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Abstract The paper presents an approach for set-membership estimation of the state
of a heterogeneous population in which an infectious disease is spreading. The pop-
ulation state may consist of susceptible, infected, recovered, etc. groups, where the
individuals are heterogeneous with respect to traits, relevant to the particular dis-
ease. Set-membership estimations in this context are reasonable, since only vague
information about the distribution of the population along the space of heterogene-
ity is available in practice. The presented approach comprises adapted versions of
methods which are known in estimation and control theory, and involve solving para-
metrized families of optimization problems. Since the models of disease spreading
in heterogeneous populations involve distributed systems (with non-local dynamics
and endogenous boundary conditions), these problems are non-standard. The paper
develops the needed theoretical instruments and a solution scheme. SI and SIRmodels
of epidemic diseases are considered as case studies and the results reveal qualitative
properties that may be of interest.
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1 Introduction

The role of heterogeneity of a population for the evolution of infectious diseases
is well recognized in the existing literature, see e.g. Diekmann et al. (1990, 2012),
Coutinho et al. (1999). Various kinds of models have been developed to take into
account heterogeneity with respect to immune system, contact rates and other traits,
including cellular automata (Schneckenreither et al. 2006), random networks (Miller
2007; Volz 2008), distributed integro-differential systems (Novozhilov 2008, 2012;
Diekmann et al. 1990; Veliov 2005), etc. For a more comprehensive bibliography see
the recent paper (Hickson and Roberts 2014). Theoretical results about the influence
of heterogeneity on the basic reproduction number in such models are available (e.g.
Katriel 2012; Margheri et al. 2015), as well as results about intervention strategies,
e.g. vaccination in heterogeneous populations (Rodrigues et al. 2009; Katriel 2012).
A substantial limitation for utilization of most of these models is that they require
detailed information about the distribution of the population along the numerical values
of the traits, that is, about the h-state (heterogeneous state) of the individuals in the
population (Diekmann et al. 2012). Such detailed information is usually not available.
The available information is vague and even reliable statistical characteristics are often
not known. One way to overcome this difficulty is to pass to aggregated models that
require less information. This approach is stressed in Diekmann et al. (2012) and we
mention the papers (Dushoff 1999; Karev 2005, 2010; Veliov 2005; Novozhilov 2008,
2012) developing aggregation techniques for certain special classes of heterogeneous
models defined by integro-differential systems.

In the present paper we employ an alternative approach, in which the distribution
of the population among the h-states is uncertain, but set-membership information
is available (possibly together with certain aggregated data). The set-membership
information may be given in the form of lower and upper bounds for the number
of susceptible, infected, recovered, etc. individuals at each h-state. The aggregated
information is typically about the total number of susceptible, infected, etc. individu-
als at the initial time. This information is used to obtain set-membership estimations
(shortly: set-estimates) for the evolution of the disease. The set estimations at a given
time t contain all aggregated states (total number of susceptible, infected, etc. individ-
uals) that are consistent with the available initial information and the model describing
the dynamics of the population system. The set-estimation approach is well known
and widely used (see e.g. Bertsekas 1995; Milanese and Vicino 1996; Kurzhanski and
Varaiya 2011), but in the present epidemiological context there are important points
that had to be developed.

The investigation is carried out for a rather general model of a heterogeneous
multi-group population, which consists of a distributed first order differential system
complementedwith integral relations. Thismodel covers heterogeneous versions of SI,
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SIR, and many other standard epidemiological models. At this level of generality we
present our set-estimation approach. In the set-estimation theory for evolutionary sys-
tems one can distinguish two different groups of methods. In the first, set-estimations
ofMarkovian type are sought, where the set-estimation at a given time t determines the
future set-estimations (the minimal set-estimation has this property). The advantage
is, that it is sometimes possible to obtain infinitesimal (even differential) equations
for the evolution of Markovian set-estimations in a prescribed family of sets (poly-
hedrons, ellipsoids, etc., see Kurzhanski and Varaiya 2011). The drawback is, that
such estimations are usually too “pessimistic” , that is, too large, compared with the
minimal set-estimation. Our approach belongs to the second group: at each time the
set-estimation is obtained independently of the previously obtained estimations. Tech-
nically, finding such estimations (even minimal ones) can be done by solving families
of auxiliary dynamic optimization problems. In our case these optimization problems
are non-standard, because they involve constraints in the form of first order distributed
differential systems and integral relations. Therefore, the first main goal of the paper
is to present a technique for solving such optimization problems.

The second goal of the paper is to show that the set-estimation technique may
give useful information about the spread of infectious diseases under uncertainty of
data (we focus on uncertainty of the h-state-distribution of the initial population).
In many cases the population has certain dissipativity property that makes the set-
estimations not much expanding, even shrinking to a point or to a reasonably small
set, when the time progresses. Thanks to this, one can perform various kinds of
comparative analysis. For example, we investigate the effect of various scenarios of
interventions (vaccination or prevention programs) applied prior to the outburst of the
disease.

We mention that our previous work (Veliov and Widder 2015) allows to determine
the exact asymptotics of the aggregated states of a class of heterogeneous SI-models,
depending on the initial h-state-distribution of the population. This allows to obtain
a set-estimation for the asymptotic state of the disease for this particular SI-model in
an alternative way. The comparison with the results obtained by the general approach
in the present paper, which turns out to be the same, serves as a verification test.

The plan of the paper is as follows. Section 2 explains the aim of this paper in terms
of a simple SI model used later as benchmark. The general model, the assumptions,
and the formulation of the set-estimation problem are given in Sect. 3. In Sect. 4 we
present the set-membership technique and some technicalities needed to adapt it to
the present framework. Section 5 is devoted to numerical analysis of certain SI and
SIR heterogeneous models by the set-estimation techniques. Some conclusions and
lines of future research are presented in Sect. 6. Some technical proofs are given in
the Appendices 1 and 2.

2 A benchmark SI model

Topresent ourmainmotivation,we introduce below a particular case of the problemwe
investigate in this paper,which involves a heterogeneous version of the knownSImodel
in mathematical epidemiology. The whole population is divided into two groups—
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susceptible individuals and infected individuals. The individuals are heterogeneous,
in the sense that a scalar ω ∈ Ω ⊂ R is associated with each individual, indicating
specific traits relevant to the particular disease, e.g. the intensity of risky contacts, the
state of the immune system, etc. The parameterω is called heterogeneous state (shortly
h-state) of the individual, see e.g. Coutinho et al. (1999), Diekmann et al. (1990) or
textbooks such as Diekmann et al. (2012).

