —)uj
+ o(l7r — T.l). (7

The lemma implies, that the eigenspaces converge, and
in particular the projections on the eigenspaces converge
at the same rate as the error in the approximation.

It has been shown in Bauer and Jansson (2000), that
the MOESP type of methods lead to consistent estimates
for the system matrix estimates only in generic cases.
Therefore also the SVC criterion can only produce con-
sistent estimates in these cases. Let @,(w) denote the
spectrum of the stationary process u, and assume, that
the integers f'and p are used for the estimation. Further
denote the noise variance with Q. Then it has been shown
in (Bauer & Jansson, 2000) that there exists a set
U,(f,p,®,,Q2) < M,, such that the MOESP procedure
provides consistent estimates of the pair of transfer func-
tions. It is also shown, that this set is generic in M,,.
However as the example given in Jansson and Wahlberg
(1997) shows, the set is not identical to M, in general. In
the case min{f, p} > 3n it has been shown in (Chui, 1997)
that this is the case, i.e. the consistency holds for every
pair (k,l)e M,. In fact the sufficient conditions stated in
(Chui, 1997) are much sharper.

Theorem 3. Let the process (y;; teZ) be generated by
a system of form (1), where the true system order is equal to
n,, and where the white noise process (&; t€Z) fulfils the
Assumptions of Section 2. Let the input fulfil the Assump-
tions 1, further min{ f, p} > n. and max{f,p} = o((log T)")
is assumed for some a < 0. In this case the conditions
C(T)>0, C(T)/T -0, C(T)/(fploglog T) > o are suf-

ficient for the a.s. consistency of the order estimate obtained

by minimizing SV C(n).

If the input fulfils the Assumptions 2 with oo =f+p — 1,
then for each fixed pair f and p there exists a set
U,(f,p, P, (), Q) = M,, where ®,(w) denotes the pseudo-
spectrum of the input sequence, such that for
(k,) e U,(f, p, Pu(w), Q) the SVC method leads to a.s. con-
sistent estimates of the order under the assumption
C(T)>0, C(T)/T -0, C(T)/loglogT — 0. If (k)¢
U, (f,p, D, (w), Q) then consistency fails for the same choice
of the penalty term C(T), i.e. limy_, , 1 <n. a.s.

Proof. Note, that under both sets of assumptions
the error in the estimation of the first f+p—1
covariances 7,(j) is of order O(Q;) uniformly due to
the Lemma 1. The estimation uses the singular values
of X,,=Wj/B.W,, which converges to X, =
W;0, 4 ,W, as. as has been shown e.g. in Peternell,



1566 D. Bauer | Automatica 37 (2001) 1561-1573

Scherrer and Deistler (1996). Here convergence is in
operator norm in the embedding /2. Consider the estima-
tion error in f, first: Introduce the notation
{ag, by =T~ 'Y T-J, 1a,b,. Then

.83 = (v ) Mot )
A= )N os Mo, )

The estimation error in each entry of these matrices is of
the order O(Qr) as follows from the Lemma 1 together
with Hannan and Deistler (1988) Theorem 6.6.11, which
assures the summability of the columns of the inverse
uniformely in f and p. Thus consider the weighting ma-
trices: Recall that the weighting matrices are restricted to
be either deterministic or chosen as the square roots of
matrices like (Y, ., Y. > — <Y/, U CUS,USHT!
U, Y,'r>. Using the same arguments as have been
used above shows that the estimation error in the entries
of these matrices are of order O(Qr). Therefore also the
error in the positive definite symmetric square root is of
the same order, as can be seen from a Taylor series
expansion of the square root, which can be used to define
the symmetric square root of an operator.

It thus follows, that X, , - X., where [|X;, — X.|l, =
O(QTJf;). Therefore the singular values converge at the
same rate. This shows, that underestimation of the order
is not possible asymptotically, if o, > 0, where o; de-
notes the singular values of X, ordered decreasingly, as

svem =, + WD)
=07i1 4+ (Gnv1 — Onsr) + d(n)?(T)

-t vof o, + 42417

Since the second term tends to zero, the minimum cannot
be attained at n < n,. In the case of the MOESP proced-
ure and (k, D¢U. ,(f, p, @,, Q) the nth singular value is zero
and thus consistency fails, as follows from the same
arguments given below, since in that case, the same
arguments show that the asymptotic state dimension is
equal to the number of nonzero singular values for the
limiting matrix.

Therefore it needs to be shown, that the true order
n, will be preferred to n > n, asymptotically. Thus for
n > n, consider

Gusr =W BW, — U,V
= 10X, = ULVl
<|0,05X,, —

Here U =[0,.0,,], U,eR™**", U,,eR/**/s"" and
U, = UZ .., which together with U, X, = 0 explains the
last inequality. Since the entries of X r.» — X, have been

U,U%X.|.

shown to be of order O(Qr) the norm

10,05(X s, — Xo)llo <110, U3 1L11K

= 0(Qr+/1?).

Therefore it remains to obtain a bound on ||U,U, —
U,U, ||2 But this follows from Lemma 2, using
Tr=X,;,X;, 7.=X.X, and the exponential
decrease in elements in the rows of U, (cf. Bauer, 1998).
Indeed from this the result follows, since n > n,

- XOHFr

an

SV C(n,
(n.) T

— SVC(n) =63 11 — G741 + (dne) — d(n))

c(r
- %[O(fplog log T/C(T))

+ d(n;) — d(n)] <0,
since fploglog T/C(T) — 0 and d(n) > d(n,).

Note, that the result also proves the consistency of the
NIC criterion for the same restrictions on the penalty
term. Also note, that concerning the penalty term only
a sufficient condition is given. The bound is obtained by
rather brute force arguments, bounding the two norm
with the Frobenius norm. In the case, where f and p tend
to infinity at a rate log T it seems to be desirable to use
a lower penalty term, as will be argued in the numerical
examples.

For the estimation criteria, which are based on an
estimate of the innovation variance, the situation is
somewhat different. Note that this procedure only ap-
plies for the Larimore type of procedures. Therefore
assume, that the input process fulfils Assumptions 1.
Note that if no delay is postulated

0= 0o = (ol G ) b

=Yy — VLt 1,p+1>1:;l
X(£n<Zt7+1,p+1>Zt7+1,p+1>L/) 1Ln<Zt7+1,p+19yt>

=Y

= oy — A Ly(L, L) 'L A,
where

o L R
y = . A (n .
01 0 !
Further L, _Ln<Zt+1p+1>ZI+1p+1>/2 and %1 =
<yts t+1p+1><Zt+1p+1sZt+1p+1>

First consider the problem of underestimating the
order. Let Q, denote the limit of Q,. Then det[Q, ]
< det[Q, _1] is a sufficient condition to avoid asymp-
totic underestimation of the order. This follows from
C(T)/T — 0. This condition has been analyzed in more
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detail in Bauer (1998): In the special case, where no input
is present in the readout equation, i.e. D = 0 and where
W, =(I,)"? this condition is equivalent to C,, # 0,
where Cy . denotes the last column of the limiting realiz-
ation of the true system. It has been found, that this
condition is fulfiled on a generic subset in some special
cases. It is referred to the original work for details. In
general however the implications of this condition are
unknown.

Next, consider the question of overestimation: For
n>=n, one obtains Q, = Q, and thus the estimation
error has to be analysed more closely. According to the
equation above one obtains

9, -0, = AL, (L, L) 'L, — L(L,L) ')A

Using the matrix inversion lemma for partitioned
matrices one obtains

= = = =

L(L,L,) 'L, =L, (L, L,) 'L,
+ Pr Ly (L2 P Do) L, P,

where Py =1—1L, (L, L,) 'L, and where L, =
[L,,L,,]. Since the second term is a projection ope-
rator it has norm one. Thus the essential term is #, PL,
which converges to zero, since #,; — [C,D]L, and
Py -1—L,(L,L,) 'L, = P;.Theestimation errors
are derived using the uniform convergence of the
covariance estimates: The main emphasis here lies on
A, — A, It is straightforward to show, using Lemmas 1
and 2 that there exists a matrix S; such that
||S'T,%7p — Aoll2 =O(QT\/E). ApplXing Lemma 1 to
Vi Ziv1,p+1p this also implies [|#7 —[C,D]L, ||, =
O(Qr+/p) as well as ||PE — Py ||, = O(Qr+/p). Therefore
consider

1VC(n) — IV C(n,)
= (d(n) — d(no))@ + log(det Q,/det Q, )

= (d(n) — d(no))C(TT) + log(det[I + (2, — 2, )2, 1)

= o) — don )+ 1@, 0,00,

+o(lQ, — 2. 1)

C
= ) — dn ) + 010t

as follows from a Taylor series expansion of log(1 + x).
Thus

T
ﬁ(IVC(n) — 1V C(n,))

=d(n) — d(n,) + O(ploglog T/C(T)).

This shows the following result:

Theorem 4. Let the process (y,; t € Z) be generated by a sys-
tem of the form (1), where the true system (k,l)e M,,_, where
n, denotes the true order. Let the noise fulfil the assumptions
of Section 2 and let the input fulfil Assumptions 1.
Let the system be estimated according to the Larimore
type of procedure using f = n, and p = p(T) — oo, where
max{f,p} = O((log T)") for a < .

Then the order estimate obtained as the minimizing argu-
ment of IV C(n) using a penalty term C(T) > 0, C(T)/T -0
and C(T)/(ploglogT)—> oo is a.s. consistent, if
det[Q, ;] >det[Q, ]. If det[Q, _,]=det[Q, ] then
the order is underestimated a.s. asymptotically.

The theorem leads to a penalty term, which has to be
slightly higher than ploglog T and therefore the choice
log T seems to be a reasonable choice for the usual choice
of p (see the simulation section) noting that loglog T is
small even for relatively large T, although not theoret-
ically justified for the Larimore type of methods, where

fand p tend to infinity. This result is new, as in Bauer

(1998) much more severe restrictions on the penalty term
have been used. The restriction det[2, _;] > det[Q, ]is
worth being investigated further. The fundamental differ-
ence of the criterion IV C(n) as compared to the informa-
tion criteria, although formally defined analogously, is
that the innovation variance is calculated for truncated
states only, rather than newly computed states. However
the first n components of x, = % Z;, need not be
generated by a state space equation of order n for n < n.,
i.e. the matrix %, might not have the shift invariance
structure 4., = A, A1.,, for any matrix 4, of dimen-
sion n X n, using obvious notation to denote submatrices.
Therefore the criterion only measures the direct influence
of the state coordinates on the prediction of y,, but it does
not take into account the dynamical generation of the
state. Thus in the case, where a state does not contribute
to the present of the output, but only to the future, it will
be neglected according to the criterion given above. As
the cited results show, this might be an extremely rare
situation. The main concern in this respect is, that in
situations, where the contribution is small, the same
behaviour is expected, ie. many observation will be
needed in order to detect this state component. In the
next section an example for this will be given.

5. Numerical examples

In this section three different examples are presented in
order to compare the various proposed order estimation
methods. The candidate order estimation algorithms will
be SV C(n), IV C(n) as presented above, NIC(n) as present-
ed by Peternell (1995) and M OE(n), which is implemented
in the N4SID procedure of the system identification
toolbox of MATLAB (Ljung, 1991): The idea here is to
formalise the search for a “gap” in the singular values.
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The order is estimated as
i = max{n: logé, > 3(logé; + logdy)},

i.e. the largest integer, such that the corresponding singu-
lar value is greater than the geometric mean of the largest
and the smallest nonzero estimated singular value. The
three examples include a low order single input single
output system without exogenous inputs, where the or-
der is expected to be easy to find, another SISO system
without exogenous inputs, where the order is expected to
be hard to identify, and finally a MIMO system with
a two dimensional observed input. The main points of
interest are the effects of the choice of the penalty term,
the weighting matrices, the integer parameters f and p,
and of course a comparison between the various proced-
ures.

5.1. Example I

As a first example consider the system defined by the
following matrices:

0 1 1.3
a-| | k- g3} e~
—0.7 0.5 0.3

This system has Lyapunov balanced Gramian of
roughly X = diag(2.55,1.78). The system poles are at
0.25 4+ 0.7984i and the zeros at — 0.4 4+ 0.4359i. In the
estimation two different weighting schemes are used:
CCA uses W} = (I'})~ /> and the method using W} =1
will be labelled N4SID. The restriction to these two
choices is arbitrary and only justified by the fact, that
these choices seem to be the most widely used ones, in the
following example different weightings will be used. Note
that the label N4SID is not to be confused with the
procedure N4SID introduced by Van Overschee and
DeMoor (1994). Here only the same weighting scheme is
treated, the actual algorithm however is not used. The
indices f = p = paic are used. Here paic denotes the order

Table 1

estimate in a long autoregression to explain y, as
Ve =ai1y—1 + -+ +a,y,—, + e, where the order is esti-
mated using AIC. It is well known, that in the present
setting paic tends to infinity at the rate log T. From
theoretical considerations as well as from practical point
of view thus f=p =| dpaic | for small values of d > 1
seems to be an appropriate choice (for a discussion on
this see e.g. Bauer, 1998). For each of the weighting
schemes, the order of the state space system is estimated
using four different methods: IVC and SVC with
C(T) = log T (denoted with IVC1 and SVC1, respective-
ly, in the sequel), IVC and SVC with C(T)=fplogT
(denoted with IVC2 and SVCR, respectively). Note, that
only for the last two procedures the consistency results
have been derived. One thousand time series of length
100, 1000 and 5000, respectively, have been generated
and used for estimation. Table 1 shows the results for
T =100, T =1000 and T = 5000 respectively. They
show, that the performance of the order estimation pro-
cedure depends heavily on the weighting scheme: For
CCA the IVC1 method works well, whereas it shows
problems to estimate the true order, when used with
N4SID. This is due to the fact, that in the Lyapunov
balanced realization of the true system, the entry C, , is
equal to — 0.0146 and thus close to zero. This leads to
a high risk of underestimating the order using IVC to-
gether with N4SID in this example. For CCA it is ob-
served, that as has been expected, the higher penalty term
results in a high risk of underestimation, while reducing
the risk of overestimation. For N4SID the SVC method
outperforms IVC and it is also observed, that for C(T) =
fplog T the accuracy increases with the sample size,
whereas the lower penalty term does not seem to lead to
consistent order estimates. In the CCA case it is seen, that
the higher penalty term leads to a big risk of under-
estimating the order for small sample sizes. On the other
hand for the N4SID weighting the smaller penalty leads
to a high risk of overestimation. Therefore no clear deci-
sion about the choice of the penalty has been found. Both

Here the probability of estimating the indicated order for 1000 time series of sample size T' is shown for two different weighting schemes (CCA and
N4SID) and 4 different estimation methods: IV C(n) with C(T) = log T (IVC1) and C(T) =fplog T (IVC2) and SVC with C(T) =log T (SVC1) and

C(T) =fplog T (SVC2). f=p = paic has been used

T 100 1000 5000
Est. order
<2 2 > 2 <2 2 > 2 <2 2 >2
IVC1 0.00 0.83 0.17 0.00 0.77 0.23 0.00 0.67 0.33
CCA IVC2 1.00 0.00 0.00 0.63 0.37 0.00 0.05 0.95 0.00
SVC1 0.00 0.94 0.06 0.00 0.93 0.07 0.00 0.94 0.06
SVvC2 1.00 0.00 0.00 0.86 0.14 0.00 0.09 091 0.00
IVC1 0.82 0.03 0.15 0.68 0.06 0.26 0.50 0.13 0.37
N4SID IVC2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
SVC1 0.00 0.66 0.34 0.00 0.40 0.60 0.00 0.37 0.63
SVC2 0.45 0.55 0.00 0.04 0.96 0.00 0.00 1.00 0.00




D. Bauer | Automatica 37 (2001) 1561-1573 1569

Table 2

This table shows the estimated means of the various order estimation procedures as a function of sample size and different weighting matrices Wf.
Here SVC, NIC and IVC use the penalty term C(T) = log T. The table has been produced using 1000 replications in each case

Wi T Method d =2 Method d = 4
e SVC NIC MOE e svec NIC MOE
CCA 100 3.50 2.30 5.50 3.67 2.07 2.31 6.32 4.03
250 5.80 278 7.06 5.23 5.23 2.87 15.25 10.89
500 6.53 337 7.64 6.03 5.55 343 17.23 13.48
1000 7.53 4.03 7.74 6.65 6.63 4.11 17.90 15.14
low pass 100 5.12 5.23 591 5.24 3.99 592 6.85 593
250 8.43 6.91 8.04 6.92 11.10 13.12 16.41 13.15
500 9.61 7.68 9.10 7.69 12.64 15.26 19.27 15.34
1000 10.43 8.51 10.10 8.52 14.32 16.68 21.09 16.76
high pass 100 3.97 5.60 6.30 5.64 2.57 6.43 7.21 6.50
250 6.93 7.55 8.75 7.69 6.89 14.50 17.83 15.11
500 8.12 8.38 9.92 8.61 7.82 16.83 20.89 17.66
1000 9.08 9.30 11.04 9.55 9.86 18.34 22.85 19.36

choices used in this example are heuristic and not moti-
vated by additional arguments. A theoretical justification
seems to be needed.

