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Abstract—We propose an algorithm which uses an optical time-
domain reflectometer (OTDR) for real-time tracking of trains.
OTDR sensing, often also termed distributed acoustical sensing
(DAS), measures the Rayleigh backscattering of a light pulse
along an optical fiber. The resulting signal provides information
on local acoustic pressure at linearly spaced positions along the
fiber. While different approaches for train tracking with DAS
are described in the literature, the results have been evaluated
only for short time recordings with few train crossings. In this
paper we provide details on the tracking performance of a novel
algorithm that finds and tracks trains over 15km. Furthermore,
this is the first contribution that uses ground truth data to assess
the performance of the method. For the evaluation two one hour
recordings are used.

I. INTRODUCTION

For safety and monitoring purposes it is compulsory to
know the position of every rail vehicle at any given point
in time. Several systems are available for monitoring railway
infrastructure, some of them are vehicle-borne and others are
installed on the track. The installation of such systems is
often very costly, therefore the installation is often limited to
high priority tracks. Examples for such systems can be found
in [1]. In this contribution we use a fundamentally different
method for tracking trains. We use distributed acoustic sensing
(DAS) for train identification along the tracks. DAS signals are
acquired using an optical fiber next to the railway track and
an optical time domain reflectometer (OTDR). This technol-
ogy measures changes in pressure exerted at linearly spaced
positions along the optical fiber over time, hence the term
distributed acoustic sensing. The underlying physical principle
is Rayleigh scattering. The OTDR injects light pulses into
the fiber at a constant rate and measures the backscatter for
each individual pulse over time. Considering the speed of
light the measured backscatter at a given point in time can
be attributed to a certain position in the fiber. Consequently,
the time resolution of the recorded data is determined by the
repetition rate of the light pulses and the spatial resolution
is determined by the rate with which the OTDR acquires
measurements of the backscatter (Fig. 1).

This technology can monitor several tens of kilometers
with a temporal sampling rate of a few kilohertz. It is also
worth mentioning that the optical fiber is passive, i.e. it
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Fig. 1. As the train is moving along the track it emits vibrations that
are transmitted to the optical fiber. These vibrations cause a change in the
refractive index of the fiber and cause a specific backscatter, which is traveling
back to the OTDR device. The measured backscatter is then captured as the
DAS measurement.

requires no separate power. The only active component in
the measurement system is the OTDR device which keeps the
maintenance costs low. Furthermore, optical fibers are often
installed with modern rail infrastructure for signaling and data
transfer. DAS sensing has been used for a variety of different
applications, such as monitoring of pipelines for leakage or
perimeter protection [2], [3], as well as for train tracking [4],
[5] and railway activity monitoring [6]. While the research
currently available has inspected rather short examples with
only one train recorded over only a few minutes, we will test
our algorithm on two recordings of one hour each with several
trains and crossings. We will further compare our results to
ground truth available through the tracking of the times the
trains pass the signals along the track. We show that with
our tracking system we can reach an average accuracy of 35
meters for 15 trains, which is beyond the state of the art.
This accuracy is in the range of the accuracy of the ground
truth data that is available to us. To our knowledge this is
the first algorithm for train tracking in DAS data that proves
robustness in a recording over a long time period with several
trains crossing with validation against ground truth data.

A. DAS Measurements

For data acquisition we used a phase OTDR interrogator, for
details we refer to the corresponding patent [7]. To evaluate
the influence of different parameters we recorded two datasets
with slightly different setups. Through this variation we can



TABLE 1
PARAMETERS FOR THE TWO DAS DATASETS

First recording ~ Second recording

Observed cable length 13481m 17484m
Recording time 2709s 4487s
Number of segments 19825 25712
Spatial resolution 0.68m 0.68m
Sampling rate 4000Hz 2000Hz
Legend
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Fig. 2. There are four stations along the monitored track. Around the first
station the optical cable is further from the track resulting in a weakened
signal. Between the third and the fourth station is a shunting yard.

show that our algorithm is performing well with both settings.
The two parameter configurations are summarized in Table 1.

The train infrastructure used for recording is close to
Vienna, Austria. It is a straight track with four stations, c.f.
Fig. 2. It is important to note that the way the optical cable is
laid has a large influence on the resulting signal. The distance
between the cable and the railroad track has an influence on
the amplitude of the recorded signal. If the distance becomes
too large the vibrations from the trains are not strong enough

anymore to see them in a DAS recording. Another source of

difficulty for the tracking of trains arises when several trains
move at the same time. This can lead to problems especially
when trains overlap and change direction frequently as in
shunting yards.
II. TRAIN TRACKING USING DAS

In the following we describe our method for tracking trains
using raw OTDR data and compare it to the methods in the
literature. The algorithm is divided into two main steps. In
the first step we use a novel method to detect the beginning

and the end points of trains based on the vibration pattern of

trains. In the second step these points are used for extracting
attributes from trains i.e. position, speed and length for the
given second. In the following we will explain the principle
of these two steps. Since a very detailed description of the
tracking algorithm is out of scope for this contribution we
refer to [8].
A. Train Classification