The following model is a particular case of the one in Veliov (2005):

Ṡ(t, ω) = −σ(ω)p(ω)
J (t)

K (t) + J (t)
S(t, ω) + κS(t, ω), S(0, ω) = u1(ω),

İ (t, ω) = σ(ω)p(ω)
J (t)

K (t) + J (t)
S(t, ω) − γ I (t, ω), I (0, ω) = u2(ω),

K (t) =
∫

Ω

p(ω)S(t, ω) dω,

J (t) =
∫

Ω

q(ω)I (t, ω) dω. (1)

Here S(t, ω) and I (t, ω) represent the size of the susceptible and of the infected
population with h-state ω at time t , respectively. The parameter κ is the net population
growth rate of the susceptible population, γ is the net mortality rate of the infected
population, σ(ω) is the susceptibility, meaning the probability that a risky interaction
between a susceptible and an infected individual results in infection of the susceptible
individual (it may incorporate also the immune status of the susceptible individual),
and p(ω) and q(ω) denote the participation rate of susceptible/infected individuals of
h-stateω in risky interactions (i.e. the contact rate). The aggregated state variables K (t)
and J (t) represent the total amount of susceptible/infected individuals, weighted with
their respective risky behaviour, while J (t)/(K (t)+ J (t)) is the weighted prevalence
of the disease at time t (see e.g Veliov 2005; Veliov andWidder 2015 for more detailed
explanations). At the initial time t = 0, the distribution of the initial susceptible and
infected sub-populations along the h-states, ω ∈ Ω , is given by the functions u1(ω)

and u2(ω), respectively.
In fact, the main quantities of practical interest are the total size of the susceptible

and infected populations:

S(t) :=
∫

Ω

S(t, ω) dω and I (t) :=
∫

Ω

I (t, ω) dω. (2)

Solving system (1) is not problematic, provided that all data involved are known.
However, in reality the information about the distribution of individuals along the
heterogeneous space Ω is vague. That is, the functions u1 and u2 are not precisely
known. A relatively reliable information about these functions is provided by the
aggregated values

∫
Ω

u1(ω) dω = S(0) and
∫

Ω

u2(ω) dω = I (0), (3)
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since measurements of S(0) and I (0) are feasible. Statistical information for higher
integral moments of u1 and u2 (in the form of equalities or inequalities) may also
be available, and its incorporation in our subsequent considerations is a matter of
technical work that we avoid for more transparency. Additional information about u1
and u2 may be given in terms of bounds:

ui (ω) ∈ [ϕi
0(ω), ϕi

1(ω)], ω ∈ Ω, i = 1, 2. (4)

Any pair ofmeasurable functions (u1, u2) satisfying (3) and (4) (that is, consistentwith
the available information) will be viewed as possible (sometimes called admissible)
realizations of the uncertainty for the h-distribution of the initial population.

Due to the uncertainty of the initial data (u1, u2), the issue of obtaining a set-
membership estimation, E(t), of the aggregated state (S(t), I (t)) does naturally arise.
This means that sets E(t), t ≥ 0, have to be determined, such that

(S(t), I (t)) ∈ E(t), t ≥ 0, (5)

whatever the admissible initial functions (u1, u2) are, where (S(t), I (t)) is the corre-
sponding solution of system (1) enhanced with (2).

Themain goal of this paper is to present a computationally implementable approach
for obtaining set-membership estimations as in (5). Such an approach is developed in
the next section for a general system with a structure similar to (1), (2).

3 Formulation of the problem and preliminaries

Having in mind the set-membership estimation problem in the previous section, below
we formulate a more general problem that covers heterogeneous versions of a variety
of models in mathematical epidemiology and in other areas.

Let [0, T ] be a given time-interval and let Ω be a compact interval in which the
parameter of heterogeneity, ω, takes values. Denote D = [0, T ] × Ω . State variables
in the model below are functions

x : D → Rm and y : [0, T ] → Rn .

The dynamics is given by the equations

ẋ(t, ω) = f (t, ω, x(t, ω), y(t)), (t, ω) ∈ D, (6)

x(0, ω) = u(ω), ω ∈ Ω, (7)

y(t) =
∫

Ω

g(t, ω, x(t, ω)) dω, t ∈ [0, T ], (8)

where

f : D × Rm × Rn → Rm and g : D × Rm → Rn
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are given functions and the upper “dot” means differentiation with respect to t , so that
ẋ(t, ω) := ∂x(t, ω)/∂t . The initial data u : Ω → Rn is uncertain, and the available
information about it is given by the following constraints:

u(ω) ∈ [ϕ0(ω), ϕ1(ω)], ω ∈ Ω, (9)∫
Ω

u(ω) dω = c. (10)

The inclusion in (9) is understood component-wise: ui (ω) ∈ [ϕi
0(ω), ϕi

1(ω)], where
u = (u1, . . . , um), ϕ j = (ϕ1

j , . . . , ϕ
m
j ), j = 0, 1; the vector c ∈ Rm and the functions

ϕ0 and ϕ1 are given.
We consider every function from the set

U :=
{

u ∈ Lm∞(Ω) : u(ω) ∈ [ϕ0(ω), ϕ1(ω)] for a.e. ω ∈ Ω,

∫
Ω

u(ω) dω = c

}
.

as an admissible (possible) realization of the uncertain function u.
Before formulating the estimation problem in the spirit of the previous section,

we give the necessary assumptions and clarify the meaning of solution of the above
model.
Assumptions:

(i) The function f is measurable in (t, ω), g is continuous in t and measurable
in ω, both are locally essentially bounded, differentiable in (x, y) with locally
Lipschitz partial derivatives, uniformly with respect to (t, ω) ∈ D;

(ii) the functions ϕ0, ϕ1 : Ω → Rm are continuous and satisfy the inequalities
ϕ0(ω) ≤ ϕ1(ω) and

∫
Ω

ϕ0(ω) dω < c <
∫
Ω

ϕ1(ω) dω;
(iii) for every u ∈ U , a unique solution (x[u], y[u]) of (6)–(8) does exist on the whole

interval [0, T ]. Moreover, (x, y) is uniformly bounded in L∞(D) × L∞([0, T ])
when u ∈ U .