5.2. Example 11

Next, the various order estimation procedures will be
tested on an eight order system with poles at
7= 0.86i0'2in, 7= 0’761 0.3in’ 7= O.SCiO'Sin, 7= 0.6€i0'4in
and zeros at z = 0.8e*%1'", — 0.4755,0.1,0.3,0. Using this
example extensive simulations comparing the order es-
timation criteria have been performed. The system order
is hard to estimate and consistent estimates of the order
are not the main goal in this example. The Lyapunov
balanced Gramian is equal to diag(6.85,4.46,1.08,
0.39,0.045,0.015,0.0004,0.0002) and thus the system is
expected to be approximated well using a fourth order
system. A couple of different setups have been tested. In
a first simulation study 1000 replications of time series of
sample lengths T = 100, 250, 500 and 1000 have been
generated. In the subspace algorithms three different
weighting matrices W}’ have been applied: The CCA
weights, a low-pass filter, generated using a 6th order
butterworth filter with cutoff frequency 0.57 and the
corresponding high pass filter have been incorporated.
The choice of the cutoff frequency is arbitrary and not
problem oriented. The only purpose of using these
weighting schemes is to investigate their effects on the
estimated order and the estimated transfer functions.
Further f = p = dpaic has been used in all cases, where
d =2 and 4 are tried. The choice d =4 leads to com-
parably large values of f and p. These two different
choices are used to investigate the sensitivity of the order
estimation criteria on the size of the matrix, which is
decomposed in the algorithm. The average values of the
corresponding order estimates are given in Table 2. It can

Comparison of IVC and SVC to AIC and BIC

0.7 ———————————
IVC
0.6 SVC |1
AlC
0.5} BIC |
0.4} -
8
o
0.3F i
0.2} -
01F H J
[

1 2 3

4 5 6 7 8 9 10 M
Estimated order, f=p, T=100, CCA

Fig. 1. In this figure the order estimates obtained by SVC and IVC
using C(T) = log T are compared to the estimates obtained in the ML
framework using AIC and BIC. T = 100 and f = p = 2p,c are used
together with the CCA weighting scheme. The plots have been obtained
using 100 replications.

be seen, that the behaviour of the various algorithms is
very different for different weightings W;. For the CCA
weighting NIC gives values close to the true order for
d = 2, while it results in overly large estimates for d = 4.
Also MOE seems to suffer from the bigger choice of d,
whereas both SVC and IVC are relatively robust with
respect to this choice. For the low pass weighting all
estimation procedures show a tendency to overestimate
the system order by a factor of two for d = 4, and also the
results for d = 2 are large compared to the CCA case. The
same result also holds for the high pass weighting, except
that the estimates of IVC for d = 4 are better than the



1570 D. Bauer | Automatica 37 (2001) 1561-1573

ated transfer function,

Histogram of estimated order
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Fig. 2. These plots show the result of the simulation for T' = 1000. The left picture shows the average mean square error of the transfer function
estimates at 50 equally spaced frequencies in the angular frequency range w € [0, ) obtained using the various order estimation procedures with the
CCA weighting scheme and f = p = 2pic. The right plot shows the corresponding histogram for the estimated orders. The plots have been obtained

using 1000 replications.

MSE of estimated transfer function, d=4
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Fig. 3. These are the same plots as shown in Fig. 2 with respect to the choice f = p = 4puic.

respective estimates of the other order estimation proced-
ures. This indicates, that d = 2 is the favourable choice,
as compared to d = 4.

The order estimation procedur es are also compared to
the more traditional maximum likelihood based informa-
tion criteria. In Fig. 1 a histogram for the estimated
orders using IVC, SVC, AIC and BIC is given. The latter
two criteria estimate the order as the minimizing argu-
ment of the following function:

IC(n) = logdet(Q,) + C(T)d(n)/T,

where d(n) denotes the number of parameters as in IVC.
Q, denotes the pseudo maximum likelihood estimates of
the innovation covariance specifying the system order as
n. AIC uses C(T) = 2, whereas BIC uses C(T) =logT.
Here T =100 and f= p = 2paic have been used. It can
be observed, that BIC tends to choose n = 4 with a high
probability, while AIC selects relatively large orders. The
two subspace order estimates lead to slightly smaller
order estimates. Especially the results for SVC and BIC
seem to be comparable.

However, the order estimate might be seen to be not
the only interesting indicator. Therefore also the result-
ing estimates of the system are considered. The right plot
of Fig. 2 shows the square root of the mean squared error

of the estimated transfer function (estimated from 1000
replications) in the angular frequency range [0,7] ob-
tained by CCA using d = 2 for the four subspace based
procedures. Here the sample size is equal to T = 1000
and C(T) =1logT is used for SVC, IVC and NIC. The
figures show, that the IVC estimates are worse, despite
the fact, that the average estimated order seems to be the
best for this scenario. This is explained in the right plot of
Fig. 2, which gives the histogram of the order estimates:
In the IVC case there is a relatively high portion of low
order systems (over 50% are less than n = 4), as well as
a high number of overly large estimates (35% larger than
n = 10). This combines to a high bias, which shows in the
mean square error. The NIC and MOE perform about
equal, due to the very similar distribution of the order
estimates. The SVC method leads to a mean square error
almost identical to the one obtained by using NIC or
MOE, while choosing smaller orders on average, which
might be seen as an advantage. The results for d = 4 are
similar with one exception: Contrary to what has been
said before, the SVC method reacts much larger to the
change of d than NIC and MOE with respect to the mean
square error. This is due to the fact, that there is a higher
percentage of low orders estimated in this case leading to
a high bias error. The results for NIC and MOE are not
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Fig. 4. These plots show the result of the simulation for T = 100 (left picture) and T = 1000 (right picture). The pictures shows the average mean
square error of the transfer function at 50 equally spaced frequencies in the angular frequency range w € [0, 7) obtained using the IVC procedure (left
plot) and the MOE procedure (right plot) for the three different weighting scheme and /= p = 2pc. The plots are based on 1000 replications.

that sensitive, although on average much higher orders
are chosen. The corresponding pictures are given in
Fig. 3. Finally also the effect of the weightings on the
mean square error is discussed: Fig. 4 shows two plots,
where the left one refers to T =100 and the order
estimate according to IVC with penalty log T. The right
plot shows the result for MOE and T = 1000. In both
cases there is somewhat surprisingly hardly any differ-
ence due to the choice of the weighting matrices. A sim-
ilar picture holds for the other cases as well. This
observation is in contrast to the observations in the
results of simulations with fixed order, where an influence
of the weighting matrices with respect to the mean square
error has been observed (see e.g. Bauer, 1998). It is re-
marked, that this observation might not be typical, but is
certainly worth to be investigated further.

5.3. Example 11l

As a last example also a system with observed
exogenous inputs is treated: Consider the system given by
the following matrices:

08 02 0 —1
A= , B= i
—04 —05 1 05
L5 0 0 0
K = , D=
—02 —08 0 0

and C = I,, the two x two identity matrix. The poles of
the system are 0.7352 and — 0.4352, the zeros of k, are at
—0.6583 and 0.2583, whereas the zeros of [, are at
— 0.1000 + 0.9327i. Fig. 5 shows the probabilities of the
order estimates for different noise covariances Q = s2I,,
where the input is i.i.d uniformely distributed white noise
with zero mean and unit variance. In the 1000 replica-
tions of sample size T = 200 the choices f = p = 2paic
and the CCA weighting scheme have been used. The
penalty term was equal to C(T) = log T in all cases. The

s=10
1 : . :
0.5r
0 L Fml Il ﬂ H ﬂ ﬂ ﬂ
0 2 s=1 6 >6
1 T T ; ‘
. Il vVC
0.5f [ svC
1 MOE
al 1 n.n p [ l5Ne
0 2 s=0.1 6 >6
1 T T T
0.5¢ |
0 Il il I i
0 2 6 >6

Fig. 5. This figure shows the result of 1000 simulation runs using the
noise level s = 10 (top row), s = 1 (middle row), s = 0.1 (bottom row).
Each picture shows the probabilities of estimating the order using the
four estimation algorithms IVC, SVC, MOE and NIC: The weightings
have been chosen according to CCA. The truncation indices have been
chosen as f'=p = 2paic. The inputs are iid. uniformely distributed
white noise normalized to zero mean and unit variance. For SVC and
IVC the penalty term C(T) =log T is used.

three different noise levels were s = 10, 1 and 0.1, respec-
tively. It can be seen, that IVC has a tendency to overesti-
mate the order for small noise contribution, whereas NIC
underestimates the order for high noise level frequently.
Note, that for the case of additional exogenous inputs
Peternell (1995) suggests to use d(n) = (p(s + m) — n)
(fs — n), which essentially leads to a bigger penalty term
of the form n(sf + p(m + s))C(T), which is used for this
order estimation scheme. The order estimation proced-
ure implemented in MATLAB, i.e. MOE, shows a tend-
ency to overestimate the order in all cases. In this
example SVC shows the best performance, however,
further undocumented simulations show, that this is
sensitive to the choice of f and p. This example was
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chosen merely to illustrate that the proposed methods
also work in the case of exogenous inputs. It should be
noted again, that the order estimation techniques, except
for the IVC method, apply equally to the MOESP type of
methods.

5.4. Summary of simulations

The points investigated in the simulation section were
the comparison in between the various estimation
methods, the sensitivity with respect to the choice of the
indices f and p and the choice of the penalty term. In this
respect the first example showed, that the choice
C(T) =log T for SVC and IVC leads to a serious threat
of overestimation of the order, while leading to accurate
estimates for small samples. The choice C(T) = fplog T
on the other hand showed clearly convergent behaviour
and a high rate of misspecifications for small samples.
Thus a reasonable choice of the penalty term could lie in
between. Further work is required to find motivations for
particular choices. The example also showed, that for
IVC there are systems, where the estimation leads to
a high risk of underestimation even for high sample sizes.
The second example tried to evaluate the effect of differ-
ent choices of f and p, reassuring that for the CCA
weighting scheme both the order estimates obtained by
SVC and IVC react less sensitive with respect to these
values, whereas both NIC and the procedure imple-
mented in MATLAB show a high dependency on these
parameters. These findings motivate the choice of
1 < d < 2 with respect to order estimation. The results of
this second example also show a large impact of the
choice of the weighting scheme on the estimated order.
However no systematic behaviour has been observed and
also this point seems to be worth to be investigated
further. Finally the third example simply shows, that also
in the case of exogenous inputs present the order estima-
tion procedures are capable of delivering suitable esti-
mates, which show consistent behaviour. Summing up it
can be stated, that no single criterion can be isolated as
the best choice.

6. Conclusions

In this paper the question of order estimation in the
context of subspace methods has been addressed. Two
new procedures have been proposed and analysed.
Lower bounds on the penalty term in order for the
estimates to be (strongly) consistent have been given. The
method using the innovation variance has been shown to
suffer from severe theoretical disadvantages and thus the
use of this intuitively appealing procedure is discouraged.
For the SVC criterion the advantages certainly are the
possibility to obtain an estimate of the order with almost
no computational costs, as only the properties of the

estimates of the singular values, which are estimated in
any case, are used. In a simulation study it has been
demonstrated, that the methods lead to reasonable re-
sults. It has been shown, that SVC is less sensitive to the
choice of the truncation integers f'and p than the criterion
introduced by Peternell (1995) or the method used in the
system identification toolbox of Ljung (1991). However
the SVC criterion also contains a subjective component
in the choice of the penalty term. In the simulations no
clear picture on how this should be chosen could be
obtained and no heuristical motivation for any particular
choice has been found. This seems to be a rewarding
question for future research.
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Abstract

The properties of the so-called subspace algorithms, up to now used almost only for stationary
processes, are investigated in the context of cointegrated processes of order 1. It is shown for
one of these algorithms that it can be adapted to deliver consistent estimates of all system
parameters in the case of general (1) VARMA models and mild conditions on the under-
lying noise. Estimates of the cointegrating space are derived and several test procedures for the
cointegrating rank are proposed. Consistent estimation of the system order is also discussed. A
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1. Introduction

In econometrics it is common practice to analyze integrated or cointegrated
processes using their vector autoregressive (VAR) or vector autoregressive moving
average (VARMA) representation. For linear processes the state space representation
is an alternative and equivalent representation, which turns out to be very convenient
for the analysis of cointegration. Based on the discussion of state space models for
integrated processes (of order 1) we propose a simple estimation procedure for all
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system parameters, two tests for the cointegrating rank and one estimation procedure
for the cointegrating rank.

The estimate is based on the so-called subspace algorithms. These have been de-
veloped in the engineering literature over the past 15 years for stationary processes.
The computational cost amounts to performing OLS regressions and one singular value
decomposition. Thus, especially for VARMA processes, the computational cost is much
lower than for the nonlinear optimization problem that has to be solved in (pseudo)
maximum likelihood estimation.

The only application of subspace algorithms for nonstationary processes so far is
Aoki (1990, Chapter 9). His procedure however lacks a thorough statistical founda-
tion including issues of estimating integer parameters like the system order and the
cointegrating rank. Aoki’s procedure furthermore can be shown to be inefficient for
stationary processes.

A couple of variants of subspace algorithms have been developed, e.g. Larimore
(1983), Van Overschee and DeMoor (1994) or Verhaegen (1994). In recent years,
the asymptotic theory has been developed for the stationary case in several papers:
Deistler et al. (1995) and Peternell (1995) discuss consistency. Bauer (1998) and
Bauer et al. (1999) establish central limit theorems for the estimates and also derive
consistent order estimation procedures. Bauer (2002) shows that Larimore’s (1983)
CCA algorithm is asymptotically equivalent to pseudo-maximum likelihood analysis for
stationary systems. l.e. for stationary processes this method results in estimates that
have the same asymptotic variance as those obtained by maximizing the Gaussian
likelihood function.

Given the above-mentioned result of Bauer (2002) and the fact that the CCA algo-
rithm is especially suited for the analysis of multivariate time series without exogenous
variables, this paper is confined to this procedure, or to an adapted version for inte-
grated processes to be precise. Based on this procedure we derive tests for the number
of unit roots and therefore for the dimension of the cointegrating space. These tests
are based on the estimated singular values from the singular value decomposition per-
formed in the algorithm, or on the estimated eigenvalues of the matrix describing the
state transition respectively (the details are given in Section 3). The eigenvalue-based
test is relying on arguments in the spirit of Stock and Watson (1988).

Let us state once again that the analysis is restricted to processes where the only
unit roots are located at one and where also the integration order is restricted to one,
thus, e.g. I(2) processes or processes with seasonal unit roots are excluded up to now.
As will be seen below, the restriction of an integration order 1 corresponds in the state
space representation to the assumption that the eigenvalues of the system at one are
simple.

Our work is of course not the first to deal with cointegration analysis in the context
of VARMA processes. Yap and Reinsel (1995) derive the maximum likelihood esti-
mator for cointegrated Gaussian VARMA processes integrated of order one. Saikkonen
(1992) derives consistency of Johansen (1995) type estimates for cointegrated VARMA
processes if the lag length of an autoregressive approximation is increased with the
sample size at a sufficient rate. For both of the above approaches, the asymptotic null
distributions of the tests for the cointegrating rank are the same as for the Johansen
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procedure for VAR processes. Wagner (1999) shows that the Johansen procedure ap-
plied with a fixed lag on an underlying VARMA process results in consistent estimates
of the cointegrating space. The short-run parameters however are not estimated con-
sistently anymore in this case. Another strand of the literature is based on (static or
dynamic) regressions, with possible correction factors for serial correlation. These ap-
proaches are in a way nonparametric in that they focus on the testing for and estimation
of cointegrating relationships. They usually neglect the estimation of the other system
parameters, these however may usually be recovered in a second step, due to usual
super-consistency of the estimated cointegrating relationships.? See e.g. Phillips (1991,
1995), Stock and Watson (1988), Bewley and Yang (1995) or Poskitt (2000) from a
long list of contributions.

We believe that our approach represents a valuable additional tool for several reasons.
First, it introduces the state space representation (in a canonical form) of integrated
processes and highlights its properties. Second, it brings to the attention of the econo-
metrics community results that have up to now been almost exclusively discussed in a
stationary setting in the systems engineering literature. The consistency of one of these
procedures also for integrated processes that is derived in this paper thus points to the
potential usefulness of these developments also for econometric analysis. The applica-
bility to VARMA processes and the computational simplicity are further advantages.
The results thus allow at least for a cheap “cross-validation” of results derived with
standard methods, like e.g. the Johansen procedure.

The estimates could also be used as consistent initial values to obtain efficient esti-
mates of the parameters performing one Newton step for pseudo-maximum likelihood
estimation, as presented in Yap and Reinsel (1995) or in Bauer and Wagner (2000b).
If only used as initial values, the subspace estimates still have the additional advantage
of providing also initial (and consistent) information concerning the structure of the
system (i.e. the system order and the cointegrating rank).

Both, the simulation results and first applications (see e.g. Bauer and Wagner (2000a),
for an application to interest rate data), indicate that the method performs at least
comparable to standard methods like e.g. the Johansen method, with the additional
advantage of providing consistent estimates of all system parameters for VARMA
processes in a computationally simple fashion.

The paper is organized as follows: In Section 2 the state space framework is intro-
duced and its relation to the VARMA representation of linear stochastic processes is
discussed. In Section 3, subspace algorithms are introduced and discussed. Section 4,
states the theoretical results for the method presented in Section 3 for the stationary
and, which constitutes one of the main results of the paper, for integrated processes.
Section 5 is devoted to derive consistent estimates of the system order and to the
development of tests for the cointegrating rank. In Section 6 simulation results to as-
sess the finite sample properties of our methods are presented and Section 7 summarizes
and concludes. All proofs are collected in Appendix A and in Appendix B the gap
metric (used in some of the proofs) is defined and the simulated systems are given.

2 Thus, these regression-based approaches may often be seen as descendants of the seminal Engle and
Granger (1987) 2-step procedure.
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2. State space models

In this paper we consider finite-dimensional, time-invariant, discrete time systems in
their state space representation of the form

X1 =Ax; + Ke,  y = Cx; + Eg, (1)

where y; denotes the s-dimensional output series observed for t =0,...,T. & denotes
an s-dimensional white noise sequence. 4 € R"*", K € R"**, C ¢ R**", E € R*** and
x; € R" denote the n-dimensional state sequence. Throughout the paper ¢, is assumed to
be an ergodic strictly stationary martingale difference sequence for which the following
conditions hold:

[E{Et|e0/7t_]} - 0, E{Stf‘::‘yt_l} - E{Stf‘::} :1.8': (2)
[E{gt,agt,bgt,c‘g;t—l} = Wq,b,c» [Eﬁia < 00, (3)

where ¢, , denotes the ath component of the vector ¢ and #,_; denotes the o-algebra
spanned by the past, i.e. by &_1,&—2,...,6 and xo. w,p. 1s a constant and I, de-
notes the s x s identity matrix. The matrix £ is assumed to be nonsingular and lower
triangular with positive entries on the diagonal. This restriction is necessary to en-
sure identifiability of £ and ¢, The above conditions will be referred to as standard
assumptions throughout the paper. The assumptions concerning the noise exclude ARCH
effects. The extension of the method to cover also heteroskedastic innovations is a topic
of further research.

