
This space is reserved for the EPiC Series header, do not use it

New Techniques in Clausal Form Generation

Giles Reger1, Martin Suda2, and Andrei Voronkov1,3,4,∗

1 University of Manchester, Manchester, UK
2 Institute for Information Systems, Vienna University of Technology, Austria

3 Chalmers University of Technology, Gothenburg, Sweden
4 EasyChair

Abstract

In automated reasoning it is common that first-order formulas need to be translated into clausal

normal form for proof search. The structure of this normal form can have a large impact on the

performance of first-order theorem provers, influencing whether a proof can be found and how quickly.

It is common folklore that transformations should ideally minimise both the size of the generated clause

set and extensions to the signature. This paper introduces a new top-down approach to clausal form

generation for first-order formulas that aims to achieve this goal in a new way. The main advantage

of this approach over existing bottom-up techniques is that more contextual information is available

at points where decisions such as subformula-naming and Skolemisation occur. Experimental results

show that our implementation of the transformation in Vampire can lead to clausal forms which are

smaller and better suited to proof search.

1 Introduction

Many applications of automated reasoning (verification, program analysis) produce problems
in the form of first-order formulas. However, theorem provers often require problems in clausal
normal form (CNF for short) for proof search. The process of generating a clausal form from
a first-order formula is well-known. It is also well-known that the transformation process can
have a large impact on the subsequent proof search. It is common folklore that transformations
should ideally minimise both the size of the generated clause set and extensions to the signature.
However, it is not possible to determine the optimal clausal form and these measures are
heuristic.

Clausal form transformations typically [5] take the form of iterative passes through the for-
mula tree with each pass moving the formula one step closer towards clausal form. As discussed
later, these steps involve expanding equivalences, naming subformulas and Skolemisation. Op-
timisations and improvements [1, 3] have been proposed for each step, but the general approach
of making iterative passes over the formula tree is the same.

We introduce a new algorithm for clausal form transformation called VCNF. Our approach
differs from existing work as it employs a single top-down traversal, i.e., it steps through the
formula tree once producing the clausal form as it goes. The above stages are therefore no longer

∗The work of this author is supported by the Wallenberg Foundation.

independent, allowing optimisations to use context from what were previously independent
stages. For instance, equivalence expansion and Skolemisation are typically separate steps,
but it is possible to use information from equivalence expansion to introduce fewer Skolem
functions, leading to a smaller signature. Another advantage is an easy detection of intermediate
tautologies, which are discarded on the fly. Our approach thus maintains a more faithful count
of subformula occurrences, on which the decision whether to name a subformula is based.

The algorithm has been implemented in the Vampire theorem prover [2]. Sections 3, 4 and
6 of this paper discuss examples and experimental results showing that the new approach can
lead to more friendly clausal forms than existing techniques.

The main contributions of this paper are:

1. a new top-down algorithm for clausal form transformation (Section 3),

2. an extension for naming subformulas (Section 4),

3. an extension for detecting and eliminating tautologies (Section 6),

4. an extension for inlining context at intermediate steps in the transformation (Section 7).

In addition, we describe a previously unpublished algorithm for CNF transformation based
on a naming threshold parameter, and a notion of equivalence negation normal form, which
simplifies presentation of CNF transformation algorithms. Both the naming threshold and
equivalence negation normal form were implemented in several previous versions of Vampire.

2 Previous Work on Clausal Form Generation

We review existing work on clausal form generation. This will be given within the context of
the previous clausal form generation approach implemented in the Vampire theorem prover for
two reasons: (i) we must settle on one variation of the transformation, (ii) understanding how
Vampire currently implements this process is necessary to interpret experimental results later.
The discussion will include references to other optimisations and previous work not covered by
the Vampire approach where necessary.

2.1 Preliminaries

Our setting is that of first-order predicate logic with equality.
A signature Σ is a set of predicate and function symbols with associated arities. A term

is of the form f(t1, . . . , tn), c or x where f is a function symbol of arity n ≥ 1, t1, . . . , tn are
terms, c is a zero arity function symbol (i.e. a constant) and x is a variable. An atom is of the
form p(t1, . . . , tn), q or t1 ' t2 where p is a predicate symbol of arity n, t1, . . . , tn are terms, q is
a zero arity predicate symbol and ' is the equality symbol. A literal is an atom or its negation.

A formula is of the form ϕ1∧ . . .∧ϕn, ϕ1∨ . . .∨ϕn, ϕ1 → ϕ2, ϕ1 ↔ ϕ2, ϕ1⊗ϕ2, ¬ϕ1, ∃x.ϕ1,
∀x.ϕ1, ⊥, >, or l where ϕi are formulas, x is a variable and l is a literal. Note that we treat
conjunction and disjunction as n-ary operators; we assume that formulas are kept in flattened
form, e.g. (ϕ1 ∧ ϕ2) ∧ ϕ3 is always represented as ϕ1 ∧ ϕ2 ∧ ϕ3. Furthermore, we assume that
usage of > and ⊥ is simplified immediately. Let fvars(ϕ) be the free variables of formula ϕ,
i.e. those variables in ϕ with an occurrence not bound by a quantifier. We will sometimes write
ϕ[x1, . . . , xn] to mean that x1, . . . , xn = fvars(ϕ) and x as shorthand for x1, . . . , xn.

