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The interaction of laser pulses of sub-femtosecond duration with matter opened
up the opportunity to explore electronic processes on their natural time scale.
One central conceptual question posed by the observation of photoemission in
real time is whether the ejection of the photoelectron wave packet occurs instan-
taneously or whether the response time to photoabsorption is finite leading to a
time delay in photoemission. Recent experimental progress exploring attosec-
ond streaking and RABBIT techniques find relative time delays between photoe-
mission from different atomic sublevels to be of the order of ∼20 attoseconds.
We present ab initio simulations for both one- and two-electron systems which
allow to determine both absolute and relative time delays with ∼1 attosecond
precision. We show that the intrinsic time shift of the photoionization process
encoded in the Eisenbud-Wigner-Smith delay time can be unambiguously disen-
tangled from measurement-induced time delays in a pump-probe setting when
the photoionized electronic wave packet is probed by a modestly strong infrared
streaking field. We identify distinct contributions due to initial-state polarization,
Coulomb-laser coupling in the final continuum state as well as final-state interac-
tion with the entangled residual ionic state. Extension to multi-electron systems
and to extraction of time information in the presence of decohering processes are
discussed.

1 Introduction

Following electronic dynamics in real time, watching the formation or breaking
of a chemical bond, the transfer of electrons from one constituent to another, or
the ejection of electrons from an atom or molecule has been a dream and chal-
lenge of time-resolved quantum physics for a long time. The extent to which such
ultrafast processes are accessible to measurements at all has remained a matter of
debate. Observing the temporal electronic evolution requires interrogation of the
system on ultrafast time scales. Yet, such probes are subject to both time-energy
and position-momentum uncertainty. Moreover, they are prone to distortion of
the evolution to be observed. To put it simply: the challenge is not just to take
“snapshots” of ultrafast electronic motion but also to identify, to extract, and to
resolve the information on the underlying processes such snapshots may contain.

Through recent advances in the creation of (sub) femtosecond laser pulses,
the real-time observation of electronic dynamics in atoms, molecules, and solids
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has come into reach1–4. Phase-controlled few-cycle infrared (IR) laser pulses
(cycle period TIR ' 2.6fs at λ = 800nm) and∼100 attosecond XUV pulses, tem-
porally well correlated with each other through to the underlying high-harmonic
generation (HHG) process open the opportunity to confine the photoelectric ef-
fect to a ∼100 attosecond time interval and to interrogate the excited or ionized
electronic state by the few-cycle IR field. This so called “attosecond streak-
ing”5–8 technique is now being utilized to explore a wide range of fundamen-
tal photophysical and photochemical processes in the time domain, including
Auger9 and autoionization processes10, photoemission from surfaces11, and pho-
toemission of atoms12. Closely related techniques include RABBIT (“recon-
struction of attosecond harmonic beating by interference of two-photon transi-
tions”)13–17 and the attosecond clock for circularly polarized fields18,19. Sim-
ilarily, in attosecond transient absorption (ATA)20,21 the IR pulse creates the
wavepackets while the modulation of the absorption of the attosecond XUV pulse
probes the time evolution of the electronically excited system. These variants of
attosecond chronoscopy have in common that they promise to deliver real time
information on electronic processes on ultrafast time scales. The ultimate goal is
not only to observe but to actively control electronic motion by light fields, i.e.,
“lightfield electronics”22–24. An understanding of the wealth of information to
be extracted is still in its infancy and is only now beginning to emerge.

In the present communication we address one prototypical example, the “time
delay” in photoemission. Time and time delay as a quantum dynamical ob-
servable was originally introduced by Eisenbud, Wigner, and Smith (EWS)25–27

for resonant scattering. Photoemission representing a half-scattering process al-
lows the application of this concept. The corresponding delay, tEWS, can be
viewed as the finite response time in the formation of the outgoing electronic
wavepacket during the photoabsorption event. In this sense, photoionization is
not instantaneous, as conventionally being thought, but the departure of the out-
going wavepacket is temporally shifted relative to the arrival of the XUV pulse,
typically by a few attoseconds. We present in the following an outline of a the-
oretical framework which unambiguously indentifies tEWS as an observable ac-
cessible by attosecond streaking. The key is the determination of measurement-
induced phase shifts due to the presence of the IR field which tends to taint the
timing information. We discuss both one- and two-electron systems and address
the influence of electronic correlation on the time-resolved photoemission pro-
cesses. We point to future directions aiming at the observation and control of
electronic motion in more complex nanoscale structures. Unless otherwise stated,
atomic units (a.u.) are used.

2 Time Delay in Photoemission

Association of time t with a Hilbert space operator following standard correspon-
dence identities,

t =−i
∂

∂E
, (1)

faces fundamental conceptual difficulties28,29 as the spectrum of the canonically
conjugate Hamilton operator H is bounded from below. Eisenbud25, Wigner26
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and Smith27 pointed out that, when restricted to the domain of scattering states,
an expectation value of the time operator can be constructed,

tEWS =−iS†(E)
∂

∂E
S(E) , (2)

where S(E) is the scattering operator (matrix). tEWS corresponds to the observ-
able time delay in scattering. A prototypical case is resonant scattering where
tEWS describes the “sticking time” of the incoming particle due to transient trap-
ping in a quasi-bound state before leaving the interaction region as an outgo-
ing wavepacket. This sticking time amounts to the time delay of the outgoing
wavepacket relative to that of the incoming wavepacket passing by the scattering
region in the absence of the interaction potential. In the special case of poten-
tial scattering with spherical symmetry, the S matrix is diagonal in the angular
momentum representation S`,

S`(E) = e2iδ`(E) . (3)

