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Abstract

The paper presents a model for the evolution of an infectious disease in a population with

individual-specific immunity. The immune state of an individual varies with time according

to its own dynamics, depending on whether the individual is infected or not. The model

involves a system of size-structured (first order) PDEs that capture both the dynamics of the

immune states and the transition between compartments consisting of infected, susceptible,

etc. individuals. Due to the unavailability of precise data about the immune states of the

individuals, the main focus in the paper is on developing a technique for set-membership

estimations of aggregated quantities of interest. The technique involves solving specific

optimization problems for the underlying PDE system and is developed up to a numerical

method. Results of numerical simulations are presented for a benchmark model of SIS-type,

potentially applicable to diseases like influenza and to various sexually transmitted diseases.

Keywords: mathematical epidemiology, immunoepidemiology, immune status, heteroge-
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1 Introduction

Ever since the seminal work by Kermack and McKendrick [14] compartmental models, such as

SIR- or SIS-models, play a prominent role in mathematical epidemiology. The idea behind

such models is to divide the population into several groups such as susceptibles (S), infectives

(I), recovered (R), etc., and to study the interactions between these groups and in particular

the transition of individuals from one group into another.
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It is obvious that the immune system of individuals plays an important role in this process

by counteracting the pathogen inside the body. The exact understanding of how this process

works and the modelling of in-host dynamics is the aim of immunology. An introduction to

this discipline may be found in [20]. In an epidemiological context immunology is important

because the state of the immune system influences, for example, the susceptibility, infectivity,

and recovery of individuals. The combination of these two disciplines, sometimes referred to as

“immunoepidemiology” ([5, 11, 19]), is therefore a natural consequence. One way to achieve this

is to model the within-host dynamics of the pathogen and couple this with an epidemiological

model by assuming that the state of within-host dynamics influences the transmission of the

pathogen between hosts. This approach has lead to a number of contributions, e.g. [1, 3, 7, 9, 10].

We will instead focus on the influence on the epidemiological dynamics of the waning and

boosting of the immune response towards a disease. A short explanation of why the immune

response increases and decreases depending on exposure to a pathogen can, for example, be

found in [5]. One approach to capture the waning of immunity towards a disease is to introduce

additional subclasses of, for example, recovered individuals (e.g. [12, 22]) or individuals with

waning immunity from vaccination (e.g. [18, 21]). This approach has the advantage that the

dynamics are still described by an ODE model, however these ODE systems can become large if

many compartments are added. Another approach is to assume that the recovered population

is structured with respect to the immune status of the individuals. This approach retains the

low-dimensionality of the equations, however at the cost of introducing a PDE into the system

(e.g. [6]). Such systems can also be formulated to include boosting of the immune system for

the recovered population as well ([5]). Other approaches to model the boosting of the immune

system during the infective period leads to models with multiple structured populations ([19]).

We will study dynamical systems in which every sub-population is structured with respect to

the host immunity. An example of such a model can be found in [26].

In this paper we present a model for the evolution of the susceptible and infected subpopulations

(SIS-model) in which the immunity of individuals has its own dynamics, depending on whether

the individual is susceptible of infected. The model involves a system of first order PDEs (of the

type of the so-called size-structured systems), which is similar to (but different from) [26]. It

could be interpreted in terms of an influenza infection, but similar models may be appropriate

to simulate sexually transmitted diseases [4]. In [26] it is argued that this framework can also

be used to model microparasite infections.

To numerically simulate heterogeneous models such as the one developed here, the initial

distribution of the population along the possible immunity states has to be known. However,

precise information about this distribution is not available in practice. Therefore, we develop

a method to estimate the dynamics of the disease under uncertain initial conditions, based
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on available data only. It builds on the general approach of set-membership estimation under

deterministic uncertainty (see e.g. [15, 16, 17]).

The paper is organised as follows. In Section 2 we introduce a benchmark SIS-model with

heterogeneous immunity, which consists of a pair of size-structured first order PDEs. In Section 3

we begin the investigation of this model by studying its steady state distributions. In Section 4

we present a more general class of models (including SIR-models, for example), and develop the

appropriate set-membership estimation technique. This allows us to estimate the evolution of

the disease without complete knowledge of its initial state. Finally, in Section 5 we apply this

technique to the benchmark model to gain additional insights about the steady states found in

Section 3 and to study how differences in the initial distribution influence the short term and

long term behaviour of the disease.

2 The heterogeneous SIS model

In the model below we consider a closed population of fixed size, a part of which is infected

by influenza. Each individual has an immunity level characterized by a number ω ∈ [0, 1]: the

larger is ω, the higher is the immunity of an individual. The level of immunity has its own

dynamics. If an individual is susceptible (that is, not infected, in the present context) in a time

interval [τ, θ), then her immunity level obeys the equation

ω̇(t) = d(ω(t)), ω(τ) = ωτ , t ∈ [τ, θ), (1)

where ωτ is the immunity level at time τ and d(ω) is the velocity of decrease of immunity at

immune state ω. Thus, d : [0, 1]→ (−∞, 0].

Similarly, e : [0, 1] → [0,∞) represents the velocity of increase of immunity of infected

individuals: the dynamics of the immune state of an individual which is infected in [θ, η) is

described by the equation

ω̇(t) = e(ω(t)), ω(θ) = ωθ, t ∈ [θ, η). (2)

Of course, if a susceptible individual becomes infected at time θ, then the dynamics of her

immune level switches from (1) to (2), then switches back to (1) at the time of recovery. In the

long run such switchings may happen several time. Notice that the dynamics of the immune

state is not individual-specific – the laws (1) and (2) apply to each individual.