By definition, solution of (6)–(8) is any pair of measurable and bounded functions
(x(·, ·), y(·)) on D and [0, T ] respectively, such that for a.e. ω ∈ Ω the equation

x(t, ω) = u(ω) +
∫ t

0
f (s, ω, x(s, ω), y(s)) ds (11)

holds on [0, T ] and (8) holds for a.e. t ∈ [0, T ].
Notice that according to Assumption (i) x(·, ω) is (uniformly) Lipschitz continuous

for a.e. ω and y is continuous.
Existence and uniqueness of the solution (x[u], y[u]) on [0, T ] for every u ∈

U is assumed in (iii) above in order to make the exposition less technical. In fact,
the existence can be proved by a fixed point argument similarly as in Veliov (2008,
Theorem 1) under an additional growth condition, which is not necessary in the rest of
this paper. The uniqueness is standard due to the Lipschitz continuity in Assumption
(i).
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Denote

R(t) := {y[u](t) : u ∈ U} , t ∈ [0, T ].

That is, R(t) the set of all aggregated states y that result from some admissible real-
ization of the uncertainty, u ∈ U . In this sense, R(t) is the exact (meaning minimal)
set-membership estimation of the aggregated state at time t . In the next section we
present a method of obtaining estimates

E(t) ⊃ R(t), t ∈ [0, T ].

Even more, the method allows to obtain outer approximations of arbitrary accuracy
of the convex hull coR(t).

Sometimes not all components of y are of interest (being included just to complete
the model). Therefore, for a given subspace L ⊂ Rn we will obtain estimations of the
projections of y(t) on L:

EL(t) ⊃ prL(coR(t)), (12)

where prL is the projection operator on L .
In the epidemiological problems which serve as prototypes for the above problem

(cf. Dushoff 1999; Hickson and Roberts 2014; Veliov 2005; Veliov andWidder 2015),
the dimension m may equal 2 (in SI and SIS models), 3 (in SIR models), etc. The
aggregated state y has usually a higher dimension than x . In the benchmark model
(1), (2) considered in Sect. 2 we have m = 2 and n = 4: x(t, ω) = (S(t, ω), I (t, ω)),
y(t) = (K (t), J (t), S(t), I (t)). However, estimating the pair (S(t), I (t)) is of primal
interest, thus L := (0, 0,R,R).

4 The set-membership estimation

In this section we focus on the approximation of the exact set-membership estimation
R(t). The procedure described in the first subsection is well known in control theory,
while the second subsection is devoted to the main technical tool which is specific for
themodel presented in the previous section. The numerical scheme is briefly described
in the third subsection.

4.1 The approach

Let us fix a time τ ∈ (0, T ] and a unit vector l ∈ Rn . Consider the optimization
problem

sup
u∈U

〈l, y(τ )〉 = sup
y∈R(τ )

〈l, y〉, (13)

subject to the constraints (6)–(10). (Here and below 〈·, ·〉 denotes the scalar product.)
Let yl = y[ul ](τ ) be an ε-solution, in the sense that

〈l, yl〉 ≥ sup
y∈R(τ )

〈l, y〉 − ε.
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If we find yli for a number of unit vectors {l1, . . . , lk} =: Λ, then we have that

YΛ(τ) := {yl1 , . . . , ylk } ⊂ R(τ )

⊂ {y ∈ Rn : 〈li , y − yli 〉 ≤ ε, i = 1, . . . , k} =: EΛ(τ).

Thus, EΛ(τ) is a set-membership estimation of y(τ ). It is an easy exercise to show that
the Hausdorff distance H(co YΛ(τ), EΛ(τ)) decreases with ε and converges to zero
if the set Λ is a δ-net on the unit sphere and δ and ε converge to zero. Thus, we can
obtain inner and outer approximations of any accuracy to the convex hull of the exact
set-membership estimationR(τ ).

If only a set-membership estimation on a subspace L ⊂ Rn is needed (see (12)),
then it is enough to take collections of unit vectors Λ belonging to the space L (which
makes problems of high dimension tractable, provided that the dimension of L is
low—1, 2 or 3).

The approach described above requires multiple solving of problem (13), (6)–
(10). This is not an easy task, since we deal with a distributed system with non-local
dynamics (due to the presence of the aggregated states y) and constraints on the variable
u.We employ a gradient projectionmethod in the space L∞(Ω) for the variable u ∈ U .
This means that the objective function in (13) is considered as a functional, J (u) of
u ∈ U ⊂ L∞(Ω)with y(τ ) viewed as a function of u: y(τ ) = y[u](τ ). The functional

J (u) = 〈l, y[u](τ )〉 (14)

has to be maximized on the set U . Then a standard gradient projection method can be
implemented—for more details see Sect. 4.3 below.

However, there is an auxiliary problem that arises: to determine the gradient (mean-
ing the Fréchet derivative) of J . This problemwill be addressed in the next subsection.

4.2 The gradient in problem (13)

Let u ∈ U and let (x, y) be the corresponding solution of system (6)–(8) on [0, τ ]×Ω ,
where τ ∈ (0, T ] is the number fixed in the previous subsection. We shall obtain a
representation of the Fréchet derivative of the functional J in (14) in the space L∞.

Let

λ : D �→ Rm and ν : [0, τ ] �→ Rn

be a measurable and bounded solution on [0, τ ] × Ω of the system

− λ̇(t, ω) = ( f ′
x (t, ω, x(t, ω), y(t)))
λ(t, ω) + (g′

x (t, ω, x(t, ω)))
ν(t), (15)

λ(τ, ω) = −(g′
x (τ, ω, x(τ, ω)))
 l, (16)

ν(t) =
∫

Ω

( f ′
y(t, ω, x(t, ω), y(t)))
λ(t, ω) dω. (17)
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Here the superscript 
 means transposition, and the meaning of solution is similar to
that of the initial-value problem (6)–(8).

Lemma 1 For every u ∈ U and corresponding solution (x, y) of system (6)–(8)
a unique solution (λ, ν) of system (15)–(17) does exist. Moreover, ‖λ‖L∞(D) +
‖ν‖L∞(0,τ ) ≤ c̄, where the constant c̄ can be chosen independent of u ∈ U .

The proof is similar to that of Proposition 1 in Veliov (2008). Therefore, we only
sketch it. The solution of the linear equation (15) (with ν regarded as given) can be
represented by the Cauchy formula, involving the fundamental matrix solution, which
of course, depends on ω. After inserting the resulting expression in (17) and changing
the order of integration, we obtain a Volterra integral equation of the second kind
for ν, which has a unique solution. The uniform boundedness follows from the same
property of (x, y) (see Assumption (iii)).

Proposition 1 The functional J : L∞(Ω) −→ R is Fréchet differentiable and its
derivative at u has a representation in L∞(Ω) given by

J ′(u) = −λ(0, ·), (18)

where λ is defined by (15), complemented with (16), (17). Even more, there exists a
constant d such that

∣∣J (v) − J (u) − 〈J ′(u), v − u〉∣∣ ≤ d‖v − u‖2L2(Ω) ∀ u, v ∈ U , (19)

where 〈·, ·〉 is the scalar product in L2(Ω).