A position is a word over natural numbers. The positions pos(ϕ) of formula ϕ are defined
as follows. The empty position ε is in pos(ϕ). If ϕ = ϕ1 ◦ . . . ◦ ϕn for some operator ◦ and
p ∈ pos(ϕi) then i.p ∈ pos(ϕ). Let ϕ |ε= ϕ and ϕ |i.p= ϕi |p where ϕ = ϕ1◦. . .◦ϕn. The polarity
of a subformula ϕ |π is given by pol(ϕ, π), defined as pol(ϕ, ε) = 1; pol(ϕ, π.i) = pol(ϕ, π) if the
top-level symbol of ϕ |π is a ∨,∧,∀, or ∃, or the right of → (i = 2); pol(ϕ, π.i) = −pol(ϕ, π) if

the top-level symbol of ϕ |π is ¬ or the left of → (i = 1); and pol(ϕ, π.i) = 0 if the top-level
symbol of ϕ |π is ↔ or ⊗.

A substitution is any expression σ of the form {x1 7→ t1, . . . , xn 7→ tn}, where n ≥ 0, xi are
distinct variables, and ti are terms. Eσ is the expression obtained from E by the simultaneous
replacement of each occurrence of xi in E by ti. By an expression we here mean a term, an
atom, a literal, or a formula. An expression is ground if it contains no variables.

A clause is a disjunction of literals L1∨ . . .∨Ln for n ≥ 0. We disregard the order of literals
and treat a clause as a multiset. Variables in clauses are considered to be universally quantified.

2.2 Transformation Steps

The standard clausal form transformation makes the following steps on each formula to produce
a set of clauses.

1. Rectification

2. Conversion to ENNF

3. Subformula Naming

4. Conversion to NNF

5. Skolemization

6. Transformation into clauses

This is similar to that of [1]. We discuss the straightforward steps here and the more involved
steps of subformula naming and Skolemisation in the next two subsections.

Rectification. Bound variables are renamed to ensure that (i) no variable is free and bound,
and (ii) for every variable x there is at most one occurrence of ∀x or ∃x. This is not necessary
in itself but can simplify later steps and their implementation. The formula size is not changed.

Conversion to ENNF. A formula is in equivalence negation normal form (ENNF) if it does
not contain → and negations are only applied to atoms. Notably the equivalence ↔ and non-
equivalence (xor) ⊗ connectives are not expanded at this point. This allows the subformula
naming technique to name subformulas. Conversion to ENNF can only give a linear increase
in the size of the formula. Note that the notion of ENNF was introduced and used in several
previous versions of Vampire, as a convenient intermediate form, which is similar to NNF, but
requires only a linear time transformation.

Conversion to NNF. A formula is in negation normal form (NNF) if it does not contain →,
↔, or ⊗ and negations are only applied to atoms. Transforming a formula from ENNF to NNF
can result in an exponential increase in the size of the formula, as arguments to the removed
equivalences (and non-equivalences) need to be copied. Subformula naming aims to prevent the
ensuing increase in the formula size.

Transformation into clauses. At this point the formula contains only conjunctions and
disjunctions over literals and can be transformed into a set of clauses by applying distributivity
rules. Exhaustive distribution may also increase the formula size exponentially. Again, this is
something that can be prevented with subformula naming.

2.3 Subformula Naming

We recall the standard motivation for subformula naming and then describe the current state-
of-the-art algorithm.

Table 1: Calculating the number of clauses generated from a formula.

ϕ α+(ϕ) α−(ϕ)
ϕ1 ∧ . . . ∧ ϕn Σni=1 α+(ϕi) Πn

i=0 α−(ϕi)
ϕ1 ∨ . . . ∨ ϕn Πn

i=1 α+(ϕi) Σni=0 α−(ϕi)
ϕ1 → ϕ2 α−(ϕ1)α+(ϕ2) α+(ϕ1) + α−(ϕ2)

ϕ1 ↔ ϕ2, ϕ1 ⊗ ϕ2 α+(ϕ1)α−(ϕ2) + α−(ϕ1)α+(ϕ2) α+(ϕ1)α+(ϕ2) + α−(ϕ1)α−(ϕ2)
∃x.ϕ1,∀x.ϕ1 α+(ϕ1) α−(ϕ1)
¬ϕ1 α−(ϕ1) α+(ϕ1)

Motivation. Consider the following formula in equivalence negation normal form

ϕ1[x1, . . . xk] ∨ ϕ2.

If the transformation of ϕ1[x1, . . . xk] and ϕ2 produce n and m clauses respectively then the
overall formula will produce nm clauses. In general, alternating disjunctions and conjunctions
can lead to an exponential number of clauses due to the repeated application of distributivity.
The standard solution to this problem is subformula naming where a fresh predicate symbol p
is used to name a subformula and take its place in the formula. The above formula would be
replaced by

(p(x1, . . . , xk) ∨ ϕ2) ∧ (p(x1, . . . , xk)→ ϕ1[x1, . . . , xk])

where p is a fresh predicate symbol with arity k. In this case an implication is used to introduce
p(x1, . . . , xk) as the subformula ϕ1 has positive polarity. The transformation of the resulting
formula will produce n+m clauses, avoiding the worst-case exponential explosion.