The corresponding time delay for the partial wave ` follows from (Eq. 2) as

tEWS(E, `) = 2
d

dE
δ`(E) (4)

and is given by the energy variation of the partial wave scattering phase shift
δ`(E). Photoemission, the focus of the following discussion, corresponds to a
half-scattering process in which only in the exit channel a matter wavepacket
resides in the continuum while in the entrance channel the wave function repre-
sents a bound rather than a continuum state. Accordingly, for photoemission by
a dipole transition to a specific partial wave `, the EWS time is only one-half of
Eq. 4,

tEWS(E, `) =
d

dE
δ`(E). (5)

More generally, when the final state does not consist of just a single partial wave,
the time delay is given by the matrix element of the dipole transition operator
~d between the initial bound state ψi and the final scattering state ψ f describing
emission into the solid angle (θ,ϕ),

tEWS(E,θ,ϕ) =
d

dE
arg
[
〈ψ f (E,θ,ϕ)|~d|ψi〉

]
. (6)

When only one partial wave in the continuum is accessed, Eq. 6 reduces to Eq. 5.
The time delay tEWS can be alternatively extracted from the motion of the

outgoing wavepacket without invoking the S matrix30. Such a wavepacket is
formed by a coherent superposition of a band of continuum states around a central
energy E0. The time evolution of the radial position of its crest, rc(t), or its first
moment, 〈r(t)〉, eventually follows asymptotically (t → ∞) the motion of a free
particle,

rc(t) = vg(t− tEWS) , (7)

〈r〉t = vg(t− tEWS) , (8)
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after the wavepacket has left the scattering region, however delayed31 by the time
tEWS. In Eq. 7 and Eq. 8 the group velocity vg is given by

vg =

(
∂E
∂k

)
E=E0

. (9)

One key condition of the applicability of Eqs. 4 to 8 is that the interaction po-
tential is short-ranged such that the wavepacket reaches, indeed, the free-particle
motion at large distances.26,27

Both the challenges and the opportunities of time-resolved photoemission
are direct consequences of the implications and limitations of Eqs. 4 to 8. Typ-
ical intrinsic delay times tEWS are only of the order of ∼10 attoseconds. Such
time scales have only now become accessible with the advances of attosecond
chronoscopy. However, except for the case of photodetachment, the exit-channel
interaction between the outgoing electron and the ion core is Coulombic (∼ 1/r)
and, thus, the intrinsic EWS atomic or molecular time delay is, strictly speaking,
not well defined.26,27,32,33 We show in the following that, with suitable modifica-
tions, tEWS can, indeed, be theoretically unambiguously determined and, further-
more, experimentally extracted from attosecond streaking or RABBIT measure-
ments.

The extraction of tEWS from the radial expectation value 〈r(t)〉 (Eq. 8) in
the absence of Coulomb interactions in the exit channel is illustrated in Fig. 1
for the simulated photodetachment by an attosecond XUV pulse (pulse duration
τp = 200as, energy ω = 80eV, intensity I = 1013 W/cm2) of an electron initially
bound in an s-like state by an exponentially screened Coulomb (or Yukawa) po-
tential,

VY(r) =−
Z
r

exp(−r/a) , (10)

with the screening length a. For later comparison with photoionization of He+

we choose the charge parameter Z for a given screening length a such that the
binding energy of the detached and the ionized He+(1s) electron coincide (εi =
−2a.u.). The radial expectation value rapidly approaches the linear distance vs.
time relation (Eq. 8) after the conclusion of the XUV pulse (FWHM) at t ≈ 4a.u.
(∼ 100as). Here and in the following, the peak of the XUV-pulse envelope is
chosen to be at t = 0. Tracing back the linear time dependence 〈r〉t to small
times allows to determine tEWS from the intercept with the t axis as tEWS = 6.6
attoseconds. This value agrees with the one extracted from the p-wave (` = 1)
phase shift δ`=1 at E = ω+ εi, (Eq. 5), to within 0.1 attoseconds, illustrating the
equivalence of Eq. 5 and Eq. 8 for photodetachment with sub-attosecond level
precision.

For photoionization of H(1s) under otherwise identical conditions a dramat-
ically different picture emerges (Fig. 2). The delay times as extracted from the
intercept of the linear extrapolation with the t axis,

tEWS = t− 〈r〉t
k

(11)

strongly depend on the time t (or position 〈r〉) when the linear backward ex-
trapolation is applied. Convergence to a finite value cannot be achieved no mat-
ter for how long and how far the wavepacket is propagated into the asymptotic
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Fig. 1 (a) Extraction of tEWS from the linear extrapolation of the time dependence of
〈r〉t (Eq. 11), for photoionization from an initial 1s state from a Yukawa potential
(Eq. 10) with Z = 3.8166 and a = 0.5, which results in a binding energy of −2a.u. . The
intercept with the t axis (inset) gives tEWS in excellent agreement with the direct
calculation for the S matrix (Eq. 5). (b) The temporal variation of the XUV pulse.

regime. This divergence reflects the fundamental difficulty in applying standard
S-matrix scattering theory and the concept of time delay to photoionization where
long-range Coulomb interactions are ubiquitously present.32,33 This difficulty is
closely related to the well-known logarithmic phase distortion by the Coulomb
field which precludes equispaced wave crests and nodes even as r→ ∞.