The proof of this proposition is given in Appendix 1.

4.3 Implementation of the gradient projection method

Below we briefly describe, first at a conceptual level, our implementation of the gradi-
ent projectionmethod for finding an “approximate” solution of problem (13), (6)–(10).
Given uk ∈ U at iteration k we define the next iteration as

uk+1 := prU (uk + ρk J ′(uk)),

where prU is the projection operator on the set U with respect to the L2-norm, and
ρk > 0 is a step along the gradient J ′(uk). (Notice that the projection in L2 exists
and is unique.) Although there are various reasonable ways of choosing the step size
ρk > 0, we formulate a convergence result where the choice of ρk is (to some extend)
flexible.

Proposition 2 Let d > 0 be the number in Proposition 1 and let the real numbers
ρ0 > 0 and ε > 0 satisfy the inequality ερ0 < 1 − dρ0. Then for any choice of
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ρk ∈ [ρ0, 1/(d + ε)] the sequence {uk} generated by the gradient projection method
starting from an arbitrary u0 ∈ U satisfies

lim
k

sup
u∈U

〈J ′(uk), u − uk〉 = 0. (20)

This statement of the proposition is known in principle, but due to the infinite
dimensionality and the specificity in Proposition 1, which does not claim Fréchet
differentiability in L2, we present the proof (repeating usual arguments) inAppendix 2.

We point out that (20) represents an approximate version of the necessary optimality
condition that a solution u∗ has to satisfy: 〈J ′(u∗), u − u∗〉 ≤ 0, u ∈ U . Stronger
convergence results can hardly be obtained in our infinite dimensional setting without
additional assumptions of convexity and weak upper semi-continuity of J , which do
not need to hold for our problem.

In the numerical implementation of the above conceptual method we pass to a
finite-dimensional space by introducing meshes {ωi }M

i=1 and {t j }N
j=0 in Ω and [0, T ],

respectively. Then the systems (6)–(8) and (15)–(17) are replaced with discretizations
obtained by application of a second order Runge–Kutta scheme (the Heun scheme)
for the differential equations and the trapezoidal quadrature formula for integration
over Ω . The approximation of the constraining set U has the polyhedral form

UM :=
{

(u1, . . . , uM ) ∈ Rm×M : ϕ0(ωi ) ≤ ui ≤ ϕ1(ωi ),

M∑
i=1

αi u
i = c

}
,

where αi are the coefficients of the quadrature formula. In this way we obtain an
approximating mathematical programming problem. The relation between the solu-
tion(s) of the obtained discretization problem and the solution(s) of the original
problem (13), (6)–(10) is a subject of a separate investigation, similarly as in the recent
paper (Veliov 2015), considering essentially the same (even more general) system, but
in different class of controls.

Solving the discretized problem by the gradient projection method (with the gradi-
ent calculated by using the discretization of the adjoint equation) involves projection
on the set UM . (Observe that UM is non-empty for a sufficiently dense mesh {ωi }M

i=1
due to Assumption (ii).) There is a huge literature and available software for this
kind of projection problems, for both see e.g. Hager and Zhang (2015) and the refer-
ences therein. For details about the implementation of the gradient projection method
(including the choice of the step length ρ) see e.g. (Polak 1971, Chapter 4).

We mention that the known convergence results for the gradient projection method
applied to the discrete problem are of the same kind as Proposition 2: claiming conver-
gence to a “critical point”. In our numerical analysis we run the optimization solver
for various initial guesses u0. In the experiments with SI and SIR models (see the
next section) we have never encountered convergence to a local (and non-global)
maximizer.

We remind that to obtain a good approximation EL(τ ) of the minimal convex set-
membership estimation prL(coR(τ )) for a given τ it is necessary to solve problem
(13), (6)–(10) for many unit vectors l in the space of interest, L . Even more, in order to
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predict the evolution of state y(t) by means of the estimation EL(t) we need to do this
for a number of time instances τ . Naturally, the obtained (approximate) maximizer
u for given τ and l can be used as an initial guess for neighbouring instances τ and
vectors l, which makes the overall estimation procedure tractable on a commercial
PC.

5 Numerical analysis

In this section we present numerical results and analysis of versions of SI and SIR
heterogeneous models.

5.1 SI-model without population growth

Here we deal with the system (1), (2) with κ = 0, that is, the disease-free population
has zero growth rate.We consider this special case for the following reason: the asymp-
totics of the minimal set-membership estimation R(t), t → +∞, can be determined
in an alternative way, and can be compared with the estimation E(t) obtained by the
approach in the present paper. This is a test for the performance of the set-estimation
techniques. Let us briefly describe this alternative way.

From (1) it is apparent that S(t, ω) is monotonically decreasing and positive, and
thus convergent. This easily implies that Ṡ(t, ω) → 0. Since İ (t, ω) = −Ṡ(t, ω) −
γ I (t, ω), we obtain in a standard way that I (t, ω) converges to 0, provided that
γ > 0. Thus also I (t) → 0. In our paper (Veliov andWidder 2015) it is shown how to
determine the asymptotics of S(t) for given initial data (S(0, ·), I (0, ·)) = (u1, u2).
There, it is assumed that p(ω) = q(ω) > 0, σ(ω) = σ > 0 is constant, and the set
of those ω ∈ Ω , for which S(0, ω) > 0 and γ > σ p(ω), has positive measure. Then
Veliov and Widder (2015, Section 4.2) claims that

lim
t→+∞ S(t) := S∗(u1, u2) =

∫
Ω

e−σ F∗ p(ω)u1(ω) dω, (21)

where F∗ is the unique positive solution of the equation

∫
Ω

p(ω)eF∗(γ−σ p(ω))u1(ω) dω =
∫

Ω

p(ω)(u1(ω) + u2(ω)) dω.

Hence,

lim
t→+∞R(t) =

[
min

(u1,u2)∈U
S∗(u1, u2), max

(u1,u2)∈U
S∗(u1, u2)

]
× 0. (22)

Solving the two optimization problems involved in the last formula again requires a
numerical algorithm, but now we deal with a completely static problems (differential
equations are not involved). Again a gradient projection method is applied, since the
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Fig. 1 Set-membership estimates of system (1) with κ = 0 for various t . The thick line at the bottom left
is the exact set-estimation at infinity, R(+∞), calculated as in (22). For t < ∞ the estimation E(t) is
calculated by using 20 equidistant unit vectors l ∈ R2

Fréchet derivative of S∗ can be analytically represented. We skip the details of this
procedure.