In order to ensure existence and uniqueness of the solutions of the above ODEs, and invari-

ance of the interval [0, 1] (which is required in order to make the model meaningful) we assume

that d and e are continuously differentiable and d(0) = e(1) = 0. This resembles the assumption

that the interval [0, 1] contains all possible immune states.
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Now, we describe the model of the evolution of the susceptible and the infected subpopulations,

beginning with some notations. The numbers S(t, ω) and I(t, ω) represent the sizes of the

susceptible/infected subpopulations of immunity state ω at time t. The susceptibility of a

susceptible individual depends on the immunity state and is denoted by p(ω) ≥ 0. The infectivity

of an infected individual may also depend on the immunity state and is denoted by q(ω) ≥ 0.

The recovery rate of an infected individual of immunity state ω is denoted by δ(ω) ≥ 0. Finally,

σ(t) ≥ 0 is the strength of infection or effective contact rate. It is reasonably assumed to depend

on time in order to capture possible seasonal changes or other time-dependent effects.

Notice that the total population size can be represented as

N(t) =

∫ 1

0
[S(t, ω) + I(t, ω)] dω.

In the model below it will be assumed that the total population size remains constant, therefore

one may normalize it to N(t) = 1. Then under the assumption of proportional mixing (see e.g.

[8]), the incidence rate takes the form

1∫
0

q(ζ)I(t, ζ) dζ

N(t)
=

1∫
0

q(ζ)I(t, ζ) dζ. (3)

The evolution of the susceptible/infected individuals, regarding the changes of the immunity

state, is described by the equations

∂

∂t
S(t, ω) +

∂

∂ω
(d(ω)S(t, ω)) = −σ(t)p(ω)

1∫
0

q(ζ)I(t, ζ) dζ S(t, ω) + δ(ω)I(t, ω),

∂

∂t
I(t, ω) +

∂

∂ω
(e(ω)I(t, ω)) = σ(t)p(ω)

1∫
0

q(ζ)I(t, ζ) dζ S(t, ω)− δ(ω)I(t, ω),

(4)

complemented with the initial conditions

S(0, ω) = S0(ω), I(0, ω) = I0(ω), ω ∈ [0, 1], (5)

and the boundary (zero-flux) conditions

d(1)S(t, 1) = 0, e(0)I(t, 0) = 0, t ≥ 0. (6)

In our case we will fulfil the zero-flux conditions by assuming that d(1) = e(0) = 0, which is not

principally necessary, but is reasonable and makes the analysis technically simpler (see Remark 3

in Section 4.1). For simplicity, the data p, q, δ, σ, S0, I0 are assumed to be continuous functions
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(although this assumption can be easily relaxed – only measurability and boundedness suffice).

Also it is reasonably assumed that d(ω) < 0 and e(ω) > 0 for ω ∈ (0, 1) (strict loss/gain of

immunity if not-perfect/missing), and that p(0) > 0, q(0) > 0. Due to the normalization of the

population size we have to assume also that
∫ 1

0 [S0(ω) + I0(ω)] dω = 1.

Equations (4) have a clear micro-foundation: they can be derived (like in physics) by cal-

culating what amount of individuals will enter/leave immunity state interval [ω, ω + ∆ω] in a

time horizon [t, t+ ∆t], and then pass to a limit with ∆t and ∆ω. This kind of size-structured

systems are widely used in mathematical biology, while in the context of epidemiology we may

refer to [19, 26].

The exact definition of the notion of solution of equations (4)–(6) will be given in Section 4.

Remark 1. In the above model we assumed in advance (by taking N(t) = 1) that the population

has constant size. Notice that equations (4) together with the zero-flux conditions (6) and the

natural condition d(0) = e(1) = 0 keep the size of the population constant (= 1).

Remark 2. The assumption that there is no in/out flow of population is somewhat restrictive.

In fact, in- and out-flows of equal amounts of individuals is implicitly included in the model,

provided that the flows have the same ω-distributions as the existing population, hence have

no effect on S and I. Moreover, the model (4)–(6) can be easily enhanced to include out-flows

due to mortality (also additional mortality caused by infection) and migration, and in-flows of

new-borns and immigrants, having heterogeneous immunity states. This is just a matter of

adding new terms in equations (4) and replacing the incidence rate with the left term in (3) in

order to take into account a possible change of the population size.

3 Steady states

In this section we investigate the steady states of the benchmark system (4) in the case of time-

invariant strength of infection σ(t) = σ. Steady states are important in the study of asympototic

behaviour and give valuable information, in general. Although we are, due to the complexity of

the model, not able to completely describe the steady states or asymptotic behaviour analytically,

the calculations here are the basis for a numerical analysis of the steady states which will be

carried out in Section 5.

We formally drop the time dependence of the functions S(t, ω) and I(t, ω). This yields (denoting
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differentiation with respect to ω by ′)

(d(ω)S(ω))′ = −σp(ω)

∫ 1

0
q(ζ)I(ζ) dζ S(ω) + δ(ω)I(ω),

(e(ω)I(ω))′ = σp(ω)

1∫
0

q(ζ)I(ζ) dζ S(ω)− δ(ω)I(ω).

(7)

Note that we have (d(ω)S(ω) + e(ω)I(ω))′ = 0 which implies

d(ω)S(ω) + e(ω)I(ω) = κ = const. (8)

From the zero-flux conditions (6) and the assumption d(0) = e(1) = 0 we obtain that κ = 0.

3.1 Disease free steady states

First, we look for disease free steady states of (7), i.e. solutions with I(ω) ≡ 0. Under this

condition (8) becomes d(ω)S(ω) = 0 which implies S(ω) = 0 for ω ∈ (0, 1). Since
∫ 1

0 S(ω) dω = 1

we get that S(ω) = aδ0(ω) + (1 − a)δ0(ω − 1) for a ∈ [0, 1] and where δ0(ω) is the Dirac-delta.

