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Abstract

System identification is concerned with obtaining good models from data, i.e.
with data driven modeling. In this contribution the aim is to explain and dis-
cuss ideas, general approaches and theories underlying identification of linear
systems. Identification of linear systems is a nonlinear problem and is proto-
typical also for many parts of identification of nonlinear systems.

1 Introduction

The art of identification is to find a good model from, in general, noisy data.
This is an important problem in many areas of application. Often the task of
identification is so complex, that it cannot be performed with the naked eye
and systematic approaches have to be used. This is done, partly under quite
different perspectives, in statistics, econometrics, system theory and the field of
inverse problems.

The main steps in identifications are:

• Specification of the model class, i.e. of the class of all a priori feasible
candidate systems. In this step the a priori information concerning the
phenomenon to be modeled is incorporated. This typically includes, for
instance, the selection of (candidates for) the input-variables or assump-
tions on the relation between the variables.

• Specification of the class of observations, data preprocessing.

• Identification in the narrow sense: An identification procedure is a rule, in
the automatic case a function, attaching a system from the model class to
the data. In this step the emphasis is on the development of procedures
and algorithms on one side and on their evaluation on the other side.

Here only identification from equally spaced, discrete time, time series data
yt = (y(i)

t )i=1...s ∈ R, t = 1 . . . T is considered. For explanation of time series
data, dynamic systems are often natural candidates.

In this contribution the focus is on what we call the main stream theory for
identification of linear systems (see [6], [7]). We add a few remarks on alter-
native model classes and approaches for identification of linear systems and on
identification of nonlinear systems.
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The mainstream theory of identification deals with the following setting:

• The model class consists of linear, time-invariant, finite dimensional, causal
and stable systems only. The classification of the variables into inputs and
outputs is given a priori.

• Uncertainty is modeled by the use of stochastic models for noise. In par-
ticular here the noise is assumed to be stationary with a rational spectral
density. These assumptions on the noise are in a sense standard, but are
nevertheless not innocent. The have been critisized on grounds of not
being justified in a number of applications (see e.g. [25]). In our opinion,
stochastic noise models are at least an important ”test bed“ for evaluating
identification procedures.

• The observed inputs are free of noise and uncorrelated with the noise
process.

• The approach to estimation is semi-nonparametric in the following sense:
In general the parameterspace for describing system- and noise parameters
will be not finite-dimensional, since e.g. systems of arbitrarely high orders
are considered. In this approach the model class is broken down into
subclasses such that each subclass has a finite- dimensional parameter-
space. Estimation then consists of two steps: The model selection step,
where the subclass is estimated by a vector of integers, characterizing this
subclass. Once the subclass is obtained, its parameter-space is a subset of
a suitable Euclidian space and estimation is concerned with estimating a
parameter, which is a vector of real-valued entries, in this space.

• For the statistical analysis, emphasis is laid on asymptotic properties (con-
sistency, asymptotic normality and asymptotic efficiency), mainly because
finite sample properties are hard to obtain analytically.

We consider the following three “modules” in the theory of system identification:

• Structure theory: Here an idealized problem is considered, as we com-
mence from the stochastic processes generating the data or their popu-
lation second moments rather than from the data. In the ergodic case
one could also say that we commence from an infinite, rather than from a
finite data string. The relation between “external behavior” (as described
e.g. by the population second moments of the observations) and “internal”
(system and noise-) parameters is analysed. Identifiabilty, realization- and
parametrization theory are important parts of structure theory.

• Estimation of real-valued parameters for a given subclass: Here we com-
mence from a given subclass whose parameter space is a subset of an Eu-
clidean space and in addition contains a non-void open subset of this space.
Estimators are often found from general principles, here in particular from
optimizing a likelihood-type criterion function over the parameter-space.
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• Model selection: In general the orders or the relevant inputs are not known
a priori and have to be determined from the data. One way of doing this
is e.g. estimation of integers characterizing the orders by information
criteria like AIC or BIC, or, more generally by using a criterion defining
a trade-off between the quality of fit to the data achievable in a certain
model-subclass and the complexity of this subclass

2 Structure Theory

As has been stated already, structure theory is concerned with an analysis of
the relation between external behavior and internal parameters. Such an analy-
sis turns out to be important for a deeper understanding of many identification
procedures. For the linear mainstream case, the relation between the population
second moments of the observations or equivalently the transfer-functions (and
noise covariance matrices) and the system (and noise) parameters is considered.