In the systems theory literature it is well known that state space systems and VARMA
systems are just two different representations of the same object. To
acquaint the reader with the properties of state space and VARMA representations,
the main facts relevant for this paper are collected in this section. For a more de-
tailed discussion see e.g. Hannan and Deistler (1988, Chapter 1). Define the map-
ping © as n(4,K,C,E) = k(z) = E + zC(I, — zA)"'K, i.e. © maps the state space
system (4,K,C,E) to its corresponding transfer function k(z). Here z denotes both,
a complex variable and the backward shift operator. From the above definition of
k(z), it is directly seen that k(z) is a rational transfer function. It can furthermore be
easily verified that also conversely for each rational transfer function k(z) there ex-
ists (at least one) state space system (4,K,C,E) such that n(4,K,C,E) = k(z). The
same type of relationship also holds between VARMA representations of systems and
the corresponding transfer function. So we can analogously define a mapping 7 as
i(a,b) =k(z)=a"'(2)b(z) for a(z) and b(z) matrix polynomials. Neither the VARMA
nor the state space representations are unique. For fixed transfer function k(z) the sets
{(a,b): 7(a,b) =k(z)} and {(4,K,C,E):1(4,K,C,E) =k(z)} are called equivalence
sets. For VARMA systems equivalence sets are described using polynomial matrices
(as @(a,b) = 7( pa, pb) holds for all polynomial matrices p with p(0) nonsingular)
for state space representations nonsingular matrices have the same function: It is ob-
vious, that n(4,K,C,E)=n(TAT~',TK,CT~,E). In this case the state space systems
(4,K,C,E) and (TAT~',TK,CT~',E) are called observationally equivalent. A state
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space representation of a transfer function k(z) is called minimal, if no other state space
representation with smaller state dimension exists. Under the assumption of minimality,
all observationally equivalent state space systems are described by transformations with
nonsingular matrices, as above.

The concept of minimality is linked to three matrices: To the observability matrix
O=[C",A'C" (4%)C’,...7, to the controllability matrix € = [K, AK, A%K,...] and to
the Hankel matrix #'=0C=[CA"™/~*K], j=1,..- For a minimal system all three matrices
have rank equal to the system dimension or system order, usually denoted as n. The
nonsingular matrices 7 that generate observationally equivalent state space systems,
correspond to a change in the state space basis and result in a different factorization
of the Hankel matrix as # = [O0T'][T¥%].

Assume e.g. that a system representation leads to an observability matrix (¢ not
having full column rank. In this case there exists a state vector, x say, such that
Ox =0. This implies that components of the state in this direction ¥ have no influence
on y, and can therefore be omitted from the system description. In other words (after
an appropriate basis change) the state dimension can be reduced without changing the
input—output characteristics of the model, when the observability matrix does not have
full rank. Similar lines of thought can be applied to the controllability matrix.

Note at this point that for a minimal system, the eigenvalues of the matrix 4 cor-
respond to the poles of k(z) and this follows from (I, —z4)~! = det(, — zA) ' A(z),
with A(z) denoting the matrix of cofactors. Thus, for integration to occur, some of the
eigenvalues of 4 must be equal to one. Consider e.g. the case 4=1,. Then x,; =x,+K¢,
shows that x, is integrated of order 1 and in this case the state is a vector random
walk. Thus, for this example x, = K Z;;é & +xo. Since y; = Cx; + E¢, it follows that

vy, =CK E;;(l) &; + CEg; + Cxo, with C € R*" and K € R"**. The number of common
trends in y, is thus given by the rank of the matrix CK € R***. This rank is at most
s, which reflects the fact that at most s common trends can be present for y, (see also
the discussion below).

Seasonal unit roots analogously correspond to complex eigenvalues of the matrix 4
with modulus 1. A minimal system (1) thus generates output that is integrated if all
the eigenvalues of 4 are inside the open unit disc or at one. The integration order of
vy, is determined by the structure of the eigenvalues at one (see Bauer and Wagner
(2001), for a detailed discussion). The integration order is equal to 1 if the algebraic
multiplicity of the eigenvalue one equals its geometric multiplicity.

As a final assumption we restrict attention to systems that are strictly minimum
phase, i.e. to systems where in the state space representation all eigenvalues of the
matrix (A — KE~'C) have absolute value smaller than one. This corresponds to the
assumption of all zeros of k(z) = n(4,K,C,E) being outside the closed unit disc.
Denote by M, the set of all transfer functions k(z), which fulfill the above conditions
on the poles and the zeros and where the minimal state dimension of a state space
representation of k(z) is equal to n. Note that in M,, stationary systems and integrated
systems with different cointegrating ranks are included.

Since the representation of a transfer function k(z) € M, in state space form is not
unique, further restrictions have to be imposed on the matrices (4,K,C,E) in or-
der to achieve uniqueness. This is achieved by the definition or construction of a
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canonical form. There are many ways of imposing the required restrictions to ensure
uniqueness. One way is to choose the controllability matrix % equal to the first n
linearly independent rows of #. The row indices describing these rows can be rep-
resented by a multi-index called Kronecker index. The Kronecker index is unique to
each transfer function in M,,. The subset of transfer functions £(z) € M,,, where the first
n rows of the corresponding Hankel matrix # are linearly independent, is called the
generic neighborhood of the echelon canonical form. The name derives from the fact
that this set is generic in M,, and allows for a continuous parametrization, i.e. a home-
omorphic mapping attaching parameter vectors € R¥*™6+1/2 to transfer functions
k(z) € M, for appropriately defined topologies. The advantage of the echelon canonical
forms lies in the fact that the parameter values occurring in the echelon state space rep-
resentation are closely linked to the parameters occurring in the corresponding echelon
VARMA representation of the system (for the exact relation see Hannan and Deistler,
1988, Section 2.6). In particular, there exists a homeomorphic bijection between these
two different sets of parameter vectors. Also the sets of transfer functions, which can be
parametrized continuously, are identical, so that the user is completely free to choose
the setup she is more familiar with. In particular, any estimated state space system can
be identified with the corresponding echelon VARMA system, and consistency results
derived for echelon state space systems also hold for the echelon VARMA parameters
(on generic subsets of M,, to be precise).

A companion paper, Bauer and Wagner (2001), develops a different canonical form
for state space systems of form (1) containing an arbitrary number of unit roots located
at any point on the unit circle. This canonical form reveals the relationship between
the integration orders (corresponding to the different unit roots) and the structure of
the corresponding eigenvalues of 4 in a minimal representation. In this paper we are
going to draw from these results, and the canonical form, on which the results derived
in this paper are based, is a special case and is of the following form:

A K B
A_[OAS[], K_[Kst], C=[C Cql.

Here ¢ denotes the number of common trends in the minimal state x, and (A4, K, Cst)
denotes a state space realization of the stationary subsystem. Note that there can be
no more than s common trends in a minimal state x;, which is seen as follows: Due
to the structure of the canonical form in the present case, the observability matrix ¢/
takes the form

Cl Cst
O = C1 Cydy

and thus the first block column has rank equal to the rank of Cj, which is less or equal
to s. This also shows that for a minimal representation, C; is of full column rank c.
Analogous arguments show that in a minimal representation, the row rank of K, is
equal to c¢. Thus, for minimal systems ¢ < s denotes the number of common trends
present in both y, and x,, irrespective of the system order n. From the structure of the
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state space representation it follows that
—1

yi=CiKi Y&+ ka(z)e, (4)
j=0

where ky(z) = E + zCq(I,—. — zAy) 'Ky, assuming zero initial conditions for the
nonstationary part of the state. This immediately shows that if » denotes the number
of linearly independent cointegrating relations for y,, the equation ¢ =s — r holds.

The representation given above is not unique. The set of observationally equivalent
state space systems, which also have a block-diagonal 4 matrix, where the (1, 1) block
is equal to the identity matrix, is characterized by S =diag(S], Ss), where both matrices
S1 € RE%¢ and Sy € R"=9)*("=) are nonsingular. Thus, further restrictions have to be
imposed in order to reduce the set of observationally equivalent systems obeying all
restrictions to a singleton. In other words, to achieve identification of the parameters,
a unique representative has to be selected of the set of (observationally equivalent
minimal) state space systems that represent the transfer function k(z).

In the canonical form presented in Bauer and Wagner (2001) C; is chosen to be
part of an orthonormal matrix, i.e. C, € R**¢,C{C, =1, is assumed.> Therefore there
exists a matrix Ci- with (Ci-)'Ci- =1, and (C;i-)'C; =0, i.e. Ci- spans the orthogonal
complement of C;. Let C_'/:[Cl, CIJ-]. Since all the eigenvalues of Ay are, by construc-
tion, restricted to be inside the unit circle, it is easily seen that ky(z) is analytic in the
closed unit disc. Note that the representation given in Eq. (4) coincides with that of
Granger. It is immediate that the first component in (4) corresponds to the common
trends and that the columns of Cj- span the space of the cointegrating relations. There-
fore, the cointegrating rank is equal to ». The number of common trends is equal to the
number of eigenvalues of 4 at one, denoted with ¢, and ¢ =5 — holds. In the case of
higher integration orders, the relationship between the eigenvalues and the integration
orders (at the different frequencies, i.e. corresponding to the different unit roots) is
more complicated. Still however, the eigenvalue structure (for details see Bauer and
Wagner, 2001) determines the integration orders and the numbers of components with
different integration orders.

3. Subspace algorithms

Subspace algorithms originated in the engineering literature in the 1980s. They
provide an alternative to classical (pseudo) maximum likelihood estimation of linear
time-invariant systems, like e.g. VARMA systems. In the meantime, a variety of algo-
rithms is available, e.g. CCA (Larimore, 1983), N4SID (Van Overschee and DeMoor,
1994) or MOESP (Verhaegen, 1994). In this paper we restrict attention to the algorithm
described in Larimore (1983), which is well suited for the analysis of multivariate time
series, where no exogenous observed variables are present.

3 These restrictions are not sufficient for identifiability in the general case and some further restrictions
are needed. However, these restrictions are not important for the present setting and thus we refer to Bauer
and Wagner (2001) for details.
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The main idea of this algorithm lies in the interpretation of the state: Consider
the problem of predicting y;y;,/ = 0 from its finite past up to time ¢ — 1, i.e. from
V1> Vi—25-., o and xo.* From system equations (1) it follows that

Jj—1
Virj = CAx, + Z CA'Keryji—1 + Egps ;. &)
i=0
Now, since
—1
x, = A'xo + ZA"K&_,._1
i=0
—1
=A'xo + ZAiKE?l(J’t—i—l —Cxi—i—1)
i=0
—1
=(4—KE™'C)xo+ Z(A — KE“'CYKE 'y,_i_1,
i=0

one obtains y(¢+j|t)=CA’x,, where y(¢+j|t) denotes the best linear predictor of y,;
from the knowledge of y,_i,..., yo,xo. Thus, the state x, is a basis for the predictor
space for the whole future of y,, i.e. for y,4;,j > 0, and is contained in the past of
the time series. For notational brevity let 4 = (4 — KE~'C). Then, after substituting
for x, the above expression giving x; as a function of xy and past y,’s, we can re-write
Eq. (5) in stacked matrix format for all j > 0 as

¥ CKE™' CAKE™' ... CA"'KE™
Vil CAKE~" CAAKE~' .. c4d' 'KE™! Vi1
. . . . . Yi—2
Verj CA/KE™" CAAKE™" --. cA/A "' KE~! N
: 0
C E 0 0 .- 0 --- g
cA CK E 0 --0-- -~
+ : . A'xp + : : R :
c4 CA 'K CA/?K --- CK E --- &l
C &
Yi—1 CA €l
Yi—2 . _
1 N N P
: cA’/ Eril
Yo . .

4In the case that xq is not known, xq is estimated using the Kalman filter and the resulting estimate is
used for the prediction. This, however, does not change the asymptotic properties.
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The above equation describes the future of the process, y;1;,j = 0, as the sum of
three components: The first term is due to the (finite) past of the process y,_1,..., Vo,
the second term describes the impact of the initial state xy and the third term shows
the impact of the future of the noise process ¢, = 0. The latter term is orthogonal
to the former two. Note that for ¢+ — oo the second term vanishes, since due to the
strict minimum-phase assumption the matrix A= (4 — KE~'C)" converges to zero.

The matrix f§ in the above equation connecting the past of the output y, (i.e. terms for
s < t) to the future values (s > ¢) carries structural information about the system, i.e. it
contains relevant information about the system matrices (4, K, C,E). The idea of sub-
space algorithms is to use this information to obtain estimates of the system matrices.

For estimation only a finite set of observations is available, hence the above equation
is utilized in a truncated version. Note that the matrix f in the equation above has
rank equal to n, the system order. Thus, choose two indices f and p, both larger or
equal to n, and define

Y+/ = [yf,y{+1,...,y§+_f_1]’,

Yo, =it Vica vl
and
A AR ¢
Furthermore, let
Op=[CAC,....(47 "7,
Hy=[KE',(A—KE"'C)KE™",...,(4A— KE~'C)?"'KE™"]

and let &, denote the matrix with the ith block row [CA?K,...,CK,E,0] for i =2
and [E,O0,...,0] as its first block row. As a second change to the above equation, the

state p-periods ahead is employed, since only a finite past y,_i,..., y,—, is used. With
this notation the truncated equation can compactly be written as
Y =0 A Y, + Of(A—KE™'CYPxip + 8 7E/ . (6)

The above observations lead to the following procedure:

(1) In a first step, regress Yﬁ'f on Y, , to obtain an estimate /? rp OF Op A

(2) Typically /? 1, p 1s of full rank, whereas Oy %), is of rank n for f, p = n, where n
denotes the true order and f and p are user-chosen integers. Thus, approximate
/3 +,p by a rank n matrix with decomposition 0 r Ay »; see below for details on the
approximation.

(3) Use the estimate JiA/p to estimate the state as x; = J{A/p Y, ,. Once the state has been
estimated, the system equations (1) can be used to obtain estimates of the system
matrices (4,K,C,E) by ordinary least squares: First regress y; on X, to obtain
an estimate C and residuals . Then Q = (1/T) Z[ | &4& is an estimate for the
innovation variance. Thus, £ can be calculated as the lower triangular Cholesky

A N~ oAl . . . R ; . s
factor of Q and § =FE §. Finally regress x;;1 on x; and & to obtain estimates A
and K respectively.
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The approximation performed in step 2 is not performed on ﬁ 7,p directly, but on
a weighted matrix W}rﬁf pW;. The mentioned subspace algorithms differ i.a. in their
choices of weighting matrices. Let I’ ; = Z;T V() and F Z;T:1 Y ,(Y,)
denote the (noncentered and unnormalized) sample covariances of YtJrf and Y, ,. Here
¥, =0 for t < 0 and ¢t > T is used.> Then in the algorithm CCA, Wf = (f_;)_‘/2

and W = (F )'/2 respectively.® For MOESP and N4SID, Wf =1 and Wp is as for
CCA. The MOESP type algorithms are differing from e. g. CCA algorithms in that they
are uncovering the system matrix estimates based on (Qf, whereas CCA is exploiting
the structure of .%A/},, since the state is estimated as X, = %A/I'DY,;,. MOESP algorithms
are considered to be more suitable for the estimation of systems containing exogenous
variables (see e.g. Bauer, 1998). The choice of weighting matrices in CCA also explains
the name, canonical correlation analysis: The algorithm amounts to an estimation of
the canonical correlations between Yt*- and Y,

Bauer (2002) shows that for stationary systems the CCA algorithm results in estimates
that have the same asymptotic properties as pseudo-maximum likelihood estimates.
Thus, we focus attention on the weighting matrices as specified in the CCA algorithm,
which however will have to be modified for integrated processes to ensure consistency
also then

Let Wj /3 oWy = = U3V be the singular value decomposition where U contains
the left singular Vectors, 3= diag(61,...,Gmin(s, p)s) contains the singular values or-
dered decreasing in size and ¥ contains the right singular vectors. For a system of
order n, exactly n singular values are larger than zero. Of course, only estimates
G1 =20y = 0uy1 = = Omin(s,p)s are available. The estimated singular values
&,,H, <> Cmin(/, s will be nonzero due to small sample and noise effects. Asymptoti-
cally 6,11,...,0min(f, p)s cOnverge to zero. Now, paralleling the stationary case (Bauer,
1998), the order estimation is based on considering the size of the first neglected
singular value, 6,41, exploiting the asymptotic behavior of the estimates. Define the
following criterion:

SVC(n) = 6., + 2nsHr/T. (7)

Here Hr > 0,H7/T — 0 denotes a penalty term, which determines the asymptotic
properties of the estimated order. The number of parameters in a model with state
dimension n is equal to 2ns (for the generic neighborhood, to be precise), excluding
the parameters in E, see e¢.g. Hannan and Deistler (1988, Theorem 2.6.3). The order
estimate, 7 say, is then given by the minimizing argument of the criterion function
SVC(n). It will later be shown that this procedure is consistent, for suitable choices of
Hp, also for integrated processes (see Theorem 3 in Section 5).

5 Alternatively, the summation can be limited to the range p + 1 <t < T — £, this does not change the
asymptotic results of this paper. However, it may well influence the finite sample properties.
6 x1/2 denotes the Cholesky factor of the positive definite matrix X such that X /2(x1/2) = x
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Thus, for the specified rank n, where e.g. n =7, decompose the SVD in two parts:
~ + A — Aant NN I
ﬁfp =02V =U,2,V,+R,
where U, € R/**" V, € RP*" and 3, € R"™*". Here 2, = diag(64,...,d,) contains the
n dominant singular values ordered decreasing in size, i.e. 1 =6, > --- > 6, > 0. The
matrices U, and ¥, contain the corresponding left and right singular vectors.
The remaining singular values and vectors are attributed to R and are neglected The
rank n approximation to ﬁ/, is now given by 0,4, = [(Wf) YOV, KU
and thus %, = fn V;(W; )~!. Observe, that 0 r and A, » will, in general, not have the
structure of their population counterparts ¢y and %, e.g. there will exist no matrix
1‘1, such that [I(f,l)s,O(f*”s’s](@ffi = [Of(sil)S’S,I(/',l)s](:r"f.

For integrated processes we are going to modify the above procedure for the estima-
tion of A, » and therefore X;. Let, as before, the true cointegrating rank be denoted by r,
then ¢=s—r common trends drive the system. Assume that a consistent estimate C; of
C1, as defined in the canonical form, is given. There are several ways known to obtain
such an estimate, and below it is shown that the subspace algorithm in its standard
form can be used to obtain the required estimate. A computationally simple way to
obtain an estimate of C; is to regress y; on the first ¢ components of the state esti-
mated by the standard CCA algorithm. The subspace estimates of the cointegrating space
achieve super-consistency, i.e. 77(C; — Cl) — 0 for 0<y< 1 Now denote (parallel-
ing the discussion in Section 2) with C [CI,C1 1’, where C € RS, ¢ C1 =0 and
(o . )y C Al =1,. Thus, the columns of Ct’]l span the estlmated comtegratlng space. Now
define a new weighting matrix Wf oq=lU® C) Zt Y +f) I® C) 172 @ C)
using the Cholesky decomposition as the square root. In comblnatlon with the mod-
ified weighting matrix also the estimate for ,ff has to be modified: For any choice
of weighting matrices, the estimated matrix Ji” =3, V (W )~ can alternatlvely be

written as = Ul " Wf ﬁ +,p- Now, if the modified weighting matrix Wf’c1 is used, the
corresponding matrix of left singular vectors U, has to be changed to Un,c, where

. I ch(n—c)
Upe= — . .
5 |:O(]S c)Xc U(z’z)

U(2,2) denotes the (2,2) block of U,. This modification is motivated by the fact that
(as shown in Appendix A) U, — Uy, with

Ic ch(nfc)
UO_ |:O(fs—c)><c U0(2,2) .