In particular, the only disease free steady state that fulfils the zero-flux condition d(1)S(1) = 0

is S(ω) = δ0(ω).

3.2 Endemic steady states

Now, we consider the solutions of the steady state system (7), where I(ω) is not zero almost

everywhere. We furthermore restrict ourselves to solutions where both S(ω) and I(ω) are non-

negative. For this analysis we fix an ω∗ ∈ (0, 1). Furthermore, for θ ∈ (0,∞) we define the three

functions

g(θ) =
θ

1∫
0

q(ω)e
−

∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

dω

, (9)

Iθ(ω) = g(θ)e
−

∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ
, (10)

Sθ(ω) = −e(ω)

d(ω)
Iθ(ω). (11)

First, assume that (S∗(ω), I∗(ω)) solves (7) and is non-negative. Define

θ∗ =

∫ 1

0
q(ω)I∗(ω) dω. (12)

Using (7) and (8) it is easy to show for ω ∈ (0, 1) that I∗(ω) fulfils

I∗′(ω) = −
(
σp(ω)θ∗

d(ω)
+
δ(ω) + e′(ω)

e(ω)

)
I∗(ω).
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From this we see that for ω ∈ (0, 1) we can write

I∗(ω) = I∗(ω∗)e
−

∫ ω
ω∗

σp(ζ)θ∗
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ
. (13)

Multiplying this equation by q(ω) and integrating over (0, 1) yields

θ∗ = I∗(ω∗)

1∫
0

q(ω)e
−

∫ ω
ω∗

σp(ζ)θ∗
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

dω,

which is equivalent to I∗(ω∗) = g(θ∗). Plugging this into (13) we see that I∗(ω) = Iθ∗(ω), and

using (8), that S∗(ω) = Sθ∗(ω). Note that because the solution is assumed to be non-negative

and that I∗(ω) is not identically zero, we get that θ∗ > 0.

Now conversely assume that θ > 0. Then it is obvious that Iθ and Sθ are both non-negative, as

g(θ) > 0. Due to our definition of g(θ) it is easy to see that
∫ 1

0 q(ω)Iθ(ω) dω = θ. Using this, by

a simple differentiation of (10) we obtain that for ω ∈ (0, 1)

I ′θ(ω) = −
σp(ω)

1∫
0

q(ζ)Iθ(ζ) dζ

d(ω)
Iθ(ω)− δ(ω) + e′(ω)

e(ω)
Iθ(ω).

(14)

Multiplying (11) with d(ω)
e(ω) and plugging the result into (14), then multiplying by e(ω) yields

(e(ω)Iθ(ω))′ = σp(ω)

1∫
0

q(ζ)Iθ(ζ) dζSθ(ω)− δ(ω)Iθ(ω).

Consequently, (Sθ(ω), Iθ(ω)) solves (7) on the open interval (0, 1). Thus, we have proven the

following theorem.

Theorem 1. Choose ω∗ ∈ (0, 1). Let g(θ), Iθ(ω) and Sθ(ω) be defined as in (9), (10) and (11)

respectively.

• If θ > 0, then (Sθ(ω), Iθ(ω)) solves (7) for all ω ∈ (0, 1).

• If (S∗(ω), I∗(ω)) solves (7), define θ∗ as in (12). Then θ∗ > 0 and (S∗(ω), I∗(ω)) =

(Sθ∗(ω), Iθ∗(ω)) for all ω ∈ (0, 1).

This theorem shows that there is a one-to-one correspondence between non-negative solutions

of (7) on (0, 1) and positive numbers θ. In general the total population N in these solutions
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is not 1, as is assumed in our case. We are therefore now looking for solutions for which this

condition is fulfilled. Using (10) and (11) this yields

1 =

1∫
0

Iθ(ω) + Sθ(ω) dω

=

1∫
0

g(θ)e
−

∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ − e(ω)

d(ω)
g(θ)e

−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

dω

= g(θ)

1∫
0

(
1− e(ω)

d(ω)

)
e
−

∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

dω.

Using (9) we see that for θ ∈ (0,∞) this is equivalent to

r(θ) = 0,

where r(θ) is defined as

r(θ) =

1∫
0

((
1− e(ω)

d(ω)

)
θ − q(ω)

)
e
−

∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

dω. (15)

We see that r(0) < 0 (possibly −∞) and r(θ) > 0 (again possibly infinite) for any θ bigger than

supω∈[0,1] q(ω) =: Q. Therefore any solution of the equation r(θ) = 0 must lie in the interval

(0, Q). With this notation we arrive at the following corollary.

Corollary 1. The system (7) has a solution that fulfils the zero-flux condition, is non-negative,

and fulfils N = 1 if and only if the function r(θ) has a root θ∗ ∈ (0, Q). In this case the solution

is given by (Sθ∗ , Iθ∗). This solution is unique if and only if this root is unique.

We note that one can show that r(θ) is continuous on the set where it is bounded. The

question of the existence of a solution to r(θ) = 0 is therefore closely connected to the question

of where r(θ) is bounded. This however, cannot be answered in general and depends on the

particular choice of parameter functions. The same applies to the uniqueness.