The classification of train and background signals relies
on the fact that the spectral composition differs considerably
between these two classes. In contrast to the literature we
develop a method that only relies on the spectral pattern and
avoids thresholds to make the algorithm independent of the
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Fig. 3. The top plot shows a raw DAS signal for 40 seconds, between 12 and
29 seconds vibrations from a train are present. One second of the train signal
is colored in green and one second of the background is colored in red. The
bottom plot shows the Fourier transforms of the two colored portions of the
raw data in the respective colors. It is clearly visible that the Fourier transform
of the train signal has a very different structure form the Fourier transform
of the background signal.

signal level. Data from one second at each cable segment
are Fourier transformed to get the spectral distribution of
the signal, see Fig. 3. The difference in the Fourier trans-
forms between background and train signals is mainly in the
frequency channels corresponding to frequencies lower than
1000. Therefore we use the absolute values of the Fourier
transform as features for the classification. To reduce the
number of features for the classification the frequency space
is divided into 10 bins and the coefficients in these bins are
summed and normalized with the sum of all coefficients.
Based on the 10 dimensional feature vector we apply a
dimensionality reduction using Principal Component Analysis
(PCA) using only the first two eigenvalues. It is important to
note here that, while classification without PCA is performing
slightly better, the processing speed is greatly improved by a
dimensionality reduction. The reduced feature set containing
two eigenvalues is used to train a Support Vector Machine
(SVM) with a radial basis function kernel to obtain a decision
boundary in two dimensional space. To obtain a sufficiently
large amount of raw data for training the SVM, we annotated
from the first 1500 seconds 20000 background and 20000
vibration samples of raw data in our first recording. Using
the half of the annotated data for cross validation of the clas-



sification we obtain rates of 99.6 percent correctly classified
feature vectors.

B. Train Tracking

Train tracking has not yet been investigated for long DAS
recordings. Nevertheless it is a crucial step for analyzing real
world recordings and reliable tracking across train crossings.

The binary classifications we obtain as described above are
then used to track trains. The last 10 seconds of classification
results are summed in time for each cable segment to get a
value between 0 and 10. Gaussian filter is applied across the
cable segments to smooth the values after summing. Thresh-
olding and edge detection is applied to find the front and the
rear of trains at the given second. The correspondence between
trains end their edges is solved as an optimization problem,
where a weight is defined between edges and trains based
on their attributes e.g. distance or velocity. The optimization
problem is solved with greedy heuristics. The output of the
train tracking is a list of attributes e.g. position, speed and
length for each train.

While the algorithm described above for tracking trains
is designed to run in real-time it will only track the trains
with a certain delay. The current implementation has an
estimated systematic delay of 5 seconds, which arises from
the summation of the classifications from the last 10 seconds.

III. RESULTS

For evaluating the performance of the DAS based train
tracking we compare our results to the available ground truth
data. We furthermore give a visual interpretation of the results
since the ground truth data and the DAS tracking can only be
perfectly matched at two points along the monitored track.

A. Available Ground Truth Data

When a train passes a signal along the track it is automat-
ically registered and the time the train passes is stored in a
train tracking system. These data contain point based passing
times for each train vehicle traveling along the track. To be
able to link cable segments to track kilometers a hammer has
been used to produce vibrations at given points on the track
that can then be measured by the OTDR, c.f. Fig. 4. Since
this procedure is time intensive and requires safety precautions
only a small portion of around 1.5km has been calibrated.

Within the calibrated stretch there are two sensors in each
direction registering trains. For the positions of these signals
we know the exact cable segment numbers.

The train registration times are accurate to one second.
With trains moving at around 120 kilometers per hour this
corresponds to an accuracy of around 33 meters in distance in
space.

B. Visual Evaluation of DAS Tracking

While it is not possible to evaluate the performance of

the tracking for the whole length of the monitored cable,
it is still possible to assess some criteria visually. Fig. 5
shows the tracking results and ground truth data. It is, first

Legend

—— Optical cable
—— Extra length
—— Calibration

Fig. 4. Ilustration of the calibration of the track. At the positions with vertical
blue lines a hammer is used to create vibrations and at the same time the cable
is monitored to see in which cable segment the vibration is recorded. Between
two calibration points the cable segments are assumed to be arranged linearly.
This is only an approximation when extra lengths, such as loops, are present
in the cable. The illustration shows two extra lengths, the first one is a loop
and in the second case the cable does not exactly follow the train tracks.

of all, important to note that all the trains are found by the
system. There are two different sources of problems in the
data available to us. Before the first station on the track the
DAS signal disappears for around 1200 segments. This is
probably attributable to the fact that the cable is further from
the vibration source around this station. While the tracking
algorithm is still able to reliably track rail vehicles across the
gap, the tracks are unreliable in that section. The second source
of wrong tracks is a shunting yard that is located between the
3rd and 4th station of the monitored section. While the first
recording is not affected by this since no trains were shunted
at the time of the measurements, in the second recording we
see strong artifacts where this station is. This leads to wrong
tracking results in the affected region, see Fig. 6. With our
tracking algorithm it is presently not possible to reliably track
trains across such scenarios. In the future we plan to extract
unique features for each tracked train to be able to connect
tracks across stretches with high uncertainty such as shunting
yards.

