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DAE with properly stated leading term
Problem class

Consider a DAE with properly stated leading term (according to
Balla, März 2002) of tractability index 1

A(t)(D(t)x(t))′ + B(t)x(t) = g(t), t ∈ [0,1],

posed as IVP, where

A(t) ∈ Rm×n, D(t) ∈ Rn×m, B(t) ∈ Rm×m,n ≤ m,
x(t), g(t) ∈ Rm

ker A(t) = {0}, im D(t) = Rn, all functions sufficiently smooth.
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DAE with properly stated leading term
Extended system

Assumption D(t) ≡ const is not restrictive, because

• such a system can be rewritten as

A(t)u′(t) + B(t)x(t) = g(t)
u(t)− D(t)x(t) = 0

or•

 A(t)
0

︸ ︷︷ ︸
A(t)


0 I

︸ ︷︷ ︸
D

 x(t)
u(t)

︸ ︷︷ ︸
x(t)


′

+

 B(t) 0
D(t) −I

︸ ︷︷ ︸
B(t)

 x(t)
u(t)

︸ ︷︷ ︸
x(t)

=

 g(t)
0

︸ ︷︷ ︸
g(t)
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Method class
Collocation

We consider collocation methods for the numerical solution of
such DAEs, i. e.

F̂ (x) := A(ti,j)(Dx(ti,j))′ + B(ti,j)x(ti,j)− g(ti,j),
i = 1, . . . ,N, j = 1, . . . , s

for continuous piecewise polynomial functions x of degree ≤ s ,
s even.

• • • • •
τ0 . . . τi−1 = ti,0

. . . ti,j . . .

τi = ti,s . . . τN︸︷︷︸
δi,j
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Abstract setting (nonlinear)
Original problem, working scheme, auxiliary scheme

Consider

• F ∗(x) = 0 . . . original problem, solution x∗

• F̂ (x) = 0 . . . working scheme, solution x̂

• F def(x) . . . defect-defining operator, typically restriction of
F ∗ to discrete grid; this operator is not inverted numerically

• F̃ (x) = 0 . . . auxiliary scheme, solution x̃
F̃ is assumed to be ‘cheap to solve’, plays auxiliary role in
error estimation

( F ∗ ≈ F def ≈ F̂ ≈ F̃ )

• x̂ is computed by solving F̂ (x) = 0
. . . wish to estimate the (global) error ê := x̂ − x∗
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Defect-based a-posteriori error estimation
DeC approach: Estimate global error using auxiliary scheme

Basic idea due to Zadunaisky 1976, Stetter 1978:
To estimate ê = x̂ − x∗ , proceed as follows

• Compute defect (residual) d̂ := F def(x̂)

• Solve F̃ (x) = 0 −→ x̃

• Solve F̃ (x) = d̂ −→ x̃def

• Estimate ê :

ê = x̂ − x∗≈F ∗−1 F def(x̂)︸ ︷︷ ︸
= d̂

−F ∗−1 F def(x∗)︸ ︷︷ ︸
≈ 0

≈ F̃−1(d̂) − F̃−1(0) = x̃def − x̃

• I.e.: error estimate ε̂ := x̃def − x̃ ≈ x̂ − x∗ = error
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Auxiliary scheme and pointwise defect
F̃ = backward Euler-like

F̃ (x) = 0 . . . low order discretization scheme
In particular: Consider backward Euler-like scheme over
collocation nodes,

A(ti,j)
Dx̃ i,j − Dx̃ i,j−1

δi,j
+ B(ti,j)x̃i,j − g(ti,j) = 0,

i = 1, . . . ,N, j = 1, . . . , s

A(ti,j)
Dx̃def

i,j − Dx̃def
i,j−1

δi,j
+ B(ti,j)x̃def

i,j − g(ti,j) = d̂i,j

i = 1, . . . ,N, j = 1, . . . , s
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Choice of F def

Choice of F def

• Define point-wise defect

d̂◦(t) := A(t)Dx̂ ′(t) + B(t)x̂(t)− g(t)

d̂◦i,j = 0 at all points evaluated in F̃ (d̂◦) ⇒ estimate would
always be zero.

• Use modified defect or quadrature defect, therefore QDeC
(Auzinger, Koch, Weinmüller 2002 in ODE context)

F def(x̂)(ti,j) := d̂i,j :=
s∑

k=0

αjk d̂◦(ti,k ) =
1
δi,j

∫ ti,j

ti,j−1

d̂◦(t)dt+O(hs+1)

In this sum αj,0d̂◦(ti,0) is only non-zero term!
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Defect-based a-posteriori error estimation
Main result

Main result

ê = x̂ − x∗ = O(hs)

ε̂ = x̃def − x̃ is an asymptotically correct estimate for the
error ê = x̂ − x∗, i. e.

ε̂− ê = O(hs+1).
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Numerical example
Problem

• Initial value problem et

et

 1 0
x ′(t) +

 et(1 + cos2 t) cos2 t
et(−1 + cos2 t) − cos2 t)

x(t) = sin2 t(1− cos t)− sin t
sin2 t(−1− cos t)− sin t

,
on [0,1] with initial condition x(0) = (1,−1)T .