In order to extend the concept of the EWS time delay to photoionization, the
logarithmic phase distortion should be included from the outset in the determi-
nation of the time delay for the Coulombic systems. We therefore start from the
energy and position dependent phase of the Coulomb wave,

φ
Coul(E, `,r) = σ

C
` (E)+

Z
k

ln(2kr) , (12)

where k =
√

2E is the asymptotic momentum (or wavenumber) and

σ
C
` (E) = argΓ(1+ `− iη) . (13)

The r-independent term (Eq. 13) is the Coulomb analogue to the phase shift in
standard scattering theory for short-ranged potentials and is often referred to as
the “Coulomb phaseshift” with η = Z/k the Coulomb-Sommerfeld parameter.
Extending now the recipe for determining the time delay (Eq. 5) to the Coulomb
phase (Eq. 12) we start from the spectral derivative

tCoul(E, `,r) =
∂

∂E
φ

Coul(E, `,r) = tC
EWS(E, `)+∆tCoul(E,r) (14)
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Fig. 2 Comparison between the time delay determined from the linear extrapolation
with the slope taken at increasing propagation times (Eq. 11, points) with the Coulomb
time tCoul(E, `= 1,r = kt) (Eq. 14, line) for ionization from the H(1s) state with an XUV
pulse with ω = 80eV.

where we have introduced the Coulomb analogue of the EWS time delay associ-
ated with the Coulomb phaseshift as

tC
EWS(E, `) =

∂

∂E
σ

C
` (E) (15)

and an additional contribution due to the logarithmic distortion of the wavefront,

∆tCoul(E,r) =
Z

(2E)
3
2

(
1− ln(2

√
2Er)

)
. (16)

It is precisely this additional time shift, ∆tCoul that accounts for the r or (since r≈
kt) t dependence of the time delay when extracted from the linear extrapolation.
tCoul(E, `,r) (Eq. 14) agrees to within the graphical resolution with t−〈r〉t/k for
the wavepacket in the Coulomb field (Fig. 2). We therefore arrive at the relation
between the effective time shift (“time delay”) and the distance-time relation for
a Coulomb wavepacket as

tCoul(E, `,r = kt) = t− 〈r〉t
k

, (17)

generalizing the relation Eq. 11 for short-ranged potentials to the case of Coulomb
exit-channel interactions. From the Coulomb time shift tCoul (Eq. 14) the Coulomb
EWS time delay (Eq. 15) can be determined by subtracting from tCoul the correc-
tion

∆tCoul(E,r = kt) =
Z

(2E)
3
2
(1− ln(4Et)) (18)

evaluated at r = kt. The correction given by Eq. 18 is universal as it depends only
on the energy E = k2/2 of the electron and the strength of the Coulomb field, Z,
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but is independent of the partial wave ` or the initial state to be photoionized.
It accounts for the “slowing down” of the outgoing electron by the retarding
Coulomb field resulting in an apparent negative timeshift (see Fig. 2).

The Coulomb time shift (Eq. 14) possesses a remarkably close classical coun-
terpart first explored in a little known paper by Clark34. Solving the equation of
motion for a hyperbolic Kepler trajectory of fixed classical angular momentum
L, we find a classical time shift tcl.

Coul relative to that of a free electron at large
distance as

tcl.
Coul(E,L,r = kt) = t(r)− r

k
≈ Z

(2E)
3
2

(
1− ln

(
4Et√

η2 +L2

))
. (19)

Eq. 19 can be rewritten in terms of the logarithmic distortion term of quantum
scattering (Eq. 16),

tcl.
Coul(E,L,r = kt) =

Z

(2E)
3
2

ln(
√

η2 +L2)+∆tCoul(E,r = kt) . (20)

Comparing now Eq. 14 with Eq. 20 suggests to identify the first term in Eq. 20
as the classical analogue to the intrinsic Eisenbud-Wigner-Smith delay,

tC, cl.
EWS (E,L) =

Z

(2E)
3
2

ln(
√

η2 +L2). (21)

This identification can be readily justified by an asymptotic expansion of the
quantum EWS delay (Eq. 15), expressed in terms of the digamma function Ψ(x),

tC
EWS(E, `) =

Z

(2E)
3
2

Re [Ψ(1+ `− iη)] . (22)

In the (semi) classsical limit of large arguments |x|,

Ψ(1+ `− iη)∼ ln(1+ `− iη), (23)

reached for either large ` or large Sommerfeld parameter η we find

tC
EWS(E, `)

|x|�1
=

Z

(2E)
3
2

ln
(√

(1+ `)2 +η2

)
' Z

(2E)
3
2

ln
(√

L2 +η2
)
= tC, cl.

EWS (E,L) , (24)

in complete agreement with the intrinsic delay of the classical trajectory (Eq. 21),
see Fig. 7 below. Note that in the (semi) classical limit, the proper mapping of
the classical angular momentum L onto the ` quantum number is given by35,36

L= `+1/2. This result has far-reaching implications for time-resolved photoion-
ization studies: distortion of the timing information due to long-range Coulomb
interactions in the exit channel can be accounted for both classically and quantum
mechanically to a high degree of accuracy, thereby allowing to clearly disentan-
gle intrinsic delay times in complex atoms or molecules from Coulomb induced
time shifts.
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3 Attosecond streaking of photoemission

Attosecond streaking has developed into one of the most important and versa-
tile tools of attosecond science. It is a variant of a pump-probe technique in
which the attosecond XUV pulse (with, typically, τp = 100 to 300 as) serves
as pump creating the photoelectron wavepacket while the carrier-envelope phase
(CEP) controlled few-cycle IR pulse streakes, i.e., probes the wavepacket. In di-
rect analogy to classical streaking, attosecond streaking maps time information
onto energy thereby allowing to extract time information from the photoelectron
spectrum with attosecond precision.

Point of departure for attosecond streaking is that the momentum of the emit-
ted electron receives in the presence of the IR field a ponderomotive shift5,7,8,37,

~p f (τ) = ~p0−~AIR(τ) , (25)

given by the value of the (rescaled) vector potential AIR = ÃIR(τ)/c at the instant
of the arrival in the continuum, τ. In Eq. 25, ~p0 is the asymptotic momentum
associated with the energy of the photoelectron, E0 = p2

0/2, (E0 = ωXUV + εi),
in the absence of the streaking field. Consequently, the momentum ~p f (τ) and the
energy E f (τ) = p2

f (τ)/2 in the presence of the IR field become functions of τ via
~AIR. Since the temporal distribution of the IR laser field ~FIR(τ) and of the vector
potential ~AIR(τ),

~AIR(τ) =
∫

∞

τ

~FIR(t)dt , (26)

can be well controlled with subcycle precision, Eq. 25 amounts to a mapping of
the arrival time in the continuum, τ, onto a modulation of the linear momentum
and of the energy, E f (τ), of the photoelectron.