Main model classes for linear systems are:

• AR(X) models

• ARMA(X) models

• State space models

In many applications AR(X) systems still dominate for a number of reasons.
Main advantages of (unrestricted), AR(X) models are:

• There are no problems of non-identifiability; in more general terms struc-
ture theory is so simple, that for standard situations it does not have to
be considered separately.

• Least squares estimators are of maximum likelihood type; they are explic-
itly given, fast to calculate and asymptotically efficient.

Things are different in case of “structural” a priori restrictions (i.e. if restrictions
on the parameter space are imposed by a priori knowledge); but nevertheless,
also then AR(X) system identification is “easier” compared to the ARMA(X)
or state space case.

On the other hand AR(X) models are less flexible than ARMA(X) and state
space models in the sense that, in general, more parameters are needed to achieve
the same quality of approximation.

In this contribution, we will mainly consider the case where we have no ob-
served inputs.
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Here the focus is on state space systems, but we also consider the ARMA(X)
case. A state space system in innovations representation is of the form

xt+1 = Axt +Bεt(+Lzt) (1)

yt = Cxt + εt(+Dzt) (2)

where yt are the s-dimensional outputs, xt is the n-dimensional state, (εt) is,
in general unobserved, s-dimensional white noise (i.e. Eεt = 0, Eεsε

′

t = δstΣ,
where E denotes expectation and δst is the Kronecker symbol) and zt are the
m-dimensional observed inputs. The random variables yt, xt, εt and zt are de-
fined over an underlying probability space (Ω,A,P). A ∈ Rn×n, B ∈ Rn×s,
L ∈ Rn×m, C ∈ Rs×n and D ∈ Rs×m are parameter matrices.

Throughout we assume that the stability condition

|λmax(A)| < 1 (3)

where λmax denotes an eigenvalue of maximum modulus, and the miniphase
condition

|λmax(A−BC)| ≤ 1 (4)

hold. The steady state solution of (1) (2) is given by

yt = C(Iz−1 −A)−1(Bεt(+Lzt)) + εt(+Dzt) (5)

Here z is used for a complex variable as well as for the backward shift on the
integers Z, i.e. z(yt|t ∈ Z) = (yt−1|t ∈ Z).

In addition, throughout we assume that Ezsε
′

t = 0 holds and that Σ is non-
singular.

ARMA(X) systems are (vector-) difference equations of the form

a(z)yt = b(z)εt(+d(z)zt) (6)

where

a(z) = Σp
j=0ajz

j ; b(z) = Σq
j=0bjz

j ; d(z) = Σr
j=0djz

j ;

aj ; bj ∈ Rs×s ; dj ∈ Rs×m

We assume that the stability condition

det a(z) 6= 0 |z| ≤ 1 (7)

and the miniphase condition

det b(z) 6= 0 |z| < 1 (8)
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hold, and again we assume

Ezsε
′

t = 0

and that Σ is nonsingular. The steady state solution then is given by

yt = a−1(z)[b(z)εt(+d(z)zt)] (9)

Note that by (3) or (7) (and by assuming stationarity for (zt)) the infinite sums
in (5) and (9) respectively, i.e.

yt = Σ∞j=0kjεt−j(+Σ∞j=0ljzt−j) (10)

where, e.g,
kj = CAj−1B , j > 0 , k0 = I (11)

and
k(z) = Σ∞j=0kjz

j = a−1(z)b(z) (12)

converge e.g. in the mean squares sense. In addition (yt) and (xt) are stationary
processes.

