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Introduction

We consider k-step BDF schemes applied to evolution
equations

y(t) = Ay(t) + f(t), y(t0) = y0,

where A is maximal sectorial in Hilbert space H;
h > 0; tν = νh. We discuss:

(I) Explicit stability bounds

(II) Asymptotic error expansion for BDF 2, for smooth y(t)
(generalization to k > 2 will be ‘merely technical’)

Essentially, (I) provides quantitative versions of known,
qualitative bounds, based on estimates for the separation of
characteristic roots. (II) is an extension of prior work on
one-step schemes, e.g. backward Euler.
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Characteristic polynomials and discrete resolvent

Let ρ and σ be the characteristic polynomials of a k-step
BDF scheme,

ρ(ζ) =
k

∑

j=1

1

j
ζk−j(ζ − 1)j , σ(ζ) = ζk

For scalar A = λ, µ := hλ, let

p(ζ) = p(ζ; µ) := ρ(ζ) − µ σ(ζ),

r(ζ) = r(ζ; µ) := p−1(ζ)

r(ζ) is called the discrete resolvent of the scheme, providing
a representation of the discrete solution.
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Location of characteristic roots (i)

Proposition 1 [3] : For k = 2 . . . 5 and arbitrary µ in the
stability region of the k-step BDF scheme, any root of
p(ζ) = p(ζ; µ) which is contained in the annulus

Ak := { ζ ∈ C : ak < | ζ | ≤ 1 }

is simple and solitary within Ak, i.e., Ak contains no other
root.
Here, ak =

1

|1 − ωk|
, ωk = e2πi/k . k ak
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Location of characteristic roots (ii)

Remark: Due to stiff stability, all roots tend to zero for
µ → ∞; Proposition 1 refers to moderate-sized values of
µ = hλ. It enables quantitative stability estimates, uniform
w.r.t. µ in the stability region, see [3].

• k = 5 :
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Problem class

We assume A to be densely defined and θ-sectorial, i.e.

〈Au, u〉 ∈ Tθ, Tθ := {z ∈ C : |arg(−z)| ≤ θ}

equivalent to the resolvent inequality

‖(zI − hA)−1‖ ≤ 1

dist(z, Tθ)
, ∀z ∈ C \ Tθ.

• Characteristic polynomial and discrete resolvent
(with hA taking the role of µ):

P (ζ) = ρ(ζ)I − σ(ζ)hA,

R(ζ) = P−1(ζ) =
∞

∑

ν=k

ζ−νRν(hA)
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Discrete variation of constants

For sector Tθ ⊂ stability region, the coefficients Rν admit the
Cauchy representation

Rν =
1

2πi

∮

Γ
ζν−1R(ζ)dζ, Γ outside unit circle.

⇒ BDF solution ην , ν ≥ k, with initial values η0, . . . , ηk−1:

ην = −
min{2k−1,ν}

∑

j=k

Rν+k−j(hA)
(

2k−1−j
∑

ℓ=0

αℓ ηj−k+ℓ

)

+ h

ν
∑

j=k

Rν+k−j(hA)fj

The Rν = Rν(hA) satisfy the homogeneous difference
equation, with R0 = α−1

0 I and R1 = . . . = Rk−1 = 0.
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A quantitative discrete resolvent estimate

Let 2 ≤ k ≤ 5, A θ-sectorial with θ ≤ α = stability angle;
αk = coefficients of ρ(ζ); ak = inner radii of Ak

Proposition 2 [1] :

‖R(ζ)‖ ≤ bk

|ζ|k−1(|ζ| − 1)
∀ |ζ| > 1, bk =

1

αk(1 − ak)
k−1

.

Proof: Extended, quantitative version of the estimate given
in [7], based on information about the separation of
characteristic roots (Proposition 1). �

Proposition 3 [1] : Let n := dim(H).

‖Rν(hA)‖ ≤ e bk min{ν, kn} ∀ ν ≥ k.

Proof: As in [7], estimating the Cauchy integrals for Rν . �
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Remarks

• Proposition 3 enables stability estimates via discrete
variation of constants.

• For another scaling of the discrete resolvent,

R̂(ζ) := (akI−hA)R(ζ),

analogous estimates can be derived (and will be used).

• Related work has been done in [5], where discrete
damping properties are studied for the error of BDF applied
to y′ = Ay. Independently of the smoothness of y(t), there
is an order reduction at the first grid points which is damped
out algebraically with increasing ν.

• Damping properties of the discrete resolvent are also
essential in the following.
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The BDF 2 method (A-stable, G-stable)

• For k = 2, the uniform bounds

‖Rν(hA)‖ ≤ 3
2 , ‖R̂ν(hA)‖ ≤ 9

4 ,

can easily be concluded from G-stability.

• Precise estimates for the characteristic roots ζ1,2(µ):

Lemma 1 [1] : For all µ ∈ C
−,

|ζ1,2(µ)| =
∣

∣

∣

1

2 ∓√
1 + 2µ

∣

∣

∣
≤ 1√

1 − 2 Re µ
=: δ(µ) .

