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Abstract. We examine existing resolution systems for quantified Boolean
formulas (QBF) and answer the question which of these calculi can be
lifted to the more powerful Dependency QBFs (DQBF). An interesting
picture emerges: While for QBF we have the strict chain of proof systems
Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF.
The obvious adaptations of Q-Res and likewise universal resolution are
too weak: they are not complete. The obvious adaptation of IR-calc has
the right strength: it is sound and complete. IRM-calc is too strong: it is
not sound any more, and the same applies to long-distance resolution.
Conceptually, we use the relation of DQBF to effectively propositional
logic (EPR) and explain our new DQBF calculus based on IR-calc as a
subsystem of first-order resolution.

1 Introduction

The logic of dependency quantified Boolean formulas (DQBF) [23] generalises
the notion of quantified Boolean formulas (QBF) that allow Boolean quantifiers
over a propositional problem. DQBF is a relaxation of QBF in that the quantifier
order is no longer necessarily linear and the dependencies of the quantifiers are
completely specified. This is achieved using Henkin quantifiers [16], usually put
into a Skolem form. DQBF is NEXPTIME-complete [1], compared to the PSPACE-
completeness of QBF [28]. Thus, unless the classes are equal, many problems that
are difficult to express in QBF can be succinctly represented in DQBF.

Recent developments in QBF proof complexity [5–11, 17–19, 27] have in-
creased our theoretical understanding of QBF proof systems and proof systems
in general and have shown that there is an intrinsic link between proof com-
plexity and SAT-, QBF-, and DQBF-solving. Lower bounds in resolution-based
proof systems give lower bounds to CDCL-style algorithms. In propositional
logic there is only one resolution system (although many subsystems have been
studied [24,29]), but in QBF, resolution can be adapted in different ways to get
sound and complete calculi of varying strengths [7, 15,19,30].

The first and best-studied QBF resolution system is Q-Res introduced in [21].
For Q-Res there are two main enhanced versions: QU-Res [30], which allows res-
olution on universal variables, and LD-Q-Res [15], which introduces a process of
merging positive and negative universal literals under certain conditions. These
two concepts were combined into a single calculus LQU+-Res [5].

While these calculi model CDCL solving, another group of resolution systems
were developed with the goal to express ideas from expansion solving. The first
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Fig. 1. The simulation order of QBF resolution systems [8] and sound-
ness/completeness of their lifted DQBF versions

and most basic of these systems is ∀Exp+Res [19], which also uses resolution,
but is conceptually very different from Q-Res. In [7] two further proof systems
IR-calc and IRM-calc are introduced, which unify the CDCL- and expansion-
based approaches in the sense that IR-calc simulates both Q-Res and ∀Exp+Res.
The system IRM-calc enhances IR-calc and additionally simulates LD-Q-Res. The
relative strength of these QBF resolution systems is illustrated in Fig. 1.

The aim of this paper is to clarify which of these QBF resolution systems can
be lifted to DQBF. This is motivated both by the theoretical quest to understand
which QBF resolution paradigms are robust enough to work in the more powerful
DQBF setting, as well as from the practical perspective, where recent advances
in DQBF solving [12–14, 31] prompt the question of how to model and analyse
these solvers proof-theoretically.

Our starting point is the work of Balabanov, Chiang, and Jiang [3], who show
that Q-Res can be naturally adapted to a sound calculus for DQBF, but they
show it is not strong enough and lacks completeness. Using an idea from [5] we
extend their result to QU-Res, thus showing that the lifted version of this system
to DQBF is not complete either. We present an example showing that the lifted
version of LD-Q-Res is not sound, and this transfers to the DQBF analogues of
the stronger systems LQU+-Res and IRM-calc.

While this rules out most of the existing QBF resolution calculi already—
and in fact all CDCL-based systems (cf. Fig. 1)—we show that IR-calc, lifted
in a natural way to a DQBF calculus D-IR-calc, is indeed sound and complete
for DQBF; and this holds as well for the lifted version of the weaker expansion
system ∀Exp+Res.

Conceptually, our soundness and completeness arguments use the known cor-
respondence of QBF and DQBF to first-order logic [25], and in particular to the
fragment EPR, also known as the Bernays-Schönfinkel class, the universal frag-



ment of first-order logic without function symbols of non-zero arity. Similarly to
DQBF, EPR is NEXPTIME-complete [22]. In addition to providing soundness
and completeness this explains the semantics of both IR-calc and D-IR-calc and
identifies these systems as special cases of first-order resolution.