Thus, under the assumption of a correctly specified number of common trends, c,
and the availability of a consistent estimate of the common trends space, the subspace
procedure can be modified as follows: Use the corresponding modified weighting matrix
W;Cl and the modified matrix U n.c to obtain an adapted estimate of A, »» Which is given
by U ;,CW}F,C] [2 +,p- The replacement of U, by U nc changes the asymptotic properties of
the estimates and guarantees that also the estimates corresponding to the stationary part
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of the transfer function are consistent (see Theorem 2). The approach just described
above is called adapted procedure throughout the paper.

For stationary processes, i.e. when » = s and thus ¢ = 0, the adapted procedure
coincides with the standard CCA procedure.

4. Main results

Let M C M, denote the set of all transfer functions k(z)€ M, without poles
on the unit circle, i.e. which describe stationary systems. Further denote with M3:+
the set of all transfer functions k(z) € M, such that the a.s. limit for 7 — oo and
p = p(T)— oo (whose existence is guaranteed under the assumptions of Theorem 1)
W}rﬁWO_O of Vf/;ﬁf pW; has n distinct nonzero singular values. Bauer et al. (1999)
show that MS“" is a generic subset of M. The following results that clarify the
asymptotic properties in the stationary case can be found in Bauer et al. (1999) and
Bauer (1998, 2002).

Theorem 1. Let y, be generated by a system of form (1), where the white noise
& fulfills the standard assumptions and where k(z) € MS' denotes the true trans-
fer function of order n. If f = f(T')>=n is a user-supplied integer and p(T) >
— (d/2)(log T/log |po|), where pqo is an eigenvalue of A — KE~'C of maximum mod-
ulus and d > 1 is some real value, and if max{f(T), p(T)} = o((log T)*) for some
a >0, then

o For k(z)E M the estimate of the transfer function is a.s. comsistent, i.e. Ié(z) —
k(z) a.s., where convergence is in the pointwise topology (see e.g. Hannan and
Deistler, 1988).

o For k(z) e Mt the estimate of the system matrices is a.s. comsistent, i.e. there
exists a realization (4,K,C,E) of the true transfer function k(z) € MS“*, such that
|vec[d — A, K —K,C — C,E — E]|| — 0 a.s. Here vec denotes the operator stacking
the vectorizations of the various matrices.

o For ke M:“" a central limit theorem for the system matrix estimates holds, i.e.

VTvec(Ad — A,K —K,C — C,E — E)S 170, 7),

where % denotes convergence in distribution and A (0,V) is a Gaussian random
variable with zero mean and variance V.

e The choice W; = (I;;f-)_l/2 and W, =(I' )2 and f = p — oo according to the
restrictions imposed above implements a generalized pseudo-maximum likelihood
procedure and thus in the Gaussian case achieves optimal asymptotic variance.

o If Hr/(f(T)p(T)loglogT) — oo and Hy/T — 0, the order estimated using SVC
is a.s. consistent.

The usual choices concerning f are f(7)= f constant or f(T)= p(T). For p(T)
often 2p,c is used, where p,- denotes the order estimate obtained in an autore-
gressive approximation of the system. The above results, that clarify the asymptotic
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properties of the algorithm for the stationary case, also motivate the specific choice of
the weighting matrices and therefore the specific choice of the algorithm in this paper.
Expressions for the variance V' can be given, see e.g. Bauer and Ljung (2002). The
expression given there shows that indeed CCA is the optimal choice of the weighting
sequence for each fixed f > n.

The algorithm as it is described above, only leads to a system that is close to a
cointegrated system, a precise meaning of this statement is contained in the formulation
of Theorem 2. The estimation problem can however also easily be reformulated to
result in an estimated system that corresponds to an exactly cointegrated system. A
reduced rank regression approach delivers the required result: Remember the third step
in the description of subspace algorithms, where, after x;, &, C and E have been
estimated, X, is regressed on X, and & to obtain estimates of A and K (i.e. the
equation x,41 = Ax, + Ke; is estimated). Now, if the cointegrating rank of y, is 7,
the rank of the matrix 4 — I, equals n — ¢ which due to minimality furthermore is
equal to n — s + r. Thus, alternative estimates 4 and K of 4 and K can be obtained
from a reduced rank regression X, — %, = (4 — I,)¥, + K& under the constraint that
rank(A—1,)=n—c. This approach results by construction in an estimated system that is
exactly cointegrated with cointegrating rank . In order to separate the two approaches
notationally, the latter approach is referred to as reduced rank regression approach
and the least-squares method for obtaining estimates of 4 and K is called unrestricted
regression approach.

The first main result of this paper is now concerned with the properties of the
described algorithm (and its adaptation) for integrated processes of order 1. The proof
of the theorem is given in Appendix A.

Theorem 2. Let the s-dimensional output y, be generated by a system of form (1)
with the ergodic noise ¢ fulfilling the standard assumptions. Assume that the true
order n of the transfer function k(z) is known. Concerning the indices f and p
the following assumptions are made: p = p(T) = o((log T)*) for some 0 < a < oo,
p = —dlog T/log |po|, where py is an eigenvalue of A—KE~'C of maximum modulus,
d>1and f = n is fixed.

Given the true cointegrating rank r, the standard CCA subspace algorithm delivers
consistent estimates of order T of the cointegrating space as follows: Denote by C,
the first ¢ columns of C. Then consistent estimates ¢, of Cy, with T7||é] —Ci|—0
in probability for 0 <y < 1, are obtained by an OLS regression of y; on the first c
components of the state estimated by the standard CCA procedure, say X,,. As it is
Ci- that is spanning the cointegrating space, note at this point that T”||él —Gf[—0
implies that also T”"||(":',L —Ci|| —o.

Assume again that r is correctly specified and that the adapted subspace procedure
as described above is used with an estimate C| that is consistent of order T. Then
the estimate k(z)=E + zC(I — zA) 'K converges in probability to the true transfer
function k(z) for the unrestricted regression approach.

The same result concerning the consistency of the transfer function estimate holds
also if the reduced rank regression approach is used, where the estimate A of A is
constructed to fulfill the rank restriction rank(4 —1,) =n — c.
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The consistency result in the theorem is stated in terms of the transfer functions.
To reformulate the consistency result in terms of the system matrices (4,K,C,E), it
is required to transform the estimates to a canonical form (on generic pieces of M,,).
The next question, after having established consistency of the estimates, refers to the
asymptotic distribution of the estimates. This is left as a topic of future research.

A difference between the algorithm for the stationary case and the integrated case

is the different choice of the weighting matrices, W}r or W}r I respectively. It follows
from the above theorem that the former weighting matrix may be used in the estimation
of the cointegrating space and this estimate may then be employed in the construction
of the weighting matrix W;C]. Consistent estimates of the parameters corresponding
to the stationary part of the transfer function are derived by using the adapted version
of the subspace algorithm.

A second difference between the results for stationary and integrated processes is
the stronger restriction for the increase of p as a function of the sample size for the
case of integrated processes. This stronger restriction is introduced to guarantee that
(A—KE~'C)?=0o(T~") rather than only (4 —KE~'C)? =o(T~"/?), which is sufficient
in the stationary case.

Related to the consistent estimation of the cointegrating space, also tests for its
dimension are developed in the following section, where two different tests are provided.

5. Estimating the structure indices

In this section we discuss the determination of the structure indices, i.e. of the system
order n and of the cointegrating rank », or equivalently of the number of common trends
c. These problems are tackled by employing the properties of the singular values of

W} ﬁ 1, pW; and of the eigenvalues of 4. It has been seen in Section 3 that the system

order is equal to the number of nonzero singular values of the limit of Vf/}r /§ /7 pW;.
This property of the singular values 6,.; for j > 0 to converge to zero has been
exploited for stationary systems in the criterion SVC(n). The following theorem shows
that this order estimation procedure is consistent also for integrated processes.

Theorem 3. Under the conditions of Theorem 2 the estimate of the order obtained
by SVC as defined in (7) is weakly consistent for Hr/(p(T)loglogT) — oo and
H;/T — 0, i.e. 1 — n in probability.

The proof of Theorem 3 is given in Appendix A.

Concerning the estimation of (or testing for) the cointegrating rank we propose two
tests. One based on ¢, the estimated singular values. This test procedure will turn out
to be related to the Bewley and Yang (1995) approach. The other test is based on
the eigenvalues of A. The eigenvalue-based test is in the spirit of Stock and Watson
(1988) and employs the fact that the number of eigenvalues of the matrix 4 equal to
one equals the number of common trends. Let us analyze each test in turn and start
with the singular value based test.
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Our singular value based test for the number of common trends is based on corre-
lations between Yt’*f and Y, ,. Thus, there are similarities to other tests that are based
on canonical correlations between the observations. In particular, the test proposed by
Poskitt (2000) turns out to use a special case of our framework, i.e. when f = p=1
are chosen, as Poskitt calculates the correlations between y; and y,_;. The difference
thus is that our test takes the short-run dynamics into account. Furthermore, in our
proof we derive sharp bounds on the estimation error leading to the distribution of the
test statistic, whereas Poskitt (2000) only derives an upper bound. This comes at the
expense of not proving strong consistency, but only in probability statements. It should
be noted, however, that Poskitt (2000) uses a slightly different test statistic, which
could easily be adapted to the present case. For the special case of AR(1) processes
and for /= p=1 and for the null hypothesis of no cointegration, the test of Bewley
and Yang (1995) coincides with the test statistic presented in Theorem 4.

Let the process y, be generated by a minimal system of form (1) with order n
and true cointegrating rank ». Then (asymptotically) exactly ¢ (where again ¢ =5 —r)
estimated singular values are equal to one, whereas the remaining n—c nonzero singular
values are converging to their limits smaller than one. This relationship between the
number of singular values equal to one and the number of common trends only holds
true if no zeros of the transfer function are admitted on the unit circle® and the
only poles of the transfer function on the unit circle, i.e. the only unit roots, occur at
z=1. Any of these other cases also introduces unit singular values and therefore the
following test is not robust against the presence of e.g. seasonal unit roots. Consistency
of the estimated singular values has been established in the proof of Theorem 2. More
precisely, there it is shown that given a number of common trends ¢, the largest ¢
estimated singular values converge to one at rate 7, whereas the remaining n — ¢
converge to their limits only at rate 7'/2. Thus, a test for the cointegrating rank,
r=s —c, or more directly for the number of common trends ¢, may be based on the
asymptotic distribution of the first ¢ estimated singular values.

Theorem 4. Let the process y, be generated by a system of form (1), where the true
noise satisfies the standard assumptions. Let &; denote the estimate of the ith singular
value (which are assumed to be ordered decreasing in size) and let ¢ denote the true

number of common trends. Then T(1 —1/c 25:1 6']2) converges in distribution to

. -1
ltr C1QC, (/ W)W (u) du) . (8)
¢ 0

1 . . . .
Here fo W ()W (u) du denotes a mixture of Brownian motions, where the covariance
associated with W(u) is equal to K\K|. Q = EE’ denotes the innovation covariance
matrix.

The proof of Theorem 4 is given in Appendix A.

7 For the general situation, i.e. for higher order processes or for values of f and p larger than one, there
seems to be no connection.
8 Thus, we exclude in terms of a left coprime VARMA representation unit roots in the MA polynomial.
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Thus, for all values of ¢, the system can be estimated by the adapted CCA procedure
to obtain estimates of C;, K; and Q and these estimates could then be inserted in
the test statistic. However, this already shows the main disadvantage of this test, its
dependence on nuisance parameters. This drawback could in principle be overcome or
at least mitigated by bootstrapping the test statistic to decrease the finite sample effects
(see e.g. Bauer and Wagner (2000a), for a first application of the bootstrapped version
of this test).

Another idea is to follow the arguments developed in Poskitt (2000) and to ignore the
above distributional result and use only the implied in probability bounds in a procedure
to estimate the cointegrating rank. Again exploit the fact that as many singular values
as there are common trends converge to one at rate 7. Hence, simply take as an
estimate of the number of common trends the largest integer, say ¢, such that the cth
singular value 6, is the smallest one for which 1 — 63 < hy/T, where hy — oo and
hy/TV* — 0 as T — oo. This leads to a weakly consistent estimation of ¢ due to the
results concerning the asymptotic distribution of the singular values. The specific choice
of the threshold /47 influences the finite sample properties of the estimation procedure
and also the asymptotic properties of the estimated cointegrating rank derived with this
approach. It is common in the literature to choose the penalty /47 close to the lower
bound of possible values for which a.s. consistency is obtained (compare e.g. the order
estimation criterion BIC in the stationary case). Choices close to the lower bound then
ensure even strong consistency for the procedure. E.g. for the special case ¢ =1 in the
present setup it can be shown that h; = (log T)? is a crude lower bound to achieve
almost sure consistency (see the remark in Appendix A).

We advocate the use of the preceding result to obtain preliminary intuition concern-
ing possible cointegrating vectors and to combine the results of this procedure either
with the above test or with the nuisance parameter free test based on the eigenvalues of
A presented below. Nuisance parameter free test statistics can be based on the eigenval-
ues of A. This approach is very much in the spirit of Stock and Watson (1988): In that
paper a test for the number of common trends in processes z; having a representation
of the form II(z)D'Az, =¢, is derived. Here ¢, is white noise, I1(z) € R°*¢ is a matrix
polynomial and D € R**¢. A test for the number of common trends is based on an esti-
mated first order autoregressive coefficient matrix of the integrated process IT(z)D’z,. It
is shown in Stock and Watson (1988) that the test statistic is asymptotically unchanged,
whether I1(z) and D are known or estimated consistently.

This setup fits to our problem very well, taking into account a few changes. We
are not testing on the observations themselves, but on the state x, corresponding to the
canonical form presented in Section 2. And in our case it is the state that is unknown
and of which only an estimate is available. The matrices I1(z) and D themselves have
a very simple form in our case, since the state transition equation is an autoregression
of order one. Also in our canonical form the first ¢ components of the state are the
integrated ones, i.e. [/.,0° %"= Ax, = Ky&_y, hence I1(z)=1. and D = [I,,0°x("=9)],
Now, to derive a nuisance parameter free test for the number of common trends, we
have to show that the replacement of the state with an estimate £, = #, »Y., does
not change the asymptotic distribution of the test statistic. This is the content of the
following theorem, whose proof is given in Appendix A.
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Theorem 5. Let the assumptions of Theorem 2 hold and let the true number of
common trends be denoted as c. Assume that the adapted subspace procedure for
cointegrated processes under the hypothesis of a correctly specified cointegrating rank
is used.

Then the asymptotic distribution of the largest ¢ eigenvalues of T (ZtT:_Ol Xii1,%))

(ZtT:_Ol £, %)V —1,) is equal to the distribution of the eigenvalues of fol W(u)dw(u)
( fol W)W (u) du)~", where W(u) denotes the c-dimensional standard Brownian motion.

Since A = (ZtT:_Ol )€,+1,)?;)(th:_0] X1, %,)7Y, this Aresult directly leads to nuisance
parameter free tests based on the eigenvalues of A.

Thus, given the above result, the eigenvalues of 4 or respectively of T'(4 — I,)
can be used to construct tests for the number of common trends (and therefore for
the number of cointegrating relationships) in a straightforward way. Tests based on
Theorem 5 have, as opposed to tests based on Theorem 4, the advantage of being
nuisance parameter free.

Analogous to this result, it seems tempting to investigate also different schemes for
obtaining the number of cointegrating relations: Theorem 5 basically shows that the
replacement of the state x;, by an estimate X, does not change the usual asymptotics.
The question whether an analogous statement also holds for the Johansen approach
applied to the state equation is currently under investigation.

There are, as in Stock and Watson (1988), several possibilities for constructing tests:
For a given null hypothesis of ¢ common trends, the test statistic can be based on the
cth estimated eigenvalue alone, or on the ¢ largest estimated eigenvalues of 7'(4 —I,).
For the latter choice the sum of the ¢ largest eigenvalues may be considered (compare
e.g. the construction of the trace and the max tests in the Johansen framework). The
second choice to be made is whether one bases the test statistic on the real parts
of the eigenvalues or on the absolute values. Following again Stock and Watson we
decide to use the real part of the eigenvalues, which can then be ordered according
to decreasing size. Thus, in the simulations presented in the following section the test
statistic is constructed from the real part of the cth largest eigenvalue (according to
the size of the real part) of T(4 — I,).°

The test is one sided, with the alternative that the (real part of the) cth largest
eigenvalue of 7(A—1,) is smaller than 0, as explosive systems are not of great concern.
Thus, the test is performed by comparing the cth largest real part of the eigenvalues of
T(A —1,) with the real part of the cth largest eigenvalue of the functional of Brownian
motions given in the formulation of the theorem. The asymptotic distributions of the
(real parts of the ordered) eigenvalues have been simulated and critical values are
available from the authors upon request.

The test sequence we propose is to start with an upper bound for the number of
common trends as initial null hypothesis. For a chosen null hypothesis of ¢ common
trends, the matrix 4 is then estimated by applying the adapted subspace procedure

1In further simulations also the properties of other choices concerning the construction of test statistics
have been investigated.
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with the corresponding number of common trends. This in turn means nothing but the
construction of the weighting matrix W+,C1 based on the first ¢ columns of an initial
estimate of C. If the null hypothesis is rejected, the test sequence is continued with the
null of ¢ — 1 common trends and is stopped when the corresponding null hypothesis
cannot be rejected anymore. The sequence of course stops also after the rejection of
the null hypothesis ¢ = 1.