In epidemiological models it is common that one can define an indicator λ such that if λ is below

a certain threshold there exists no endemic steady state, and there exists a unique steady state

if λ is above this threshold. In the current context, such an indicator could be the number of

roots of r(θ) in [0, Q]. It is an open question to obtain an indicator of similar kind as the basic

reproduction number.
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4 Set-membership estimation

In order to calculate a solution of system (4) one needs to know the initial distributions of

the susceptible and infected subpopulations along the heterogeneity ω, that is, S(0, ω) and

I(0, ω). However, this information is usually not available in detail. We may assume that

the total number of susceptible and infected individuals at time 0, that is, the quantities

S(0) =
∫ 1

0 S(0, ω) dω and I(0) =
∫ 1

0 I(0, ω) dω, are known. We may also have additional

information about the initial distributions, for example point-wise constraints of the form

u(ω) := (S(0, ω), I(0, ω)) ∈ [φ1(ω), φ2(ω)] where φ1 and φ2 are known functions. More gen-

erally, we summarize the available information about the initial data as u(·) ∈ U , where U is

a closed, convex and bounded subset of L∞ := L∞([0, 1] 7→ Rn+). Below in this section we

will formulate the problem of set-membership estimation of the aggregated state of the system,

y(t) :=
(∫ 1

0 S(t, ω) dω,
∫ 1

0 I(t, ω) dω
)

, based on the information u(·) ∈ U about the initial data

and the systems dynamics. Moreover, a computational tool for finding (approximating) the

set-membership estimation will be provided. This will be done in a more general framework,

including other (also higher dimensional) models of interest in epidemiology and beyond.

4.1 Formulation of the general model

Below x : [0, T ]× [0, 1]→ Rn will be viewed as a distributed state function and y : [0, T ]→ Rm

– as an aggregated state function, with their dynamics given by the equations

∂

∂t
x(t, ω) +

∂

∂ω
(A(ω)x(t, ω)) = f(t, ω, x(t, ω), y(t)), x(0, ω) = u(ω), (16)

y(t) =

1∫
0

g(t, ω, x(t, ω)) dω. (17)

The following assumptions will be standing in this section. The function f : [0, T ]× [0, 1]×
Rn×Rm → Rn is differentiable in x and y, the derivatives fx and fy and f itself are measurable

in (t, ω), locally essentially bounded, and locally Lipschitz continuous in (x, y) uniformly in

(t, ω). The function g : [0, T ]× [0, 1]×Rn → Rm is differentiable in x, the derivative gx and the

function g itself are measurable in ω and continuous in t, locally essentially bounded, and locally

Lipschitz continuous in x uniformly in (t, ω). Moreover, f(t, ω, x, y) ≥ −cx, g(t, ω, x) ≥ 0, where

c ≥ 0 is a constant and the inequalities (understood component-wise) hold for every (t, ω) and

every x ≥ 0 and y ≥ 0. The matrix function A : [0, 1]→ Rn × Rn is diagonal with continuously

differentiable diagonal elements ai(ω), ai(0) = ai(1) = 0 and ai(ω) 6= 0 for ω ∈ (0, 1).

Remark 3. The assumptions about f and g are fulfilled in our model (4) with x = (S, I) and

y(t) as in the beginning of the present section. Moreover, there we have A = diag(d, e) and
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the assumptions about A are fulfilled if d and e are as assumed in Section 2. We stress that

the additional assumption d(1) = e(0) = 0 made there provides one way to satisfy the zero-flux

conditions (6). In this case equations (16), (17) require only initial conditions to produce a

unique solution (see below). If d(1) 6= 0 and/or e(0) 6= 0, then the zero-flux conditions must be

ensured by adding the boundary conditions S(t, 1) = 0 and/or I(t, 0) = 0 (see, e.g., the more

general consideration in [2]). The approach below is still applicable, but the calculations become

more cumbersome.

As it will be seen below, a solution of (16), (17) is uniquely defined by the initial condition

x(0, ω) = u(ω), ω ∈ [0, 1], (18)

where u : [0, 1] 7→ Rn+ is a measurable and bounded function.

The notion of solution of system (16)–(18) can be defined in several ways, but for the

considered problem the method of characteristics seem to be most natural. Let for i = 1, . . . , n

the function ωi : [0, T ] × [0, 1] → [0, 1] be defined as the unique solution of the initial value

problem
∂

∂t
ωi(t, ρ) = ai(ωi(t, ρ)), ωi(0, ρ) = ρ,

where ρ is regarded as a parameter for ωi. Due to the assumptions about ai(ω), the mapping

(t, ρ) 7→ (t, ωi((t, ρ)) is a diffeomorphism of [0, T ] × [0, 1] onto itself. Its inverse has the form

(t, ω) 7→ (t, ρi(t, ω)), where ρi is continuously differentiable and satisfies ωi(t, ρi(t, ω)) = ω and

ρi(t, ωi(t, ρ)) = ρ.

As a motivation for the definition below we assume that x is a continuously differentiable

solution of (16)–(18). Denote zi(t, ρ) = xi(t, ωi(t, ρ)), thus xi(t, ω) = zi(t, ρi(t, ω)). Then

d

dt
zi(t, ρ) =

∂

∂t
xi(t, ωi(t, ρ)) + ai(ωi(t, ρ))

∂

∂ω
xi(t, ωi(t, ρ)),

zi(0, ρ) = xi(0, ωi(0, ρ)) = xi(0, ρ) = u(ρ),

hence
d

dt
zi(t, ρ) = fi(t, ωi(t, ρ), x(t, ωi(t, ρ)), y(t))− a′i(ωi(t, ρ)) zi(t, ρ). (19)

zi(0, ρ) = u(ρ). (20)

The above equations motivate the following definition (cf. [2]).

Definition 1. The pair of functions x : [0, T ] × [0, 1] → Rn and y[0, T ] → Rm is a solution of

system (16)–(18) if x has the representation xi(t, ωi(t, ρ)) = zi(t, ρ), t ∈ [0, T ], ρ ∈ [0, 1], where

zi(t, ρ) is measurable in ρ and absolutely continuous in t for a.e. ρ, and (19), (20), (17) are

satisfied almost everywhere.
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The definition is correct and x is a measurable function due to the measurability of z and

the fact that (t, ρ) 7→ (t, ωi((t, ρ)) is a diffeomorphism. For the same reason the functions

xj(t, ωi(t, ρ)) = zj(t, ρj(t, ωi(t, ρ))) in the right-hand side of (19) are well defined and measurable.