The essence of the above paragraph is that now we have two different methods for
approximation of the limit ofR(t): by the way mentioned just above, and by using the
general technique presented in this paper for approximatingR(t), applied for large t .
The comparison is clearly seen in Figs. 1 and 2, obtained for the data specifications
described below.

The initial size of the population is normalized to one: S(0)+ I (0) = 1. Moreover,
Ω = [0, 1], δ = 0.15 and σ = 0.1. The weight functions p(ω) and q(ω) are linear:
p(ω) = q(ω) = 0.5 + ω (the constant term means that all individuals have risky
contacts). In order to define the lower and the upper bounds ϕ0(·) and ϕ1(·) of u(·)
we assume that the initial distribution of trait ω among the susceptible and infected
populations is close to a normal distribution ϕ(·) (called further “base distribution”)
with mean 0.5 and variance 0.3 truncated to the unit interval and normalised there.
More precisely, its deviation from ϕ is at most 20 %. This leads to bounds

u1(ω) ∈
[
4

5
S(0)ϕ(ω),

6

5
S(0)ϕ(ω)

]
, u2(ω) ∈

[
4

5
I (0)ϕ(ω),

6

5
I (0)ϕ(ω)

]
.

(23)
Figure 1 shows the evolution of the estimation E(t) obtained by using 20 equidistant

unit vectors l ∈ R2. It converges to the limit set R(+∞) calculated as in (22). Thus
the two different ways to approximate the limit set-estimation are consistent with each
other. This can be seen even better in Fig. 2 (left plot), where the dotted lines represent
the interval in the right-hand side of (22), while the solid lines represent the evolution
of prS(E(t)). The convergence of prI (E(t)) to zero is seen on the right plot in Fig. 2
(right plot).
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Fig. 2 Estimates for the maximal and minimal value of S(t) and I (t). For large t these values for S(t)
converge to the maximal and minimal value of S∗. For I (t) they converge to 0

5.2 SI-model with population growth

We continue to deal with the system (1), (2), but now consider a growing population.
We set δ = 0.1, σ = 0.105, and κ = 0.004. Figure 3 shows the set-membership
estimation E(t) of the system (1) at t = 2, 4, . . . , 40, obtained by using 20 equidistant
unit vectors l ∈ R2.

We remind that obtaining a set-estimation E(t) requires solving the auxiliary prob-
lem (13) for various unit vectors l (in the present model case l ∈ R2). A feasible u that
solves this problem is called extremal realization of the uncertainty in the initial data,
or merely extremal, in direction l. A comprehensive analysis of the structure of the
extremal u is a complicated task, seemingly not tractable, in general, although it may

0.96 0.98 1 1.02 1.04 1.06
0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

S(t)

I(
t)

t = 0

t = 2

t = 4

t = 6

Fig. 3 Set-membership estimates of system (1), (2) for various t , obtained by using 20 equidistant unit
vectors l ∈ R2
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Fig. 4 The solid lines show the component u2(·) of the extreme data for direction l =
(sin(1.4π), cos(1.4π)) and two different values of t . The dashed lines show the lower and upper bounds
ϕ20 (ω) and ϕ21 (ω)

give useful information about “worst case” realizations of the uncertainty. Our numer-
ical experiments with the SI model in Sect. 5.1 give evidence that the extremal u has
a bang-bang structure. More precisely, for an extremal u there exists a subset A ⊂ Ω

such that u(ω) = ϕ1(ω) for ω ∈ A and u(ω) = ϕ0(ω) for ω ∈ Ω\A. Of course, the
set A depends on u, hence on the estimation time t and the direction l. In the experi-
ments with the present SI-model the set A always consists of a single interval. Figure 4
presents the extremal initial data u2(ω) = I (0, ω) for l = (sin(1.4π), cos(1.4π)) and
various values of t . For t = 1, . . . , 27 the set A stays the same, A = [0, 0.5), and
the corresponding u2 is depicted on the left plot of Fig. 4. For t = 28, . . . , 40 we
obtain A = (0.5, 1] and the corresponding u2 is depicted on the right plot of Fig. 4.
Thus the structure of the extremal data may abruptly change when the estimation time
changes.

In the rest of this subsection we investigate the effect of intervention (prevention)
polices implemented prior to or around the outburst of the disease at t = 0. Such a
policy may influence either the individual susceptibility, σ(ω), (say, by vaccination)
or the individual contact rate, p(ω) (by educational or other prevention programs).
Assuming that the resource for intervention is limited, the question arises how to
allocate it among individuals, regarding their h-state ω. As mentioned in Sect. 2,
exact information about the h-state of individuals is not available, therefore a complex
intervention policy that targets specific sections of the population with particular h-
states cannot be enforced in practice. However, it may be feasible to identify groups
of high-level and groups of low-level risk.

In view of the above, we consider two scenarios: applying the intervention to high
risk individuals (here we mean those with high values of p(ω)) or applying it to low
risk individuals (i.e. those with low values of p(ω), respectively). Even though this
way of modelling of interventions is crude, it qualitatively answers the question which
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Fig. 5 Set-estimations of the prevalence, Ep(t), in case of intervention affecting σ(ω) (left plot) and p(ω)

(right plot). The dotted lines represent Ep(t) in the case of no intervention, the dashed lines represent Ep(t)
in the case of intervention applied to low risk individuals, and the solid lines—to high risk individuals

part of the population (high risk or low risk individuals) should be mainly targeted.
As we see below, the answer is not evident.

To be specific, we assume that for a third of the population we can decrease sus-
ceptibility σ(ω) or the contact rate p(ω) by 50 %. The question is, what will the
effect of the intervention be if it is applied to the one third of the population at higher
risk versus the same fraction of the population at low risk. The effect of interven-
tion is measured by the set-membership estimation of the prevalence. Let us clarify
the last notion. If we have obtained a set-estimation E(t) for (S(t), I (t)), then the
corresponding set-estimation for the prevalence I (t)/(S(t) + I (t)) is the interval

Ep(t) :=
[

min
(s,i)∈E(t)

i

s + i
, max

(s,i)∈E(t)

i

s + i

]
.

In Fig. 5 we show the progress of the set-estimation of the prevalence in three
scenarios: no intervention (the dotted lines), intervention applied to low risk individuals
(dashed lines), and intervention applied to high risk individuals (solid lines). On the
left plot the intervention decreases the susceptibility σ(ω) of the treated individuals,
while on the right plot—the contact rates, p(ω). Comparing the figures we see that in
both cases interventions are productive and that the intervention applied to high risk
individuals is significantly more efficient.