An open question at this point is the determination of the initial null hypothesis.
There are basically two possibilities: The first is to start the testing sequence with the
maximal possible number of common trends, which is (remember the discussion in Sec-
tion 2) given by the minimum of s, the dimension of the observed time series, and n,
the system order. In the simulations this test sequence will be labeled as eigenvalue test
sequence. The second possibility is to use a threshold-based estimate of the number of
common trends as an initial guess (see the discussion below Theorem 4). To ensure that
this approach works well, it is required to find a threshold that implies a low probability
of underestimating the number of common trends. This is achieved by using large val-
ues for the penalty term /7. The test procedure that starts with an initial guess derived
from a threshold estimate of the number of common trends and uses the eigenvalue
test sequence thereafter is called combined test procedure in the following section. In
principle it is furthermore possible, as indicated before, to bootstrap the singular value
based test statistic to obtain an initial guess for the number of common trends.

6. A small simulation study

In this section the theoretical results obtained in the previous sections are tested
on simulated data. Two aspects of the presented methods are investigated: the order
estimation and the performance of the proposed test sequences.

The systems we simulate have been previously investigated by Saikkonen and
Luukkonen (1997). A precise description of the systems is given in Appendix B. All
three systems generate three-dimensional outputs. The three scenarios include the cases of
a two-dimensional cointegrating space (Scheme 1), of a one-dimensional cointegrating
space (Scheme 2) and of an integrated system without cointegration (Scheme 3).

For each system 1000 time series of lengths 7 = 100, 500 and 1000 have been
generated using Gaussian white noise with covariance matrix as specified in Appendix
B. We report the estimated order of the system and the cointegrating rank as determined
by the different proposed testing procedures. The integers f and p are chosen to
equal 2p,;c, where p,;- denotes the order estimate obtained by using AIC in an
autoregressive approximation. It can be shown that under the assumptions in this paper,
the probability that d p,;- = — log T/log |po| tends to one for d > 2. The system order
is estimated by using the criterion SVC(n), as described in the previous sections with
penalty Hy =logT. For all three systems the true system order is given by n = 3.

In the right panel of Table 1 the estimated orders are reported. For all three sys-
tems for 7' =500 and 1000 the order is estimated correctly in more than 99% of the
replications. For 7 = 100 the order estimation turns out to be inaccurate, with a sub-
stantial bias toward underestimation of the system order. In the left panel of Table 1
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Table 1

Frequency distributions of the test results for the dimensions of the cointegrating space and of the estimated
system orders for Schemes 1 to 3 and sample sizes 100, 500 and 1000. This table displays the test results
for the eigenvalue test sequence

Scheme Sample size Dim. of coint. space System order
0 1 2 3 1 2 3 4
1 T =100 0.082 0.106 0.705 0.107 0.511 0.288 0.201 0
T =500 0 0 0.962 0.038 0 0 0.996 0.004
T =1000 0 0 0.976 0.024 0 0 0.998 0.002
2 T =100 0.141 0.486 0.351 0.022 0.335 0.378 0.287 0
T =500 0 0.918 0.082 0 0 0 0.995 0.005
T =1000 0 0.962 0.038 0 0 0 0.994 0.006
3 T =100 0.625 0.061 0.31 0.004 0.306 0.056 0.638 0
T =500 0.961 0.035 0.004 0 0 0 0.995 0.005
T = 1000 0.968 0.031 0.001 0 0 0 1 0

the distributions of the test results for the dimension of the cointegrating spaces us-
ing the eigenvalue test sequence are reported. For 100 observations the results are
only satisfactory for Scheme 1, with a correct result in about 70% of the replications.
For Schemes 2 and 3 the results are not so good for 7 = 100, with a correct deci-
sion in only about 49% and 63% of the replications respectively. This unsatisfactory
behavior of the tests is also a consequence of the imprecise estimation of the system
order for this small sample. It may be necessary to consider different values for Hr
to improve the small sample performance of the order estimation criterion SVC(n). '
For the larger two sample sizes the performance of this test procedure is very good,
and the nominal size corresponds to the actual size quite accurately. All tests in this
section are performed at a nominal size of 5%.

In Table 2 the results for the threshold estimate (left panel) and the combined
test sequence (right panel) are reported. The underlying penalty term is given by
hr = (log T)?. Some differences between the different proposed tests can be observed.
For T=100 the eigenvalue test sequence is better than the other two, except for Scheme
2, where the threshold test sequence is slightly better than the combined test sequence
and both of these are better than the eigenvalue test sequence. For this system also
for the larger sample sizes the actual size of the eigenvalue test sequence is slightly
lower than for the other two, where however all three tests do not have problems in
detecting the correct number of cointegrating relationships.

The good performance of the threshold (log 7)> may heuristically be explained by
the fact that in this particular example it happens to be of the same magnitude as the
95% percentile of the asymptotic distribution of the singular value based test statistic
presented in Theorem 4. By bootstrapping, this percentile can be estimated to be e.g.

10 For the systems reported, the behavior of both the estimation of the system order and the test procedures
can be improved for 7 = 100 by using smaller values for f and p than 2p,;-. This seems to make the
estimation more precise but is lacking an asymptotic argument.
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Table 2
Frequency distributions of the test results for the dimensions of the cointegrating space for Schemes 1-3
and sample sizes and 7' = 100, 500, 1000

Scheme Sample size Threshold Combined
0 1 2 3 0 1 2 3
1 T =100 0.039 0.442 0.519 0 0.031 0.142 0.702 0.125
T =500 0 0.003 0.997 0 0 0 0.977 0.023
T =1000 0 0 1 0 0 0 0.977 0.023
2 T =100 0.068 0.609 0.323 0 0.053 0.579 0.342 0.026
T =500 0 0.994 0.006 0 0 0.933 0.067 0
T =1000 0 1 0 0 0 0.956 0.044 0
3 T =100 0.574 0.1 0.326 0 0.567 0.1 0.325 0.008
T =500 0.961 0.039 0 0 0.946 0.047 0.007 0
T =1000 0.984 0.016 0 0 0.967 0.028 0.005 0

The left panel displays the results from the threshold estimate and the right panel displays the results
from the combined test sequence, based on the threshold estimate. The penalty underlying these results is
given by hr = (log T)%.

approximately 35 for Scheme 2 with cointegrating rank » = 1. Comparing this number
with (log 100)?> = 21.2, (log500)> = 38.6 and (log 1000)?> = 47.7 explains the good
performance. Thus, by specifying the initial null hypothesis with this threshold, the
combined test sequence starts “closer” to the true number of common trends in a large
number of replications. Other employed thresholds did not deliver results as favorable
as hy = (log T)?. Note once again that only for Scheme 2 and 7 = 100 the threshold
estimate and the combined test sequence lead to improvements over the eigenvalue
test sequence. We want to stress again that the discussion above is only valid for this
particular example and cannot be seen as a justification for choosing the threshold
(log T)? in all cases. The main message from this example lies in the fact that the
singular values based test may be used to obtain a first insight into the number of
possible common trends, rather than delivering a precise test.

Another possibility for determining the cointegrating rank, e.g. employed in Bauer
and Wagner (2000a), is to bootstrap the singular value based test statistic. Also this
approach, although computationally more costly, can easily be implemented and leads
to satisfactory results as well. Note that the singular value based test leads to test
sequences for determining the number of common trends in the same way as the
eigenvalue-based tests.

Turning back to the order estimation it is remarkable that for 7 =500 and 1000 the
correct system order is detected in almost every replication. The good performance for
the larger sample sizes can be explained visually by inspecting the estimated singular
values.

Fig. 1 shows (for one replication) the estimated singular values for Scheme 1 (left
plot) and for Scheme 2 (right plot) for 100 and 1000 observations. It can clearly be
seen that for sample size T = 1000 the gap between the third and the fourth estimated
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Estimated Singular Values, Scheme 1
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Fig. 1. Estimated singular values for Scheme 1 (left plot) and Scheme 2 (right plot) for one example and
sample size 7= 100 (o) and 7 = 1000 (x) respectively.
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Fig. 2. Estimated eigenvalues for Scheme 1 and sample size 7' = 100 (left plot) and sample size 7= 1000
(right plot).

singular value is very pronounced, which is reflected by the accuracy of the order
estimates. The graphical information presented in Fig. 1 also gives, especially again
for T = 1000, a clear indication about the number of singular values equal to 1, and
therefore about the number of common trends. Note however the similarity of the two
plots for 100 observations. This explains the difficulty of estimating the cointegrating
rank for this sample size, at least for the singular value based procedures. We can also
inspect the eigenvalues of A. For Scheme 1, with true eigenvalues 1, 0.8 and 0.7, this
is done in Fig. 2 for all replications. For 7= 100 the plot is quite ambiguous, whereas
for T = 1000 the plot clearly reveals the single unit root at z = 1.

For comparison we also report the results obtained by applying the widely used
Johansen method on the simulated data. The results are documented in Table 3. The
order of the approximating autoregressive model is chosen according to AIC in each
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Table 3

Frequency distributions of the test results for the dimensions of the cointegrating space for Schemes 1-3
and sample sizes and 7'= 100, 500, 1000 using the Johansen trace test in an autoregressive approximation of
the systems

Sample 7 =100 T =500 T = 1000

Coint. 0 1 2 3 0 1 2 3 0 1 2 3
Sch. 1 0.028 0481 0425 0.066 0 0 093 007 0 0 0.922  0.078
Sch. 2 0.085 0.813 0.092 0.001 0 0913 0.082 0.005 0 0.926 0.07  0.004

Sch. 3 0496 0458 0.037 0.009 0.722 0.266 0.009 0.003 0.721 0.273 0.003 0.003

repetition, the test employed is the trace test, the significance level is again 95% and
the usual test sequence that starts with an initial null of no cointegration is employed.

Comparing the results in Table 3 with the results for the subspace procedure in
Tables 1 and 2 we observe that for Schemes 1 and 3 and 7 = 100 all the subspace
tests deliver better results than the Johansen procedure. The ordering is reversed for
Scheme 2, where the Johansen trace test produces better results for 7=100. For Scheme
3 the subspace procedures exhibit a better performance than the Johansen procedure
also for 7 =500 and even for T = 1000. It has to be noted however that for Scheme
3 Johansen’s max test delivers results that are comparable to the results obtained by
the subspace cointegration analysis. For the other systems and the larger sample sizes
both procedures have no difficulties in detecting the correct number of cointegrating
relationships.

Thus, when we base the decision concerning the cointegrating rank on the eigenvalue
test sequence or on the combined test sequence, the subspace cointegration analysis
yields in these examples results that are at least comparable to results obtained by
applying the Johansen procedure. In addition to that, subspace cointegration analysis
has the further advantage of delivering consistent estimates of all system parameters.
For VARMA systems the approach based on the Johansen procedure only delivers
estimates of an autoregressive approximation, where the orders have to be increased
with the sample size to ensure consistency. Modelling the VARMA system with a
state space system is of course much more parsimonious than by an infinite order
autoregression.

It has to be stressed that the results are so far only based on a couple of simulation
exercises. Further work has to be done to gain further understanding about the properties
of the proposed method and the test procedures based on it.

7. Summary and conclusions

This paper establishes consistency for an adapted version of the CCA subspace algo-
rithm. Based on this result, several methods for testing for (or estimating) the number
of common trends and thus equivalently the number of cointegrating relationships have
been introduced and analyzed. Furthermore, also a consistent order estimation procedure
is provided.
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The significance of these results lies in the fact that the method provides consistent
estimates of all system parameters, including the cointegrating space, for VARMA pro-
cesses. This general applicability is an advantage compared to some other methods, like
e.g. the method proposed by Johansen for Gaussian VAR processes. As the subspace
estimates are computationally very cheap, they can also be used for “cross-validation”
of results obtained by the application of standard methods. The subspace estimates can
also be used as consistent initial values to obtain efficient estimates of the parameters
performing one Newton step for pseudo-maximum likelihood estimation as described
in Yap and Reinsel (1995) or Bauer and Wagner (2000b).

The limited simulation evidence presented in this paper indicates that the perfor-
mance of the method is as good as that of the Johansen procedure. However, further
understanding concerning an optimal construction of the tests (e.g. whether the tests
should be based on the real parts or the absolute values of the eigenvalues of A) and
an optimal choice of the penalty in deciding about the number of singular values equal
to one (if one wants to use the combined test procedure) has to be gained. One ad-
vantage of the state space framework is that the user is directly provided with easily
accessible information on the cointegrating rank and the system order. The estimated
singular values and the eigenvalues of 4 provide the required information that can also
be inspected graphically.

In addition to an investigation of the properties of the tests and estimates, further
research is concentrated on three important questions not dealt with in this contribution.
One is the treatment of deterministic components, like constants and trends. The second
is the derivation of test (statistics) of hypotheses on the cointegrating space. This
second question is closely linked to the derivation of the asymptotic distribution of
the estimates of the cointegrating space. The third research field finally lies in the
exploration of the applicability of subspace algorithms for processes having arbitrary
unit roots, i.e. processes with seasonal unit roots as well as processes integrated of
higher orders, as the main step of the algorithm is an autoregression, which is known
to provide consistent estimates in all these contexts (see Lai and Wei, 1982a, b).
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Appendix A. Proofs

Proof of Theorem 2. The arguments developed below for integrated processes follow
the lines of Shin and Lee (1997), Liitkepohl and Saikkonen (1997) and Saikkonen and
Luukkonen (1997). The key argument is the definition of appropriate transformations
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of Yff and Y, ,, as defined in the main part of the paper, which separate the stationary
and nonstationary components of these random variables.

From the Granger representation theorem for cointegrated processes (of order 1) it
follows, under the assumptions of the theorem, that y, = CiK; 25:1 &—j + kg(2)e,
where ky(z) denotes the stable part of the transfer function and where C; € R*¢,
K, € RS, C{Cy =1,. In this representation C; is not unique. Bauer and Wagner (2001)
show how a unique choice for C; can be obtained. Note again that the cointegrating
space does not depend on the specific choice of Cy. If Ci- € R¥*", where again c=s—7,
is such that (C;-)' Ci- =1, (Cj-)'C; =0, then, with C as defined in Section 2, in Cy, the
first ¢ components are equal to 25:1 Ki&—;+v;, where v,=Clkg(z)e, is stationary. The
remaining » components are stationary and the dimension of the cointegrating space is
equal to 7. Let O + be of the form

B Ic Oc><r 7
0r><c Ir 0
_Ic OCXr Ic

L]
~
Il

*[c 0L‘><r Ic OCXr
OVXC Ir ]

Then Z', = 0 ,(I ® C)Y,’; can be represented as

1 [ Kiemr | [ Clhkg(2)e

0 0 Clkg(2)e,

. K Cikst(Z)A81+1
-2

-l | (Sxe) < .|+

=0 :

K] 8t+f—2 C{ kst(Z)ASH_f_[

0 . 0] | Coka(2)er -1 |

Here A = (1 —z) denotes, as usual, the first difference operator. Analogously, the
vector ¥, , can be transformed to Z;, = 0 (I ® C)Y, ,, which is given by

t’p

H [0 ] [ C{kst(z)gtfl
0 0 Cékst(z)sz—l
t—2 K& Crks(z2)Ag

Zip= D K| = |- :
=0

: Kiei—p Crks(2)Ae;— 1
0 | 0 | i Coksi(2)e—

Let Dy =diag(T -l TV 2I_ rs—c), where T denotes sample size. From the construction
of Z;rf and Z,_, it follows that only the first ¢ components are nonstationary, whereas the
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remaining components are stationary. Hence the normalization. Let (a,, b,)zZ:tT:l ab. !
Furthermore we use the following notation: For a scalar random variable f7 let
fr =o(gr) mean lim fr/gr =0 as. fr = O(gr) means that |fr/gr| <M as. for
some finite constant M. For matrix-valued random variables the notation is used for
the maximum of all entries, i.e. f7 = O(gr) means that max,;|f7;;/gr| <M as.,
where f7;; denotes the (7,j) element of f7. op and Op denote the corresponding
in probability statements. Then the following lemma will be used widely in order to
derive the asymptotic properties of the estimates.

Lemma 1. Let n,:ZE;ll & and let Ut:Z;’io K;e,_;, where k(z)zz;’io K;z/ denotes
a rational transfer function, whose poles are strictly outside the unit circle and ¢
denotes a strictly stationary martingale difference sequence fulfilling the standard
assumptions. Thus, n, is integrated and v, is stationary. Then

i Ifﬁj:(l/T)Z;T:jH Utvz{—j and V,/':[Evtvf—j; then max ;| <, ||35j*7j”:o(\/ loglog 7/T')
for Fr =o((logT)*),a < oc.

<n[, n[>71/2<n[, £t+j> - 0(\/ IOg T),j 2 0

<ntant>_l = O(T_l)-

(neyn) V2 (n, vy = Op(1), Ty, v,) = Op(1), (n1, v,) = o( T log T).

T=2(nsn,) = fo W (u)W (u) du, where = denotes weak convergence of measures

and the Brownian motion W(u) is the limit of (1/v/T) Z}:T'TJ &, where |x| denotes

the smallest integer equal or larger than x.
(nesng) = o(T?log(T)).