The implicit assumption underlying Eq. 25 is that the emitted electron attains
instantaneously the asymptotic momentum ~p0 on a time scale that is resolved by
attosecond streaking. This approximation of a sudden transition holds for the
streaking of Auger decay with typical lifetimes of femtoseconds, for which this
technique was first pioneered9. For dynamical processes on the few attosecond
scale and, in particular, for photoemission where the long-range Coulomb inter-
action implies that the local momentum of the outgoing electron ~p(r) approaches
the asymptotic momentum only after ∼ 100 attoseconds, application of the map-
ping Eq. 25 requires modification. Furthermore, the presence of the IR field may
distort the timing information to be extracted. Since for easily resolvable energy
shifts IR fields with intensities of the order IIR ≈ 1011−1012 W/cm2 are needed,
distortion effects generally cannot be neglected. As we will discuss in the follow-
ing, the influence of the IR field on the time shift in photoemission extracted from
streaking is significant, yet remarkably insensitive to the strength of the streaking
field.

We first probe extraction of timing information of photoemission for the de-
tachment of a 1s electron bound by the Yukawa potential (Eq. 10). The photode-
tachment is initiated by an attosecond pump pulse with its peak amplitude cen-
tered at t = 0, an intensity of 1013 W/cm2, and a pulse duration τXUV

p = 200as
(FWHM). We expect for such short-ranged potentials the emission time (arrival
in the continuum) to be delayed by the EWS time, i.e., the ponderomotive mo-
mentum ~AIR(τ) (Eq. 25) to be shifted by tEWS, ~AIR(τ+ tEWS). In turn, the time
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shift determined by streaking should agree with this intrinsic atomic time delay
(Fig. 1),

tS = tEWS , (27)

and, hence
~p f (τ) = ~p0−~AIR(τ+ tS) = ~p0−~AIR(τ+ tEWS) . (28)

In the simulation38 as well as in the experiment12, tS can be determined by a fit
of the first moment of the emission line in the time modulated spectrum (usually
for emission parallel to the electric field polarization direction). An example of
such a so called spectrogram will be shown below in section 5 (Fig. 10). Indeed,
we find Eq. 27 to be fulfilled for a wide range of final kinetic energies E corre-
sponding to different pump frequencies ωXUV and for different screening lengths
(Fig. 3) to within sub-attosecond precision. As discussed in section 2, the pair of
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Fig. 3 Streaking time shifts tS (dots) extracted from quantum mechanical streaking
simulations for the short-ranged Yukawa potential VY (Eq. 10) with screening lengths
a = 0.5, a = 1, and a = 2a.u. . The streaking IR laser field has a wavelength of 800 nm, a
duration of 3 fs, and an intensity of 1012 W/cm2. The Eisenbud-Wigner-Smith delay
times tEWS (lines) are determined from the spectral variation of the scattering phase
(Eq. 5).

parameters of charge and screening length is adjusted such that the initial-state
binding energy remains constant at the value ε1s = −54.4eV corresponding to
He+(1s). For later reference we note that polarization of the initial state by the
IR field is negligible. The excellent agreement of tS with tEWS validates streaking
as a measurement protocol of fundamental intrinsic timing information (Eq. 28).
It is worth stressing the remarkable level of time resolution in reach. The arrival
of the photoelectron in the continuum is delayed by tEWS ≈ 6as (Fig. 1) relative
to the peak of the XUV pulse at t = 0 when photoemission, if instantaneous,
would, on average, occur. Yet, this minute delay, almost two orders of magnitude
shorter than τXUV

p of the pump pulse is unambiguously and accurately accessible.
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A drastically different picture emerges for photoionization with Coulombic
long-range interaction present, Fig. 4. In that case the streaking time tS is not
directly associated with tC

EWS but is strongly influenced by the Coulomb-field
induced time shift (Eq. 18).38–40 Remarkably, the time shift tS calculated by the
solution of the TDSE in its full dimensionality41 agrees quite well with a fully
classical calculation of the time shift, tcl.

S , using the classical trajectory Monte-
Carlo (CTMC) method42,43. This agreement indicates that the lion’s share of the
difference between tS and tC

EWS is due to the logarithmic distortion term in Eq. 16
which has a direct classical counterpart (see Eq. 20).

For a deeper insight into the interplay between the Coulomb and laser fields
and the resulting time shifts in a streaking setting, we consider a typical trajectory
of outgoing electrons38. The final momentum after taking off at ~r(τ) ≈ 0 near
the ionic core is given by

~p f (τ) = ~p0 +

∞∫
τ

dt~a
[
~FC(~r(t)),~FIR(t)

]
, (29)

where ~a
[
~FC,~FIR

]
is the acceleration in the combined laser and Coulomb fields.

In the limit of vanishing Coulomb field, ~FC(t) = 0, the acceleration ~a reduces
to ~a[~FIR(t)] = −~FIR(t) and Eq. 29 becomes equal to Eq. 25. Accordingly, the
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Coulomb corrected mapping from emission time to momentum shift becomes

~p f (τ) = ~p0−~AIR(τ)+

∞∫
τ

dt
(
~a
[
~FC(~r(t)),~FIR(t)

]
−~a
[
0,~FIR(t)

])
, (30)

replacing Eq. 25 as the working equation for streaking in the presence of a
Coulomb field.