However, it is not always the case that intervention is more efficient if applied to the
individuals with highest risk. To show this we consider the above SI model with only
the value of σ(ω) increased from 0.105 to 0.3, i.e. we assume higher susceptibility. On
the left plot of Fig. 6 we see that the prevalence approaches value 1 (and actually the
population becomes extinct, asymptotically). We consider again an intervention that
reduces σ(ω) by 50 %. On the right plot of Fig. 6 we see the result of this intervention
when applied to the high risk and to low risk individuals, respectively. Again both
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Fig. 6 The left plot shows the evolution of the set-estimation Ep(t) of the prevalence in case of no inter-
vention: the whole population becomes (asymptotically) infected. The right plot shows Ep(t) with the
intervention applied to the low risk (dashed lines) and high risk (solid lines) individuals. The intervention
targeting the low risk individuals is now significantly more efficient and, in particular, prevents extinction

interventions yield an improvement. However, now the intervention targeting the low
risk individuals is more efficient and prevents extinction.

5.3 Comparison with other distributions of the initial data

In Sect. 5.2 we assume that the base information, ϕ, about the initial data is a normal
distribution truncated to the interval [0, 1] and normalised so that

∫ 1
0 ϕ(ω) dω = 1.

Now, wemake a comparison with results for other choices of ϕ.We consider a uniform
distribution, i.e. ϕ(ω) = 1, and two distributions skewed to either side of the interval
[0, 1], namely, ϕ(ω) = C1(eω − 1) and ϕ(ω) = C2(e−ω+1 − 1), where C1 and C2 are
appropriate normalising constants. We will refer to the first of these two functions as
”right-hand exponential” and to the second one as ”left-hand exponential”. As before
(see (23)), a 20%deviation of the real data from the base ones is considered as possible.

The different choices of ϕ, including the normal distribution used before, are shown
in Fig. 7 .

Figure 8 presents the set-membership estimations corresponding to uniform, right-
shifted and left-shifted base distributions. It should be viewed in parallel with Fig. 3,
which corresponds to a normal base distribution ϕ. Figure 9 shows the separate esti-
mates for S(t) and I (t) on a long time-horizon.

The results correspond to the common sense. The more to the right is shifted the
base distribution ϕ (meaning that more individuals have higher contact rates p(ω) =
0.5+ω), themore are the set-estimates shifted to higher number of infected individuals.
It is interesting to observe that the size of the set-estimations increases along the
line “uniform” → “normal” → “left-hand exponential” → “right-hand exponential”
distribution of the base data ϕ. This is apparently related to differences in the stability
of the model (1) for different initial data.
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Fig. 7 The four base
distributions ϕ considered in
Sect. 5.3
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Fig. 8 Set-estimations of (S, I ) for various time instances for left-hand exponential, uniform, and right-
hand exponential base distribution ϕ
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Fig. 9 Separate set-estimations of S and I for various base distributions ϕ
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5.4 SIR-model

In this subsection we consider the following heterogeneous SIR model:

Ṡ(t, ω) = κ N (ω) − σ p(ω)J (t)S(t, ω) − κS(t, ω), S(0, ω) = u1(ω)

İ (t, ω) = σ p(ω)J (t)S(t, ω) − (γ + κ)I (t, ω), I (0, ω) = u2(ω)

Ṙ(t, ω) = γ I (t, ω) − κ R(t, ω), R(0, ω) = u3(ω), (24)

where

J (t) =
∫

Ω

p(ω)I (t, ω) dω.

The new variable R(t, ω) represents the “number” of individuals who have recovered
from the infection. Now the parameter γ has to be interpreted as the recovery rate, and
κ denotes both the birth rate and the mortality rate. The function N (ω) = S(t, ω) +
I (t, ω) + R(t, ω) describes the total population and is constant in time, as can be
seen by summing up all three equations in (24). Thus in this model the disease has no
influence on the mortality of infected individuals. Furthermore, newborn individuals
are assumed to be susceptible and reproduction is not affected by being infected or
recovered. Notice that the denominator of the weighted prevalence (compare with the
SI model (1)) is missing. The reason is, that here we assume (for a simplification that is
actually not necessary) that the susceptible, the infected, and the recovered individuals
of h-state ω have the same contact rate p(ω). Then the weighted prevalence is given
by

J (t)∫
Ω

p(ω)(S(t, ω) + I (t, ω) + R(t, ω)) dω
= J (t)∫

Ω
p(ω)N (ω) dω

. (25)

Normalizing the denominator in the rightmost expression in (25) to 1 we obtain the
simplified model (24).

In Fig. 10 we show the progress of the set-estimation of (S(t), I (t)) for σ = 0.25,
κ = 0.004, γ = 0.1, and p(ω) = 0.5 + ω. We assume that at t = 0 there are
no recovered individuals, i.e. u3(ω) = 0, and the bounds on u1(·) and u2(·) are the
same as in Sect. 5.1. We see that the set-estimation exhibits an oscillatory behaviour,
in contrast with the SI-model. The size of the set-estimation varies with time, but
remains reasonably small.

It is interesting to mention that the structure of the extremal initial data
(u1(ω), u2(ω), 0) (see Sect. 5.2) in the SIR-model is much more complicated than
that in the SI-model. As seen in Fig. 11, for a given unit vector l ∈ L := R2 × 0, the
extremal initial data u2(ω) = I (0, ω) may change its structure several times when the
estimation time progresses: for time instances t = 20 and t = 220 the lower bound
ϕ2
0(ω) is active for small ω and the upper bound ϕ2

1(ω) is active for large ω, while for
time instances t = 120 and t = 320 the opposite happens.
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Fig. 10 Set-membership estimates on the (S, I )-plane of system (24) for various times t , obtained by using
8 equidistant unit vectors l ∈ R2 × 0

0

0.2

0.4

0.6

0.8

1
0

50
100

150
200

250
300

350

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t

Ω

I(
0,

ω
)

Fig. 11 Extremal initial data u2(ω) = I (0, ω) corresponding to l = (0, 1) and times t = 20, 120, 220, 320

6 Conclusions and perspectives

In this paper we demonstrate the tractability and applicability of the set-membership
estimation approach for prediction of the evolution of infectious diseases in hetero-
geneous populations, using distributed differential models under uncertainty about
the individual traits relevant for the disease. The available information is in the form
of two-sided bounds for the distribution of the initial population along the space of
heterogeneity (the h-states), possibly together with some aggregated data. Although
the numerical illustrations of the developed estimation technique involve only SI and
SIR heterogeneous models, the technique is applicable to more complex models, pro-
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vided that the evolution of only 2 or 3 aggregated states (such as the total number of
susceptible, infected, recovered, etc. individuals) have to be estimated.