Proof. The first point follows from Hannan and Deistler (1988, Theorem 5.3.2). The
second and the third points can be found in Lai and Wei (1982a) and Lai and Wei
(1982b), respectively. The last three points follow from standard evaluations, see e.g.
Johansen (1995), except for (n,,v,) = o(T logT): Note that v, = k(z)e, = k(1)e, +
(k(z) — k(1)) Thus, (n;,v;) = (n,e)k(1) + (n,(k(z) — k(1))g,). The first term is
o(T'logT) according to the results of Lai and Wei (1982a, Corollary 2). For the
second term, note that n, = Z;: ¢; and that k(z) —k(1)=(1—z)ks(z). This shows that

<nt,(k(z)—k(l))g,):(X:jT:1 gj)(kd(z)sr)’—zj:_ll &j(kq(z)e;) =o(T log T'). This follows
from the (conditional) zero mean assumption on &, the fact that ky(z)er = O(T'/?) and
the standard convergence orders for stationary processes. [l

Let &7 = (1/T?) 21(2;3 Klej)(z;;é Kie;)'. Clearly, @7 is the (appropriately
scaled) dominant term in the nonstationary component of both Z; [ and Z,,. Further

let Dy = diag(®;'"%,1)D7."> Then I3T<Zt’+f,Z;rf>D~T converges to diag(],f;) in

11 Alternatively, the summations could be in the range t = p + 1,..., T — f without changing the results.
2In order to simplify notation, the symbol D7 will be used for any matrix of the form
diag(d);]/zT_], T—V2), irrespective of the dimension of the second block.
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probability. This can be seen by considering the difference

Dr(Z} .2} )Dr —

Denoting by n, = Z;._(z) Ki¢;, we obtain for the (1,1) block of this expression

T
(@2 = @ T2y (@712
t=0

1 /2

o, '°T lZ (ne + v)(n, + v,

t=0

Here v, stands for all stationary contributions. Thus, we obtain 72 Zt o Pr T(nvl +
vn, + v, )(<I>_l/ 2)' This matrix converges, when multiplied by 7, in dlstrlbution to
a random variable, since 7! Z[T:O n,v, converges in distribution (see e.g. Johansen,
1995, Theorem B.13). The (2,1) (and the (1,2) block, which is the transpose thereof')
are of the form 732 Zt 0 P l/211,17,—1—01:(T 1/2) Here v, again stands for a stationary
variable (not the same as before though). It follows, that T''/? times this expression
converges in distribution, see also Lemma 1. Finally the (2,2) term is the sample
covariance of a stationary process and thus the error converges in distribution, when
multiplied by T'?2, as follows from standard arguments, see e.g. Hannan and Deistler
(1988, Chapter 4). Taking the Cholesky factor as the square root of a matrix, we obtain

that D7 (Z;! 2 )12 converges in probability to diag(Z, (I ;)'/2 ), and again the blocks
are of the same order of convergence, except for the (1,2) block, which is identically
zero due to the lower triangular structure of the Cholesky factor.
Note that the matrix on which the singular value decomposition is performed in the
subspace algorithm is equal to
<Yt+/" Y+> ]/2<Yt+ff Y— >(<Y Y > 1/2)/'

t,p°

The left singular vectors of this matrix are equal to the eigenvectors of the matrix

X <Y+ Y+> 1/2<Y+ Y ><Y Y > <Y Y+ >(<Y+ Y+> 1/2)/

i Lf? Lp L Lo g\ s by
<Z,+f,Z+> 1/2<Z,+f,Z ><th,Z N <ZIP,Z+ >(<Zl+f’Z+> 12y

where the second expression can be analyzed more easily due to the fact that in Z" f

and Z,, the coordinates corresponding to the stationary and the nonstationary parts are
separated. Note however that in this equality the square roots are defined differently: If
(Zt+ /,Zf f> 12 corresponds to the Cholesky factor, the expression involving Y+ will not
and vice versa, since the transformation mapplng Y+ into Z; * is not lower trlangular

in general. Replacing Y+ with Yt r=U® C)Y and Z Wlth Z, ;= Q/ f this
is true and thus for the Cholesky factors Qf(th, th>‘/2 (Z”f th>1/2 holds. Note

that the error in the replacement of Z* .y by Z, s is of order Op(7™ ) and thus can be
neglected for our purposes. This substitution has however an effect on the asymptotic
distribution of the estimates, which is not further analyzed here.

) R~ecall that~ Y= 0pApY, + (9_ng - KEilC)pic,_p + 8/E;, and thus Z;rf =
OrApZ; , + Op(4 — KE’lC)px,,p + 5_/Et,+f, where 0y =0,(I ® C)O/ and Jf and
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&y are defined analogously. Therefore zZ, = O H,Z7, + N/, where (N/,N,/)=

o(T'*%) Ve > 0 due to the bound on the increase of p(T), which implies that (4 —
KE~'C)? =0o(1/T). Also note that

~st, 1 ~ st,1
N YA . L.
0=|"%, |, a=|""
T lody 0 A

~st,i ~ st,i . .
where @;l and %, ps "for i=1,2 correspond to the stationary part. From the results

given above, it will be shown that X converges to

1 0
) [0 <f D“”%f,oo(f;)“J?}-,oo<<f?)—”2>'1 ' a1

In order to do this, it remains to consid/er the estimation error in the term
Dr(Z 1 2 )2 e Zi )~ "z, 2, ' r)Dr, since
X —-X

= (2 2 )Y N 2 W2 ) M2 (2 20 )Y

! 0
~+ _ ~ - _ Y ~+ -
0(I'y) V2 oe(T) 1%/"00((1}) 1/2)/1

~ 1 0
= {(DT<Zt+f,Zt+f>1/2)_1 _ lo (f;)l/zl }

1 0
~ ~— 1.5 ~t
0 e}ffvoo([‘oo) 1’%f,oo(([‘f) 1/2)/

I 0
~t
0 ()"

{Driz 1 20 )2y 20020 7V D

t,p° t,p°

S~

0 I 0
~ ~— 1 St
‘%ﬂoo(roo) 1jff,oo 0 (F/) 12
I 0
~t ~ ~— ~ !
0 (F )" P poe(F o) e

}—l—ryu

Here r7 accounts for the error from replacing estimates with limits in the first and
second difference. The first and the last summands have been dealt with above and
shown to be convergent in distribution to a constant and thus convergent in probability.
Here in the (1, 1) sub-block convergence is of order Op(7 '), in the remaining blocks

LS

{Orz .2

I 0
- ~t
0 ()2
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of order Op(T~"/?). Note that (Z}e 2, = @_fJ?I,(ZtTP,Z,’_p) + (N%»,Z,fp). Thus,
N — — —\ — _ ~/
DT<Z;/'>Zt,p><Zt,p’Zt,p> l<Zt,p’thrf>DT
~ o~ s N P ey ~ o~ _
:DT@f'%/P<Zt,p’Zt,p>'%/p@fDT + DT(@.f%<Zz,prNtff>

.ol _ _ o\ — _ ~/
+ <th_rf’Zt,p>°%/p(9f + <thf’Zt,p><Zt,p>Zt,p> 1<Zt,p’N:f>)DT'

The first term converges in probability to diag[/, jff,oo(f ;)*1%}’00], as follows

from standard arguments considering the structure of 'y and .#,. Moreover the error
terms in the (1,1) element are of order Op(7~!) and in the remaining blocks of order

Op(T~'?) using standard arguments as above. Recall that N7, = E1E; .+ 04—

KE='C)?x,_,. Then the convergence of the second and the third terms is straight-
forward to show using Lemma 1 and the fact that A, vZip =X —(4—KE —1CyPx,_ -
Here also [|(4 — KE~'C)?|| = o(1/T) is used. For the fourth term apply the matrix
inversion lemma to the matrix (Z, ,,Z,,) to separate the effects of the stationary and
the nonstationary part: Let Z;p’l and Z,T};St denote the nonstationary and the stationary

parts of Z, , respectively. Then

a0 0 I
22y = [0 ;" Z’S‘>1] " [—<Z’St 2" 2! Z’IJ

Lp >“Lp Lp >“Lp Lp >“Lp

<Zf,H Z*,H>71 [[,*<Zi’l Z*,st><Zf,st Z*,st>71] , (A2)

tp >“tp Lp ><tLp t,p >~tLp

where (Z ", 2" =z 2" (2 202 2 2N 2. Thus, the

fourth term is equal to
. _ S -1
DT(<NtD"Zt,pSt><Zt,PSt’Zt,pSt> 1<Zt,pSt’Nt,+f> + <Nt,+f’Zt,p >
— — _ — ~/
(z;"z" Nz NS )Dy
Therefore in the first term only stationary variables and @ (4 — KE~'C)”x,_, occur
and thus the term is of order o(p(7)/T) a.s. Here also the fact that (x,_,,x,_,) =
o(T?log T) is used, see e.g. Lemma 1. Corresponding to the second term note that
-0 51 —1 =1 -1
due to Lemma 1 (Z, ;,".Z, ;") =(Z,, .2, ) + o(T(log T)’ p(T)) and <th;-,Z,,p )=

<Nt,+f,Z{p’l> +0o(v/T(log T)? p(T)). Thus, the crucial term can be seen to be essentially

equal to ﬁT<thrf,Z,f1;l>(Z,fl;l,Z,f1;1>_l<Z,f1;l,thrf)l§/T and is also seen to converge to
zero. Considering the various error terms, it is straightforward but cumbersome to
show that the (1,1) block of rr is of order op(7~'). The remaining blocks of rr
are of order op(7~'/?), as they are the sum of products of matrices having the same

property. Note that the increase in p(7) only affects the stationary part Z,Tp’St and thus

especially the inverse (Z,,;*,Z ;") can be dealt with using well-understood theory for
stationary processes, showing e.g. that the infinity norm of the inverse is bounded
uniformly in p(7T'), for 0 < p(T) < (log(7))” and a < oo.

In subspace algorithms an eigenvalue decomposition is performed on X. For the
limit X the first c=s—r eigenvalues are equal to one, assuming the cointegrating rank
to be equal to r. The corresponding eigenvectors span the space corresponding to the

first ¢ vectors of the canonical basis. With regard to the remaining eigenvalues and
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eigen-vectors note that the term (I” ;)_'/ 2H 1. (I, )72 corresponds to the stationary
transfer function

)= {(1 Oz)[ 0} Ch(2)

as can be shown from the definition of Z+ and Z, ,. The transfer function lg(z) is of
order smaller or equal to n. This can be seen by con51der1ng the nonminimal represen-
tation

1 0 0 [k ) "o ;
A= 0 AS 0 > K= KSt 5 C:|:<0>3CCSU_(0):|5
[ CiCy 0 CIE
E=CE

of k(z). Here the realization (4,K,C,E) of k(z) is used, where

(10 [k B
A_|:0Ast:|’ K_|:Kst:|, C_[Cl, Cst]'

From the expressions for Z;rf and Z,, and realization theory for the stationary case it
follows that # f,oc((f )" "2Y is equal to a part of the Hankel matrix of the Markov
parameters corresponding to k(z) times an orthonormal matrix, which arises because
of the specific choice for the square root of r - Now some algebraic computations
show that the Markov parameters K(j) of k(z) are equal to

2
CiCuKy + Ki —C{E], R0j) = {CI Ca(Ast — Af Ky

K(1)=
() G Cy czcs Ast

-
\%
N

It follows that Q;Eﬂfm((f;)—l/z)’ is of rank n — ¢, since it is, up to an orthonormal
transformation, essentially the Hankel matrix of the coefficients K(j), where the first
¢ rows have been omitted. The typical element of this matrix is equal to C]Cs(A4s —
I,,,C)Aﬁf szt or CéCstAéf let. The Hankel matrix with the first ¢ rows omitted can be
factored into

CiCy
CiCa(Ay — I—c)
CCydy [Kq AgKyq A2Kgq -1,
CiCu(Ast — I—c)

where the second matrix is equal to the controllability matrix of the stationary part
and thus of full rank n — c. Thus, consider the case, where the first matrix above has
not full column rank. Then, there exists a vector x such that Cj St(Ast I, C)Astx =
0,/ > 0, which implies that C]Cydly ' x = C|Cydlx,j > 0 = C|Cydlx=0,j > 0. Also
CZCSIAstx—O, j > 0 must hold in this case. Thus, x =0 follows from minimality of the
stationary state space system (Ag, Ky, Cst). This implies that the number of nonzero
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t,p>
ically) equal to n, the order of the system. From Eq. (A 1) it thus follows that the

SVD leads to a factorization

I, 0 I, 0
~t - - ~— .
0 (L)) 20y | | 0 AN )"
Here (E‘f and ,}f_fp correspond to the decomposition of the stationary part. From the
definitions of 4 and C it follows that CA=[0,CCyAy — [|]C|Cq,0] and thus only the

n — ¢ columns in the middle of @, contribute to # ; ,((I',)~"?Y. It follows from

singular values of the limit of X =((¥* S Yff) 2(y+ o Y)Y Yip) ™ 12y is (gener-

the definitions of 4 and K that the middle rows of % correspond to the controllability
matrix corresponding to k. Therefore, A oo(f - )_1/ ZZ{DOZ,%N/ 00 Zy 00 =Xi,st, the stationary
part of the state. Which particular realization Ay, Ky is used is determined by the
SVD. Furthermore, the convergence of the matrix X implies the convergence of the
eigenvalues and also the eigenspaces, as follows from the next lemma. Thus, let U,
denote the matrix, whose columns correspond to the eigenvectors to the n dominant
eigenvalues of X. The following lemma (see e.g. Chatelin, 1983) provides tools to
assess the estimation error.

Lemma 2. Let I denote a symmetric, positive definite compact linear operator and
let 7 denote a sequence of symmetric, positive definite compact operators converging
. Let Ay > ---> A >0 denote the k, say, distinct nonzero eigenvalues of I
having geometric and algebraic multiplicities equal to k; say. Further let P; denote
the (orthogonal) projection onto the eigenspace corresponding to the eigenvalue 2; of
. Furthermore, let 2;; and P; denote the corresponding approximating quantities
calculated from 7. Then

o lij — A Le. the eigenvalues converge to the true eigenvalues.

o P, — P;, where convergence is in the gap metric (for a definition see Chatelin
(1983), or Appendix B).
Furthermore, the following first order approximations hold:

ki
Z Ltj*/ht *tr[('/ W)Pi]s (A3)
P = P—i—Z{)A PlT — O‘]P—&-}iAP[f J]Pj}. (A4)
iy A “ ]

From the lemma it follows that the probability that there exists a nonsingular matrix

S7, such that U, = U,Sr = [[71 1 002] converges to one. Further U,Sr converges in

probability to Uy = [é lgo]. Here again U, corresponds to the stationary part. In the
adapted procedure the zero blocks are explicitly imposed, which is only possible, since
the Cholesky factors of <Zif’2if> can be calculated. Note that the Cholesky factor of
<Zt 2, f> cannot be calculated in general. The results in Chatelin (1983, Proposition
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3.25) further show that the entries of the matrix U, are analytic functions of the
entries in X and thus in particular power series expansions exist, ensuring the validity
of linearization arguments. Consider the estimate

S O ) P Y Y Y

Lo t,p’
=0 ROATIY AT L VAT AR LV A R s
:U,,<z,+f,z VYAV Uoxi + I + 6ES 1, Z 020,20, 2,

Here the limit of (Z,Z)~ 2P, is denoted with W} . Furthermore note that
I'=[I},0°%5=9)] and thus only affects the components due to the common trends.

Note that Uj W*(W*)_1 Uy =1, and thus contrary to the stationary case, the estimate

D; U ROAPY A >*1/2<Zt+f,Z {Z . Z )" is not consistent for #,, since it neglects
the term U} W*[O, r ]J{”p due to the fact that the common trends dominate the first com-
ponents of the state. Let G = (I, + UgW[0,I'])~". Recall that x, = HZ o =HZ,+

(A — KE~'C)Px,_ . Therefore

GD~;1)€,—xt

—GD;'U <Z,+f,z+>—1/2<(9fx,+§ 2N 2 2, —

_(GDT <ij,zjf> VR0; — A2y 2 N2 2o 20,
+GD;' 0! AZ 2 TV E GBS 2 2 2, T 2, —(A—KET C) X,
+GDT <zt+f,z,+> VO (A — KET'CY (- 2, W20 Z0,) ' 2,

f(GDT <Z,+f,zt+f> V20; -~ DAL, — (A—KE™'C)Pxi_)
+GD;'U <Z+f,Z,+j)"/2(9,(A KE'OY (51— p 2, W20 2,0 20,
+GD,'U <Zt+f,zt+f> V26 ES oz W2 2 T 2,

This fact is exploited to show that a regression of the system equations can be used to
obtain a consistent estimate of the transfer function. Consider therefore the regression
in the observation equation:

T T -1
CD;G™'—C= (Z(y, — cc;ﬁf;e,pe;) ( f,fﬁ) DrG™!

=1 =1

—1
- (Z [C(x; — Gﬁ;'f,)+Es,]>e;> (Zf,fj) DG~
t t

It follows from the definition of X, that (X,,X,) converges to a deterministic limit, say
P, which is nonsingular. It follows from standard arguments that (g,X;) converges
in distribution. The above evaluations apply for both, the standard and the adapted,
procedures. In both cases the block matrix inversion of (Z, ,,Z,,) is used analogous to
Eq. (A.2). Considering the expression given above, one can show that for the adapted
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~—1, R e
procedure (GD; X, —x;,X;) converges in distribution, if p= p(T) = —d log T/log | py|,
where d > 1. We impose this stronger requirement on the increase of the integer p in
order to ensure that ||(4—KE~'C)?|| tends to zero faster than 7~!. Here all evaluations

are standard, except for the term (GD~; U <Z;r Ly 3 120 r —1) which is equal to

[GDy ' U,DrDy (2.2, )7V = GUYV IOV )™ Up + [0.T11

Noting that for the adapted procedure ﬁT (Z},2,)7"* converges to W/ and that
~—1 ~f . . - .
Dy U;DT converges to Uj in probability, shows the convergence of this expression
. . N ~—1
to zero. Evaluating the errors in each sub-block shows that the expression times D
converges in distribution for the adapted procedure. For the algorithm not taking the
cointegrating rank into account, this statement does no longer hold, since in this case
I
the (1,2) block of Dy U;DT is of order Op(1) and thus does not converge to zero. In
this case the matrix post-multiplied by diag(77.,/s;—.) converges in distribution. Similar

reasoning for the remaining terms shows the assertion that (Gﬁ;lf, — X, %;) converges
in distribution for the case of the adapted procedure. Therefore, CD7G~! converges
in probability to C and furthermore (CD;G~' — C )Gf);1 converges in distribution,
establishing the familiar convergence of order 7 for the complement of the cointegrating
space (and thus also for the cointegrating space) for the adapted procedure.

For the standard subspace procedure one can show that the order of convergence
of the cointegrating space still applies, whereas the remaining columns of CD; — C
only converge in distribution and thus are not estimated consistently by the standard
CCA procedure. Also note that the first columns of G are equal to the corresponding
columns of the identity matrix, showing that the first ¢ columns of @, and @ ,G~!
are identical and thus the same result applies for the transformed system, which is
realizable from the data.

From now on only the adapted procedure is considered. Note that y, — C¥, = Cx, +
Ee, — CDrG'GD; % = (C — CrDrG—")x, + CrDrG~'(x, — GD; '%,) + Ez,. Since
1/T (&, &) — I, where convergence is in probability, the consistency of 1/T <8t,8t> fol-
lows from an application of the arguments given above, the consistency for CD;G ™!

1,
and the expression obtained for GDT X; — x;. Therefore also the estimates E are
consistent.