Polarity-Aware Name Introduction. To name ϕ |π where fvars(ϕ |π) = x we replace ϕ |π
by p(x) for a fresh predicate symbol p and add the definition def(ϕ, π, p) defined as

def(ϕ, π, p) =

 ∀x.(p(x)→ ϕ |π) if pol(ϕ, π) = 1
∀x.(ϕ |π→ p(x)) if pol(ϕ, π) = −1
∀x.(p(x)↔ ϕ |π) if pol(ϕ, π) = 0

Making definitions polarity-aware reduces the number of clauses introduced and remains satis-
fiability preserving (see later).

When to Name. As the goal is to reduce the number of produced clauses, it seems sensible
to only name a subformula if this will result in fewer generated clauses. Table 1 describes
how to compute α+(ϕ) the number of clauses generated from a positive occurrence of the
formula ϕ (assuming the polarity-aware expansion of ↔ and ⊗ described later). Ideally, one
would compute the number of clauses introduced with and without the naming of a subformula.
However, this is not efficient; a naive implementation of α is exponential and its value grows
exponentially. In the following we sketch two approaches to naming that aim to avoid this issue.

The FLOTTER Approach. As described in [3], when computing the difference in number
of clauses it is only necessary to consider the part of ϕ that has changed. This leads to a
reformulation of the rules in Table 1 that computes the coefficients for α?(ϕ |π) in α?(ϕ) for
? ∈ {+,−}. Then it is computed that, for instance, if pol(ϕ, π) = 1, α+(ϕ |π) > 1 and the
coefficient of α+(ϕ |π) in α+(ϕ) is > 1 then ϕ |π should be named. Similar linearly-checkable
boolean conditions are introduced for the other cases. The result is an approach that computes
the above criteria in linear time.

The Vampire Approach. Instead of comparing the number of clauses produced with and
without naming, Vampire uses a naming threshold nthresh and names a formula if it would
produce more than nthresh clauses. Naming is then applied in a bottom-up fashion. Starting
at the leaves of the formula, the clause count as per Table 1 is passed to the parent position
if this count is less than the threshold. Otherwise, subformulas are named (starting with the
subformula with the largest α) until a value below the threshold can be passed up.

2.4 Skolemization

To obtain a clausal normal form of a formula, it is necessary to remove existential quantifica-
tions. This is achieved by a process called Skolemisation.

Standard Skolemization. The standard operation is described as follows

∀x.ϕ[y1, . . . , yn, x] ⇒ ϕ[y1, . . . , yn, x]
∃x.ϕ[y1, . . . , yn, x] ⇒ ϕ[y1, . . . , yn, x]{x 7→ f(y1, . . . , yn)}

i.e. universal quantifications are dropped and existential quantifications are replaced by fresh
Skolem functions.

Optimisation. A well-known optimisation for Skolemization is mini-scoping or anti-prenexing
where quantifiers are moved inwards as far as possible. The idea is to reduce the arity of
introduced Skolem functions. Consider the formula

∀x.∃y.(p(x) ∨ q(y))

the standard Skolemization approach would produce p(x)∨ q(f(x)) but pushing the existential
quantification in to get ∀x.(p(x)∨∃y.q(y)) would result in p(x)∨q(a). However, it may sometimes
be optimal to pull quantifiers outwards. This is called maxiscoping and can be used to reduce
the number of Skolem functions introduced. Consider the formula

(∃x.p(x)) ∨ (∃y.q(y))

the standard Skolemization approach would produce p(a) ∨ q(b) but pulling the existential
quantifications out to get ∃x.(p(x) ∨ q(x)) would result in p(a) ∨ q(a). Therefore, it is not
straightforward to say one is better than the other or when they should be applied. Vampire
does not currently apply miniscoping or maxiscoping.

2.5 Equisatisfiability of Transformation

It is a standard result that the transformations discussed here are satisfiability preserving.
But we note that the result is somewhat stronger. They are model-preserving on the original
signature. If I is a model of ϕ before either Skolemization or subformula naming is applied and
ϕ′ is the resulting formula after the transformation, then I can be extended to a model of ϕ′

by only adding appropriate interpretations for the new symbols.

3 VCNF: A Top-Down Clausification Algorithm

The section describes a top-down clausification algorithm that produces a finite set of clauses
from a first-order formula in equivalence negation normal form (ENNF).