From now onwards, we will, for the sake of brevity of notation, unless the
contrary is stated explicitly, restrict ourselves to the case, where there are no
observed inputs. Then the external behavior of (1), (2) or (6) is described by
the covariance function γ : Z → Rs×s, γ(t) = Eyty

′
0 of the process (yt) or

equivalently by its spectral density f : [−π, π] → Cs×s defined by

f(λ) = (2π)−1Σ∞t=−∞e
−iλtγ(t) (13)

From (10), f is given by

f(λ) = (2π)−1k(e−iλ)Σk∗(e−iλ) (14)

where ∗ denotes the conjugate transpose. Throughout we assume k(0) = I.
This implies no restriction for f and establishes a one-to-one relation between
f and (k,Σ).

Under our assumptions,

• Every state space system (1) (2) and every ARMA system (6) has a ratio-
nal transfer function k(z) which is analytic in a disk containing the closed
unit disk (and thus is causal and stable) and which satisfies det k(z) 6= 0,
|z| < 1.

• Conversely, for every rational transfer function k(z) which is analytic in
a disk containing the closed unit disk and which satisfies det k(z) 6= 0,
|z| < 1 and k(0) = I there is a stable and miniphase state space -, and a
stable and miniphase ARMA representation.
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Thus, in particular, state space- and ARMA representations are two alternative
ways to describe the same class of external (input/output) behaviors k(z). Note
that the assumption k(0) = I is a normalizing condition defining Σ. We have
([14], chapter 1):

Any rational and a.e. nonsingular spectral density matrix f may be uniquely
factorized as in (14) where k(z) is rational, analytic whithin a circle containing
the closed unit disk, det k(z) 6= 0, |z| < 1 and k(0) = I and where Σ > 0.

Consider the following set of s × s transfer functions: UA = {k|k is rational,
k(0) = I, k(z) has no poles for |z| ≤ 1 and no zeros for |z| < 1}. By M(n) ⊂ UA

we denote the set of all transfer functions of order n (to be more precise, the
set of all transfer functions corresponding to minimal state space systems with
state dimension n). By TA we denote the set of all triples (A,B,C), where s is
fixed but n is arbitrary, satisfying (3) and (4), by S(n) ⊂ TA the subset of all
(A,B,C) for fixed n and by Sm(n) ⊂ S(n) the subset of all minimal (A,B,C).
We define the mapping π : TA → UA such that π(A,B,C) = C(Iz−1−A)−1B+I
(also defined by (11)).

Now, TA is not a “good” parameter space because:

• TA is not finite dimensional

• π is (surjective but) not injective, i.e. we do not have identifiability

• There exists no continuous selection, in the sense that there is no con-
tinuous mapping attaching to every k ∈ UA a unique element from the
equivalence class π−1(k)

Here UA is endowed with the socalled pointwise topology Tpt [14] which corre-
sponds to the relative topology in the product space (Rs×s)N for the coefficients
(kj |j ∈ N).

In order to obtain “good” parameter spaces, UA and TA are broken into bits,
Uα and Tα say, α ∈ I such that

• π restricted to Tα, π/Tα : Tα → Uα is bijective. Injectivity of π/Tα implies
identifiability

• Uα is finite dimensional in the sense that Uα ⊂ ∪n
i=1M(i) for some n.

Usually, taking into account the restrictions in Tα, Tα is reparametrized
by expressing the (A,B,C) ∈ Tα by their “free” parameters, τ say. We
use Tα also for this set of free parameters τ and we assume that this Tα

contains an open set in an embedding Euclidian space Rdα . The mapping
Ψα : Uα → Tα: Ψα(π(τ)) = τ ∀τ ∈ Tα is called a parametrization.

• The parametrization Ψα : Uα → Tα is a homeomorphism; this is an as-
sumption of well-posedness
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• Uα is Tpt-open in its closure Ūα

• ∪α∈I Uα is a cover of UA

Usually, I is a set of vectors of integers (multiindices) characterizing the bits Uα

and Tα. Note that not all approaches used have the desirable properties listed
above.