It remains to consider the estimation of 4 and K. Concerning 4 note that the nor-

malization of X; implies that Gﬁ;lﬁﬁTG_l is the relevant quantity. Thus, consider
GDy'ADrG™' — A= (GD; '5s1 — AGD; %0, %) (8, %) Dy G~
~—1 . n PN B _
= <GDT X1 _xt+lsxt><xtaxt> IDTG !
~—1 A A A AN ] _
+A<xt - GDT x,,x,><xt,xt> 1DTG !
+ <K81,)€l><)f,,)€l>71DTGil.
It follows from the arguments given above that all these terms converge to zero in
probability (using the expression for GD~;13€¢ — x; and the analogous expression for

~—1 .
GDT Xt+1 7Xt+1).
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Finally also consistency of K is shown. Note that for § = E 71()/; — C#%,) it holds
that (£,%,) =0, since & = E&, and (§,%,) =0, as & denotes the residuals of the first
regression, where X, were used as regressors. The relevant quantity in accordance with
the results for 4 and C is equal to GDN;IK . Therefore, consider

—1
GD; 'K = (1/TZGD~TIJE,+1.§;> (1/TZ.§,8“,>
t l —1
_ (TIZ(GD;S@H —AGD;';et)é;> (Tl g‘,é;>
t _l[
=7 Z(Gﬁ;lftﬂ *xt+1)‘€; (Tl étéé)
t t

—1
~—1 n _ n
+T7"Y [A(y — GDy %) + KeJé; <T ! s,s“,) .
t t

Tedious but straightforward calculations show that this expression converges to K in
probability. It finally remains to show consistency also for the reduced rank regres-
sion approach, i.e. the procedure where the system is estimated under a constraint on
the number of cointegrating relationships. The proof of consistency follows directly
from using the consistency of the state estimation (apparent e.g. from the equation

for GD?%E; —x;) and the well-known consistency of e.g. the Johansen procedure. The
latter is a reduced rank regression problem itself. This completes the proof. [J

Remark. Note however that the proof only shows consistency for the transfer function
estimates. The system description (/i,[&, C.E ) itself on the contrary will be divergent.
One way to obtain also consistent estimates of the system description is to transform
the estimates to a canonical form, e.g. echelon canonical form (see e.g. Hannan and
Deistler, 1988). The proof given above then shows the consistency for the estimated
system matrices on a generic subset. Note that the state space echelon canonical form
can easily be transformed to a VARMA representation, if this is the preferred system
representation (see Section 2).

Proof of Theorem 3. Consider ¥ = (Y, Y ) T Y)Y, Yip) ™2 and the

corresponding limit of the matrix sequence Y, denoted by Y. The relevant quantity
for order estimation is ||Y — Y||. In order to see this, first consider the probability
of underestimating the order, i.e. choosing the order n < ny. Simple manipulations
show that P{SVC(n) < SVC(ny)} = P{62,, — Gpor1 < Hr(d(no) — d(n))/T}. Since
d(n) < d(ng) for n <nyg and Hr/T — 0 this probability converges to zero, if ; —
0i, Vi < ny. On the other hand, overestimation occurs, if min,~ ,, SVC(n) < SVC(ny).
The probability for this to occur is equal to

P{G}, .1 + Hrd(ng)/T — min(G, | + d(n)Hr/T) > 0}
< P{67 .\ + Hrd(no)/T — d(no + 1)Hr/T) > 0}
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=P{6,11 > (d(no + 1) — d(no))Hr/T}
r .
=P {I-[T O—no‘H > d(l’lo + 1) — d(n(])} .

Therefore the results is proven, if it can be shown that \/(7/Hr)d,,+1 — O in prob-
ability. Note that 6, 11 < C |Py — P3|l + ||Y — Y| (see Bauer (1998) for a proof).
Here P, denotes the orthogonal projection onto the orthogonal complement of U n and

P, the corresponding limit. Thus, it follov&is from Lemma 2 that 6,4, = Op(||Y Y1)
and it is sufficient to show that \/T/Hr||Y — Y||» — 0 in probability.

In this respect take D~T<Zt+/,Z >D~/T — diag(l, #) as an example. The (1,1) block
has been shown to be of order Op(7~!) and is thus op(1/Hr/T). The (2,1) block is
of fixed finite size and has been shown to converge in distribution, when multiplied
with +/T. Therefore it is also op(/Hr/T). The (2,2) block corresponds to stationary

variables and therefore can be dealt with using standard methods, showing that it is

O(Qr+/p), where Or =+/loglog T/T, showing that also the norm of this component is
op(y/Hy/T) under the assumptions imposed upon Hy. Finally consider the (1,2) block.

This is equal to (7~%(n,,n,))~2T—32(z *,Z,;;St>, where n,:Zj.;(l) Ki¢j,z; =C|y, and
. PSt denotes the stationary part of Z,, as before. According to the results of Lemma
1 it follows that

T
<Zt+’Z;p,st> — <nt 4 Ut,Z{];St> — <7’lt,£t>KV(1), 4 Z g V7/~ + <8t, Vt>

j=1
+o(T+/loglog Tp(T)),

where Z,:,;St:KV(z)e,:KV(l )e: + (1 —2z)V;. Note that the entries of Ky (1) are bounded
uniformly in p(7). This decomposition holds for each fixed p. Thus

||(T_2<nt:nl‘>) 1/2<Zt > t_pq>H2
< N2~ ) ol K (D)2 + [T ()™ Zef Vil

+ H(T_2<n,,n,>)_l/2<st, Vidll2 + OP(T\/ITT).

The first term is op(T+/Hr) and thus of correct order also for p — oo as indicated
in the theorem. The same holds true for the last term due to stationarity arguments.
Finally note that E||V'7|3=E Y7, ¥7(j)* < Cp, since the entries of V7 have bounded
variance (uniformly in p). Therefore also this term is of the required order. Thus,
V(T/H)| D (Z tf, /T — diag(Z, #)|| — 0 in probability. Similar arguments for
the remaining terms show that \/T/Hr||Y — Y| =op(1). This completes the proof. [

Remark. For ¢ =1 an a.s. consistency result could be obtained using the above tech-
niques and the bound limsup (n,n,)~! = O(T~2,/loglog T), see e.g. Lai and Wei
(1982a). In this case Lemma 1 may be strengthened to (n;,v;) = o(T+/log T). There-

fore it follows that <Zt+/,Zt+f) 12 = W+ + o((log T)T~"?). Similar arguments show
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that || ¥ — ¥ ||2, = O(max{(log T)*/T,(p(T)log T)/T}). Here | || denotes the Frobenius
norm. This gives a (somewhat heuristic) motivation for a penalty term Hy = (log T')?
for the choice p(T)=O(logT).

Proof of Theorem 4. The asymptotic properties of the eigenvalues (or equivalently of
the singular values) have already been stated in Eq. (A.3) in the proof of Theorem 2
in this appendix. Thus, we have to evaluate tr[P;(X —X )], which can easily be seen to

~1,1 . .
equal tr[X = —X"!], where the superscript ! denotes the (1, 1) block of the respective
quantities. Let z;" = Z;;é K¢ + Clkg(z)e, denote the vector of the first ¢ components

of Z; - Then it is straightforward to see that the relevant quantity is equal to
tr[ — <Zt+’zt+> l<Zt ’Z ><thvz ) <Z,p,Z,+>]

_tr[<Zz »Zy > 1{<Zt+’zt+> <Zz Ly, ><Zt p’Z )~ <Zt,_p’Zt+>}]'

Let the first ¢ rows of Z;, be denoted by z; = Z;O Kiej + Cikg(z)e—1. Then it
follows that z;" =z, + Kj¢,_ 1 + Clhks(z)Aes =z + C| Ayt Denote a;, = C{Ay;,, then
2o N2 2y 20, = 2" — ar + (a2 ,)(Z ) 2 ,) "' Z,, which shows that we
have to consider

tr[<Zz ’Zt> 1{—<a,,zf)+<a,,Z ><thvz ) <tp’ >}]

Using the decomposition of z;" and Eq. (A.2) again the essential term in the second
summand is seen to equal (a,,z,") — (as, a;) + (a2, ;" (Z, ;™. Z. ;") " (Z, ;™ ar), where
Zt;’,St denotes the stationary part of Z,,. Therefore up to first order approximation we

obtain

I~ ,\ . T _
T 1_Ezaj. :;tr[<zt+,z,+> Wana) — (an Z;%)
j=1
<Zt_pStDZt,_;;St> <Zt_p5ta t>}]

Now the result follows from the facts that 1/7%(z},z;}) fo W(u)W (u) du, a, and

th];St are stationary and ¢, are the innovations of the process whose components form

Z,,_,;St and of which a; is a linear transformation. The claim then follows from the

continuous mapping theorem. [

Proof of Theorem 5. The eigenvalues of T((Kj&;,x,1)(x,1,X,1)~") converge in distri-
bution to the distribution mentioned in the formulation of the theorem. Here x;; € R¢
denotes the first ¢ coordinates of the state in the canonical form. Note that the eigen-
values do not depend on the choice of the basis for x;;, i.e. a transformation Sx,; of
x;1 leaves the eigenvalues unchanged. Using Eq. (A.2) it follows that

T<K18taxt><xtaxt>_l[lca chn]l = T(<K18taxt,l><xt,17xt,l>_l )+ op(1).

Noting that Kj& = x;41,1 — X1, it remains to show that the replacement of x; by
N o ~—1 A . e e . A
X =8rGDr A,Z, » does not change the asymptotic distribution, where S7 denotes the
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matrix transforming the estimates (GD;lfiﬁTG_l,Gﬁ;lle ,CD7rG™ ") into the canoni-
cal form, where GD~;113D~TG_1 is in Jordan normal form. Here 4 denotes the estimate
from the unrestricted regression.
. . A . Al A
Note that due to the order of conmsistency it follows that Sy = dlag(ST,SsTt) +
~l S ~— ~ . .

Op(T~Y?),8; € R°*¢ and thus STGDTIXP — A, = Op(T~Y?) (see the decomposi-
tion of x;, — Gﬁ;lpr,)_p). Therefore it follows that T*2(<x,,1,x,,1) —(X,1,%1))=o0p(1),
where the additional subscript | denotes the first ¢ components. Also T *1(<)E,+1,1 —
X1%61) — (Xr41.1 — X.1,X.,1)) = op(1). This shows that the asymptotic distributions of
T(&ri11 — X1, X001 ) (F1,%01) 7 and T (xpyq.1 — X0 1,%,1){(X,.1,%,1) ! coincide. Analogous
arguments show that

T (i1 — X1, %) (B X)L, 0" = T((Rrs 11 — Xr1,%01)

<)Et,1a-ft,l>7l) +op(1)

Note that due to the transformation of the system this (1,1) block of the A-matrix
contains the ¢ eigenvalues of maximum modulus. This completes the proof. []

Appendix B. Gap metric and simulated systems

The gap metric is defined as follows. Let H be a Hilbert space and let M and N be
two closed subspaces of H. Then the gap © between M and N is defined as follows:

@(M,N)—maX< sup  [|(/ = Q)x[l, sup II(I—P)XI>,

xEM,||x||=1 X€EN,|x]|=1

where O denotes the orthogonal projection onto N and P is the orthogonal projection
onto M. In the definition of the gap metric, ||x|| denotes the norm induced by the inner
product on H.

The simulated systems are taken from Saikkonen and Luukkonen (1997) and are the
following three-dimensional VARMA(1,1) processes:

Ay =¥y1+e& — g (B.1)

with yo = y_; =0 and ¢ normally independently distributed N(0,2). The parameter
matrices are defined as follows, I'1 = C, diag(0.297, 70.202,0)0’7 I where

—0.816 —0.657 —0.822
C,=1| —0.624 —-0.785 0.566 |, (B.2)
—0488 0475 0.174

047 020 0.18
=020 032 027 (B.3)
0.18 027 0.30
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Table 4

Parameter values ¢; for Schemes 1-3

Scheme ¢1 b2 3

1 1.0 0.8 0.7
1.0 1.0 0.7

3 1.0 1.0 1.0

and ¥ = N diag(¢1, ¢z, ¢3 )N_l — I3 with

—029 —047 —0.57
N='=[ -001 —-085 1.00 |. (B.4)
-0.75 139 —0.55

The three sets of parameters ¢; are given in Table 4.
The number of parameters ¢; less than unity corresponds to the number of cointe-
grating relationships.
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IDENTIFICATION OF STATE SPACE SYSTEMS
WITH CONDITIONALLY HETEROSKEDASTIC
INNOVATIONS
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Abstract: In this paper consistency of estimates of linear dynamic systems obtained
by using subspace algorithms under quite general assumptions on the innovations are
derived. The assumptions include i.a. GARCH type of errors as well as E-GARCH.
Also the consistent estimation of the model for the conditional variance is discussed.
A small simulation study shows the potential of subspace algorithms in the context of
GARCH modelling in comparison with the optimization based method implemented

in MATLAB.
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1. INTRODUCTION

The concept of heteroskedastic innovations has
been introduced in the analysis of financial time
series to explain the phenomenon of volatility clus-
tering: Periods of high fluctuations alternate with
periods of low fluctuation, which can be modelled
via introducing a dependence of the conditional
variances of the innovations. As a second property,
GARCH models also helped to explain the ’fat
tails’ often observed in financial time series. The
conditional first two moments build the basis of
the most prominent portfolio selection methods,
which are based on the assumption, that the in-
vestor measures his benefit using expected returns
and his risk using the variance. Thus a model
for the conditional first two moments is the core
of any investment strategy building on these as-
sumptions.

Since the introduction of ARCH models by
(Engle, 1982) a number of different algorithms
for the estimation have been proposed. Most of
these procedures resort to optimization of some
criterion function, such as the likelihood or the

1 Support by the Austrian FWF under the project number
P14438-INF is gratefully acknowledged.

one step ahead prediction error. It is well known,
that the prediction error approach neglecting the
ARCH property of the errors leads to prelimi-
nary estimates, which are consistent but not ef-
ficient in the presence of ARCH effects (cf. e.g.
Gourieroux, 1997). Also the asymptotic properties
of maximum likelihood estimates in the ARMA
case are known (cf. e.g. Gourieroux, 1997, for a
discussion). However, in all situations, where the
optimization of the criterion function is performed
using standard numerical methods, the question
of initial estimates is virulent. Especially in a
multivariate context a good initial estimate is
needed in order to achieve a low probability of
being trapped in a local minimum. In the conven-
tional homoskedastic case, where the conditional
variance of the innovations is constant, it has been
shown in (Bauer, 2000) that a particular subspace
algorithm sometimes called CCA, which has been
proposed by (Larimore, 1983), asymptotically is
equivalent to a generalized pseudo maximum like-
lihood estimate, i.e. optimizing the Gaussian like-
lihood. Here equivalent means, that square root
sample size times the difference of the two esti-
mates converges to zero almost sure, so that the
estimates tend to the same asymptotic distribu-
tion. In this paper it is shown, that the subspace



estimates possess some robustness properties with
respect to the assumptions on the innovations.

2. MODEL SET AND ASSUMPTIONS

This paper deals with finite dimensional, discrete
time, time invariant, linear, dynamical state space
systems of the form

Tip1 = Az + Key, y=Cxi+er (1)
where y; denotes the s-dimensional observed out-
put, z; the n-dimensional state and e; the s-
dimensional innovation sequence. A € R**" K €
R™¢ C € R**™ are real matrices. Note, that it
is not assumed, that y; is univariate. Throughout
the paper it is assumed, that the system is stable,
i.e. all the eigenvalues of A are assumed to lie
within the open unit disc, and strictly minimum-
phase, i.e. all the eigenvalues if A — KC are as-
sumed to lie within the unit circle.

It is well known (cf. e.g. Hannan and Deistler,
1988) that state space models and ARMA models
are just two representations of the same mathe-
matical object, namely the transfer function: It is
easy to verify (using some mild assumptions on
the noise sequence &;) that one solution to the
difference equation given above is of the form

oo
Ys =€t + Z K(j)ee—;

j=1
where K(j) = CA"'K,j > 0 and the infinite
sum corresponds to a.s. convergence (or limit
in mean square, according to the assumptions
imposed upon &;). The transfer function k(z),
where z denotes the backward shift operator, then
is defined as k(z) = I + 2C(I — zA)~' K. Further
let M (n) denote the set of all transfer functions of
McMillan degree equal to n fulfilling the stability
and the strict minimumphase assumption. k(z) €
M (n) is a rational function in z seen as a complex
variable. Therefore the transfer function has a
representation as an ARMA system according to
k(z) = a='(2)b(z). A more detailed discussion
on the relation between ARMA and state space
systems can be found in (Hannan and Deistler,
1988).

The solution y; as given above is stationary,
if the noise &; is a stationary sequence. This
statement holds both in the weak sense and the
strict stationary setting. Throughout this paper
it will always be assumed, that ¢; is a martingale
difference sequence with respect to the sequence
of increasing sigma fields 73, i.e. E{e;|Fi—1} = 0.
Furthermore it is assumed, that ¢; is ergodic and
of finite fourth moment, i.e. Ee}; < oo, where the
notation indicates the i-th component of e;. It is
also assumed, that limj_,oc E{ese}|Fi—} = X =

Ee.e} a.s. This property is sometimes referred to
as linear regularity.

3. SUBSPACE ALGORITHMS

The subspace algorithm investigated in this paper
is the CCA method proposed by (Larimore, 1983).
Up to now a great number of results exist only
for the case, where the innovations also fulfill
E{eie}|Fio1} = %, i.e. where no heteroskedasty
is present. For the CCA case consistency has been
shown in (Deistler et al., 1995), asymptotic nor-
mality in (Bauer et al., 1999) and asymptotic
equivalence to pseudo maximum likelihood esti-
mation in (Bauer, 2000). Especially the last re-
sult seems to be valuable, since it shows, that
the computationally advantageous subspace al-
gorithms are a very good substitute for pseudo
maximum likelihood estimation. We also note,
that in (Bauer and Wagner, 2001) it is shown,
that an adaptation of the algorithm is able to
produce (weakly) consistent estimates also in the
case of cointegrated processes, where also some
tests for the number of cointegrating relations are
presented. It is the aim of the present paper to
show, that the consistency property of the sub-
space algorithm holds for an extended range of in-
novation sequences. The asymptotic distribution
is a matter of future research.