• We use collocation at equidistant points with s = 4 on
N = 2,4,8,16,32 intervals.
Asymptotical order ε̂− ê = O(hs+1) is clearly visible.
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Numerical example
Results tabular, component 1

• First component, at t = 1 :

N ê ordê ε̂− ê ordε̂−ê

4 -2.466e−06 3.8 8.513e−08 4.6
8 -1.634e−07 3.9 2.989e−09 4.8

16 -1.051e−08 4.0 9.886e−11 4.9
32 -6.664e−10 4.0 3.180e−12 5.0

• First component, maximum absolute values over all collocation points
∈ [0, 1] :

N ê ordê ε̂− ê ordε̂−ê

4 2.732e−06 4.0 1.272e−07 5.3
8 1.711e−07 4.0 3.578e−09 5.2

16 1.074e−08 4.0 1.074e−10 5.1
32 6.734e−10 4.0 3.311e−12 5.0
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Numerical example
Results tabular, component 2

• Second component, at t = 1 :

N ê ordê ε̂− ê ordε̂−ê

4 2.906e−05 3.8 -7.927e−07 4.6
8 1.522e−06 3.9 -2.783e−08 4.8

16 9.788e−08 4.0 -9.206e−10 4.9
32 6.205e−09 4.0 -2.961e−12 5.0
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Numerical example
Results graphical

error |ê1(t)| = |x̂1(t)− x∗1(t)|
error estimate |ε̂1(t)|
deviation of error estimate |ε̂1(t)− ê1(t)|
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Other examples

Other numerical experiments indicate that

• singularities of the first kind do not compromise
asymptotical correctness (theoretically established in the
ODE case)

• with use of interior collocation points asymptotical
correctness is lost, but estimate still gives reasonable
approximation of error (preliminary)
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Decoupling of Index 1 DAEs
Definition of matrices

Index 1 DAEs with constant im D(t) can be decoupled into a
pure ODE (inherent ODE) and a purely algebraic equation:
• Let Q be a linear projector of Rn onto ker D ,
• D− a generalized reflexive inverse of D such that

D−D = I −Q, DD− = I, DD−D = D, D−DD− = D−

• G(t) = A(t)D + B(t)Q, (∃G−1 ⇔ index = 1)

• N(t) = G(t)−1B(t)D− .
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Decoupling of Index 1 DAEs
Inherent ODE

• Premultiplying our system with DG(t)−1 and
QG(t)−1, respectively, we obtain

Dx∗′(t)) + DN(t)(Dx∗(t))− DG(t)−1g(t) = 0,
Qx∗(t) + QN(t)(Dx∗(t))− QG(t)−1g(t) = 0,

i. e. the inherent ODE for Dx(t) and an algebraic equation
expressing Qx(t) in terms of Dx(t), with

•

x∗(t) = (I −Q)x∗(t) + Qx∗(t) = D−Dx∗(t) + Qx∗(t).
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Decoupling of Index 1 DAEs
Decoupled collocation and error

• Collocation equations decouple in exactly the same way:

Dx̂ ′(ti,j)) +DN(ti,j) Dx̂(ti,j)−DG(ti,j)−1g(ti,j) = 0,
Qx̂(ti,j) +QN(ti,j) Dx̂(ti,j)−QG(ti,j)−1g(ti,j) = 0,

i = 1, . . . ,N, j = 1, . . . , s

• Theory of collocation for ODEs and polynomial
interpolation argument:
Dê(t), Dê′(t),Qê(t), ê(t) = O(hs),

• and d̂◦(ti,j) = O(hs) ⇒ d̂(ti,j) = O(hs) .
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Analysis of deviation
Decoupling of defect definition

• Pointwise defect

DG(t)−1d̂◦(t) = Dx̂ ′(t) + DN(t)Dx̂(t)− DG(t)−1g(t) = DG(t)−1F ∗(x̂)

QG(t)−1d̂◦(t) = Qx̂(t) + QN(t)Dx̂(t)−QG(t)−1g(t) = QG(t)−1F ∗(x̂)

Note that QG(t)−1d̂◦(ti,j) = 0 ∀ i = 1, . . . ,N, j = 0, . . . , s
owing to collocation conditions and the continuity
conditions x̂(ti,0) = x̂(ti−1,s).
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Analysis of deviation
Differential component

Combining the above equations we obtain for r := ε̂− ê :

Dr i,j − Dr i,j−1

δi,j
= −DN(ti,j)Dri,j

−DN(ti,j)Dê(ti,j) +
s∑

k=0

αjkDN(ti,k )Dê(ti,k )︸ ︷︷ ︸
≤Cδi,j (‖Dê‖+‖Dê′‖)=O(hs+1)

+O(hs+1)

+
s∑

k=0

αjk (DG(ti,j)−1 − DG(ti,k )−1)︸ ︷︷ ︸
O(h)

d̂◦(ti,k )︸ ︷︷ ︸
O(hs)

The claimed order Dr = O(hs+1) now follows from the stability
of the backward Euler scheme.
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Analysis of deviation
Algebraic component

For the algebraic component we have

Qri,j = −QN(ti,j)Dri,j + QG(ti,j)−1d̂i,j

= −QN(ti,j)Dri,j +
s∑

k=0

αjk (QG(ti,j)−1 −QG(ti,k )−1)︸ ︷︷ ︸
O(h)

d̂◦(ti,k )︸ ︷︷ ︸
O(hs)

+

+
s∑

k=0

αjk QG(ti,k )−1d̂◦(ti,k )︸ ︷︷ ︸
=0

QG(ti,j)−1d̂◦(ti,j) = 0∀ i = 1, . . . ,N, j = 0, . . . , s owing to the
collocation and continuity conditions x̂(ti,0) = x̂(ti−1,s).
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Conclusions and ongoing research
Conclusions

Conclusion

• Defect correction provides a basis for inexpensive and
reliable error estimate for DAEs

• Interplay between working schemes and defect evaluation
is essential

• In some particular cases asymptotic correctness
established

• In other cases numerical evidence suggests asymptotic
correctness or acceptable approximation
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Conclusions and ongoing research
Open questions

Ongoing research

• Index 2 or higher index problems

• Essential singularities (theory for collocation not yet
available)

• Realization in a nonlinear setting, combination with Newton
method

• etc.
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