A solution x does not need to be differentiable. It may even be discontinuous in each of the

directions t and ω, but xi is absolutely continuous along almost every characteristic line (t, ωi(t)).

Lemma 1. If (x, y) is a solution of (16)–(18) then the mappings

[0, T ] 3 t 7→ x(t, ·) ∈ L1(0, 1) and [0, T ] 3 t 7→ y(t)

are continuous.

Proof. The second claim follows from the first due to the Lipschitz continuity of g in x and

the boundedness of x. Let us prove the first claim. For every i = 1, . . . n and for a.e. t, τ ∈ [0, 1]

we have, by change of the variable ω = ωi(t, ρ)∫ 1

0
|xi(t, ω)− xi(τ, ω)| dω =

∫ 1

0
|xi(t, ωi(t, ρ))− xi(τ, ωi(t, ρ))| ∂

∂ρ
ωi(t, ρ) dρ

≤
∫ 1

0
[|xi(t, ωi(t, ρ))− xi(τ, ωi(τ, ρ))|+ |xi(τ, ωi(t, ρ))− xi(τ, ωi(τ, ρ))|] ∂

∂ρ
ωi(t, ρ) dρ

=

∫ 1

0
|zi(t, ρ)− zi(τ, ρ)| ∂

∂ρ
ωi(t, ρ) dρ +

∫ 1

0
|xi(τ, ω)− xi(τ, ωi(τ, ρi(t, ω)))| dω

≤ c1|t− τ |+
∫ 1

0
|xi(τ, ω)− xi(τ, ω + ε(ω, t, τ))| dω,

where |ε(ω, t, τ))| ≤ c2|t − τ | (c1 and c2 are appropriate constants). It is a standard fact from

the analysis (a consequence from Lousin’s theorem, for example) that the second term converges

to zero when t→ τ . 2

Existence and uniqueness of a solution can be proved by a fixed point argument similarly

as in [2]. Although in some respects the problem in that paper is more general than the one

considered here, the additional assumption ai > 0 is made in [2], which is not fulfilled even for

our heterogeneous SIS model. The existence proof for (16)–(18), however, requires only a minor

modification.

4.2 The set-estimation problem

As explained at the beginning of the section, the initial data u(ω) is not assumed to be exactly

known. Instead, we assume that the only information about u(·) is that u ∈ U , where U is a

given bounded, closed and convex subset of L∞. Every element u ∈ U will be considered as a

11



possible realization of the uncertainty in the initial data. Let our task be to obtain information

about a part of the components of the aggregated state y at a given time, say t = T . That is,

we wish to estimate the projection prLy(T ) on a given subspace L ⊂ Rm.

Every u ∈ U generates a unique solution (x[u], y[u]) of (16)–(18). Denote

R(T ) := {y[u](T ) : u ∈ U} .

That is, R(T ) is the set of all aggregated states y(T ) that result from some possible realization

of the uncertainty, u ∈ U . In this sense, R(T ) is the exact (meaning minimal) set-membership

estimation of the aggregated state at time T . Thus the object of our interest is the set RL(T ) :=

prLR(T ). Below we adapt a well-known method for obtaining estimates

E(T ) ⊃ RL(T ).

Even more, the method allows to obtain outer approximations of arbitrary accuracy to the

convex hull coR(T ).

For a fixed l ∈ L we consider the problem of maximization of

Jl(u) := 〈l, y[u](T )〉 (21)

on the set U , where 〈·, ·〉 denotes the scalar product in Rm. Notice that J is bounded on U (see

Lemma 2 in the Appendix). Without caring about existence of a solution of problem (21), we

observe that if (ul, yl) is an ε-solution (in the sense that Jεl := Jl(ul) ≥ supU Jl − ε), then

coR(T ) ⊂ {y : 〈l, y〉 ≤ Jεl + ε}.

Repeating the same for a mesh {li} in the unit sphere on L, we obtain the set-membership

estimation

coRL(T ) ⊂ E(T ) :=
⋂
i

{y : 〈li, y〉 ≤ Jεli + ε},

which is the intersection of a finite number of (affine) half-spaces. Furthermore, if ε is small

enough and the mesh {li} is dense enough in the unit sphere in L, the estimation E(T ) provides

an arbitrarily fine outer approximation (in Hausdorff sense) to the convex hull of RL(T ). Notice

also that co {yli} provides an inner approximation to coRL(T ).

The main issue in the above set-estimation approach is to solve problem (21). For this, one

can apply the standard gradient projection method. In order to implement it, one needs to

calculate the derivative of J(u) and perform projections on U . In the next subsection we focus

on the first issue, while the implementation of the gradient projection method is standard and

will only be briefly discussed.

12



4.3 Solving the set-estimation problem

Recall that fx, fy, gx denote the respective derivatives of f and g. Furthermore, let ∗ denote

transposition. Given u ∈ U and the corresponding solution (x, y) := (x[u], y[u]), consider the

following adjoint system(
∂

∂t
+A(ω)

∂

∂ω

)
λ(t, ω) = −fx(t, ω, x(t, ω), y(t))∗ λ(t, ω)− gx(t, ω, x(t, ω))∗ ν(t)

λ(T, ω) = −gx(T, ω, x(T, ω))∗l,

ν(t) =

1∫
0

fy(t, ω, x(t, ω), y(t))∗ λ(t, ω) dω

(22)

with respect to λ : [0, T ]× [0, 1] 7→ Rn and ν : [0, T ] 7→ Rm. This system has the same structure

as (16)–(18) (and is linear), therefore the solution is understood in the same way, with the same

characteristic functions ωi. Thus a solution of (22) exists and is unique.