Completely analogous statements hold for the ARMA case, where (using the
same symbols) the mapping π is defined by π(a, b) = a−1b.

The most common approaches are:

• Canonical forms defining decompositions of M(n), such as echelon forms
[14] or balanced realizations. Here M(n) is decomposed into sets Uα of dif-
ferent dimension. Echelon forms for state space and ARMA systems have
“nice” free parameters in terms of elements of (A,B,C), and of (a, b) and
define a very simple bijection between state space and ARMA parame-
ters. Balanced realizations (which only exist for state space systems) have
“nice” parameter spaces, but the free parameters are rather complicated
transformations of the elements of (A,B,C).

• The overlapping description of the manifold M(n) by local coordinates
([14]).

• The “full parametrization” for state space systems. Here S(n) ⊂ Rn2+2ns

or Sm(n) are used as parameter spaces for M̄(n) (the closure of M(n) in
UA) or M(n) respectively. Clearly in this case we do not have identifia-
bility. For k ∈ M(n), the classes of observationally equivalent (A,B,C),
π−1(k) ∩ S(n) are n2-dimensional manifolds.

• Data driven local coordinates, DDLC, for state space systems. Here
Sm(n) is reparamized in terms of coordinates that separately describe
the tangent space to the manifold of observationally equivalent (minimal)
systems corresponding to an initial estimator at a suitably chosen point
and its 2ns-dimensional orthocomplement [18], [20]. The orthocomple-
ment then is taken as the new parameter space.

• ARMA systems with prescribed column-degrees ([5])

• ARMA parametrizations commencing from writing k as c−1p where c is
a least common denominator polynomial for k and where the degrees of c
and p serve as integer valued parameters.

3 Estimation for a Given Subclass

Here we commence from the data yt, t = 1 . . . T and we assume that Uα is given.
We in addition assume that we have identifiability and that the parametrization
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Ψα : Uα → Tα has the desirable properties listed above.

Let τ ∈ Tα ⊂ Rdα denote the vector of free parameters for Uα and let σ ∈
Σ ⊂ R

n(n+1)
2 denote the vector formed by the on and above diagnonal elements

of Σ. Σ corresponds to the set of symmetric positive definite matrices. We
assume that the overall parameter space is of the form Θ = Tα × Σ.

Many identification procedures, at least asymptotically, commence from the
sample second moments of the observations:

γ̂(s) = T−1ΣT−s
t=1 yt+syt

′
, s ≥ 0

Now, γ̂ can be directly realized as an MA system, “typically” of order T.s. By
ǩT we denote the corresponding transfer function. Clearly, in many cases, its
order is too high. “Typical” identification procedures therefore consist of two
steps:

• A “projection” or model reduction step, where ǩT is approximated by
an element k̂T say, in Uα (Ūα). From a statistical point of view, this is
the essential information concentration step and the statistical properties
depend on the way the approximation is defined.

• A realization step, where k̂T ∈ Uα is realized by τ ∈ Tα. This step is
important for a number of reasons, for instance from a numerical point of
view, however certain statistical properties do not depend on this step.

One may distinguish between two types of estimation procedures, namely:

• Optimization based procedures (M -estimators), which are obtained from
optimizing a criterion function over the parameterspace and where the
estimators are not given explicitly

and

• Direct procedures, such as instrumental variable methods or subspace
methods, where the estimators are explicit functions of the data

The most common criterion function is the Gaussian (log) likelihood function,
which (when multiplied by −2T−1) is (up to a constant) of the form

L̂T (θ) = T−1logdetΓT (θ) + T−1y′(T )ΓT (θ)−1y(T ) (15)

where y(T ) = (y′1, . . . , y
′
T )′ is the stacked vector of observations, θ = (τ ′, σ′)′ is

the vector of system and noise parameters, y(T ; θ) is a stacked vector of random
variables formed from the outputs of systems with system and noise parameters
θ, (in an analogous way as y(T )) and finally ΓT (θ) = Ey(T ; θ)y(T ; θ)′. The
Gaussian maximum likelihood estimator (MLE) then is defined by

θ̂T = argminθ∈ΘL̂T (θ)
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It is well known that, although the likelihood is written down as if the obser-
vations were Gaussian the asymptotic properties of the MLE do not depend
on the Gaussianity of the observations. In addition, for the likelihood (15), the
Gaussian distribution is assumed to come from a stationary process; transients
in the observations do not influence the asymptotic properties of the MLE.

