Quadrature-defect-based a-posteriori error estimates for differential-algebraic equations

W. Auzinger, H. Lehner, E. Weinmüller

Institute for Analysis and Scientific Computing Vienna University of Technology

Austrian Numerical Analysis Day Linz 2008

DAE with properly stated leading term Collocation methods

DAE with properly stated leading term Problem class

Consider a DAE with properly stated leading term (according to Balla, März 2002) of tractability index 1

 $\mathbf{A}(t)(\mathbf{D}(t)\mathbf{x}(t))' + \mathbf{B}(t)\mathbf{x}(t) = \mathbf{g}(t), t \in [0, 1],$

posed as IVP, where

$$\begin{split} \mathbf{A}(t) &\in \mathbb{R}^{m \times n}, \ \mathbf{D}(t) \in \mathbb{R}^{n \times m}, \ \mathbf{B}(t) \in \mathbb{R}^{m \times m}, n \leq m, \\ \mathbf{x}(t), \ \mathbf{g}(t) &\in \mathbb{R}^{m} \\ \ker \mathbf{A}(t) &= \{\mathbf{0}\}, \ \operatorname{im} \mathbf{D}(t) = \mathbb{R}^{n}, \ \text{all functions sufficiently smooth.} \end{split}$$

DAE with properly stated leading term Collocation methods

DAE with properly stated leading term Extended system

Assumption $D(t) \equiv \text{const}$ is not restrictive, because

such a system can be rewritten as

$$\mathbf{A}(t)\mathbf{u}'(t) + \mathbf{B}(t)\mathbf{x}(t) = \mathbf{g}(t)$$
$$\mathbf{u}(t) - \mathbf{D}(t)\mathbf{x}(t) = 0$$

or

DAE with properly stated leading term Collocation methods

Method class

We consider collocation methods for the numerical solution of such DAEs, i. e.

$$\hat{F}(x) := A(t_{i,j})(Dx(t_{i,j}))' + B(t_{i,j})x(t_{i,j}) - g(t_{i,j}),$$

 $i = 1, \dots, N, \quad j = 1, \dots, s$

for continuous piecewise polynomial functions x of degree $\leq s$, s even.

General idea Application to index 1 DAEs Numerical examples

Abstract setting (nonlinear) Original problem, working scheme, auxiliary scheme

Consider

- $F^*(x) = 0 \dots$ original problem, solution x^*
- $\hat{F}(x) = 0 \dots$ working scheme, solution \hat{x}
- *F*^{def}(x) ... defect-defining operator, typically restriction of
 *F** to discrete grid; this operator is not inverted numerically
- *F*(x) = 0 ... auxiliary scheme, solution *x F* is assumed to be 'cheap to solve', plays auxiliary role in error estimation

($F^* pprox F^{
m def} pprox \hat{F} pprox ilde{F}$)

- \hat{x} is computed by solving $\hat{F}(x) = 0$
 - ... wish to estimate the (global) error $\hat{e} := \hat{x} x^*$

General idea Application to index 1 DAEs Numerical examples

Defect-based a-posteriori error estimation DeC approach: Estimate global error using auxiliary scheme

Basic idea due to Zadunaisky 1976, Stetter 1978:

To estimate $\hat{e} = \hat{x} - x^*$, proceed as follows

• Compute defect (residual) $\hat{d} := F^{\text{def}}(\hat{x})$

• Solve
$$\tilde{F}(x) = 0 \longrightarrow \tilde{x}$$

- Solve $\tilde{F}(x) = \hat{d} \longrightarrow \tilde{x}^{\mathrm{def}}$
- Estimate ê :

$$\hat{\boldsymbol{e}} = \hat{\boldsymbol{x}} - \boldsymbol{x}^* \approx \boldsymbol{F}^{*-1} \underbrace{\boldsymbol{F}^{\text{def}}(\hat{\boldsymbol{x}})}_{= \hat{\boldsymbol{d}}} - \boldsymbol{F}^{*-1} \underbrace{\boldsymbol{F}^{\text{def}}(\boldsymbol{x}^*)}_{\approx 0}$$
$$\approx \tilde{\boldsymbol{F}}^{-1}(\hat{\boldsymbol{d}}) - \tilde{\boldsymbol{F}}^{-1}(0) = \tilde{\boldsymbol{x}}^{\text{def}} - \tilde{\boldsymbol{x}}$$