C. Comparison of DAS Tracking to Ground Truth

We compared our tracking algorithm with ground truth
data in two ways. First the speed of trains were computed
between the two railway signals. The distance between the
given two railway signals is known and the time difference
was obtained from the closest tracking point to these signals.
Table 5 shows the obtained speed values for each train for
the reference ground truth and the tracking algorithm. The
second evaluation was performed using Leave-one-out cross-
validation (LOOCY). The tracking and ground truth data
between the two railway signals were used in this process.
For the training process the average of time delta is computed
from the tracking and ground truth points of n — 1 trains.
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Fig. 5. Visualization of the detection and tracking for the two recordings, where each tracked object is encoded with a different line color. The ground truth
data are visualized with light gray dashed lines. The image shows that all the trains are found and tracked. Underlying the tracked trains and the ground truth
tracking the detection of vibrations is plotted in black. Vertical lines with vibrations can be seen, e.g. at distance around 5000, which are false positives from
other vibrating objects e.g. railway equipment or cars crossing bridges over the monitored track. In the top plot in the first 500 seconds the track of a car
driving next to the train tracks is visible in green. On the bottom, the shunting yard can be seen between distance 10000 and 15000, where the implemented

tracking becomes unreliable. Note the different scaling of the x-axes in the two plots coming from different recording lengths in the two datasets. The two
datasets were recorded with one minute offset to change the parameters of the recording device.
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Fig. 6. Visualization of a slice from bottom image in Fig. 5 with a shunting
train. We observe the following trains: a shunting train moves at distance
12000m and 2000 seconds; a cargo train enters at 2100 seconds and the
vibrations of both trains start overlapping; a passenger train enters at 2200
seconds and between the distances 12000m and 12500m all three trains
overlap; the cargo train leaves shunting yard after the second 2300 and finally
shunting is continued backwards. Our tracking algorithm is not reliable in
such scenarios as it is not clear which train leaves the overlapping section.

TABLE 11
EVALUATION OF TRAIN TRACKING PERFORMANCE.

Train 1d Ref. Tracking Ref. Tracking  Position Error
(m/s) (km/h) (m)
23468 36.26 3261 130.55 117.40 38.20
29515 -31.43 -32.62 -113.14  -11745 13.13
2330 29.36 26.99 105.69 97.18 38.36
73 -33.33 -34.24 -120.00  -123.25 42.22
23488 28.67 25.53 103.23 91.90 51.79
29535 -33.33 -34.84 -120.00  -125.44 18.12
2337 -32.35 -34.39 -116.47  -123.81 41.19
103 -31.43 -32.42 -113.14  -116.71 33.50
29555 -26.83 -28.19 -96.59 -101.49 20.08
23508 31.62 26.33 113.82 94.79 56.94
90093 -26.19 -27.09 -94.29 -97.52 8.76
76 30.82 28.54 110.97 102.75 42.55
2334 34.25 30.72 123.30 110.58 53.05
29575 -32.35 -33.87 -116.47  -121.92 3116
23528 30.82 28.78 110.97 103.60 42.95

The validation computes the average of the absolute spatial
distance from the tracking points of the left out train. The
average of the absolute distance error was 21 meters. Table
II shows the obtained distance error for each train, as well as
the speed computed from our tracking and the speed computed
from the reference data.

As discussed, the reference data accuracy is only down
to one second corresponding to approximately 33 meters in
position given the train speed of approximately 120 kilometers
per hour. Since we use two points to evaluate the positional
error, the ground truth data provides an accuracy down to
approximately 66 meters. Table IT shows that all the positional
errors are within the expected range. To assess the tracking
performance with higher accuracy a different source of ground
truth data has to be used.

IV. CONCLUSION

The work presented in this paper shows that trains can
be reliably tracked using DAS measurements. The presented
system is a low maintenance alternative or a back up for other
train tracking systems installed. For assessing the tracking

performance of the algorithm two recordings were used with a
duration of 2709 seconds and 4487 seconds, respectively. The
accuracy of the presented algorithm was in the range of the
uncertainty in the given ground truth data, which is at around
33 meters for each point,

Train tracking showed to be stable and reliable on the open
track with train crossings when the optical fiber is picking
up the vibrations of trains passing. Tracking trains close to a
shunting yard was prone to error, as the fiber is picking up
the superposition of the vibrations from different trains. Any
source of vibrations close to the fiber can possibly have an
influence on the tracking performance. If the fiber is positioned
too far from the train tracks the vibrations are not strong
enough anymore to identify trains. The described problems
can be avoided by evaluating the layout of the train tracks
and the optical fiber before installing a DAS train tracking
system.
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