Eq. 30 can be viewed as the classical realization of Coulomb-laser coupling
(cf.44,45) in the exit channel through the modification of the trajectory probing
the Coulomb field by the simultaneous presence of the IR field. It treats the IR
field and the Coulomb field non-perturbatively and on equal footing. Note that
within a CTMC treatment an average over the microcanonical ensemble of start-
ing positions~r(τ) representing the initial state is taken and, therefore, the results
are independent of a particular choice of initial conditions. This differs from a
recent semi-classical model46 where~r(τ) is introduced as a matching parameter
influencing the resulting time shift. One remarkable and, at first glance, counter-
intuitive consequence of Eq. 30 is that the time shift due to the interplay between
Coulomb and laser fields, or Coulomb-laser coupling, tCLC, is, to leading order,
independent of the IR laser intensity. Taylor expansion of the CLC correction
term in Eq. 30 using that both FC and FIR vanish for t→ ∞, leads to

∞∫
τ

dt
(
~a
[
~FC(~r(t)),~FIR(t)

]
−~a
[
0,~FIR(t)

])
≈ c(E,Z,ωIR)~FIR(τ) , (31)

with c(E,Z,ωIR) a constant depending on the kinetic energy of the emitted elec-
tron, the strength of the Coulomb field in the exit channel, and the frequency, but
not on the field strength FIR of the IR field. Inserting Eq. 31 into Eq. 30 yields, in
the absence of any intrinsic delay, the Coulomb modified streaking equation (see
Eqs. 25, 35),

~p f (τ) = ~p0−α~AIR(τ+ tCLC) , (32)

with
tCLC =

1
ωIR

tan−1 c(E,Z,ωIR) (33)

independent of FIR, and

α =
FIR

ωIR

(
1+ c(E,Z,ωIR)

2)1/2
. (34)

Consequently, the total time shift tS mapped out by streaking and given by the
time (or phase) shift of the vector potential ~AIR(τ+ tS) contains now two contri-
butions, the intrinsic atomic EWS delay tEWS (Eq. 27) and the contributions from
Coulomb-laser coupling (Eq. 33), with

tS = tC
EWS + tCLC . (35)

The important consequence of the additivity (Eq. 35) is that EWS delays for pho-
toionization in the presence of long-range Coulomb interactions become accessi-
ble by attosecond streaking provided that the time shift tCLC can be independently
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2 . The analytic estimation Eq. 37 coincides as well.

determined. Key for the latter is that tCLC is universal for Coulomb exit channel
interactions, i.e., is independent of the atomic species and initial state. Since the
Coulomb-laser coupling is of classical origin, we can determine tCLC classically
by subtracting from the classical streaking time tcl.

S determined by the CTMC the
classical limit of the EWS time delay tcl.

EWS (Eq. 21),

tCLC(E, `) = tcl.
S (E,L)− tC, cl.

EWS (E,L) . (36)

Fig. 5 illustrates the determination of tCLC for the prototypical case of hydro-
gen 1s photoionization by an XUV pulse (IXUV = 1013 W/cm2, τXUV

p = 200as)
where the angular momentum of the ionized electron is ` = 1 and the classical
L = 1+1/2 (see Eq. 21). The accuracy of tCLC as determined classically can be
checked independently by applying Eq. 36 to the full TDSE simulation for tS and
the quantum EWS delay tEWS (Eqs. 6, 35). These two completely independent
methods for determining tCLC agree with each other on a sub-attosecond preci-
sion level allowing for unambiguous identification of the Coulomb distortion on
the timing information extracted by streaking.

The analysis of Coulomb-specific contributions to emission time delays dis-
cussed in section 2 provides further insights into the origin of the time shift tCLC
present in Coulomb interacting systems. Starting point is the remarkable similar-
ity between the expression for the Coulomb time shift tCoul(E, `,r = kt) (Eq. 14)
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in the absence of an IR field and tS (Eq. 35) in the presence of a streaking field.
This comparison suggests to associate the additional time shift due to the loga-
rithmic distortion ∆tCoul(E,r = kt) (Eq. 18) with tCLC. We recall that ∆tCoul is,
just as tCLC is, independent of the state-specific properties such as the partial wave
` of the continuum electron involved. It was therefore neglected in early discus-
sions of time delay34. In the present case of an explicitly time-dependent streak-
ing field, ∆tCoul(E, t) becomes dynamically relevant and observable through its
explicit dependence on time. We therefore surmise that the time t0 over which
the shift ∆tCoul is accumulated is given by the time over which the streaking field
significantly varies. We therefore identify

tCLC(E) =
Z

(2E)3/2

(
1− ln(2k2t0)

)
' Z

(2E)3/2 (1− ln(0.37ETIR)) . (37)

In the last step of Eq. 37 we have chosen t0 to achieve a near perfect fit to the
numerically determined tCLC (ωIRt0 . 1). Because of the logarithmic dependence
on t0, tCLC depends only relatively weakly on the precise value chosen for t0.
Eq. 37 provides a simple and remarkably accurate analytic estimate for tCLC. We
have numerically checked that Eq. 37 accounts correctly for the dependence on
the strength of the Coulomb field (Z), the period TIR of the streaking field and the
kinetic energy E of the ionized electron. Eqs. 35 to 37 provide a self-contained
protocol to extract timing information on photoemission for both short-ranged
(Eq. 28) and Coulomb final state interactions on the attosecond scale provided no
other long-range interactions are present.

We conclude this section with a comparison between streaking and an alter-
native interferometric method for extracting time information, “reconstruction of
attosecond harmonic beating by interference of two-photon transitions” (RAB-
BIT)13–17,40,47,48. The time shift observed by RABBIT, tR, can also be written as
a sum of an intrinsic atomic delay and an IR field induced shift16,40,48, referred
to in this context as continuum-continuum coupling, tcc. It is now instructive to
directly and quantitatively compare tR with tS. In Fig. 6 we compare tR and tS
for photoemission of He+(1s) and H(1s) over a wide range of energies49. Since
RABBIT employs attosecond pulse trains (APTs) rather than single attosecond
pulses, the frequency range in Fig. 6 is covered by APTs encompassing har-
monics ranging from q = 9 to q = 81 of the fundamental ωIR with λ = 800nm.
The excellent agreement underlines that tEWS can be unambiguously extracted by
conceptually entirely different methods provided that the additional contributions
tCLC or the equivalent tcc are accounted for.