Given 〈{{Di, ϕt}σi , {Dj , ϕf}σj , Dk
σk
}, ϕ.∆〉

if ϕ = l ⇒ 〈{{Di, ϕt}σi , {Dj , ϕf}σj , Dk
σk
},∆〉

if ϕ = ¬ϕ1 ⇒ 〈{{Di, ϕf
1}σi , {Dj , ϕt

1}σj , Dk
σk
},∆.ϕ1〉

if ϕ = ϕ1 ∨ ϕ2 ⇒ 〈{{Di, ϕt
1, ϕ

t
2}σi , {Dj , ϕf

1}σj , {Dj , ϕf
2}σj , Dk

σk
},∆.ϕ1.ϕ2〉

if ϕ = ϕ1 ∧ ϕ2 ⇒ 〈{{Di, ϕt
1}σi , {Di, ϕt

2}σi , {Dj , ϕf
1, ϕ

f
2}σj , Dk

σk
},∆.ϕ1.ϕ2〉

if ϕ = ϕ1 ↔ ϕ2 ⇒ 〈{{Di, ϕf
1, ϕ

t
2}σi , {Di, ϕt

1, ϕ
f
2}σi ,

{Dj , ϕf
1, ϕ

f
2}σj , {Dj , ϕt

1, ϕ
t
2}σj , Dk

σk
},∆.ϕ1.ϕ2〉

if ϕ = ϕ1 ⊗ ϕ2 ⇒ 〈{{Di, ϕf
1, ϕ

f
2}σi , {Di, ϕt

1, ϕ
t
2}σi ,

{Dj , ϕf
1, ϕ

t
2}σj , {Dj , ϕt

1, ϕ
f
2}σj , Dk

σk
},∆.ϕ1.ϕ2〉

if ϕ = ∀x.ϕ1 ⇒ 〈{{Di, ϕt
1}σi , {Dj , ϕf

1}σj∪{x7→fϕσj (z1,...,zm)}, D
k
σk
},∆.ϕ1〉

where {z1, . . . , zm} = fvars(ϕσj) and fϕσj fresh with arity m
if ϕ = ∃x.ϕ1[y1, . . . , yn] ⇒ 〈{{Di, ϕt

1}σi∪{x 7→fϕσi (z1,...,zm)}, {Dj , ϕf
1}σj , Dk

σk
},∆.ϕ1〉

where {z1, . . . , zm} = fvars(ϕσi) and fϕσi fresh with arity m

Figure 1: VCNF rules.

3.1 The Basic Algorithm

Sequents. A sign is either t or f. A signed formula is a pair consisting of a formula ϕ and a sign
?, denoted by ϕ?. The signed formula ϕt (resp. ϕf) means that ϕ is true (resp. false). We use the
mapping form from signed formulas to formulas defined as follows: form(ϕt) = ϕ and form(ϕf) =
¬ϕ. We call a sequent a finite set of signed formulas. We say that a sequent S1, . . . , Sn is true
in an interpretation I if the universal closure of the formula form(S1) ∨ . . . ∨ form(Sn) is true
in I. Note that if S1, . . . Sn are signed atoms then form(S1) ∨ . . . ∨ form(Sn) is a clause.

The VCNF algorithm works with finite sets of sequents. While the algorithm is working,
we keep constructing substitutions to be applied to existing (signed) formulas. It is convenient
for us to collect these substitutions without applying them right away. For this reason, instead
of a sequent Dσ, where σ is a substitution, we use pairs Dσ consisting of a sequent D and a
substitution σ. We (slightly informally) also refer to such pairs as sequents.

Rules. The VCNF algorithm is captured by the rules in Figure 1 which rewrite a configuration
〈Γ,∆〉 where Γ is a finite set of sequents and ∆ is a sequence of formulas. In Figure 1, we use the
notation {Di, ϕt} to select all sequents i that contain ϕ with the positive sign (and analogously
for the negative sign). The following transformation should then apply to all such sequents.

The rewriting is driven by the sequence ∆, the left-most formula of which determines which
rewriting to apply next. To translate a formula ϕ into clausal normal form one should begin
with 〈Γ,∆〉 = 〈{{ϕt}ε}, 〈ϕ〉〉, where ε is the empty substitution, and apply the rules until ∆ is
empty. (We overload the notation and later also denote the empty sequence by ε.)

The rule for literals is straightforward; the literal is kept untransformed. In the rest of
the paper we will skip this step in examples. For negation the signs are simply swapped.
The rules for disjunction and conjunction follow the standard transformation and are dual in
polarity, i.e. for positive disjunction the formula is expanded within the same sequent (which
itself stands for a disjunction) and for positive conjunction two new sequents must be created

(they distribute). An extension of the rules to cover conjunctions and disjunctions of arbitrary
arity is straightforward and left out from Figure 1 for the sake of clarity.

The rules for ↔ and ⊗ are polarity aware [3] in the sense that they aim to avoid a trans-
formation that introduces unnecessary tautologies.

Example 1. Consider the formula a↔ (b↔ c) and its transformation using the above rules:

〈{{(a↔ (b↔ c))t}ε}, (a↔ (b↔ c))〉 ⇒
〈{{af , (b↔ c)t}ε, {at, (b↔ c)f}ε, (b↔ c)〉 ⇒
〈{{af , bt, cf}ε, {af , bf , ct}ε, {at, bf , cf}ε, {at, bt, ct}ε, ε〉

leading to the clauses (cf. Clause Generation below):

{¬a, b,¬c}, {¬a,¬b, c}, {a,¬b,¬c}, {a, b, c}.