There exist a number of alternative criterion functions such as the Whittle
Likelihood of Ljung’s prediction error criterion [17] which (in most cases) give
asymptotically equivalent estimators. The Whittle likelihood is of the form:

L̂w,T (k, σ) = logdetΣ + (2π)−1

∫ π

−π

tr[(k(e−iλ)Σk∗(e−iλ))−1I(λ)]dλ (16)

where tr denotes the trace and I is the periodogramm, i.e. the Fourier trans-
form of γ̂. Formula (16) shows the approximation of I by k ∈ Uα in a clear way.

In maximum likelihood estimation a number of observations are important:

• For “natural” parameter spaces, the likelihood function is not necessarely
semi-continuous and thus the existence of its optimum is not guaranteed
(see [10]).

• In general, the MLE is not given by an explicit function of the data; thus
the estimators are obtained by a numerical optimization procedure.

• L̂T depends on τ only via the corresponding transfer function k, thus
(with a slight sloppyness in notation) we may define a “coordinate-free”
likelihood function L̂T (k, σ).

• Neither Tα nor Uα are closed sets and boundary points may occur in
optimizing the likelihood function (see [14]).

As far as consistency of the MLE’s is concerned, the first correct proofs have
been given in [12] (for the univariate case) and [11], [8], for a general result see
also [14]. Coordinate free consistency says that for k0 ∈ Ūα (where k0 denotes
the true system) and if limT−1ΣT−s

t=1 εt+sε
′

t = δ0,sΣ a.e. we have for the MLE’s
k̂T → k0 a.e. and Σ̂T → Σ0 a.e. The proof uses the basic idea of [24] developed
for the i.i.d. case. The specific additional difficulties are not only due to the fact
that the observations are dependent, but also due to the fact that the “natural”
parameter spaces are not compact. As can be shown

limT→∞L̂T (k, σ) = L(k, σ) = (17)

logdetΣ + (2π)−1

∫ π

−π

tr[(k(e−iλ)Σk∗(e−iλ))−1

(k0(e−iλ)Σ0k
∗
0(e−iλ))]dλ a.e.
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holds, where the subscript 0 again denotes the true quantities and the asymp-
totic likelihood L has a unique minimum at k0,Σ0. (Note the similarity of (16)
and L). Clearly pointwise convergence in (17) alone does not ensure conver-
gence of the optima, but in our case, the latter can be shown, in particular
since (k̂T , Σ̂T ) can be shown to enter a compact set. For a detailed proof of the
consistency result, see [14], chapter 4.

Even for k0 6∈ Ūα, the MLE’s have a “generalized consistency” property, as
they converge a.e. to the set D of minimizes of L over Ūα × Σ.

Now consistency “in coordinates”, i.e. for the parameter estimators τ̂T =
ψα(k̂T ) follows directly from the consistency of k̂T and the continuity of ψα

(and from the openness of Uα in Ūα), if τ0 ∈ Tα holds.

Under additional assumptions (see [14]) asymptotic normality can be shown
by using the idea explained in [4], extended to the stationary case.

For actual calculation of estimators, the usual procedure consists of a consistent
explicit estimator, e.g. a subspace procedure, to obtain an initial estimator in
the first step and one Gauß-Newton step is order to obtain an asymptotically
efficient estimator.

If Tβ denotes a parameterspace obtained by a diffeomorphic mapping from
Tα, then the transformation of the asymptotic distributions of the MLE’s is
straightforward; nevertheless the choice of parameterspaces turns of to be im-
portant from a numerical point of view, where it is taken into account that
optimization has to be performed over a grid.