2 Preliminaries

A literal is a Boolean variable or its negation. If l is a literal, ¬l denotes the
complementary literal, i.e., ¬¬x = x. A clause is a set of literals understood
as their disjunction. The empty clause is denoted by ⊥, which is semantically
equivalent to false. A formula in Conjunctive Normal Form (CNF) is a conjunc-
tion of clauses. For a literal l = x or l = ¬x, we write var(l) for x and extend
this notation to var(C) for a clause C.

A Dependency Quantified Boolean Formula (DQBF) φ in prenex Skolem form
consists of a quantifier prefix Π and a propositional matrix ψ. QBF φ can also
be written as Π · ψ. Here we mainly study DQBFs where ψ is in CNF. The
propositional variables of ψ are partitioned into sets Y and X. We define Y as
the set of universal variables and X the set of existential variables. For every
y ∈ Y , Π contains the quantifier ∀y. For every x ∈ X there is a predefined
subset Yx ⊆ Y and Π contains the quantifier ∃x(Yx).

The semantics of DQBF is defined in terms of Skolem functions. A Skolem
function fx : {0, 1}Yx → {0, 1} describes the evaluation of an existential vari-
able x under the possible assignments to its dependencies Yx. Given a set F of
Skolem functions, where F = {fx | x ∈ X} for all the existential variables and
an assignment α : Y → {0, 1} for the universal variables, the extension of α
by F is defined as αF (x) = fx(α�Yx) for x ∈ X and αF (y) = α(y) for y ∈ Y . A
DQBF φ is true if there exist Skolem functions F = {fx | x ∈ X} for the exis-
tential variables such that for every assignment α : Y → {0, 1} to the universal
variables the matrix ψ propositionally evaluates to 1 under the extension αF
of α by F .

In QBF, the quantifier prefix is a sequence of standard quantifiers of the
form ∃x and ∀y. To see that this is a special case of DQBF, we use the sequence
from left to right to assign to every variable in the prefix a unique index ind :
X ∪ Y → N, and make every existential variable x depend on all the preceding
universal variables by setting Yx = {y ∈ Y | ind(y) < ind(x)}.

We now give a brief overview of the main existing resolution-based calculi
for QBF. We start by describing the proof systems modelling CDCL-based QBF
solving ; their rules are summarized in Fig. 2. The most basic and important
system is Q-resolution (Q-Res) by Kleine Büning et al. [21]. It is a resolution-
like calculus that operates on QBFs in prenex form with CNF matrix. In addition
to the axioms, Q-Res comprises the resolution rule S∃R and universal reduction
∀-Red (cf. Fig. 2).

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang
and Malik [32] and was formalized into a calculus by Balabanov and Jiang [4]. It
merges complementary literals of a universal variable u into the special literal u∗.
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C is a clause in the matrix. Literal u is universal and ind(u) ≥ ind(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

We consider four instantiations of the Res-rule:

S∃R: x is existential. If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U = ∅.
S∀R: x is universal. Otherwise same conditions as S∃R.
L∃R: x is existential. If l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗.

U1, U2 contain only universal literals with var(U1) = var(U2). ind(x) < ind(u)
for each u ∈ var(U1). If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then
w1 = ¬w2, w1 = u∗ or w2 = u∗. U = {u∗ | u ∈ var(U1)}.

L∀R: x is universal. Otherwise same conditions as L∃R.

Fig. 2. The rules of CDCL-based proof systems

These special literals prohibit certain resolution steps. In particular, different
literals of a universal variable u may be merged only if ind(x) < ind(u), where x
is the resolved variable. LD-Q-Res uses the rules L∃R, ∀-Red and ∀-Red∗.

QU-resolution (QU-Res) [30] removes the restriction from Q-Res that the re-
solved variable must be an existential variable and allows resolution of universal
variables. The rules of QU-Res are S∃R, S∀R and ∀-Red. LQU+-Res [5] extends
LD-Q-Res by allowing short and long distance resolved literals to be universal;
however, the resolved literal is never a merged literal z∗. LQU+-Res uses the
rules L∃R, L∀R, ∀-Red and ∀-Red∗.