Theorem 2. The functional Jl : L∞ 7→ R is Fréchet differentiable. Its derivative has an L∞

representation, namely for every u ∈ U

J ′l (u)(·) = −λ(0, ·),

where λ is defined by the adjoint system (22). More precisely, for every u ∈ U there are constants

c and η > 0 such that∣∣J(u+ v)− J(u)− 〈J ′(u), u− v〉
∣∣ ≤ c‖v‖2L∞(Ω) for every v ∈ L∞(Ω) with ‖v‖ ≤ η,

where 〈·, ·〉 is the scalar product in L2(Ω).

The proof of this theorem uses similar arguments as [23, Proposition 1]. However, the latter

concerns a system of a form similar to (19)–(20), but much simpler. There, the characteristic

functions ωi(t, ρ) are the same for each i, which is a substantial simplification, although mainly

technical. Therefore, we sketch the proof of Theorem 2 in the Appendix.

The numerical solving of problem (21) is organized as follows. First we discretize the equations

(16), (17) similarly as in the recent paper [25], passing in this way to a mathematical program-

ming problem. Due to certain symmetry properties of the discretization scheme used (the Heun

scheme for time discretization combined with the trapezoidal rule for integration), solving the

discretized system obtained by the same scheme applied to the adjoint system (22) allows to

calculate the derivative of the objective function similarly as in Theorem 2. Then we apply the

standard gradient projection method for mathematical programming.
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We also mention that in order to obtain a good approximation of the set-membership es-

timation E(T ) it is necessary to solve problem (21) for many unit vectors l in the subspace

of interest, L. Moreover, estimations E(Ti) at a discrete mesh {Ti} of time instances may be

wished. Naturally, the obtained (approximate) maximizer u for given T = Ti and l can be used

as initial guess for neighboring instances Tj and vectors l, which makes the overall estimation

procedure tractable on a commercial PC. The critical dimension for the implementability of

the method is that of the space L (not the dimensions n and m, which can be much larger).

Practically, the number of aggregated states yj of interest (that is, dim(L)) may vary from 1 to

3.

5 Numerical analysis

In this section we apply the results from Section 4 to calculate set membership estimations

for the benchmark system (4). According to Lemma 2 in the Appendix, the mapping u →
(S[u](t), I([u](t))) is continuous in L∞. Then due to the convexity of U , the exact set-estimation

R(t) is a connected set. Hence, its projection on the I-subspace is an interval, [Imin(t), Imax(t)].

Due to the relation S(t) = 1− I(t) we obtain that

R(t) =
{

(S, I) ∈ R2 : S = 1− I, I ∈ [Imin(t), Imax(t)]
}
. (23)

Thus, in order to calculate the estimation R(t) it suffices to solve problem (21) for only two

vectors l1 and l2 given by the positive and negative I-axis.

First, we use the method described at the end of Section 4 and demonstrate how this can be

used to analyze the steady states of the benchmark system numerically. The actual functional

parameters for a given disease are hard to obtain (see discussion in Section 6), therefore to

illustrate the method we take parameters of simple form (that fulfill all the assumptions), where

the force of infection and the recovery rate are of a magnitude appropriate for modeling influenza

(see e.g. [13]):

• σ = 2.5

• p(ω) = 1− ω,

• q(ω) = 2p(ω),

• δ(ω) = 2ω,

• d(ω) = −0.015ω(1− ω),

• e(ω) = 0.15ω(1− ω).

14



0 0.5 1 1.5 2
−10

−5

0

5

10

θ

r(
θ
)

 

 

r(θ)

Solution

0.06 0.08 0.1

−0.2

−0.1

0

0.1

0.2

0.3

θ

 

 

r(θ)

Solution

Figure 1: On the left we see the function r(θ) plotted over the interval [0,Q]. Note that the

function is not bounded on the whole interval, but is continuous whenever it is bounded. On

the right we show the behaviour of r(θ) near its root. We see that it is strictly monotonically

increasing there. In particular, r(θ) has a unique root given by θ∗ ≈ 0.08707.

Using these parameters we can calculate the function r(θ) as described a the end of Section 3.

In Figure 1 we show the function r(θ) over the interval [0, Q]. Note that Q = 2 in our case.

From this calculations we can conclude that r(θ) has a unique root. Hence, a steady state

exists and it is unique. Having calculated the root θ∗ we can then calculate the steady state

solution (Sθ∗ , Iθ∗). We show this in Figure 2, where we compare the steady state solution with

the solution to system (4) at t = 200, where the components of u(ω) are given by the functions

u1(ω) = e−2ω − e−2 and u2(ω) = e2ω − 1, scaled so that
∫ 1

0 u(ω) dω = (0.9, 0.1).

Note that while an order of magnitude apart, the shapes of the steady states for S and I

are identical. This is explained by equation (8) (with κ = 0) which yields S(ω) = − e(ω)
d(ω)I(ω).

In our case −e(ω)
d(ω) = 10 from which it follows that the shapes are identical. This is of course a

result of our simple choice of parameters and in general this will not be the case.

We will use the steady states we found to describe the set U of possible initial distributions.

Namely, we set φ(ω) = (Sθ∗(ω), Iθ∗(ω)) and define

U =

{
u ∈ L∞ :

∫ 1

0
u(ω) dω =

∫ 1

0
φ(ω) dω, u(ω) ∈ [0.5φ(ω), 1.5φ(ω)]

}
.

Thus, we assume that the prevalence I(t) =
∫ 1

0 I(t, ω) dω of the disease is initially as we would

expect in a steady state, but we allow uncertainty in the actual distribution of the immune level

among the population. That the particular initial condition becomes largely irrelevant for t this
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Figure 2: We see for both the susceptible and infected population the theoretical steady states

Sθ∗(ω) and Iθ∗(ω) given by the thick black line. The dashed white lines show S(300, ω) and

I(300, ω) respectively, where S and I were calculated from system (4) using an exponential

initial condition. We also show the initial conditions and the solution at the earlier point t = 20.