Explicit estimation procedures are usually numerically fast and reliable, but
are in many cases not asymptotically efficient. Recently so called subspace
identification procedures [1], [15], [23] have attracted a lot of attention. Sub-
space estimators are for state space systems and they are based on a realization
algorithm combined with a model reduction step. Usually the model reduction
step is performed by omitting the smaller eigenvalues in a singular value de-
composition. For the case of observed inputs, subspace procedures turn out be
more intricate. The statistical properties of classes subspace procedures have
been investigated e.g. in [9], [3] and [2]

4 Model Selection

Here we confine our discussion to the problem of estimating the model order n.
In many cases information criteria defining a trade-off between the quality of
fit achievable in a certain model-subclass and the complexity of this subclasses
are used for this purpose. Note that we here have a situation which is “closure
nested”, i.e. n1 < n2 implies M̄(n1) ⊂ M̄(n2) and the dimension of M(n1) is
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smaller than the dimension of M(n2). In particular criteria of the form

A(n) = logdetΣ̂T (n) + 2ns.c(T )T−1 (18)

where Σ̂T (n) is the MLE of Σ0 over M̄(n) × Σ and c(T ) is a prescribed pos-
itive function of T , are frequently used. For c(T ) = 2 we obtain the AIC, for
c(T ) = c.logT , c ≥ 1, the BIC criterium. The corresponding order estimate n̂T

is obtained by minimizing A(n) (in a certain range of integers).

The statistical properties of such estimators have been analysed by Hannan [13],
see also [14], chapter 5. In particular (under suitable additional assumptions)
n̂T is (strongly) consistent if

limT→∞
c(T )
T

= 0

and

liminfT→∞
c(T )

loglogT
> 0

hold (and thus BIC gives consistent estimators) and AIC does not give consis-
tent estimators, and asymptotically leads to overestimation of the true order n.

Taking a closer look, things turn out to be more subtle. One may argue, as
has been done, e.g. in [22], that in most cases order estimation is only an in-
termediate goal. Shibata showed that under certain assumptions, in particular
if the true system is of infinite order, an autoregressive spectral estimate based
on AIC and MLE is asymptotically optimal.

Here we concentrate on two issues. The first one may be entitled “decom-
position into subclass is in the eye of the beholder”. Consider e.g. AR models
for s = 1 of the form

yt + a1yt−1 + a2yt−2 = εt

Then, considering only the system parameters, “usually” we have the following
parameterspaces:

T = {(a1, a2) ∈ R2|1 + a1z + a2z
2 6= 0|z| ≤ 1}

T0 = {(0, 0)}
T1 = {(a1, 0)||a1| < 1, a1, a1 6= 0}
T2 = T − (T0 ∪ T1)
Now, from the Bayesian deriviation of BIC [21] we see that, in order to obtain
BIC, T0, T1 and T2 must have strictly positive prior probabilities; thus BIC
has to be justified by some kind of a priori knowledge. For instance a flat prior
on T would suggest just to use the MLE over T , rather than to do model selec-
tion in a first step. In addition other prior distributions may give positive prior
probabilities to other low dimensional subsets of T and thus result in an other
decomposition of T .
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The second issue is concerned with properties of post model selection estima-
tors, i.e. with properties of estimators for real-valued parameters taking into
account the uncertainty coming from model selection. One may argue, that, if a
(strongly) consistent model selection criterion is used, then the true model order
is known from a certain sample size onwards and thus the asymptotic variance
of the estimators for τ after model selection is the same as in the case where
the true order is a priori known. As has been shown in [16] this argument is
grossly misleading, because it is pointwise in the parameterspace and does not
hold uniformly there.