The second type of calculi models expansion-based QBF solving. These cal-
culi are based on instantiation of universal variables: ∀Exp+Res [20], IR-calc, and
IRM-calc [7]. All these calculi operate on clauses that comprise only existential
variables from the original QBF, which are additionally annotated by a substitu-
tion to some universal variables, e.g. ¬x0/u11/u2 . For any annotated literal lσ, the
substitution σ must not make assignments to variables at a higher quantification
index than that of l, i.e., if u ∈ dom(σ), then u is universal and ind(u) < ind(l).

To preserve this invariant we use the following definition. Fix a DQBF Π ·ψ.
Let τ be a partial assignment of the universal variables Y to {0, 1} and let x be
an existential variable. restrictx(τ) is the assignment where dom(restrictx(τ)) =
dom(τ) ∩ Yx and restrictx(τ)(u) = τ(u).

The simplest of the instantiation-based calculi we consider is ∀Exp+Res
from [19] (cf. also [7, 8]). The system IR-calc extends ∀Exp+Res by enabling
partial assignments in annotations. To do so, we utilize the auxiliary operation
of instantiation. We define instτ (C) to be the clause containing all the literals
lrestrictvar(l)(σ), where lξ ∈ C and dom(σ) = dom(ξ) ∪ dom(τ) and σ(u) = ξ(u) if
u ∈ dom(ξ) and σ(u) = τ(u) otherwise.
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xrestrictx(τ) | x ∈ C, x is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where
the notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

{xτ} ∪ C1 {¬xτ} ∪ C2
(Resolution)

C1 ∪ C2

C (Instantiation)
instτ (C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 3. The rules of IR-calc [7] and of D-IR-calc (Section 4)

The calculus IRM-calc from [7] further extends IR-calc by enabling annota-
tions containing ∗, similarly as in LD-Q-Res.

3 Problems with lifting QBF calculi to DQBF

There is no unique method for lifting calculi from QBF to DQBF. However, we
can consider ‘natural’ generalisations of these calculi, where we interpret index
conditions as dependency conditions. This means that when a proof system
requires for an existential variable x and a universal variable y with ind(y) <
ind(x), this should be interpreted as y ∈ Yx. Analogously ind(x) < ind(y) should
be interpreted as y /∈ Yx. This approach was followed when taking Q-Resolution
to D-Q-Resolution in Theorem 7 of [3]. Balabanov et al. showed there that D-Q-
Resolution is not complete for DQBF using some specific formula. This formula
is easily shown to be false, but no steps are possible in D-Q-Resolution, hence
D-Q-Resolution is not complete [3]. Consider now the following modification of
that formula where the universal variables are doubled:

∀x1∀x′1∀x2∀x′2∃y1(x1, x
′
1)∃y2(x2, x

′
2) (1)

{y1, y2, x1, x′1} {¬y1,¬y2, x1, x′1}
{y1, y2,¬x1,¬x′1,¬x2,¬x′2} {¬y1,¬y2,¬x1,¬x′1,¬x2,¬x′2}
{y1,¬y2,¬x1,¬x′1, x2, x′2} {¬y1, y2,¬x1,¬x′1, x2, x′2}.

The falsity of (1) follows from the fact that its hypothetical Skolem model would
immediately yield a Skolem model for the original formula using assignments
with x1 = x′1, x2 = x′2. But there is no such model because the original formula
is false. However, since we have doubled the universal literals we cannot perform
any generalised QU-Res steps to begin a refutation. This technique of doubling
literals was first used in [5].

Now we look at another portion of the calculi from Fig. 1, namely the calculi
that utilise merging. As a specific example we consider LD-Q-Res and show that
it is not sound when lifted to DQBF in the natural way.



To do this we look at the condition of (L∃R) given in Fig. 2. Here instead
of requiring ind(x) < ind(u) as a condition for u becoming merged, we require
u /∈ Yx. This is unsound as we show by the following DQBF:

∀u∀v∃x(u)∃y(v)∃z(u, v)

{x, v, z} {¬x,¬v, z}
{y, u,¬z} {¬y,¬u,¬z}

Its truth is witnessed by the Skolem functions x(u) = u, y(v) = ¬v, and z(u, v) =
(u∧ v)∨ (¬u∧¬v). However, the lifted version of LD-Q-Res admits a refutation:

{x, v, z} {¬x,¬v, z}
{v∗, z}

{y, u,¬z} {¬y,¬u,¬z}
{u∗,¬z}

{u∗, v∗}
{u∗}
⊥

This shows that LD-Q-Res is unsound for DQBF. Likewise, since IRM-calc, LQU-
Res and LQU+-Res step-wise simulate LD-Q-Res, this proof would also be avail-
able, showing that these are all unsound calculi in the DQBF setting.