Here ¬(b↔ c) is translated as (¬b∨¬c)∧ (b∨ c) rather than (¬b∧ c)∨ (b∧ c) as in the standard
transformation. If the standard transformation had been applied then distributivity would have
created the tautological clauses ¬b ∨ b and c ∨ ¬c.

Also the rules for quantification are dual to each other and so the rule for one quantifier
always also contains the one for the other just with the opposite polarity. In this paragraph,
we only describe the “natural”, positive case of each rule. The rule for universal quantification
simply drops this quantification as variables are assumed universally quantified in the resulting
clauses. The rule for existential quantification is the only rule that extends the substitution.
We use the following example to explain the additional condition on this extension.

Example 2. Consider the formula ϕ = ∃x.∀y.∃z.p(x, y, z) and its transformation using the
above rules:

〈{{(∃x.∀y.∃z.p(x, y, z))t}ε},∃x.∀y.∃z.p(x, y, z)〉 ⇒
〈{{(∀y.∃z.p(x, y, z))t}{x 7→a}},∀y.∃z.p(x, y, z)〉 ⇒
〈{{(∃z.p(x, y, z))t}{x 7→a}},∃z.p(x, y, z)〉 ⇒
〈{{p(x, y, z)t}{x 7→a,z 7→f(y)}}, p(x, y, z)〉 ⇒
〈{{p(x, y, z)t}{x 7→a,z 7→f(y)}}, ε〉 ⇒

The final product is the unit clause p(a, y, f(y)).
In this example, we introduce a Skolem function f for z taking the single variable y even

though the free variables of ∃z.p(x, y, z) include x also. This is because {(∃z.p(x, y, z))}{x 7→a}
stands for ∃z.p(a, y, z) as the substitution is only delayed. Therefore, the rule for existential
quantification must take the substitution into consideration.

Clause Generation. Given a terminal configuration 〈{Di
σi}, ε〉 the set of clauses generated is

given as follows

{(
∨

form(ϕ?))σi | ϕ? ∈ Di
σi}

i.e. the sign and substitution are applied to each (necessarily atomic) formula in the sequent.

Simplification. Whenever a sequent Dσ is constructed, simple tautologies and redundant
formulas are eliminated. It means that

1. if D contains multiple occurrences of a signed formula, only one occurrence is kept in D;

2. if D contains >t or ⊥f , Dσ is not added to Γ;

3. if D contains a signed formula ⊥t or >f , this signed formula is removed from D.

Table 2: The reduction (difference) in the number of Skolem symbols introduced by VCNF
compared to clausification previously implemented in Vampire.

Reduction 1 2 3 4 16 314
Number of problems 111 125 141 42 2 1

These rules are not required for replacing sequents, however they simplify formulas and make
the resulting set of clauses smaller. A further simplification of removing tautological sequents
is discussed in Section 6.

Correctness. It should be clear that the rules are terminating as ∆ is bounded by the size of
ϕ. It should also be clear that on termination Γ contains sequents consisting of sign atoms only,
as the rules will eventually deconstruct all the complex (sub)formulas. Furthermore, whenever
subformula ϕ′ is handled by a rule it will no longer be presented in Γ, making the process linear
in the size of the original formula ϕ. Finally, the transformation of ϕ leads to an equisatisfiable
clausal form.

Lemma 1. Given 〈Γ,∆〉 ⇒ 〈Γ′,∆′〉 and a interpretation I
1. if I � Γ′ then I � Γ

2. If I � Γ then there exists I ′ that extends I on fresh symbols such that I ′ � Γ′

Theorem 1. For any formula ϕ in ENNF and finite set of sequents Γ if 〈{{ϕt}ε}, ϕ〉 ⇒∗ 〈Γ, ε〉
then Γ is satisfiable if and only if ϕ is.

3.2 A note on reusing Skolem functions

One important additional remark is in order on how to interpret the quantifier rules of Figure 1.
As with the other rules, there may be in general more than one sequent with an occurrence
of the subformula ϕ?. However, to keep the signature from growing excessively a single new
Skolem function can and should be introduced jointly for all those occurrences which share
the same expression ϕσ, i.e. those occurrences which agree on how the free variables of ϕ are
getting bound. Note that it is not necessarily the case that the substitutions are the same in
each sequent as they may contain additional variables.

The following is the conjecture formula of the SYN723+1.p problem from the TPTP library
[6] which demonstrates the advantage of reusing Skolem functions as facilitated by VCNF.

(∃x.∀y.(p(x)↔ p(y))↔ ((∃x.q(x)↔ ∀y.r(y))↔ ((∃x.∀y.(q(x)↔ q(y))

↔ (∃x.r(x)↔ ∀y.s(y)))↔ (∃x.∀y.(r(x)↔ r(y))

↔ ((∃x.s(x)↔ ∀y.p(y))↔ (∃x.∀y.(s(x)↔ s(y))↔ (∃x.p(x)↔ ∀y.q(y)))))))))

Because of the way quantification is interleaved with equivalences, the various subformulas
of this formulas need to get copied and Skolemised separately by the usual transformation
techniques. VCNF, on the other hand, Skolemises each subformula only once for each set of
bindings for the subformulas’ free variables. On this particular example, we obtained 330 Skolem
functions for our old clausification algorithm compared to mere 16 with VCNF, i.e. more than
a 20-fold reduction.