4 Dipole-laser interactions

Interactions decaying asymptotically as V ∼ r−2 provide an interesting case at the
borderline between short- and long-ranged interactions. A prominent example is
the centrifugal potential

V (`,r) =
`(`+1)

2r2 . (38)

Standard scattering theory applies to V (`,r) and gives for a free particle and
for all short-ranged potentials decaying faster than r−2, a constant phase shift

13



-140

-120

-100

-80

-60

-40

-20

0

0 20 40 60 80 100

T
im

e
sh
if
t
[a
s]

Final electron energy [eV]

tR He+(1s)
tS He+(1s)

tR H(1s)

tS H(1s)
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RABBIT APTs built of harmonics from q = 9 to q = 81 of the fundamental ωIR
(λ = 800nm) are employed.

−`π/2 and hence a vanishing contribution to the time delay. In the simultaneous
presence of the Coulomb potential, however, the centrifugal potential gives rise
to an additional non-trivial `-dependent contribution50 to tC

EWS through the non-
separable dependence of the argument of the digamma function on ` (Eq. 22),
see Fig. 7. Analogously, the classical tcl.

EWS depends on the L dependence of
the Kepler hyperbola (Eq. 21). For the Coulomb exit channel interaction, the
non-trivial contribution of the centrifugal potential to the Coulomb-EWS time
delay can be determined by the difference to the ` = 0 partial wave where the
centrifugal potential vanishes,

t∆`
EWS(E, `) = tEWS(E, `)− tEWS(E,0) . (39)

Despite being the result of the interplay with the long-range Coulomb interaction
these contributions are fully accounted for by the Coulomb EWS time delay.

Another important case are (permanent) dipole interactions also decaying
as Vd ∼ r−2. Their influence on streaking were first discussed by Baggesen
et al.51,52. A prototypical case is photoionization of degenerate hydrogenic mani-
folds where dipolar interactions are present in the entrance channel and Coulomb
interactions in the exit channel. We consider in the following ionization of
He+(n=2). While for the states He+(2s) and He+(2p1) only one partial wave
in the continuum is accessed (` = 1 and ` = 2, respectively), for He+(2p0) and
the parabolic states53 He+(n=2,k=±1) the dipole selection rule for photoion-
ization leads to the coherent superposition of partial waves with ` = 0,1,2 and,
according to Eq. 6, to variations of the Coulomb-EWS times with the angle of
photoemission.

The two parabolic states feature a permanent electric dipole moment53 of
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dk=±1 = ±3n/2Z. The effect of the initial state polarization on the photoioniza-
tion transition matrix element is fully contained in the Coulomb-EWS time (see
Eq. 39). However, in the presence of the IR streaking field, its interaction with
the initial-state dipole leads to a time-dependent initial-state energy shift

∆E(τ) =−~d~FIR(τ) (40)

and, in turn, to a phase shift

Φ(t) =−~d
∫ t

−∞

~FIR(t ′)dt ′ = ~d~AIR(t) . (41)

This dipole-laser coupling (dLC) induced energy and phase shift gives rise to
additional streaking-measurement related time shifts which distort the intrinsic
time information to be extracted. Indeed, the streaking time tS for the He+(n=2)
initial states significantly differ from those predicted by Eq. 35 (Fig. 8). This
dLC contribution can be easily accounted for by including the IR field induced
energy shift of the initial state. The additional modulation of the final-state energy
(see Eq. 40), neglecting terms to second order in the streaking field, is given by

E f (τ) =
p2

f (τ)

2
= E0−~p0~A(τ)− ~d~FIR(τ) . (42)

In direct analogy to Eq. 32 and Eq. 33, the dipole contribution ∼ FIR(τ), being
π/2 out of phase with the streaking momentum AIR(τ), gives rise to an additional
time shift51 of the streaking momentum

αdlAIR(τ+ t(i)dLC) = AIR(τ)+dkFIR(τ)/p0 , (43)
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evaluated for emission along the laser polarization axis, with

t(i)dLC =
1

ωIR
tan−1

(
dkωIR

p0

)
(44)

and

αdLC =

(
1+
(

dkωIR

p0

)2
)1/2

. (45)

Thus, for photoionization of atomic or molecular initial states (i) with a perma-
nent electric dipole the relation Eq. 35 between the observable streaking time
shift tS and the intrinsic EWS time delay tEWS has to be modified to

tS = tEWS + tCLC + t(i)dLC . (46)
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Eq. 46 can account for all time shifts observed for the degenerate hydrogenic
manifolds with (sub-)attosecond precision (Fig. 8b). Most remarkably, Eq. 46
allows to accurately account for the corrections to initial states that have no per-
manent dipole (2s, 2p0) but are highly polarizable due to the degeneracy of the
manifold. Expanding |2s〉 and |2p0〉 in terms of the two parabolic states

|n=2, `=0(`=1)〉= 1√
2
(|k=1〉+ (−)|k=−1〉) , (47)

the effective induced dipole moment follows as

〈d`
eff〉=

1

2 |c`|2
∑
k

dk |ck|2 (48)

where |ck|2 and |c`|2 are the square moduli of the dipole transition matrix ele-
ments (Eq. 6) from the initial state k or ` to the continuum with final momentum
along the polarization axis. We note that the present findings of a dLC shift of
polarizable states without a permanent dipole moment is at variance with recent
claims52.

5 Many-electron systems

The analysis of the preceding section focussed on one (active) electron systems
for which both classical and quantum dynamics in a streaking setting can be
solved (to within numerical precision) exactly, and, moreover, accurate analyti-
cal estimates for the time-shifts involved can be given. Since in the pioneering
experiment the relative time delay between photoionization of the 2s an 2p elec-
trons was measured for neon12, the influence of many-electron and correlation
effects on the intrinsic time delay and on streaking-measurement related time
shifts became important issues. We briefly address this topic with the help of two
prototypical two (active) electron systems for which numerically exact solutions
of the TDSE are still feasible54–56.