4 A sound and complete proof system for DQBF

In this section we introduce the D-IR-calc refutation system and prove its sound-
ness and completeness for DQBF. The calculus takes inspiration from IR-calc,
a system for QBF [7], which in turn is inspired by first-order translations of
QBF. One such translation is to the EPR fragment, i.e., the universal fragment
of first-order logic without function symbols of non-zero arity (this means we
only allow constants). We broaden this translation to DQBF and then bring this
back down to D-IR-calc in a similar way as in IR-calc.

We adapt annotated literals lτ to DQBF, such that l is an existential literal
and τ is an annotation which is a partial assignment to universal variables in Yx.
In QBF, Yx contains all universal variables with an index lower than x, and this
is exactly the maximal range of the potential annotation to x literals. Thus our
definition of annotated literals generalises those used in IR-calc.

The definitions of restrict and inst were defined for QBF, but with dependency
already in mind. With these definitions at hand we can now define the new
calculus D-IR-calc. Its rules are exactly the same as the ones for IR-calc stated
in Fig. 3, but applied to DQBF.

Before analysing D-IR-calc further we present the translation of DQBF into
EPR. We use an adaptation of the translation described for QBF [25], which
becomes straightforward in the light of the DQBF semantics based on Skolem
functions. The key observation is that for the intended two valued Boolean do-
main the Skolem functions can be represented by predicates.

To translate a DQBF Π ·ψ we introduce on the first-order side 1) a predicate
symbol p of arity one and two constant symbols 0 and 1 to describe the Boolean



domain, 2) for every existential variable x ∈ X a predicate symbol x of arity |Yx|,
and 3) for every universal variable y ∈ Y a first-order variable y.

Now we can define a translation mapping tΠ . It translates each occurrence
of an existential variable x with dependencies Yx = {y1, . . . , yk} to the atom
tΠ(x) = x(y1, . . . , yk) (we assume an arbitrary but fixed order on the depen-
dencies which dictates their placement as arguments) and each occurrence of a
universal variable y to the atom tΠ(y) = p(y). The mapping is then homomor-
phically extended to formulas: tΠ(¬ψ) = ¬tΠ(ψ), tΠ(ψ1∨ψ2) = tΠ(ψ1)∨tΠ(ψ2),
and tΠ(ψ1 ∧ ψ2) = tΠ(ψ1) ∧ tΠ(ψ2). This means a CNF matrix ψ is mapped to
a corresponding first-order CNF tΠ(ψ). As customary, the first-order variables
of tΠ(ψ) are assumed to be implicitly universally quantified at the top level.

Lemma 1. A DQBF Π ·ψ is true if and only if tΠ(ψ)∧p(1)∧¬p(0) is satisfiable.

Proof (Idea). When the DQBF Π ·ψ is true, this is witnessed by the existence of
Skolem functions F = {fx | x ∈ X}. On the other hand, if tΠ(ψ)∧p(1)∧¬p(0) is
satisfiable then we can by Herbrand’s theorem assume it has a Herbrand model
H over the base {0, 1}. We can naturally translate between one and the other by
setting fx(v) = 1 iff x(v) ∈ H for every x ∈ X and v ∈ {0, 1}|Yx|. The lemma
then follows by structural induction over ψ. ut

For the purpose of analysing D-IR-calc, the mapping tΠ is further extended
to annotated literals: tΠ(xτ ) = tΠ(x)τ for an existential variable x. Here we con-
tinue to slightly abuse notation and treat τ , an annotation in the propositional
context, as a first-order substitution over the corresponding translated variables
in the first-order context (recall point 3) above).