To estimate how often Skolem function reuse can be useful in practice we ran VCNF and
the previous clausification algorithm of Vampire on the 9128 problems from the TPTP library
(version 6.3.0) which are in first-order form. On 422 problems of these VCNF was able to

produce fewer Skolem functions. Table 2 provides a “histogram” perspective on these problems,
grouping them by the extent of the reduction. We remark that in the current setting, a necessary
condition for a reduction to occur is the alternation of quantifiers and (non-)equivalences in the
problem. Formula sharing (see Section 6) which we plan for future implementation has the
potential to lead to further reduction possibilities.

4 Naming Subformulas

We now show how the previous algorithm can be used to name subformulas. The general idea
is the following. Given a finite set of sequents Γ, if the number of instances of a signed formula
ϕ? reaches a certain threshold then ϕ is named.

4.1 Updating the Algorithm

We begin by updating the notion of configuration to include a subformula count C which maps
subformulas to the number of times they occur at a top level in Γ. The rules in Figure 1 can
then be updated to update this counter. For example, the rule for ↔ becomes

〈{{Di, (ϕ1 ↔ ϕ2)t}σi , {Dj , (ϕ1 ↔ ϕ2)f}σj , Dk
σk
}, (ϕ1 ↔ ϕ2).∆, {(ϕ1 ↔ ϕ2) 7→ k} ∪ C〉

⇒
〈{{Di, ϕf

1, ϕ
t
2}σi , {Di, ϕt

1, ϕ
f
2}σi , {Dj , ϕf

1, ϕ
f
2}σj , {Dj , ϕt

1, ϕ
t
2}σj , Dk

σk
},∆.ϕ1.ϕ2,

{ϕ1 7→ 2k, ϕ2 7→ 2k} ∪ C ′〉

where C ′ updates the formula count for formula occurring in Di and Dj . Note that we drop
the count for (ϕ1 ↔ ϕ2) as this formula is being removed from Γ. Additionally, in our current
setting without formula sharing (see Section 6) we are not keeping track of the occurrences and
their count of the subformulas ϕ1 and ϕ2 until they are unwrapped.

Then a new rule is introduced that performs naming as follows.

〈{{Di, ϕ[y]t}σi , {Dj , ϕ[y]f}σj , Dk
σk
},∆, {ϕ[y] 7→ n} ∪ C〉

if n > threshold ⇒
〈{{Di, Pϕ(y)t}σi , {Dj , Pϕ(y)f}σj , Dk

σk
, {Pϕ(y)t, ϕf}ε, {Pϕ(y)f , ϕt}ε},∆, C〉

If ϕ only appears as ϕt then only the sequent {Pϕ(y)t, ϕf}ε is added, similarly for ϕf and
{Pϕ(y)f , ϕt}ε. This is the polarity-aware naming discussed earlier.

Finally, the rules are now non-deterministic as one could be in a situation where the naming
rule and some other rule is applicable. In this case the naming rule should always be preferred,
i.e. we name as soon as we are allowed to by the threshold.

5 Experiments

Comparing two different algorithms in first-order theorem proving is very hard. The reason
is that the performance of a theorem prover depends on many options, which may affect the
algorithms in different ways. It may turn out that one of the algorithms is better for some
strategies (that is, combinations of parameter values), while the other one is better for other
strategies. Thus, fixing a small number of strategies may result in a biased conclusion. To
avoid this potential bias we used the methodology based on varying strategies. Further, we
only focused on problems hard for Vampire.

We took a subset of 2,307 problems from the TPTP library [6] previously established hard
for Vampire. We randomly generated strategies by flipping values of various options that
define how the prover searches for a refutation. Each strategy was cloned into two, one using

VCNF and the other the previous clausification algorithm. Such a pair of strategies was run
on a randomly selected hard problem. In total, we ran 130 000 pairs.

In total, a strategy using VCNF succeeded 6802 times and a strategy using the previous
clausification 6514 times (which confirms that the problems were hard, since only about 5% of
all runs were successful). There were 812 cases where only the VCNF variation succeeded on
a problem compared to 524 cases where only the previous clausification led to a solution. This
demonstrates that VCNF is a viable alternative to the standard clausification and, indeed,
tends to help Vampire to find more solutions than the previous approach.

6 Tautology Detection and Elimination

One advantage of the VCNF algorithm is the ability to detect and discard tautological sequents
on the fly.

Tautologies. A sequent Dσ is a tautology if it contains both ϕt and ϕf , i.e. if it is of the form
{ϕt, ϕf , . . .}. Such sequents can be discarded as soon as they are observed.

A tautological sequent will ultimately give rise to a set of tautological clauses. A clause
originating from the clausification of {ϕt, ϕf , . . .} has the form C ∨D ∨ . . . where C ∈ CNF (ϕ)
and D ∈ CNF (¬ϕ) thus ϕ→ C and ¬ϕ→ D and C ∨D must be a tautological clause.