5 Linear Non-Mainstream Cases

In a number of important cases, the systems are linear, but the models or their
identification is not in the mainstream setting. We do not intend to give a
survey on such cases here, but we only make a few remarks. Important special
cases are:

• Linear systems with time-varying parameters. There several different ap-
proaches to this problem, such as systems with slowly varying parame-
ters, where the variation of coefficients is described by an autoregression,
or systems with structural changes, which may be triggered by a ran-
dom mechanism, such as Markov switching models, or smooth transition
models.

• Identification in closed loop.

• The wide area of symmetric modelling, where no a priori distinction be-
tween inputs and outputs is made, errors-in-variables and linear dynamic
factor models; the latter are used in particular for high dimensional time
series.

• Unstable systems, in particular integration and cointegration, which is of
great importance for econometrics.

• Long memory

6 Nonlinear Systems

Of course there is a wide range of nonlinear systems and identification of nonlin-
ear systems is a word like “non-elephant zoology” (also in the sense that linear
systems are “huge animals”). Again, as in section 5, we do not intend to give a
survey on this topic, we only make a few remarks on this field. Identification of
nonlinear systems consists of a number of only weakly connected subareas. The
most important of these subareas are:
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• The asymptotic theory for M -estimation for parametric classes of non-
linear dynamic systems, see e.g. [19]. Identification of linear systems is
a nonlinear problem, since the mapping from data to parameters is non-
linear. Identification of nonlinear systems uses partly the same ideas as
identification of linear systems. The main problem in the setting of non-
linear systems is, that there is no general structure theory available, and
thus, for instance identifiability is often assumed rather than shown.

• Neural nets are a frequently used model class also for time series. Re-
current neural nets are a particular class of dynamic nonlinear models.
Identification of neural nets is a semi-parametric problem.

• Nonparametric estimation for nonlinear time series models, e.g. estimation
of nonlinear autoregressions

yt = g(yt−1, . . . , yt−p) + εt (19)

by kernel methods is, an area which has received substantial attention in
the last two decades. The systems (19) can be generalized by replacing
εt by a model for the conditional variance of yt. Another important class
in this area are socalled additive models, which are MISO models, where
the effects of the single inputs are nonlinear but additive, i.e. there is no
interaction effect of different single inputs.

Of central interest for nonparametric estimation is the choice of design
parameters, such as the bandwith of a kernel, and, in asymptotic theory
e.g. the rates of convergence.

• Special classes of nonlinear systems, justified by “physical” a priori knowl-
edge or “stylized facts” in data, such asGARCH-type models or stochastic
volatility models for explaining or forecasting conditional variances, in par-
ticular for finance data, have attracted a substantial number of researchers
recently.

• Chaotic systems and their identification have been considered in the last 25
years, but the number of convincing success stories in applications seems
to be limited.

7 Present State and Future Developments

Theory and methods in system identification have reached a certain state of
maturity. There is a large body of methods and theory available serving the
needs for many applications, but nevertheless, in many cases, identification is
still not a standard task and needs a special design by an expert.

On the other hand, the areas and the number of applications, are increasing
rapidly. Application fields like medicine, biology or finance are boom areas”
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and pose a number of new and interesting questions.

The development of system identification now is more driven by demand from
applications than by developments in theory, i.e. there is “demand pull” rather
than “theory push”.

One can also observe an increasing fragmentation corresponding to different
data structures, model classes and prior knowledge in different fields of applica-
tion. The development of theory and methods is also done by different, not very
much interacting communities, like econometrics, system- and control theory or
signal processing.

System identification is in a certain sense an enabling technology and in many
cases not visible for non-experts.

There are still major open problems in system identification, such as

• large parts of identification of nonlinear systems

• Identification of spatio-temporal systems

• Identification for large data sets data and for high dimensional time series

• Improved model selection and regularization procedures

• Further automatization

• Hybrid procedures

• The use of symbolic computaion

Summing up, system identification is still an interesting area, in particular new
applications pose new challenges. The field has shifting boundaries and the
question arises, whether in the future there will be still a substantial common
body of theory and methods. Besides the danger of fragmentation, for certain
parts of the field, there is also the danger of becoming selfreferential and not
relevant for applications.
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