We aim to show soundness and completeness of D-IR-calc by relating it via
the above translation to a first-order resolution calculus FO-res. This calculus
consists of 1) a lazy grounding rule: given a clause C and a substitution σ derive
the instance Cσ, and 2) the resolution rule: given two clauses C∪{l} andD∪{¬l},
where l is a first-order literal, derive C ∪D. Note that similarly to propositional
clauses, we understand first-order clauses as sets of literals. Thus we do not need
any explicit factoring rule. Also note that we require the resolved literals of the
two premises of the resolution rule to be equal (up to the polarity). Standard
first-order resolution, which involves unification of the resolved literals, can be
simulated in FO-res by combining the instantiation and the resolution rule. It is
clear that FO-res is sound and complete for first-order logic.

Our argument for the soundness of D-IR-calc is now the following. Given π =
(L1, L2, . . . , L`), a D-IR-calc derivation of the empty clause L` = ⊥ from DQBF
Π ·ψ, we show by induction that tΠ(Ln) is derivable from Ψ = tΠ(ψ)∧p(1)∧¬p(0)
by FO-res for every n ≤ `. Because tΠ(⊥) = ⊥ is unsatisfiable, so must Ψ be, by
soundness of FO-res and therefore Π · ψ is false by Lemma 1.

We need to consider the three cases by which a clause is derived in D-IR-
calc. First, it is easy to verify that D-IR-calc instantiation by an annotation τ
corresponds to FO-res instantiation by τ as a substitution, i.e., tΠ(instτ (C)) =
tΠ(C)τ. Also the D-IR-calc and FO-res resolution rules correspond one to one in
an obvious way. Thus the most interesting case concerns the Axiom rule.



Intuitively, the Axiom rule of D-IR-calc removes universal variables from a
clause while recording their past presence (and polarity) within the applied an-
notation τ . We simulate this step in FO-res by first instantiating the translated
clause by τ and then resolving the obtained clause with the unit p(1) and/or
¬p(0). Here is an example for a DQBF prefix Π = ∀u∀v ∀w ∃x(u, v)∃y(v, w):

{x, y,¬u, v}
(D-IR-calc)

{x1/u,0/v, y0/v}
{x(u, v), y(v, w),¬p(u), p(v)}

(FO-res)
{x(1, 0), y(0, w)}

Theorem 2. D-IR-calc is sound.

We now show completeness. Let Π · ψ be a false DQBF and let us consider
G(tΠ(ψ)), the set of all ground instances of clauses in tΠ(ψ). Here, by a ground
instance of a clause C we mean the clause Cσ for some substitution σ : var(C)→
{0, 1}. By the combination of Lemma 1 and Herbrand’s theorem, G(tΠ(ψ)) ∧
p(1) ∧ ¬p(0) is unsatisfiable and thus it has a FO-res refutation. Moreover, by
completeness of ordered resolution [2], we can assume that 1) the refutation does
not contain clauses subsumed by p(1) or ¬p(0), and 2) any clause containing the
predicate p is resolved on a literal containing p. From this it is easy to see that
any leaf in the refutation gives rise (in zero, one or two resolution steps with
p(1) or ¬p(0)) to a clause D = tΠ(C) where C can be obtained by D-IR-calc
Axiom from a C0 ∈ ψ. The rest of the refutation consists of FO-res resolution
steps which can be simulated by D-IR-calc. Thus we obtain the following.

Theorem 3. D-IR-calc is refutationally complete for DQBF.

Although one can lift the above argument with ordered resolution to show
that the set {tΠ(C) | C follows by Axiom from some C0 ∈ ψ} is unsatisfiable for
any false DQBF Π · ψ, we have shown how to simulate ground FO-res steps
by D-IR-calc. That is because a lifted FO-res derivation may contain instan-
tiation steps which rename variables apart for which a subsequent resolvent
cannot be represented in D-IR-calc. An example is the resolvent {y(v), z(v′)}
of clauses {x(u), y(v)} and {¬x(u), z(v′)} which is obviously stronger than the
clause {y(v), z(v)}. However, only the latter has a counterpart in D-IR-calc.

We also remark that in a similar way we can also lift to DQBF the QBF cal-
culus ∀Exp+Res from [19]. It is easily verified that the simulation of ∀Exp+Res by
IR-calc shown in [7] directly transfers from QBF to DQBF. Hence Theorem 2 im-
mediately implies the soundness of ∀Exp+Res lifted to DQBF. Moreover, because
all ground instances are also available in ∀Exp+Res lifted to DQBF, this system
is also complete as can be shown by repeating the argument of Theorem 3.
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