We note that such tautologies may not appear in the final clause set if subformula naming
is used at any point during the process. Furthermore, the introduced definitions would not be
tautologies and would need to be identified and removed using techniques such as pure predicate
elimination1.

Therefore, there are two main advantages to this removal of tautological sequents:

1. we avoid additional processing effort where they could otherwise be removed at the end,

2. we detect tautologies that may otherwise not be detected at the end if naming is used.

A final advantage is that removing tautologies early on makes the (effective) subformula oc-
currences counts (Section 4) more precise and therefore gives the naming mechanism more
information to base its (however heuristical in nature) naming decisions on.

Source of Tautologies. The next question is where tautological sequents come from? There
are (in our current setting) two possible sources:

1. a naive transformation of (non)equivalences,

2. they may occur in the input from the outset.

The first case is avoided via the polarity-aware transformation discussed earlier (Section 3).
Therefore, only the second case is applicable here. In the case where ϕ is a literal, Vampire will
detect the tautology as literals are perfectly shared in Vampire, i.e. their syntactic equivalence
can be checked by pointer equivalence. As discussed below, such cases of tautologies involving
literals do occur in practice.

Formula Sharing. In order to effectively detect the second case in general, an extra imple-
mentation trick is needed. In particular, we need to be able to recognise (in constant time) that
the individual occurrences of ϕ indeed refer to the same formula. This does not seem to be
possible with the standard (tree-like) representation of formulas. Therefore, a shared (dag-like)
formula representation is required.

Vampire does not currently implement formula sharing (but this is planned for the future).
There are certain technical issues that must be overcome. Firstly, formula sharing should be

1This is the process of detecting predicates that are only used with a single polarity and removing any clause
containing them as they can be trivially satisfied.

modulo associativity and commutativity of ∧, ∨, and ⊗ and commutativity of ↔. But this is
non-trivial, consider the formulas

ϕ1 = p(x, y) ∨ q(y) ∨ s(x) and ϕ2 = p(x, y) ∨ q(y) and ϕ3 = q(y) ∨ s(x)

should ϕ1 be represented as ϕ2 ∨ s(x) or p(x, y) ∨ ϕ3? In either case the relationship between
ϕ1 and one of the other formulas will be lost.

Secondly, in the presence of first-order variables the possibility to share formulas which differ
only by variable renaming becomes appealing. Moreover, since VCNF is naturally capable of
processing a formula occurrence in the context of a general substitution σ, a possibility arises for
an even more compact sharing structure aware of the “instance of” relation between formulas.
Overcoming the technical challenges lying behind efficient implementation of these ideas is
subject to future work.

As a further point, we note that the addition of formula sharing will change how the previous
rules (Figure 1) operate as the list of subformulas to expand can no longer be simply maintained
by pushing newly observed subformulas to the end of ∆. Instead, a more general order specified
by the condition that it preserves the subformula relation will need to be employed.

Immediate tautology removal in practice. The TPTP library [6] contains a problem
SYN007+1.014.p which can easily be solved by Vampire with VCNF but not with its previous
clausification algorithm. This is Problem 71 from a collection by Pelletier [4] and consists of a
single conjecture formed by a chain of equivalences:

p1 ↔ (p2 ↔ . . .↔ (p14 ↔ (p1 ↔ (p2 ↔ . . .↔ p14)))).

The key to success of VCNF on this problem lies with immediate tautology removal. That is
because the clausal form of this problem consists of 228 clauses (a huge number) when counting
tautologies while the number is “only” 214 (still manageable) if tautologies are discarded. Note
that the property of eliminating immediately (before the expansion is completed) is important
here, since 228 clauses is too many to even just generate and discard on the fly.

7 Context Inlining

Sequents carry a substitution which defines a context for the free variables occurring in formulas
of the sequent. This section considers whether this context can be inlined into the sequent to
positive effect. There are two kinds of inling we consider:

1. Propagating (part of) this context to a subformula definition when formula occurrences
being named share the relevant part of the context.

2. The possibility to reuse Skolem functions already introduced for the sake of a different
occurrence when the relevant part of the context of the current occurrence is an instance
(a special case) of the other occurrence’s context.

The first case aims to reduce the arity of the new symbol introduced during naming and the
second case avoids the introduction of an additional Skolem function. We note that these exten-
sions are not currently implemented but illustrate further benefits of the top-down approach.

7.1 Inlining for Naming

The overall idea is to move as much to the definition during naming as possible to reduce
the arity of the fresh predicate symbol. Let us begin with an illustrative example, consider
the configuration 〈{{Di, ϕ[x1, . . . , xn, y]?}σi},∆, C〉 where we decide to name ϕ. Furthermore,
assume that x1, . . . , xn 6∈ dom(σi) and y 7→ t ∈ σi. The variable y is the relevant part of the

context that we will inline. Now instead of naming ϕ we name ϕ{y 7→ t}, i.e. the instance of
ϕ in which the binding to y has been inlined. This reduces the arity of the name if and only if
the free variables of t are amongst x1, . . . , xn (one such special case is when t is a constant).