However, the presented general model has the drawback that the individuals do not
change their h-state (that is, their individual traits) over time. If the trait comprises
the contact rate, this means that individuals keep their contact rate constant, indepen-
dently of the evolution of the disease. Change of the contact rate may happen only
if an individual becomes infected. This assumption is not realistic, and models and
corresponding estimation techniques aimed to cope with variable individual traits are
a subject of current work.

Another line of research is to involve in the presented model framework dynamic
intervention policies (not only prevention prior to the outburst of the disease, as in
Sect. 5.2 of the present paper). The uncertainty about the h-states of the population
brings into consideration the problem to control the evolution of set-membership esti-
mations by prevention or medication policies. This problem is profoundly investigated
in other, mainly engineering, contexts (see the recent book Kurzhanski and Varaiya
2014 and the numerous references therein).
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Appendix 1: Proof of Proposition 1

Let u(·) be an admissible control and Δu(·) be such that u(·) + Δu(·) is admissible
too. We shall denote by x(·, ·) + Δx(·, ·), and by y(·) + Δy(·) the state variables
corresponding to u(·)+Δu(·) and by J (u) the functional 〈l, y[u](τ )〉 (we remind that
l is a given nonzero vector from Rn). We also introduce the notational convention to
skip the arguments x and y. For instance f (t, ω) := f (t, ω, x(t, ω), y(t)), g′

x (t, ω) :=
g′

x (t, ω, x(t, ω)), etc.
Let us define the number r as

r = J (u + Δu) − J (u) +
∫

Ω

〈λ(0, ω),Δu(ω)〉 dω

We will show that r fulfills |r | ≤ C‖Δ(·)‖2L2(Ω) for some positive constant C , which
together with the remark at the end of the proof implies the claim of the proposition.
First we give a more explicit representation of r .

Lemma 2 The remainder r fulfils

r = −
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′

y(t, ω)

∫
Ω

[g′
x (t, ω

′, x̃(t, ω′))

−g′
x (t, ω

′)]Δx(t, ω′) dω′〉 dω dt
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+
∫ τ

0

∫
Ω

〈
λ(t, ω), [ f ′

x (t, ω, x̄(t, ω), ȳ(t)) − f ′
x (t, ω)]Δx(t, ω)

〉
dω dt

+
∫ τ

0

∫
Ω

〈
λ(t, ω), [ f ′

y(t, ω, x̄(t, ω), ȳ(t)) − f ′
y(t, ω)]Δy(t)

〉
dω dt

+
∫

Ω

〈
l,

[
g′

x (τ, ω, x̃(τ, ω)) − g′
x (τ, ω)

]
Δx(τ, ω)

〉
dω

where x̄(t, ω) and x̃(t, ω) lie between x(t, ω) and x(t, ω) + Δx(t, ω) for (t, ω) ∈ D
and ȳ(t) lies between y(t) and y(t) + Δy(t) for t ∈ [0, τ ].

Proof Using (6) in the last term in the third row below, we obtain

∫ τ

0

∫
Ω

〈
λ̇(t, ω),Δx(t, ω)

〉
dω dt

=
∫ τ

0

d

dt

(∫
Ω

〈λ(t, ω),Δx(t, ω)〉 dω

)
dt

−
∫ τ

0

∫
Ω

〈
λ(t, ω), Δ̇x(t, ω)

〉
dω dt

=
∫

Ω

〈λ(τ, ω),Δx(τ, ω)〉 dω −
∫

Ω

〈λ(0, ω),Δx(0, ω)〉 dω

−
∫ τ

0

∫
Ω

〈
λ(t, ω), Δ̇x(t, ω)

〉
dω dt

=
∫

Ω

〈λ(τ, ω),Δx(τ, ω)〉 dω −
∫

Ω

〈λ(0, ω),Δx(0, ω)〉 dω

−
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′

x (t, ω)Δx(t, ω) + f ′
y(t, ω)Δy(t)

〉
dω dt

+
∫ τ

0

∫
Ω

〈
λ(t, ω), [ f ′

x (t, ω, x̄(t, ω), ȳ(t)) − f ′
x (t, ω)]Δx(t, ω)

〉
dω dt

+
∫ τ

0

∫
Ω

〈
λ(t, ω), [ f ′

y(t, ω, x̄(t, ω), ȳ(t)) − f ′
y(t, ω)]Δy(t)

〉
dω dt, (26)

where x̄(t, ω) is between x(t, ω) and x(t, ω) + Δx(t, ω) for (t, ω) ∈ D and ȳ(t) is
between y(t) and y(t) + Δy(t) for t ∈ [0, τ ]. It is standard to prove that x̄ and ȳ may
be chosen measurable. Also, for each t ∈ [0, τ ] we have

Δy(t) =
∫

Ω

[g(t, ω, x(t, ω) + Δx(t, ω)) − g(t, ω)] dω

=
∫

Ω

g′
x (t, ω)Δx(t, ω) dω +

∫
Ω

[g′
x (t, ω, x̃(t, ω))

−g′
x (t, ω))]Δx(t, ω) dω (27)
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where x̃(t, ω) is between x(t, ω) and x(t, ω) + Δx(t, ω) for (t, ω) ∈ D, and is also
measurable. Substituting Δy(t) from (27) into the fifth row of (26), we obtain

∫ τ

0

∫
Ω

〈
λ̇(t, ω),Δx(t, ω)

〉
dω dt

=
∫

Ω

〈λ(τ, ω),Δx(τ, ω)〉 dω

−
∫

Ω

〈λ(0, ω),Δx(0, ω)〉 dω

−
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′

x (t, ω)Δx(t, ω)

+ f ′
y(t, ω)

∫
Ω

g′
x (t, ω

′)Δx(t, ω′) dω′
〉
dω dt

−
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′

y(t, ω)

∫
Ω

[g′
x (t, ω

′, x̃(t, ω′))

−g′
x (t, ω

′))]Δx(t, ω′) dω′〉 dω dt

+
∫ τ

0

∫
Ω

〈
λ(t, ω), [ f ′

x (t, ω, x̄(t, ω), ȳ(t)) − f ′
x (t, ω)]Δx(t, ω)

〉
dω dt

+
∫ τ

0

∫
Ω

〈
λ(t, ω), [ f ′

y(t, ω, x̄(t, ω), ȳ(t)) − f ′
y(t, ω)]Δy(t)

〉
dω dt. (28)

Denote the last three terms in (28) by r̃ . In the first three terms we substitute λ̇(t, ω)

and Δx(0, ω) from (15) and (7), respectively. Using also (17), we rewrite the above
equality as