• I.e.: error estimate $\hat{\epsilon} := \tilde{x}^{\text{def}} - \tilde{x} \approx \hat{x} - x^* = \text{error}$

Auxiliary scheme and pointwise defect \tilde{F} = backward Euler-like

 $\tilde{F}(x) = 0$... low order discretization scheme In particular: Consider backward Euler-like scheme over collocation nodes,

$$A(t_{i,j})\frac{D\tilde{x}_{i,j}-D\tilde{x}_{i,j-1}}{\delta_{i,j}}+B(t_{i,j})\tilde{x}_{i,j}-g(t_{i,j})=0,$$

$$i=1,\ldots,N, j=1,\ldots,s$$

$$A(t_{i,j})\frac{D\tilde{x}^{\text{def}}_{i,j} - D\tilde{x}^{\text{def}}_{i,j-1}}{\delta_{i,j}} + B(t_{i,j})\tilde{x}^{\text{def}}_{i,j} - g(t_{i,j}) = \hat{d}_{i,j}$$
$$i = 1, \dots, N, j = 1, \dots, S$$

General idea Application to index 1 DAEs Numerical examples

Defect-based a-posteriori error estimation Choice of F^{def}

Choice of F^{def}

• Define point-wise defect

 $\hat{d}^{\circ}(t) := A(t)D\hat{x}'(t) + B(t)\hat{x}(t) - g(t)$

 $\hat{d}_{i,j}^{\circ} = 0$ at all points evaluated in $\tilde{F}(\hat{d}^{\circ}) \Rightarrow$ estimate would always be zero.

 Use modified defect or quadrature defect, therefore QDeC (Auzinger, Koch, Weinmüller 2002 in ODE context)

$$F^{\text{def}}(\hat{x})(t_{i,j}) := \hat{d}_{i,j} := \sum_{k=0}^{s} \alpha_{jk} \hat{d}^{\circ}(t_{i,k}) = \frac{1}{\delta_{i,j}} \int_{t_{i,j-1}}^{t_{i,j}} \hat{d}^{\circ}(t) dt + \mathcal{O}(h^{s+1})$$

In this sum $\alpha_{j,0}\hat{d}^{\circ}(t_{i,0})$ is only non-zero term!

General idea Application to index 1 DAEs Numerical examples

Defect-based a-posteriori error estimation Main result

Main result

$$\hat{e} = \hat{x} - x^* = \mathcal{O}(h^s)$$

 $\hat{\epsilon} = \tilde{x}^{\text{def}} - \tilde{x}$ is an asymptotically correct estimate for the error $\hat{e} = \hat{x} - x^*$, i.e.

$$\hat{\epsilon} - \hat{\boldsymbol{ extsf{ extsf{ heta}}}} = \mathcal{O}(h^{s+1}).$$

General idea Application to index 1 DAEs Numerical examples

Numerical example

• Initial value problem

$$\begin{pmatrix} e^t \\ e^t \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} x'(t) + \begin{pmatrix} e^t(1+\cos^2 t) & \cos^2 t \\ e^t(-1+\cos^2 t) & -\cos^2 t \end{pmatrix} x(t) = \\ \begin{pmatrix} \sin^2 t(1-\cos t) - \sin t \\ \sin^2 t(-1-\cos t) - \sin t \end{pmatrix},$$

on [0,1] with initial condition $x(0) = (1,-1)^T$.

• We use collocation at equidistant points with s = 4 on N = 2, 4, 8, 16, 32 intervals.

Asymptotical order $\hat{\epsilon} - \hat{e} = \mathcal{O}(h^{s+1})$ is clearly visible.