For µ ∈ Tθ with Re µ ≥ −1
4 ,

|ζ1(µ)| ≤ eτ Re µ, τ = 2 ln(3
2) ≈ 0.81,

and ζ2 is uniformly strictly smaller than ζ1 (depending on θ).
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‘Scalar damping’ for BDF 2

Lemma 1 implies quantitative damping estimates for the
scalar discrete resolvent (proof via Cauchy representation):

Lemma 2 [1] : For µ ∈ Tθ with Re µ ≥ −1
4 ,

|rν(µ)| ≤ C(θ)eτ(ν−2)Re µ, ν ≥ 2,

with τ ≈ 0.81 as above.

For Re µ ≤ −1
4 ,

|rν(µ)| ≤ e2

3 − 2 Re µ
ν δ(µ)ν , ν ≥ 2,

with δ(µ) < 1 as above, δ(µ) → 0 for µ → ∞.
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Asymptotic error expansion for BDF 2

Problem is assumed to be sectorial and non-degenerate
(strongly elliptic), with bounded inverse A−1. Assume
smooth solution y(t); but inhomogeneity f need not be
bounded. We only require A−1f to be bounded.
• Ansatz

ην − y(tν) = h2e2(tν) + h3e3(tν) + εν

together with local error expansion yields

e′2 = Ae2 + 1
3 y′′′, e′3 = Ae3 − 1

4 yIV ,

and
1
2 εν−2 − 2 εν−1 + (3

2I−hA)εν = h iν ,

where iν is a collection of formally O(h4) Taylor remainders
depending on derivatives of y, e2 and e3.
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The principal error functions e2(t) and e3(t)

• With e2(0) = e3(0) = 0 we obtain bounded solutions
e2(t), e3(t), but

e′′′2 (0) = yV(0) − 2
3 f IV(0) − 1

3 Af ′′′(0),

e′′3(0) = −1
2 yV(0) + 1

4 f IV(0),

are not bounded and influence the inhomogeneity iν in the
difference equation for the remainder εν .

• Thus, εν is only ‘formally O(h4)’ – it remains to be
estimated. The following results are similar as in [2] for the
backward Euler scheme, with a considerably higher
technical effort. (For the special case of selfadjoint A, the
analysis is similar but reduces to spectral estimates.)
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Estimation of the remainder εν (i)

• Smooth and bounded contributions from e2 and e3 (via iν)
can be estimated by conventional stability argument, using
bounds for Rν(hA) and R̂ν(hA)

• ‘Critical terms’ in εν result from unbounded terms
ê′′′2 (0), ê′′3(0) in e′′′2 (0), e′′3(0). They can be represented as

ε̂ν,2 = h4 Ων Î2 ê′′′2 (0),

ε̂ν,3 = h4 Ων Î3 ê′′3(0),

where
Î2 = −(hA)−3(1

2 I − 2 ehA + (3
2I−hA)e2hA),

Î3 = −hA Î2 ,

and Ων satisfies
1
2 Ων−2 − 2 Ων−1 + (3

2I−hA)Ων = etν−2A.
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Estimation of the remainder εν (ii)

• The critical terms can be rewritten as ([1])

ε̂ν,2 = h4(hA)−3(Ẽν − etνA)ê′′′2 (0),

ε̂ν,3 =−h5(hA)−3(Ẽν − etνA)A ê′′3(0),

where Ẽν is the BDF approximation to the operator
exponential, i.e.

1
2 Ẽν−2 − 2 Ẽν−1 + (3

2I−hA)Ẽν = 0, ν ≥ 2,

with Ẽ0 = I, Ẽ1 = ehA.

This representation follows from the difference equation for
Ων together with the fact that Î2 and Î3 are essentially local
truncation errors w.r.t. etA.
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Estimation of the remainder εν (iii)

• Due to the occurrence of A and A2 in ê′′′2 (0) and ê′′3(0), a
simple stability estimate is too weak. We now combine
techniques from [2] and [5].

• Sharp estimation of

(Ẽν − etνA) · Ap

is accomplished by
– Considering the scalar problem (hA ∼ µ ∈ Tθ), and
making use of the distribution of characteristic roots and/or
damping properties of the scalar discrete resolvent (see
above),
– and applying a spectral argument (A selfadjoint) or a
Cauchy estimate near the boundary of Tθ, using the
resolvent inequality characterizing sectorial A.
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Main result

Proposition 4 [2] :
For η0 = y(0) and exact or sufficiently accurate initial value
η1 ≈ y(h), the global error of BDF 2 satisfies

ην − y(tν) = h2e2(tν) + h3e3(tν) + εν ,

with smooth functions e2(t), e3(t) independent of h, and

εν = ε̂ν + O(h4) = O(h3),

where the O(h4) - term depends on certain derivatives of
y(t), and

‖ε̂ν‖ ≤
(

C0 +
C1

tν

)

h4,

with an order reduction O(h4) → O(h3) at the first grid
points which is damped out algebraically with increasing ν.
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