0 =
∫

Ω

〈λ(τ, ω),Δx(τ, ω)〉 dω −
∫

Ω

〈λ(0, ω),Δu(ω)〉 dω + r̃ . (29)

On the other hand we have

J (u + Δu) − J (u) = 〈l, y(τ ) + Δy(τ )〉 − 〈l, y(τ )〉
=

〈
l,

∫
Ω

[g(τ, ω, x(τ, ω) + Δx(τ, ω)) − g(τ, ω)] dω
〉

=
〈
l,

∫
Ω

g′
x (τ, ω)Δx(τ, ω) dω

〉

+
〈
l,

∫
Ω

[g′
x (τ, ω, x̃(τ, ω)) − g′

x (τ, ω)]Δx(τ, ω) dω

〉
. (30)

Adding (29) to this equality and taking into account (16) we obtain

J (u + Δu) − J (u) = −
∫

Ω

〈λ(0, ω),Δu(ω)〉 dω + r̃ +
∫

Ω

〈
l, [g′

x (τ, ω, x̃(τ, ω))

−g′
x (τ, ω)]Δx(τ, ω)

〉
dω,
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which, in view of the definition of r̃ , implies the claim of the lemma. ��
We next estimate the four terms in the remainder r .

Lemma 3 The remainder r satisfies the estimate

|r | ≤ C‖Δu(·)‖2L2(Ω), (31)

where C is a constant.

Proof As in (27) we have

Δy(t) =
∫

Ω

[g(t, ω, x(t, ω) + Δx(t, ω)) − g(t, ω)] dω

=
∫

Ω

g′
x (t, ω, x̃(t, ω))Δx(t, ω) dω,

for each t ∈ [0, τ ]. Because of the local essential boundedness of g′
x , we obtain

|Δy(t)| ≤ C1

∫
Ω

|Δx(t, ω)| dω (32)

for each t ∈ [0, τ ], where C1 is some positive constant (as are C2, C3, etc., below).
Because of (11), as in (26) we obtain

Δx(t, ω) = Δu(ω) +
∫ t

0
[ f ′

x (s, ω, x̄(s, ω), ȳ(s))Δx(s, ω)

+ f ′
y(s, ω, x̄(s, ω), ȳ(s))Δy(s)] ds.

for (t, ω) ∈ [0, τ ]×Ω ′ ⊂ D (Ω ′ being of full Lebesgue measure inΩ). Hence, using
(32) and the local essential boundedness of f ′

x and f ′
y , we have

|Δx(t, ω)| ≤ |Δu(ω)| + C2

∫ t

0

[
|Δx(s, ω)| +

∫
Ω

|Δx(s, ω)| dω
]
ds. (33)

for (t, ω) ∈ [0, τ ] × Ω ′ ⊂ D (Ω ′ of full Lebesgue measure in Ω). Integrating the
above inequality in ω over Ω and changing the order of integration where necessary,
we obtain that the function

δ(t)
de f=

∫
Ω

|Δx(t, ω)| dω

satisfies

δ(t) ≤ ‖Δu(·)‖L1 (Ω) + C2(1 + meas{Ω})
∫ t

0
δ(s) ds
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and the Grönwall inequality yields

δ(t) ≤ C3‖Δu(·)‖L1 (Ω) (34)

for all t ∈ [0, τ ]. Substituting (34) into (33), we obtain

|Δx(t, ω)| ≤ |Δu(ω)| + C2

∫ t

0
|Δx(s, ω)| ds + C2

∫ t

0
δ(s) ds

≤ |Δu(ω)| + C2C3τ‖Δu(·)‖L1 (Ω) + C2

∫ t

0
|Δx(s, ω)| ds (35)

for almost every (t, ω) ∈ [0, τ ] × Ω . Using again the Grönwall inequality, we obtain

|Δx(t, ω)| ≤ C4

(
|Δu(ω)| + ‖Δu(·)‖L1 (Ω)

)
. (36)

From here

‖Δx(t, ·)‖L1(Ω) ≤ C4(1 + meas(Ω)) ‖Δu(·)‖L1 (Ω) ≤ C5‖Δu(·)‖L2 (Ω). (37)

Then using (32) we obtain that

|Δy(t)| ≤ C1C5‖Δu(·)‖L2 (Ω). (38)

Using the estimations (36), (37) and (38), taking into account Assumptions (i) and (iii)
and the boundedness of λ (Lemma 1) we obtain that each of the terms in the definition
of the remainder r can be estimated as in the statement of the lemma. ��

To finish the prof of Proposition 1 we observe that all constants that appear above
can be chosen independent of u and Δu, provided that both u and u + Δu belong to
U . This is due to the uniformity in Assumption (iii) and in Lemma 1.

Appendix 2: Proof of Proposition 2

Since uk+1 solves the minimization problem minu∈U ‖uk + ρk J ′(uk) − u‖2L2(Ω), we
have (the first order optimality condition)

2
〈
uk + ρk J ′(uk) − uk+1, u − uk+1

〉 ≤ 0 for every u ∈ U . (39)

Applying this inequality for u = uk we obtain that

ρk
〈
J ′(uk), uk+1 − uk

〉 ≥ ‖uk+1 − uk‖2L2(Ω).
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On the other hand, we obtain from Proposition 1 that

J (uk+1) − J (uk) ≥ 〈
J ′(uk), uk+1 − uk

〉 − d‖uk+1 − uk‖2L2(Ω)

≥
(

1

ρk
− d

)
‖uk+1 − uk‖2L2(Ω) ≥ ε‖uk+1 − uk‖2L2(Ω).

Thus the sequence {J (uk)} is monotone increasing, and due to the uniform bounded-
ness in Assumption (iii) this sequence is also bounded, hence convergent. Then the
last inequality implies that the sequence εk := ‖uk+1 − uk‖L2(Ω) converges to zero.

From (39) we obtain that for every u ∈ U

ρk
〈
J ′(uk), u − uk+1

〉 ≤ 〈uk+1 − uk, u − uk+1〉.

Hence

ρk
〈
J ′(uk), u − uk

〉 ≤ ρk c̄ (meas(Ω))
1
2 ‖uk+1 − uk‖L2(Ω)

+‖uk+1 − uk‖L2(Ω)‖u − uk+1‖L2(Ω),

where c̄ is the constant from Lemma 1. From here we obtain

〈
J ′(uk), u − uk

〉 ≤
(

c̄ (meas(Ω))
1
2 + diam(U)

ρ0

)
‖uk+1 − uk‖L2(Ω) = Cεk,

where C is the constant in the parentheses. The convergence of εk to zero implies the
claim of the proposition.
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