The CCA algorithm builds on the properties
of the state. In the following we will only
give a brief outline. For a more detailed de-
scription, also of different subspace algorithms
cf. e.g. (Bauer, 1998). Fix two integers f and
p. Denoting Y, , = [y; 1,9t 2,-"-,y; ,|' and
Yt+f = [Y4,Yi41> " Ygqp—1]" We obtain the follow-
ing equation:

Y?Lf = 0;K,Y,; , + Of(A - KC)Pmy_p + N;ff(Q)

where N: ; summarizes the effects of the fu-
ture of the noise, which is orthogonal to the
two other terms due to the assumptions on &;.
Further Oy = [C', A'C',---,(AF-1)'C"), K, =
[K,(A- KO)K, ---,(A— KC)P~1K]. Finally let
(ag,by) =T Zf:;’;l a:b;. Neglecting the second
term in (2), since (A — KC)P tends to zero for
p — 00, CCA obtains estimates of the system in
the following three steps:

¢ Estimate O7K, by LS regression in (2) as
B = (Vb Vi ) Vi Vi)

e B¢ p will be of full rank in general, whereas
0K, is of rank n, where n denotes the
system order. Thus approximate

) 2By (Y, Vi) /2 = USV

p?

+ oy
Yep Yey

=UnX,V, + Ry



to obtain estimates (’5f = (Y;rf7 Yt‘,'})1/2 T3
and K, = Vi(Y,,V,,) /2. Here ULV’

denotes the SVD of
(VY T 2B (Y Yo ) 2.

Thus e.g. 3 is the diagonal matrix containing
the singular values ordered in decreasing size
as diagonal entries. U, € Rfsxn V, ¢ Rpsxn
and X, € R"*" correspond to the submatri-
ces obtained by neglecting the singular values
numbered n + 1 and higher. Therefore in this
step the order is specified.

e Given the estimate K, from the second
step the state is estimated as &; = ICA,,Yt’_p
and the system matrices are obtained using
least squares regressions in the system equa-
tions (1), where the estimated state takes the
place of the state.

Estimation of the order can be performed using
the information contained in the estimated sin-
gular values in a number of different ways (for a
discussion see Bauer, 1998, Chapter 5). Here we
will deal with the criterion SVC. Let

. Crd(n
SVC(n) =62, + TT( )
where d(n) = 2ns denotes the number of pa-

rameters and Cr > 0,Cr/T — 0 denotes a
penalty term. Here &; denotes the estimated sin-
gular values ordered decreasing in size. In the
homoskedastic case it is known, that a penalty
such that Cr/(fplogT) — oo leads to al-
most sure (a.s.) consistent estimates of the or-
der i = argmin SVC(n),0 < n < Hrp,Hr =
O((logT)*),a < oo.

4. RESULTS

The key to the results in this section lies in the
uniform convergence of the estimated covariance
sequence. The conditions in Theorem 5.3.2. of
(Hannan and Deistler, 1988) require, that in order
for the sequence of covariance estimates to con-
verge uniformly of order O(Qr) the noise has to
be homoskedastic. Here gy = O(fr) means that
there exists a constant M, such that gr/fr < M
a.s. and Qr = +/loglogT/T. However, equation
(5.3.7.) in the same book provides the result, that
if the limiting covariance sequence is replaced
with a sequence, where the innovation variance
% is replaced with 7-' Y07, e4e} the same results
holds under weaker assumptions. This enables the
results in the next theorem:

Theorem 1. Let the process {y;} be generated by
a stable, strictly minimumphase system k(z) €
M(n), where the innovation process is an er-
godic, strictly stationary martingale difference se-
quence satisfying E{e;|F;_1} = 0,Ee}; < oo

and limg_,oo B{ese}|Fi—r} = ¥ = Eepe). as. Let
(A, K,C) denote the estimates obtained via the
CCA subspace algorithm using the true order n for
the estimation, which have been transformed to
the corresponding echelon canonical form. Then
the following statements hold:

i) I+ 20(I —2A) 1K — k(z) as. for each
fixed z = exp(iw), if f > n,p = p(T) —
oo, max{f,p} = O((logT)*),a < oo. That
is, the transfer function is estimated consis-
tently.

ii) Let (Ag, Ko,Co) denote the representation
of the system in the echelon canonical form.
Then for k(z) in the generic neighbourhood
of the echelon canonical form and if p >
—dlogT/(2logpo),d > 1

max{[|A—Ao|l, || K—Kol|, IC-Coll} = O(Qr)

Here 0 < pp < 1 denotes the maximal
modulus of the eigenvalues of Aqg — KqCy.

iii) The order estimate 7 obtained by minimizing
the SVC criterion is strongly consistent, i.e.
= n a.s., for Cr/(fplogT) — 0.

The three parts of the theorem state that with
regard to consistency there is no major difference
between the homoskedastic and the heteroskedas-
tic case, as long as stationarity is preserved: The
subspace estimates still are consistent, the estima-
tion error can be bounded as in the homoskedastic
case. Note that the result ii) has the form of a law
of the iterated logarithm, except that the constant
is not evaluated exactly. This result is only given
for the generic neighbourhood of the echelon form,
however, using overlapping forms (see e.g. Hannan
and Deistler, 1988, Chapter 2) one can show,
that an equivalent error bound is indeed valid for
all k € M(n). The last result shows, that also
the order estimation can be performed as in the
homoskedastic case. This essentially means, that
one can use the same code as in the homoskedastic
case for the identification irrespective if the sys-
tem is homo- or heteroskedastic. The derivation of
the asymptotic distribution and the investigation
of the comparison with prediction error methods
is left as a topic of future research.

The theorem imposes an order of convergence for
the integer p as a function of the sample size,
which is only needed for the derivation of the
error bound. This order of convergence includes
system dependent quantities and thus might be
seen as useless in practice. However, Theorem
6.6.3 in (Hannan and Deistler, 1988) shows, that
if p is chosen as |dpasc] for d > 1, where |z|
denotes the largest integer smaller than z and
where parc is chosen as the order estimate of
a long autoregression for approximating y; using
AIC, then p fulfills the assumption of part ii) a.s.



for large 7.2 Thus an algorithm using this choice
of the integer p will lead to consistent estimates,
where also the error bound on the estimation error
holds.

In comparison to the homoskedastic case the theo-
rem leaves out two important results: The asymp-
totic distribution of the estimates is not analyzed
and secondly the consistency result should also be
extended to the unit root case. Both questions are
topics of future research.

4.1 ARCH(p) innovations

(Engle, 1982) introduced the class of ARCH(p)
models, where the conditional variance h; of the
univariate innovations &; is modelled as a linear
function of the last p squares of the innovations:

p
hi =c+ Zajaf_j
7j=1

where €; conditional on F;_1, the sigma algebra
spanned by {e;_1,e¢—2,--}, is identically Gaus-
sian distributed with mean zero and variance h;.
Here 0 < aj,c > 0 is assumed. In order for
the process to be strictly stationary with finite
variance it is assumed that Z§:1 a; < 1.1It follows
from (Bougerol and Picard, 1992) that in this
situation the process €; is ergodic. Furthermore
it is assumed for 3 being equal to the matrix
with typical element ;; = a;y; + a;—;j, where
a; = 07.7 ¢ {17 o 7p} that 3((1]_, o '7a11)(I -
¥)~'(a1, - -,ap)" < 1. This condition is suffi-
cient for the existence of fourth moments (see e.g.
Gourieroux, 1997, Exercise 3.4). Thus the sys-
tem estimates obtained using subspace methods
are consistent. The assumption on Gaussianity of
€¢|Ft—1 is not necessary and can be replaced by
other assumptions, which imply the existence of
the fourth moment of the process &;.

From the discussion given above it follows, that
a regression of &7 onto [1,&7_,,---,&7 ] results
in consistent estimates of the model for the con-
ditional variance. This follows from the finiteness
of the fourth moment, the strict stationarity and
ergodicity of €; and the consistency of &; for ;.

4.2 GARCH(p,q) innovations

(Bollerslev, 1986) extended the ARCH(p) spec-
ification to also include MA terms, leading to
GARCH(p,q) systems: Let the conditional vari-
ance be denoted as h; = E{e7|F; 1}, then the
model assumes that

2 This does not hold for AR(p) systems. In this case po = 0
and pajc stays bounded. However, all results remain true.

14 q
hi =c+ Za]’E?,j + Z bjht_j
j=1 j=1

where again ¢ > 0,a; > 0,b; > 0. (Bougerol and
Picard, 1992) show, that the process ; is strictly
stationary and ergodic, if h, 1 25t is identically
standard normally distributed and if 37, a; +
;’.:1 b; < 1.In this case also the second moments
exist and the process is also wide sense stationary.
It remains to find a bound for the fourth moment:
Conditions for this to hold are fairly complicated
and can be found in (He and Terisvirta, 1999).
Thus in this case the result above shows the
consistency of the transfer function estimates.
Therefore also the estimated residuals are consis-
tent. The estimation of the model for the innova-
tions leads again to an ARMA model with het-
eroskedastic innovations. Thus in order to apply
the results in this paper, the existence of an eighth
moment has to be assumed: Although it follows
from (Hannan and Deistler, 1988) that also in this
case finite fourth moments are sufficient to achieve
a uniform convergence of the sample covariances,
no bound on the order of convergence can be
given and thus the arguments given above fail for
p — oo. Holding f and p fixed leads to consistent
estimates in the sense, that the estimated system
matrices converge to some constants a.s., but the
estimated system will be asymptotically biased,
where the bias depends on the magnitude of pf).

4.3 E-GARCH processes

As a final example consider the exponential
GARCH models considered in (Nelson, 1991): In
order to guarantee positivity of the conditional
variances the following model has been intro-
duced:

oo
loghy = a; + Zﬁkg(zt,k)

j=1
Here ¢ = zthi/ 2, where z; is assumed to be
i.i.d. with mean zero and variance unity and oy
is a deterministic sequence e.g. constant. The
function g is assumed to be of the lin-lin type:
9(z) = 0z + v(|z| — E|2|) Further the distribution
of z is assumed to be of the GED type with
tail thickness parameter v > 1. Under these
assumptions it follows that exp(—a;)e; is strictly
stationary and ergodic with finite moments of all
orders. Furthermore E{e?|F;_x} — o? as. for
k — o0o. Thus the assumptions of Theorem 1
are fulfilled and the subspace estimates are a.s.
consistent.

5. SIMULATIONS

In this section a simple simulation study compares
the properties of the subspace estimates to the



estimates obtained by using a likelihood approach.
The procedure, which serves as a benchmark, is
the one provided in the MATLAB toolbox. The
investigated properties are the accuracy of the
estimates and the computation times as measured
by the MATLAB function profile. It should be
noted, that both the ML procedure as well as
the subspace algorithm have not been trimmed
to have minimum computations and there seems
to be much potential of improving the subspace
algorithms, but on the other hand also the ML
approach uses some consistency checks on the
data, which increase the computations as well.

The system we will use is an ARMA model with
GARCH(1,1) innovations and thus very simple.
The specification in full detail is as follows:

Yy =0.8y—1 + e +0.3e41
hi =0.3h; 1 +0.2¢7_ , +1

The conditional distribution of the innovations is
Gaussian. The processes are generated using the
MATLAB function garchsim. For each sample size
T = 200,7 = 500,7 = 1000 and T" = 2000 a
total of 1000 time series have been generated and
the system estimated using the function garchfit
and the correct specification. Also the subspace
procedure is used with f = p = 2pas¢c, where
parc denotes the lag length selected by the AIC
criterion.

The summary statistics of the estimates can be
seen in Table 2 for the ML procedure and in
Table 3 for the subspace procedure: The better
accuracy of the ML method is clearly visible, how-
ever the difference does not seem to be striking for
the ARMA model for the output series. Especially
for T = 2000 the difference in accuracy is mi-
nor, except for the occurrence of some outliers in
the subspace case. The estimates for the variance
model achieved using subspace procedures how-
ever, are not very reliable, and this is in particular
true for the estimated zeros of the variance model.
Even at sample size T = 2000 there seems to be
a downward bias in the estimates. These facts are
also visible in Figure 1: The upper plot here shows
a scatter plot of the estimated autoregressive pa-
rameters, the lower plot shows the scatter plot for
the zero of the estimated variance models, both
for sample size T' = 2000. The upper plot shows a
high correlation between the estimates, whereas
the lower plot indicates a number of aberrant
estimates for the subspace algorithms.

Also in a number of cases some outliers occur,
which inflate the estimated variability. This is
the reason for using robust estimates of the root
mean square and the mean. It should also be
mentioned, that in a number of cases the MATLAB
routine garchfit crashed, giving no resulting
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Fig. 1. Upper plot: estimates of the autoregres-
sive parameter of the conditional mean model
estimated using garchfit (x-axis) versus
the estimates obtained using the subspace
method (y-axis) for sample size T' = 2000 in
1000 trials. Lower plot: analogous picture for
the estimated zero of the variance model.

Method | T"=200 | T"=500 | T'=1000 | T = 2000
garchfit 3.52 3.77 5.17 6.38
subspace 0.61 0.65 0.74 0.89
Quotient 5.77 5.8 7.0 7.2

Table 1. Mean computation time per
identification experiment in seconds for
the various sample sizes.

system at all. These cases have been taken out
of the simulations, leading to some bias in the
comparison.

Finally the computational time can be analyzed,
which clearly shows a huge advantage for the (not
even optimized) subspace methods (see Table 1).
It is clearly visible, that the subspace method re-
quires only a fraction of computations, while still
providing reasonable estimates. The main con-
clusion of the small simulation study is that the
subspace algorithms provide relatively good initial
estimates for a subsequent pseudo ML approach
in terms of the asymptotic statistical properties,
while still keeping the amount of computations
required at a low level.




6. CONCLUSIONS

In this paper the asymptotic properties of es-
timates of state space models using subspace
methods with heteroskedastic innovations are in-
vestigated. Consistency is shown and a bound
on the obtainable order of consistency is pro-
vided. The result is stated in a general fashion
such that it applies for a wide range of models
for the heteroskedasticity, including ARCH(p),
GARCH(p,q) and E-GARCH(p,q) models. This
shows, that the standard subspace algorithms pro-
vide consistent estimates of the system also in
situations, where the model for the conditional
variance might be doubted. This of course is due
to the fact, that the subspace algorithms are based
mainly on regression techniques, which are robust
with respect to the variance structure of the in-
novations. With respect to the estimation of the
model for the conditional variances consistency
can be achieved in the ARCH(p) case, whereas
no comparable results are given for the general
case. A simulation study compares the estimates
with the estimates obtained using the GARCH
toolbox implemented in MATLAB both with respect
to accuracy and computation time. The loss of
efficiency in the estimation of the model for the
heteroskedasticity is clearly visible, however, the
accuracy of the model for the conditional mean
seems to be acceptable. Finally the main power of
subspace algorithms, namely their low computa-
tional load is demonstrated in comparison with
a GARCH routine implemented in the MATLAB
GARCH toolbox.

7. REFERENCES

Bauer, D. (1998). Some Asymptotic Theory for
the Estimation of Linear Systems Using Max-
imum Likelihood Methods or Subspace Algo-
rithms. PhD thesis. TU Wien.

Bauer, D. (2000). Asymptotic efficiency of the
CCA subspace method in the case of no
exogenous inputs. Submitted to Journal of
Time Series Analysis.

Bauer, D. and M. Wagner (2001). Estimating
cointegrated systems using subspace algo-
rithms. to appear in Journal of Econometrics.

Bauer, D., M. Deistler and W. Scherrer (1999).
Consistency and asymptotic normality of
some subspace algorithms for systems with-
out observed inputs. Automatica 35, 1243—
1254.

Bollerslev, T. (1986). Generalized autoregres-
sive conditional heteroskedasticity. Journal of
Econometrics 31, 307-327.

Bougerol, P. and N. Picard (1992). Stationarity of
GARCH processes and of some nonnegative
time series. Journal of Econometrics 52, 115—
127.

T Meas. a b ay by o2

True 0.8 -0.3 0.2 0.3 2.0

200 Mean | 0.776 | -0.283 | 0.188 | 0.293 | 1.97

RMSE | 0.070 | 0.111 | 0.100 | 0.261 | 0.28

500 Mean | 0.788 | -0.288 | 0.194 | 0.290 | 1.99

RMSE | 0.041 | 0.068 | 0.064 | 0.201 | 0.18

1000 | Mean | 0.796 | -0.297 | 0.198 | 0.277 | 1.99

RMSE | 0.026 | 0.045 | 0.045 | 0.147 | 0.12

2000 | Mean | 0.798 | -0.298 | 0.199 | 0.291 | 1.99

RMSE | 0.019 | 0.032 | 0.032 | 0.104 | 0.09

Table 2. Summary of estimation results
for the ARMA model for the condi-
tional mean (parameters a and b) and
the ARMA model for the conditional
variance (parameters a, and b,) and
implied stationary variance o2 for vari-
ous sample sizes and for garchfit. For
each sample size the trimmed mean and
the trimmed root mean square error
(RMSE) neglecting the extreme 5%, are

calculated.
T Meas. a b ay by o2
True 0.8 -0.3 0.2 0.3 2.0

200 Mean | 0.778 | -0.286 | 0.155 | 0.095 | 1.97

RMSE | 0.074 | 0.121 | 0.111 | 0.391 | 0.27

500 Mean | 0.787 | -0.286 | 0.177 | 0.196 | 1.99

RMSE | 0.044 | 0.075 | 0.078 | 0.264 | 0.18

1000 | Mean | 0.795 | -0.296 | 0.187 | 0.233 | 1.99

RMSE | 0.031 | 0.054 | 0.065 | 0.219 | 0.13

2000 | Mean | 0.798 | -0.298 | 0.192 | 0.265 | 1.99

RMSE | 0.020 | 0.036 | 0.042 | 0.132 | 0.09

Table 3. Summary of estimation results
for the subspace procedure.

Deistler, M., K. Peternell and W. Scherrer (1995).
Consistency and relative efficiency of sub-
space methods. Automatica 31, 1865-1875.

Engle, R. (1982). Autoregressive conditional het-
eroskedasticity with estimates of the variance
of u.k. inflation. Econometrica 50, 987-1008.

Gourieroux, Ch. (1997). ARCH Models and
Financial Applications. Springer Series in
Statistics.

Hannan, E. J. and M. Deistler (1988). The Statis-
tical Theory of Linear Systems. John Wiley.
New York.

He, C. and T. Terasvirta (1999). Fourth moment
structure of the GARCH(p,q) process. Econo-
metric Theory 15(6), 824-846.

Larimore, W. E. (1983). System identification,
reduced order filters and modelling via
canonical variate analysis. In: Proc. 1983
Amer. Control Conference 2., Piscataway,
NJ. pp. 445-451.

Nelson, D. (1991). Conditional heteroskedasticity
in asset returns: A new approach. Economet-
rica 59, 347-370.

Peternell, K., W. Scherrer and M. Deistler (1996).
Statistical analysis of novel subspace identifi-
cation methods. Signal Processing 52, 161—
177.