On the right we plot dist(t) = ‖(Sθ∗(ω), Iθ∗(ω))− (S(t, ω), I(t, ω))‖L1
to show that the solution

does indeed converge towards the steady state.

large can be seen in Figure 3. There we use the set-membership estimation technique developed

in Section 4 to calculate the maximum and minimum value the prevalence I(t) may achieve. We

see that the prevalence converges to a single value independent of the initial condition.

We see that with these calculations we can analyse the asymptotic behaviour of the aggre-

gated variables of system (4). Using the function r(θ) we can determine existence and uniqueness

of an endemic steady state solution and using the set-membership estimation we can conclude

that this steady state is globally asymptotically stable for all initial data u(·) ∈ U .

If we significantly decrease the force of infection by taking σ = 0.25, we find that we can no

longer find a root of r(θ), and numerical calculations yield that r(θ) is either plus of minus

infinity on the interval [0, Q]. In Figure 4 we see that the solution does indeed converge to the

disease free steady state we described in Section 3.

We now calculate solutions to system (4) with periodic σ(t). We take all parameters as in

the previous subsection, but change σ to σ(t) = 2.5(1 + sin( 4π
100 t)/100). The results can be

seen in Figure 5. Similar to the case with constant σ the maximal and minimal prevalence

converge towards each other. However, they now converge to a periodic solution that oscillates

in accordance with the function σ(t). In Figure 6 we show the results if the sinus term is
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Figure 3: Set-membership estimation of the prevalence I(t). Note that while for small t the

prevalence can take significantly different values for different initial conditions, for large t both

the maximum and the minimum converge to the same value. On the right we show in more

detail the interval where the maximum and minimum differ significantly.

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

t

p
re

v
a
le

n
c
e

 

 

maximal prevalence

minimal prevalence

0
0.5

1 0

100

200

0

10

20

30

S(t,ω)

ω

t

Figure 4: On the left we show the set-membership estimation of the prevalence for σ = 0.25.

It can be seen that the disease dies out. On the right we show the solution S(t, ω) with initial

condition u(ω) = φ(ω). We see that the function does indeed tend towards a Dirac delta at

ω = 0.

dampened less and we take σ(t) = 2.5(1+sin( 4π
100 t)/10). Qualitatively, we see the same behaviour

as before, but with more pronounced oscillations. Overall we see that periodic behaviour, which
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Figure 5: Set-estimation of the prevalence for the system with σ(t) = 2.5(1 + sin( 4π
100 t)/100).

The prevalence I(t) converges to a periodic solution.
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Figure 6: Set-estimation of the prevalence for the system with σ(t) = 2.5(1 + sin( 4π
100 t)/10). The

prevalence I(t) converges again to a periodic solution, but with more pronounced oscillations.

is commonly observed in various diseases, is readily reproduced by this model.

In conclusion, using the techniques developed we are able to estimate the evolution of the disease

under uncertain information and to numerically describe the asymptotic behaviour of the system

(4) for initial conditions u ∈ U . In particular we see that while the long term behaviour may

be independent of the initial condition u, the short term behaviour may change significantly for
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different u. For example, events that decrease the immunity of the population may lead to a

temporary outbreak of the disease, or an intervention that is aimed at increasing the immunity

will only have temporary benefits. Using set-estimation we can gain information about possible

outcomes of such events and actions.

6 Conclusions

In this paper we present a model for the evolution of an infectious disease in a population where

the individuals have different immunity and their immune states vary with the time according

to its own dynamics. We propose a set-membership estimation procedure based on the available

information about the initial distribution of the population along the possible immune states.

The rest of the parameters of the model are assumed known. However, this is usually not

the case: many of the parameters may be uncertain and changing with the time – the rates

of loosing/gaining immunity, d and e, the strength of infection, σ, etc. The approach in this

paper can be enhanced correspondingly, with the difference that the auxiliary optimization

problems that are involved in the set-membership estimations will become more complex, still

being tractable by standard methods in the optimal control theory of size structured systems

(see e.g. [24]). Such an enhancement could be a topic of further research.

Appendix

Lemma 2. There exists a constant C such that for every u1, u2 ∈ U and for the corresponding

solutions (x[u1], y[u1]) and (x[u2], y[u2]) of system (16)–(18) it holds that

‖x[u1]− x[u2]‖L∞ + ‖y[u1]− y[u2]‖C ≤ C‖u1 − u2‖L∞ .

Proof According to the definition of a solution, xi[uj ](t, ω) = zi[uj ](t, ρi(t, ω)), where zi[uj ]

together with y[uj ] satisfy equations (19)–(20) with u = uj , j = 1, 2. Then it is straightforward

that

‖x[u1]− x[u2]‖L∞ = ‖∆z‖L∞ ,

where ∆zi(t, ρ) = zi[u1](t, ρ)− zi[u2](t, ρ), ∆z = (∆z1, . . . ,∆n).