In general, more than one variable can be shared by all the contexts of the occurrences of
ϕ. We may wish to inline such a subset of these that the arity of the introduced name would
be minimal. This is a non-trivial optimisation problem. Greedy solutions might not work and
it may be necessary to go against the gradient to achieve optimum. Consider the following
formula

∀y1, y2.∃x1, . . . xn.ϕ(x1, . . . , xn)

here when naming ϕ if we inline (the skolem term for) x1 we will increase the arity of the name
(since the skolem term depends on y1 and y2), but inlining all of xi will finally reduce the arity
to 2. This shows that the decision of whether to inline a particular variable is not independent.

Finally, if not all occurrences of a formula share the same context to be inlined then the
sets of occurrences could be split and named separately. The question is then whether having
two names with few arguments is better than only one name with many.

Let us remark that a similar discussion concerning naming of formulas related by the
“instance-of” relation appears in related work [1].

7.2 Inlining for Skolemization

Next we demonstrate how context for Skolem functions could be inlined using the formula
ϕ = a↔ ∃x.(b↔ ∃y.p(x, y)), which could be processed by VCNF as follows:

〈{{(a↔ ∃x(b↔ ∃y.p(x, y)))t}ε}, (a↔ ∃x.(b↔ ∃y.p(x, y)))〉 ⇒

〈{{at, (∃x.(b↔ ∃y.p(x, y)))f}ε, {af , (∃x.(b↔ ∃y.p(x, y)))t}ε}, (∃x(b↔ ∃yϕ))〉 ⇒

〈{{at, (b↔ ∃y.p(x, y))f}ε, {af , (b↔ ∃y.p(x, y))t}{x 7→c}}, (b↔ ∃y.p(x, y))〉 ⇒

〈{{at, bf , (∃y.p(x, y))f}ε, {at, bt, (∃y.p(x, y))t}ε,
{af , bt, (∃y.p(x, y))f}{x 7→c}, {af , bf , (∃y.p(x, y))t}{x7→c}}, (∃y.p(x, y))〉 ⇒

〈{{at, bf , p(x, y)f}ε, {at, bt, p(x, y)t}{y 7→d(x)},
{af , bt, p(x, y)f}{x 7→c}, {af , bf , p(x, y)t}{x 7→c,y 7→d(c)}, }, ε〉 ⇒

Context inlining for Skolem functions is demonstrated by the last step where we Skolemise
the subformula ∃y.p(x, y). Let us focus on two the positive occurrences for which we need to
introduce a Skolem function. Since the first of these occurrences happens in the context where
x is unbound, we introduce a term with a dependency on this variable, adding y 7→ d(x). For
the second occurrence, the context contains the binding x 7→ c and thus, according to the last
rule from Figure 1, y should be bound to a new Skolem constant e. However, because this
context is an instance of the first one, we can instead reuse the previously introduced Skolem
term d(x) and inline the binding x 7→ c into it. Thus we add the binding y 7→ d(c) and avoid
the introduction of the constant e.

Note that when Skolemising a formula ∃y.ϕ[y,x], we could in principle always introduce the
most general Skolem function f(x), with a dependency on all the free variables of ϕ and inline
the respective context of each occurrence to it. However, this would lead to introduction of
Skolem functions with unnecessarily large arities. So similarly to inlining for naming the idea
of inlining for Skolemisation leads to an optimisation problem (between the number of Skolem
symbols introduces and their arities) which does not have an obvious optimum.

8 Conclusion

This paper has introduced a new top-down algorithm for clausal form generation for first-order
formulas. The algorithm allows for the introduction of fewer Skolem functions as the context
from equivalence expansion is preserved. The algorithm also captures an alternative approach
to subformula naming that can reduce the size of the clausal form. Both of these results have
been established experimentally. Two extensions to the algorithm are then considered. Firstly,
we conjecture that formula sharing would enable further tautological sequent removal. Secondly,
we describe two settings where the context built during VCNF could be inlined to reduce the
arity of naming definitions or the number of Skolem functions required. Implementation of
these extensions remains further work.

References

[1] N. Azmy and C. Weidenbach. Computing tiny clause normal forms. In Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake Placid, NY, USA, June
9-14, 2013. Proceedings, pp. 109–125, 2013.

[2] L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol. 8044 of
Lecture Notes in Computer Science, pp. 1–35, 2013.

[3] A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In Handbook of Auto-
mated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT Press, 2001.

[4] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. J. Autom. Reasoning,
2(2):191–216, 1986.

[5] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. J. Symb. Com-
put., 2(3):293–304, 1986.

[6] G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

	Introduction
	Previous Work on Clausal Form Generation
	Preliminaries
	Transformation Steps
	Subformula Naming
	Skolemization
	Equisatisfiability of Transformation

	VCNF: A Top-Down Clausification Algorithm
	The Basic Algorithm
	A note on reusing Skolem functions

	Naming Subformulas
	Updating the Algorithm

	Experiments
	Tautology Detection and Elimination
	Context Inlining
	Inlining for Naming
	Inlining for Skolemization

	Conclusion