General idea Application to index 1 DAEs Numerical examples

Numerical example

Results tabular, component 1

• First component, at *t* = 1 :

N	ê	ord _ê	$\hat{oldsymbol{\epsilon}}-\hat{oldsymbol{ heta}}$	$\operatorname{ord}_{\hat{\epsilon}-\hat{\theta}}$
4	-2.466e-06	3.8	8.513e-08	4.6
8	-1.634e-07	3.9	2.989e-09	4.8
16	-1.051e-08	4.0	9.886e-11	4.9
32	-6.664e-10	4.0	3.180e-12	5.0

• First component, maximum absolute values over all collocation points $\in [0,1]$:

Ν	ê	ord _ê	$\hat{oldsymbol{\epsilon}}-\hat{oldsymbol{ heta}}$	$\operatorname{ord}_{\hat{\epsilon}-\hat{\theta}}$
4	2.732e-06	4.0	1.272e-07	5.3
8	1.711e-07	4.0	3.578e-09	5.2
16	1.074e-08	4.0	1.074e-10	5.1
32	6.734e-10	4.0	3.311e-12	5.0

General idea Application to index 1 DAEs Numerical examples

Numerical example Results tabular, component 2

• Second component, at t = 1:

N	ê	$\text{ord}_{\hat{\theta}}$	$\hat{oldsymbol{\epsilon}}-\hat{oldsymbol{ heta}}$	$\operatorname{ord}_{\hat{\epsilon}-\hat{\theta}}$
4	2.906e-05	3.8	-7.927e-07	4.6
8	1.522e-06	3.9	-2.783e-08	4.8
16	9.788e-08	4.0	-9.206e-10	4.9
32	6.205e-09	4.0	-2.961e-12	5.0

General idea Application to index 1 DAEs Numerical examples

Numerical example

Results graphical

General idea Application to index 1 DAEs Numerical examples

Other examples

Other numerical experiments indicate that

- singularities of the first kind do not compromise asymptotical correctness (theoretically established in the ODE case)
- with use of interior collocation points asymptotical correctness is lost, but estimate still gives reasonable approximation of error (preliminary)

Decoupling equations Estimate of deviation

Decoupling of Index 1 DAEs Definition of matrices

Index 1 DAEs with constant $\operatorname{im} D(t)$ can be decoupled into a pure ODE (inherent ODE) and a purely algebraic equation:

- Let Q be a linear projector of \mathbb{R}^n onto ker D,
- D^- a generalized reflexive inverse of D such that

 $D^-D = I - Q$, $DD^- = I$, $DD^-D = D$, $D^-DD^- = D^-$

- G(t) = A(t)D + B(t)Q, $(\exists G^{-1} \Leftrightarrow index = 1)$
- $N(t) = G(t)^{-1}B(t)D^{-1}$.

Decoupling equations Estimate of deviation

Decoupling of Index 1 DAEs Inherent ODE

Premultiplying our system with DG(t)⁻¹ and QG(t)⁻¹, respectively, we obtain

 $Dx^{*'}(t)) + DN(t)(Dx^{*}(t)) - DG(t)^{-1}g(t) = 0,$ $Qx^{*}(t) + QN(t)(Dx^{*}(t)) - QG(t)^{-1}g(t) = 0,$

i. e. the inherent ODE for Dx(t) and an algebraic equation expressing Qx(t) in terms of Dx(t), with

 $x^{*}(t) = (I - Q)x^{*}(t) + Qx^{*}(t) = D^{-}Dx^{*}(t) + Qx^{*}(t).$

Decoupling equations Estimate of deviation

Decoupling of Index 1 DAEs Decoupled collocation and error

Collocation equations decouple in exactly the same way:

 $\begin{aligned} D\hat{x}'(t_{i,j}) + DN(t_{i,j}) D\hat{x}(t_{i,j}) - DG(t_{i,j})^{-1}g(t_{i,j}) &= 0, \\ Q\hat{x}(t_{i,j}) + QN(t_{i,j}) D\hat{x}(t_{i,j}) - QG(t_{i,j})^{-1}g(t_{i,j}) &= 0, \\ i &= 1, \dots, N, \quad j = 1, \dots, s \end{aligned}$

- Theory of collocation for ODEs and polynomial interpolation argument: Dê(t), Dê'(t), Qê(t), ê(t) = O(h^s),
- and $\hat{d}^{\circ}(t_{i,j}) = \mathcal{O}(h^s) \Rightarrow \hat{d}(t_{i,j}) = \mathcal{O}(h^s)$.