Let Θ ⊂ [0, 1] be of full measure and such that the functions zi[uj ](·, ρ) are absolutely

continuous for every ρ ∈ Θ. Then

‖∆z‖L∞ = sup
t∈[0,T ]

∆z(t),
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where ∆z(t) := maxi=1,...,n supρ∈Θ |∆zi(t, ρ)| is a Lipschitz continuous function due to the uni-

form Lipschitz continuity of ∆zi(·, ρ). From the assumptions about the data of the system,

equation (17) and equation (19), we successively obtain that

|y[u1](t)− y[u2](t)| ≤ c1 ∆z(t),

∆z(t) ≤ ‖u1 − u2‖L∞ +

∫ t

0
(c2∆z(s) + c3|y[u1](s)− y[u2](s)|)) ds

≤ ‖u1 − u2‖L∞ +

∫ t

0
c4∆z(s) ds,

where c1, ..., c4 are appropriate constants. The claim of the lemma follows from Grönwall’s

inequality. 2

Proof of Theorem 2. Let u ∈ U and let ũ ∈ L∞(0, 1). Denote ε := ‖ũ − u‖∞, which will

be presumably a ”small” number. We denote by (x, y) and (x̃, ỹ) the corresponding solutions

of (16)–(18). Also we denote by zi and z̃i the corresponding z-functions from the definition of

solution, so that xi(t, ωi(t, ρ)) = zi(t, ρ), similarly for z̃i. Further, ∆u := ũ − u, ∆x := x̃ − x,

∆y := ỹ − y , and ∆z := z̃ − z. Then using (19), Lemma 2 and some standard calculus we

obtain that the following equations are fulfilled:

d

dt
∆zi(t, ρ) = fix(t, ωi(t, ρ)) ∆x(t, ωi(t, ρ)) + fiy(t, ωi(t, ρ)) ∆y(t)− a′(ωi(t, ρ)) ∆zi(t, ρ) + o(ε),

∆zi(0, ρ) = ∆ui(ρ),

∆y(t) =

∫ 1

0
gx(t, ω, x(t, ω)) ∆x(t, ω) dω + o(ε),

where the superscripts x and y denote differentiation with respect to x and y, the prime in a′

denotes differentiation in ω, the missing arguments of fix and fiy are obviously x(t, ωi(t, ρ)), y(t),

and o(ε) is any function of ε (possibly depending on t and ρ), such that o(ε)/ε→ 0 (uniformly

in t, ρ) when ε → 0. We mention that the second equation above holds due to zi(0, ρ) =

xi(0, ωi(0, ρ)) = xi(0, ρ) = ui(ρ).

Now we consider the adjoint system (22) and denote by ζi(t, ρ) = λi(t, ωi(t, ρ)) the function

corresponding to λ in Definition 1. Thus

d

dt
ζi(t, ρ) = −fxi(t, ωi(t, ρ))∗ λ(t, ωi(t, ρ))− gxi(t, ωi(t, ρ), x(t, ωi(t, ρ)))∗ ν(t),

ζi(T, ρ) = −gxi(T, ωi(T, ρ), x(T, ωi(T, ρ)))∗l,

ν(t) =

∫ 1

0
fy(t, ω, x(t, ω), y(t))∗ λ(t, ω) dω.
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Using the second last equation and changing the variable ω = ωi(t, ρ), we represent

Jl(ũ)− Jl(u) = 〈l,∆y(T )〉 =

∫ 1

0
〈l, gx(T, ω, x(T, ω)) ∆x(T, ω)〉 dω + o(ε)

=

∫ 1

0

n∑
i=1

∆xi(T, ωi(T, ρ)) gxi(T, ωi(T, ρ), x(T, ωi(T, ρ)))∗l
∂

∂ρ
ωi(T, ρ) dρ+ o(ε)

= −
n∑
i=1

∫ 1

0
∆zi(T, ρ) ζi(T, ρ)

∂

∂ρ
ωi(T, ρ) dρ+ o(ε). (24)

Now, we rework the following expression integrating by parts:

n∑
i=1

∫ T

0

∫ 1

0

d

dt
∆zi(t, ρ) ζi(t, ρ)

∂

∂ρ
ωi(t, ρ) dρdt

=
n∑
i=1

∫ 1

0
∆zi(T, ρ)ζi(T, ρ)

∂

∂ρ
ωi(T, ρ) dρ−

n∑
i=1

∫ 1

0
∆zi(0, ρ)ζi(0, ρ)

∂

∂ρ
ωi(0, ρ) dρ

−
n∑
i=1

∫ T

0

∫ 1

0
∆zi(t, ρ)

[
d

dt
ζi(t, ρ)

∂

∂ρ
ωi(t, ρ) + ζi(t, ρ)

∂

∂t

∂

∂ρ
ωi(t, ρ)

]
dρ dt.

Then we use the relation (24) and the identities

∆zi(0, ρ) = ∆ui(ρ), ζi(0, ρ) = ζi(0, ρi(0, ρ)) = λi(0, ρ),

∂

∂ρ
ωi(0, ρ) = 1,

∂

∂t

∂

∂ρ
ωi(t, ρ) = a′(ωi(t, ρ))

∂

∂ρ
ωi(t, ρ)

to obtain the representation

Jl(ũ)−Jl(u) =
n∑
i=1

∫ 1

0
∆zi(0, ρ) ζi(0, ρ) dρ+∆+o(ε) = −

∫ 1

0
〈λ(0, ρ),∆u(ρ)〉 dρ+∆+o(ε), (25)

where

∆ := −
n∑
i=1

∫ T

0

∫ 1

0

d

dt
∆zi(t, ρ) ζi(t, ρ)

∂

∂ρ
ωi(t, ρ) dρdt

−
n∑
i=1

∫ T

0

∫ 1

0
∆zi(t, ρ)

[
d

dt
ζi(t, ρ) + ζi(t, ρ) a′(ωi(t, ρ))

]
∂

∂ρ
ωi(t, ρ) dρ dt.

After substituting the expressions for d
dt

∆zi(t, ρ), d
dt
ζi(t, ρ), obtained in the beginning of the

proof, changing back the variable ρ = ωi(t, ω), and using the equations for ∆y and ν, it is a

matter of simple algebra to obtain that ∆ = o(ε). Then from (25)

Jl(ũ)− Jl(u) = −
∫ 1

0
〈λ(0, ω), ũ(ω)− u(ω)〉 dρ+ o(‖ũ− u‖∞),

which implies the claim of the theorem. 2
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