We first discuss a fully correlated two-active electron (TAE) model57 for two
non-equivalent electrons denoted in the following as (1s,2p). These two active
electrons move in a mean field of N− 2 passive electrons. We choose a back-
ground potential, VN−2, such that the work function of the 2p electron matches
that of the Ne 2p electron while the work function of the 1s electron corresponds
to that of the Ne 2s subshell. This model thus shares several features of the neon
atom including identical kinetic energies, identical tCLC (Eq. 33), and identical
angular momenta of the two electrons the difference in emission time of which
has been experimentally explored12. While the model is not intended to provide a
realistic approximation to the 10-electron system it allows to fully account for the
effect of e-e interactions of the two non-equivalent electrons on streaking. More-
over, by comparison with a corresponding single-active electron (SAE) model for
electrons moving in a corresponding N−1 electron mean field potential VN−1(r),
e-e effects on both the EWS time delay and on the measurement induced time
shifts can be probed. Fig. 9 illustrates similarities and differences of the observ-
able streaking shifts tS within TAE and SAE approaches for two different XUV
energies. Significant differences between the TAE and SAE models of about
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2.5as can be observed for emission of the 2p electron at ωXUV = 122eV. This
difference can be traced to differences in the (negative) EWS delay times while
the CLC contribution (also shown in Fig. 9) is identical within the TAE and SAE
models. We have numerically verified the additivity relation Eq. 35 with sub-
attosecond precision. Note that the initial-state polarizability for this model sys-
tem with well separated energy levels is negligible and, hence, t(i)dLC = 0. We
also stress that additional contributions to the streaking-related time shifts anal-
ogous to tCLC due to short-ranged portions of many-electron potentials VN , as
recently proposed46, can be ruled out based on the present numerical evidence.
Moreover, simple semi-classical considerations argue strongly against additional
CLC-like contributions from short-ranged potentials: for typical XUV frequen-
cies currently accessible by HHG, kinetic energies of the released electrons are
E . 100eV. Their large de-Broglie wavelength λdB = 2π/

√
2E & 3a.u. pre-

cludes the spatial resolution of the short-ranged component of atomic potentials.
Consequently, quasi-classical trajectory modifications induced by the interplay
of short-ranged atomic potentials and the laser field in analogy to Eq. 30 are
unlikely to occur.

The experimentally observed relative delay of ∆tS≈ 21as between the 2p and
2s electron of neon is, so far, theoretically unaccounted for. Several theoretical
approaches contained in the original paper12 as well as more recent works em-
ploying the random phase approximation with exchange for the photoionization
matrix element58, time-dependent R-matrix theory59, and many-body perturba-
tion theory60 fall short by about a factor two to three. For the present Ne model
system (Fig. 9) we find ∆tS ≈ 4as.

Ionization of helium accompanied by shake-up forming so called spectro-
scopic “correlation satellite” lines represents the prototypical case of photoion-
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ization strongly driven by electron-electron interactions of two equivalent elec-
trons61,62. For these processes fully ab initio simulations for an attosecond streak-
ing setting are feasible63. We focus in the following on the shake-up to n = 2
which becomes accessible for XUV energies exceeding the sum of the ionization
potential (Ip) of He and the excitation energy ∆E(n = 1→ 2) in He+. The streak-
ing spectrogram of the main line (He+(1s)) and satellite (He+(n=2)) (Fig. 10)
reflects the weakness of the shake-up channel (< 5% of the main line) and in-
dicates the experimental challenge to perform a chronoscopic measurement with
attosecond precision.
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Fig. 10 Numerically simulated streaking spectrogram for helium and emission into a
forward cone (opening angle 10◦) around the polarization axis. XUV pulse with
ωXUV = 100eV, τp = 200as, IXUV = 1012 W/cm2, streaking field with
IIR = 4 ·1011 W/cm2, λ = 800nm. Top: main line He+(1s), bottom: shake-up satellite
(predominantly) to He+(n=2).

While for the main line, the sum of tCLC and tEWS (Eq. 35) accurately ac-
counts for the numerically determined tS, for the shake-up states to n = 2 Eq. 35
fails (Fig. 11). Note that the initial-state polarization of the helium ground state
can be safely neglected as confirmed by the agreement for the main line and, thus,
t(i)dLC = 0. In this case, it is the high polarizability of the degenerate hydrogenic
He+(n=2) manifold of the residual ion that causes the discrepancy between the
extracted streaking time and contributions from Coulomb-laser coupling and the
EWS time.

Starting point is the observation that the two parabolic states He+(n=2,k=
±1) possess a large permanent dipole moment (see section 4). The long-range
interaction between the ionized electron and the residual ion in the exit channel
contains now both a Coulombic and a dipolar interaction, Vd = −~d~r/r3. Their
direct contributions to tEWS in the absence of a streaking field is included in the
exact calculation of the dipole transition matrix for single ionization of He em-
ploying the extraction method based on exterior complex scaling64,65. In the
presence of a streaking field, however, both long-range portions give additional
contributions. The Coulomb tail results in the time shift tCLC (Eq. 33) while the
dipolar interaction between the bound and ionized electron gives rise to a novel
contribution which is a true field-induced electron-electron effect. The asymp-
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totic two-electron state representing one continuum and one bound electron in the
presence of the streaking field has the time-dependent energy (or time derivative
of its phase),