Decoupling equations Estimate of deviation

Analysis of deviation Decoupling of defect definition

Pointwise defect

 $DG(t)^{-1}\hat{d}^{\circ}(t) = D\hat{x}'(t) + DN(t)D\hat{x}(t) - DG(t)^{-1}g(t) = DG(t)^{-1}F^{*}(\hat{x})$ $QG(t)^{-1}\hat{d}^{\circ}(t) = Q\hat{x}(t) + QN(t)D\hat{x}(t) - QG(t)^{-1}g(t) = QG(t)^{-1}F^{*}(\hat{x})$

Note that $QG(t)^{-1}\hat{d}^{\circ}(t_{i,j}) = 0 \forall i = 1, ..., N, j = 0, ..., s$ owing to collocation conditions and the continuity conditions $\hat{x}(t_{i,0}) = \hat{x}(t_{i-1,s})$.

Decoupling equations Estimate of deviation

Analysis of deviation

Differential component

Combining the above equations we obtain for $r := \hat{\epsilon} - \hat{e}$:

$$\frac{Dr_{i,j} - Dr_{i,j-1}}{\delta_{i,j}} = -DN(t_{i,j})Dr_{i,j}$$

$$\underbrace{-DN(t_{i,j})D\hat{e}(t_{i,j}) + \sum_{k=0}^{s} \alpha_{jk}DN(t_{i,k})D\hat{e}(t_{i,k}) + \mathcal{O}(h^{s+1})}_{\leq C\delta_{i,j}(\|D\hat{e}\| + \|D\hat{e}'\|) = \mathcal{O}(h^{s+1})}$$

$$+ \sum_{k=0}^{s} \alpha_{jk}\underbrace{(DG(t_{i,j})^{-1} - DG(t_{i,k})^{-1})}_{\mathcal{O}(h)}\underbrace{\hat{d}^{\circ}(t_{i,k})}_{\mathcal{O}(h^{s})}$$

The claimed order $Dr = O(h^{s+1})$ now follows from the stability of the backward Euler scheme.

Decoupling equations Estimate of deviation

Analysis of deviation

For the algebraic component we have

$$Qr_{i,j} = -QN(t_{i,j})Dr_{i,j} + QG(t_{i,j})^{-1}\hat{d}_{i,j}$$

= $-QN(t_{i,j})Dr_{i,j} + \sum_{k=0}^{s} \alpha_{jk} \underbrace{(QG(t_{i,j})^{-1} - QG(t_{i,k})^{-1})}_{\mathcal{O}(h)} \underbrace{\hat{d}^{\circ}(t_{i,k})}_{\mathcal{O}(h^{s})} + \sum_{k=0}^{s} \alpha_{jk} \underbrace{QG(t_{i,k})^{-1}\hat{d}^{\circ}(t_{i,k})}_{=0}$

 $QG(t_{i,j})^{-1}\hat{d}^{\circ}(t_{i,j}) = 0 \forall i = 1, ..., N, j = 0, ..., s$ owing to the collocation and continuity conditions $\hat{x}(t_{i,0}) = \hat{x}(t_{i-1,s})$.

Conclusions and ongoing research

Conclusion

- Defect correction provides a basis for inexpensive and reliable error estimate for DAEs
- Interplay between working schemes and defect evaluation is essential
- In some particular cases asymptotic correctness
 established
- In other cases numerical evidence suggests asymptotic correctness or acceptable approximation

Conclusions and ongoing research

Ongoing research

- Index 2 or higher index problems
- Essential singularities (theory for collocation not yet available)
- Realization in a nonlinear setting, combination with Newton method
- etc.

Quadrature-defect-based a-posteriori error estimates for differential-algebraic equations

W. Auzinger, H. Lehner, E. Weinmüller

Institute for Analysis and Scientific Computing Vienna University of Technology

Austrian Numerical Analysis Day Linz 2008