Ee−e(τ) = εnk +E−~p0~AIR(τ)− ~dk~FIR(τ) , (49)

where εnk is the binding energy of the residual parabolic state and E the kinetic
energy of the ionized electron at zero field. The remaining two terms account for
the interaction of the IR field with the continuum electron and with the dipole
moment of the residual electronic bound state. The physical picture underlying
the IR field induced dipole shift to streaking is illustrated in Fig. 12. The energy
modulation of the parabolic states k = 1 and k =−1 are out of phase by π relative
to each other (Fig. 12b). Following the derivation Eqs. 43 to 45 we find for
the two-electron dipole laser coupling induced time shift (evaluated for emission
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Fig. 12 (a) Two-electron dipole-laser interaction in the exit channel. (b) Resulting
modulation of the kinetic energy of the ionized electron emitted at time τ.

along the laser polarization axis)

t(e−e)
dLC =

1
ωIR

tan−1
(
−dkωIR

p0

)
. (50)

Note the opposite sign of the dipole term relative to the corresponding expression
Eq. 44 for the entrance channel perturbation of the one-electron problem. Adding
this term to Eq. 46,

tS = tEWS + tCLC + t(i)dLC + t(e−e)
dLC , (51)

with t(i)dLC = 0 in the present case, leads to near-perfect agreement for all n = 2
shake-up substates (Fig. 11b) confirming, once more, the additivity rule for laser-
modified long-range interactions. As in the one-electron case, not only ionic final
states with a permanent dipole moment |n,k,m〉 but also highly polarizable states
in degenerate manifolds with zero static dipole moment |n, `,m〉 suffer a dipole-
laser induced time shift (see Eq. 48). A non-zero contribution survives even when
an average over all n = 2 substates is taken (Fig. 11b). Conceptually, Eq. 50 and
Eq. 51 reflect the entanglement in the exit channel. As a result, the streaking
time shift of the observed ionized electron depends on the dipole moment of
the substate of the residual ion. In turn, in such a setup the final quantum state
|n, `,m〉 or |n,k,m〉 becomes accessible in a non-destructive measurement, i.e.,
without directly observing it.

6 Outlook: complex systems

We conclude the discussion of time-resolved photoemission by streaking with an
outlook toward the extraction of dynamic information of more complex many-
electron systems. As the number of degrees of freedom increases, following
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the dynamic evolution on a state-resolved level becomes impossible. Instead of
the fully coherent N-electron evolution, the partially coherent dynamics on the
level of one- (or few-) particle reduced density matrices takes center stage. The
streaked electron thus carries information on the interactions with the “bath” of
the electrons and ionic cores it is immersed in prior to and during the emission
process. Instead of an EWS time delay associated with an individual scattering
state, dephasing, decoherence, and relaxation times become accessible. Con-
comitantly, the strict Fourier reciprocity between time domain and energy domain
is broken. While for a fully coherent photoionization process the spectral varia-
tion of the scattering phase (see Eq. 6) determining the intrinsic atomic time de-
lay, is, in principle, indirectly accessible in the energy domain by high-resolution
angular spectroscopy, time-resolved photoemission in complex open systems can
provide novel information on decohering processes such as collisions, energy ex-
change, and relaxation not easily accessible in the spectral domain. We therefore
conjecture that the full potential of time-resolved photoelectron spectroscopy,
i.e., chronoscopy, will emerge when applied to complex systems. Exploiting
these opportunities, both experimentally and theoretically, remains a challenge.

One case in point is time-resolved photoemission from a tungsten surface11.
The time delay between conduction band electrons and core levels were asso-
ciated with transport effects and steep variation of the group velocity near the
points in k-space where Bragg reflections occur11,66. Within a classical transport
theory, multiple scattering processes and energy loss due to plasmon excitation
have been shown to effectively contribute to the observed time delay67. How-
ever, accounting quantitatively for the experimentally observed time delay has
remained a widely open question68,69.

An intriguing scenario at the borderline between an atomic and condensed-
matter system is photoemission from an endohedral C60 complex, A@C60, where
a heavy atom A, for example xenon, with a well-defined core-level emission line
is located at the center of the C60 cage70,71 (Fig. 13a). The cage will act as a
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Fig. 13 (a) Endohedral complex, He+@C60, schematically. (b) Variation of tS (dots)
due to the modulation of tEWS (lines, averaged over the XUV spectrum) as a function of
the kinetic energy E of the outgoing electron, see Eq. 53. For Vshell we have chosen two
sets of values previously used in the literature72. 1: V0 =−0.302a.u., ∆ = 1.9a.u.,
r0 = 5.89a.u., 2: V0 =−0.422a.u., ∆ = 1.25a.u., r0 = 6.01a.u. .
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finite-size bath with which the photoelectron interacts. Point of departure of a
simplified SAE model is an effective potential for the core electron bound to
the center atom VA(r) with a long-range Coulomb tail. As the outgoing electron
traverses the cage, it experiences a short-ranged potential created by the shell of
C60 atoms. A simple model potential for the shell is72

Vshell(r) =

{
−V0 for r0 ≤ r ≤ r0 +∆

0 otherwise
(52)

with r0 the inner-radius of the C60 shell, ∆ its width and V0 the mean potential
on a one-electron level. The short-ranged admixture would lead to an energy
dependent modulation δtEWS of the intrinsic atomic time delay, tA

EWS,

tEWS(E) = tA
EWS(E)+δtEWS(E) (53)

on the fully coherent one-electron level. We find, for He+ enclosed in a C60 cage,
good agreement for the prediction for the streaking time (Eq. 35) when the mod-
ified EWS time Eq. 53 is used (Fig. 13b). Future studies will go beyond such
an SAE model and novel features are expected to emerge. The outgoing elec-
tron will interact with the 240 valence electrons of the C60 shell which represent
environmental degrees of freedom. Among the channels to be considered are col-
lective excitations, i.e., surface and bulk plasmons, and collisional excitation and
ionization of the shell. Moreover, the highly polarizable C60 shell is expected to
modify the streaking process itself. It is hoped that experimental data for streak-
ing of such nanoplasmonic systems become accessible in the near future73.
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